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DIFFERENTIAL IN INFRASTRUCTURE NETWORKS

AKIN KANLI AND ZEYNEP NIHAN ODABAS BERBERLER®

Abstract. Let G = (V, E) be a graph of order n and let B(D) be the set of vertices in V'\ D that have
a neighbor in the vertex set D. The differential of a vertex set D is defined as 9(D) = |B(D)| — | D]
and the maximum value of 9(D) for any subset D of V is the differential of G. A set D of vertices of
a graph G is said to be a dominating set if every vertex in V' \ D is adjacent to a vertex in D. G is
a dominant differential graph if it contains a d-set which is also a dominating set. This paper is devoted
to the computation of differential of wheel, cycle and path-related graphs as infrastructure networks.
Furthermore, dominant differential wheel, cycle and path-related types of networks are recognized.
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1. INTRODUCTION

In this paper, simple, finite and undirected graphs without loops and multiple edges are considered. Let
G = (V,E) be a graph with vertex set V and edge set E. The order of G is given by |V(G)| = n and the
size is defined as |E(G)| = m where | * | denotes the number of elements in the set (i.e. the cardinality). The
neighborhood of a vertex v € V(G) is the set of vertices adjacent to v, denoted Ng(v) or just N(v), and the
closed neighborhood of v is given by N[v] = N(v) U {v}. Thus, N(v) = {u € V(G)|uv € E(G)} and N(v) is
referred to as the open neighborhood of v. The degree of a vertex v € V' is defined as d(v) = |N(v)|. For a set
S CV,N(S)=Uyes N(V) and N[S] = N(S)U S. An end-vertex or a pendant or pendent vertex is a vertex
of degree one and its neighbor is called a support vertex. For S C V(G), the subgraph of G induced by S is
denoted by G[S]. Let G and H be two disjoint graphs. The join of graphs G and H, denoted by G V H, is
obtained from the disjoint union G and H by adding the edges {zy|z € V(G),y € V(H)} [21].

For any real number x we define the ceiling function [z] as the smallest integer greater than or equal to z
and similarly we define the floor function |x| as the largest integer smallest than or equal to x.

Graph theoretic techniques provide a convenient tool for the investigation of networks. It is well-known that
an interconnection network can be modeled by a graph with vertices representing sites of the network and edges
representing links between sites of the network. Therefore various network problems can be studied by graph
theoretical methods.

The differential in graphs is a subject of increasing interest, both in pure and applied mathematics. The
research and application of the 9(G) appears mainly in computational mathematics. The differential of a graph
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was introduced in [17] in 2006, and studied by several authors [1-9, 14,16, 19, 20], motivated by its applications
to information diffusion in social networks. The study of the mathematical properties of the differential in
graphs stated in [1-9, 14, 16, 17, 19, 20]. This parameter has been studied by many authors, both from the
viewpoint of combinatorics and from the viewpoint of the algorithmic complexity. We refer to the papers
[1-9,14,16,17,19,20] and the literature quoted therein. Since computing the differential of a graph is NP-
complete in general, it becomes an interesting question to calculate differential for some special classes of
interesting or practically useful graphs. In the following sections we will deal with this question.

Let G = (V, E) be a graph of order n, for every set D C V let B(D) be the set of vertices in V' \ D that
have a neighbor in the vertex set D. The differential of D is defined as 9(D) = |B(D)| — | D| and the differential
of a graph G, written 0(G), is equal to max {9(D) : D C V}. We will say that D C V is a differential set or
O-set if (D) = 9(G) is called a 0-set or differential set. Note that the connectivity of G is not an important
restriction, since if G has connected components Gy, ..., Gy, then 9(G) = 0(Gy1) + ... + 9(Gy). Therefore,
we will only consider connected graphs.

A set D of vertices of a graph G is said to be a dominating set if every vertex in V' \ D is adjacent to
a vertex in D. The domination number of G, denoted by v(G) is the minimum size of a dominating set of G [21].
Research on domination in graphs has not only important theoretical signification, but also varied application
in such fields as computer science, communication networks, ad hoc networks, biological and social networks,
distributed computing, coding theory, and web graphs. Dominating sets in graphs are natural models for facility
location problems in operations research. In general, the concept of dominating sets in graph theory finds wide
applications in different types of communication networks. A broadcast from a communication vertex is received
by all its neighbors. This is captured by the notion of domination in a graph. Finally, we will say that G is
a dominant differential graph if it contains a 0-set which is also a dominating set. Some examples of dominant
differential graphs are complete graphs, star graphs, wheel graphs, and path graphs P, and cycle graphs C),
with n = 3k or n = 3k + 2.

The rest of the paper is structured as follows. In Section 2, the known results in literature are overviewed.
In the following sections, the differential of wheel, cycle and path-related types of networks are computed and
exact formulae are derived.

2. KNOWN RESULTS

Theorem 2.1 ([9]). The differential of

(a) the complete graph K,, of order n is O(K,) =n — 2;

(b) the path P, of order n is O(P,) = | 2|;

(c) the cycle Cy, (n > 3) of order n is (Cy,) = | 2];

(d) the star Ky, of ordern+1 is O(K1,) =n—1;

(e) the complete bipartite graph Ky, n, of order m +n is
O(Km,n) =max{m—1,n—1,m+n—4};

(f) the wheel W, of order n+1 is 0(W,) =n — 1.

Theorem 2.2 ([7]). A graph G is dominant differential if and only if O(G) =n — 2v(G).

3. DIFFERENTIAL IN WHEEL RELATED NETWORKS

In this section, the differential of wheel-related networks including gear and helm networks are calculated
(Fig. 1).
3.1. Gear networks

Gear network is a wheel graph with a vertex added between each pair adjacent graph vertices of the outer
cycle. G,, has 2n 4 1 vertices and 3n edges [12]. G, includes an even cycle Cy,,. There are two types of vertices
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FIGURE 1. (a) Gear network G,, for n = 6. (b) Helm network H,, for n = 5.

of Cy, in G,, as vertices of degree two and three, respectively. The vertices of degree two are referred to as
minor vertices and vertices of degree three to as major vertices [15]. The central vertex ¢ of G, has degree of
n. Label the major and minor vertices, respectively, as vy, ...,v,—1 and wy,...,w,—1 and let w; be adjacent to
the vertices v; and v;41 for 0 < i <n — 1, where ¢ + 1 is taken modulo n.

Theorem 3.1. The differential of the gear network G, of order 2n + 1 is

24|22, ifn=3;
a(G”){n—l,3 if n > 4.

Proof. Tf we take the central vertex ¢ and so D; = {c}, then we have that B{D;} = {vg,...,v,_1} and so
0 (D1) =n — 1, and taking any other subset of V(G,,) to the set Dy yields 9 (D;) < n —1.

If we take a major vertex v; (0 < i < n — 1) of G, to the set Dy, that is Dy = {v;}, then we have
B (D3) = {c,w;_1,w; }, where i — 1 is taken modulo n, yielding J (D3) = 2.

Let S1 = V(Gn) \ Ng, [vi] and so we have that G,,[S1] = Ca,—3. If we take the maximal 0-set of G,,[S1] to
the set D having the set Ds, then since 9(C,,) = L%J, we receive 0 (D3) = 0 (D7) + 9(Can—3) =2+ LQ"B*BJ,
and taking any other subset of V(Gy,) to the set Dy yields 8 (D3) < 2+ |22 ].

If we take a minor vertex w; (0 < i < n —1) of G, to the set Dy, that is Dy = {w;}, then we have
B (Dy4) = {vi, vi41}, where i + 1 is taken modulo n, yielding 0 (D4) = 1.

Let So = V(Gp) \ {¢, Ng, [w;]} and so we have that G,,[S2] = Ca,—3. If we take the maximal d-set of G,,[Ss]
to the set Dy having the set Ds, then since 8(C,,) = | %| and the maximal d-set of G,,[S2] includes at least one
major vertex, we receive d (Ds) = 8 (Ds) + (0(Can—s) +1) = 2+ | 2%-2 |, and taking any other subset of V(Gy,)
to the set Dy yields 0 (Ds) < 2+ | 22|

By the definition of graph differential, among all the differential sets, we get

9(Gp) = max{0(Dy)} (1 <k <5)

. 2+L2"—3’3J, if n < 6;
a(G")_{n—l, if n > 4.

Thus, the proof holds. (|

Remark 3.2. We can easily observe that y(G,) = [%] and by Theorem 2.2 we conclude that gear networks
are dominant differential for n = 3,4, 6.
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3.2. Helm networks

Helm H,, is a network of order 2n+1 obtained from a wheel W,, with cycle C}, having a pendant edge attached
to each vertex of the cycle. H,, consists of the vertex set V(H,) = {v;]0 <i<n—-1}U{w;|0 <i<n-1}U{c}
and edge set E(H,) = {vivi41]0 <i <n — 1} U{vu;]0 <i<n—1} U{v;c|0 <i <n—1}, where i +1 is taken
modulo n [12]. The central vertex ¢ of H,, has a vertex degree of n. There are two types of vertices in H,, \ {c}
as the vertices of degree four and one, respectively. The vertices of degree one and four are referred to as minor
and major vertices, respectively [15].

Theorem 3.3. The differential of the helm network H, of order 2n + 1 is

_ 342|222, ifn=3
a(H")_{nl, if n>4.

Proof. If we take the central vertex ¢ of H,, to the set Dy, then we have B{D;} = {vo,...,v,—1} yielding
0 (D1) = n —1, and taking any other subset of V(H,,) to the set D yields 0 (D1) <n — 1.

If we take a major vertex v;(0 < i < n — 1) of H, to the set Dy, that is Dy = {v;}, then we have
B (D3) = {c, u;,vi41,0i—1}, where i + 1 and i — 1 are taken modulo n, yielding 9 (D3) = 3.

Let S1 = V(H,) \ Ng, [vi] and so we have that H,[S1] = P}_; where P} is the path graph of order n with
a pendant vertex attached to each vertex of the path. If we take the maximal 0-set of P,_3 to the set D5 having

the set D3, then since 9(P,) = L%J and every vertex of P,_3 is adjacent to a pendant vertex, we receive

3 (Ds) = 9(D2) + 9(Po—s) + | 252], ifn=3korn=3k+1;
VT (Do) + 0(Pa_s) + [252],  ifn=3k+2,
342253, if n =3k or n =3k +1;
a< 3)_ n—3 n—3 : _

3+2VLT_3J7 if n =3k or n =3k +1;
3422+ [%2], ifn=3k+2

If we take a minor vertex u;(0 < i < n — 1) of H, to the set Dy, then we have B (D,) = {v;}, yielding
0 (D4) = 0.

Let Sy = V(H,) \ Ng, [u;] and so we have the graph H,[S2] including the central vertex ¢, n — 1 major and
n — 1 minor vertices of H,, and also n — 1 major vertices induce the subgraph P,_; in H,[S2]. If we take the
maximal J-set of P,_; to the set D, having the set Ds, then since 9(P,) = {%J and every major vertex is
adjacent to a pendant vertex and the central vertex c, we receive

+0(Py—q) + 1+ [251],  if n =3k,
nolly, ifn=3k+1lorn=3k+2;

{8(D4)+8(Pn1)+1+{"glj, if n=3k+1orn=3k+2;
(D4) 5

L 1

55+ [ if n = 3k,

2|22 +1, if n=3k+1orn=3k+2;
|25+ (22 + 1, ifn=3k
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FIGURE 2. (a) Bipyramid network BP(n). (b) n-gon book of k-pages network B(n,k) for
n=4,n=>.

By the definition of graph differential, among all the differential sets, we get
O(H,) =max{0(D;)} (1 <1<5)

_[3+2]22], ifn=3;
a(H"){n—l, if n > 4.

Thus, the proof holds. O

4. DIFFERENTIAL IN CYCLE RELATED NETWORKS

In this section, the differential of cycle-related graphs including k-pyramid and n-gon book of k-pages networks
are calculated (Fig. 2).

4.1. k-pyramids

The join graph C,, V N (n > 3,k > 1), where Ny is the null graph of order k, is called k-pyramid and is
denoted by kP(n). The 2-pyramid network C,, V Ny is called bipyramid network and is denoted by BP(n). The
1-pyramid network C,, V Nj is the wheel graph W, [12].

Let wq,u9,us,...,u, be the vertices of C,, and wy,ws,ws,...,w; be the vertices of Ni. Then, we have
deg(u;) =k+2 (1 <i<n)and deg(w;) =n (1 <j<k).

Theorem 4.1. The differential of the k-pyramid network kP(n) of order n+ k is

if n =3t ananLf’;
n—1, ifn:3t+1ananL2+2;

ifn:3t+2andn2L2+1;
{%J + k, otherwise,

where t € 7.

Proof. If we take a vertex w; (1<
B (D;) = {u1,...,u,} and so 9 (D;
0 (Dl) <n-—1.

If we take the maximal J-set of C, in kP(n) to the set D, then since 9(C, L3J and every vertex
u; (1 <i<n)ofC,in kP(n) is adjacent to every vertex w; (1 < j < k) of Ny, we hav 9(D2) = | %] +Fk, and
taking any other subset of V(kP(n)) to the set Dy yields 8 (D2) < | %] + k.

Jj < k) of Ni in kP(n) to the set Dy, that is D; = {w;}, then we have
) = n — 1, and taking any other subset of V(kP(n)) to the set D; yields
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By the definition of graph differential, we have

O(kP(n)) = max{0(Dp)} (p=1,2)

if n=3t andn2?>’€27+3;
8(kP(n))_ n—1, ifn:3t+1andn23kT+2;
if n=3t+2andn> 3,
| 2] + k, otherwise,
where t € Z. Thus, the proof holds. )

Corollary 4.2. The differential of the bipyramid network BP(n) of order n+ 2 is

2l+2, ifn=3;
(B — { 57
n—1, if n > 3.
Remark 4.3. Since the wheel network W,, is 1-pyramid network C,, V Ny, by taking k = 1, the value of 9(W,,)
in Theorem 2.1(f) holds.

Remark 4.4. We can easily observe that v(kP(n)) = k and by Theorem 2.2 we conclude that k-pyramids are
dominant differential networks for

n =23t and n = 3k;

n:3t+1andn:6g;1;

n=3t+2and n=3k—1,

where t € Z.

4.2. n-gon books

When k copies of C,, (n > 3) share a common edge, it will form an n-gon book of k pages and is denoted
by B(n,k). The degree set of B(n,k) is {2,k + 1} [12]. Therefore, the vertices of B(n,k) are of two kinds:
vertices of degree 2 are referred to as minor vertices and vertices of degree k -+ 1 to as major vertices. For k =1,
we notice that B(n, k) = C,,.

Theorem 4.5. The differential of the n-gon book of k (k > 1) pages network B(n, k) of order (n —2)k + 2 is

nk if n = 3t;
O(B(n, k) = {if(["g‘lj +2) -2, ifn#3t,

where t € 7.

Proof. If we take one of the major vertices of B(n,k)-say vertex u, to the set Dy, that is D1 = {u}, then since
INB(n,k) (u)| =k + 1, we have 0 (D1) = k.

Let S1 = V(B(n,k)) \ Np(n,k [u] and so we have that B(n, k)[S1] = Ule P,,_3. If we take the maximal J-set
of B(n, k)[S1] to the set Dy having the set Da, then since d(P,) = |2 |, we have 0 (D) = k | %32 | + k.

For n =3t +1 (t € Z), if we take the other major vertex of B(n k)-say vertex v to the set Do having the
set Ds, then we have 9 (Ds) < (k|%52] + k) + (k —2) = k[252] + 2k — 2, and taking any other subset of
V(B(n,k)) to the set D3 yields 0 (D3) < k | 252 | + 2k — 2.

If we take Dy = {u, v} as the set of major vertices, then we have 9 (Dy) = 2k — 2.

For n # 3t +1 (t € Z), let Sy = V(B(n,k)) \ Np(n,x)[Ds] and so we have that B(n, k)[ o] = U 1
If we take the maximal d-set of B(n, k)[Ss] to the set Dy having the set Ds, then since 9(P,) = | %], we have
9(Ds) =2k —2+ k| %5*|, and taking any other subset of V(B(n, k)) yields 0 (Ds) < 2k — 2 + |24
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FIGURE 3. (a) Comet network C ;. (b) Double comet network DC(n, a, b). (c¢) Lollipop networks
Ly,q for n =10 and d = 5. (d) E}, network.

By the definition of graph differential, among the differential sets, we receive for k > 1

d(B(n, k)) = max{0(D;)} (1 <i<5)

k(|22 +1), if n = 3t;
I(B(n,k)) = (LnilJ ) .

k(252 +2) -2, ifn#3t,
where t € Z. The theorem is thus proved. O
Remark 4.6. We can easily observe that

V(B(n, k) =

1+k{%ﬁ?’w, ifn=3torn=3t+2;
24+ k[2514], ifn=3t+1,

where t € Z and by Theorem 2.2 we conclude that n-gon books are dominant differential networks for n = 3t 42
and k=2orn=3t (t€Z).
5. DIFFERENTIAL IN PATH RELATED NETWORKS

In this section, the differential of path-related networks including comet, double comet, lollipop and Efg
networks are calculated (Fig. 3).

5.1. Comet networks

The comet C;; where s and t are positive integers, denotes the tree obtained by identifying the center of the
star K7 ; with an end-vertex of P, the path of order t. So Cs1 = K7 5 and C1 1 = P, [13]. Let the center of
the star K ; -that is one end-vertex of P, be the vertex c.

Theorem 5.1. The differential of the comet network Cs of order s +1 is

0. =s+ |22
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Proof. If we take the center vertex ¢ of K7 4 in Cy ¢ to the set Dy, that is D1 = {c}, then we receive 9 (D7) = 5.

Let S1 = V(Cs,) \ Ne, ,[c] and so we have that C,;[S1] = P;_2. If we take the maximal J-set of Cy ;[S1] to
the set D; having the set Dy, then since 9(P,,) = [%J, we have 9 (D3) = s+ {%J, and taking any other subset
of V(Cs,) to the set Dy yields 0 (D2) < s+ L%J

If we take one of the vertices of K s except the center vertex c in Cs ; to the set D3, then we have 0 (D3) = 0.

Let Sy = V(Cs¢) \ Ne, ,)[Ds3] and so we have that Cj ;[Se] = P;—;. If we take the maximal d-set of C ;[Ss]
to the set D3 having the set Dy, then since (P,) = | 2|, we have 8 (D4) = |5} |, and taking any other subset
of V(Cs,) to the set Dy yields 8 (Dyg) < |52 ].

If we take the maximal O-set of P to the set Ds such that ¢ € B (Ds), then since d(P,) = | %], we have
2(Ds)  [3].

If we take the center vertex c of K s in Cs ; to the set D5 having the set Dg, then we have 0 (Dg) = L%J +s—2,
and taking any other subset of V(Cs,) to the set Dg yields 9 (D) < L%J +5—2.

By the definition of graph differential, we get

9(Csy) = max {0(D;)} (1 <i<6)

0(Cst) = s+ V_SQJ :

Thus the proof holds. U

Remark 5.2. We can easily observe that v(Cs ;) = 1+ f%} and by Theorem 2.2 we conclude that comets
are dominant differential networks for t =3k +2 or t =3k +4 (k € Z).

5.2. Double comet networks

For a,b > 1, n > a+ b+ 2 by DC(n,a,b) we denote a double comet, which is a tree composed of a path
containing n — a — b vertices with a pendent vertices attached to one of the ends of the path and b pen-
dent vertices attached to the other end of the path. Thus, DC(n,a,b) has n vertices and a + b leaves [11].
Let v1,v2,...,Vq, U1, U, ..., Up, W1, Wa, ..., Wy_q—p be the vertex set of the double comet DC(n, a,b), which is
obtained from a path P,_,_; of vertices wi,ws, ..., w,_q—p by attaching the pendant vertices ui,uso, ..., up to
the one end vertex w; of P,,_,_p and attaching the pendant vertices v, vs,...,v, to the other end vertex w,
of Pnfafb-

Theorem 5.3. The differential of the double comet network DC(n,a,b) of order n (a,b > 1,n—a—>b>2) is

A(DC(n,a,b)) = a+b+ V“b‘lJ .

3

Proof. If we take the vertex w; of DC(n,a,b) to the set Dy, that is 9 (D;) = a.

Let S1 = V(DC(n,a,b)) \ Npc@m,aplwi] and so we have that DC(n,a,b)[Si] = Cin_a—b-2,
where Cypn_q—p—2 is a comet graph of order n — a — 2. If we take the maximal O-set of
DC(n,a,b)[S1] to the set D; having the set D, then since 9(Cs;) = s + [5%]|, we receive

0(D2) = a+ b+ {%J, and taking any other subset of V(DC(n,a,b)) to the set Dy yields
0 (Ds) < a+b+ |22z,

If we take the vertex wy,—q—p of DC(n,a,b) to the set D3, then we have 9 (D3) = b.

Let So = V(DC(n,a,b)) \ Npc(n,ap)[wn] and so we have that DC(n,a,b)[S2] = Can—q-p—2. If we take
the maximal 9-set of DC(n,a,b)[S2] to the set Ds having the set Dy, then since 9(Cs,) = s + |52],
we have 0(D4) = b+ a + [%‘l’_ﬂ? and taking any other subset of V(DC(n,a,b)) to the set Dy yields
0 (D4) <b+a+ | 22521,

If we take the vertex v; (1 <1i < a) of DC(n,a,b) to the set D5, then we have 9 (Ds5) = 0.
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Let S5 = V(DC(n, a,b)) \ Npc(n,ap [vi] and so we have that DC(n, a,b)[S3] = Kq—1 U Cpn—q—p—1. If we take
the maximal O-set of DC(n, a,b)[Ss] to the set D5 having the set Dg, then since 9(Cys ;) = s + L%J, we have
9(Dg) = (Chn—a-b—1) = b+ |2=2%=2 ]|, and taking any other subset of V(DC(n,a,b)) to the set Dg yields
9 (Dg) < b+ | m=ozb=3].

If we take the vertex u; (1 < j <b) of DC(n,a,b) to the set D7, then we have 0 (D7) = 0.

Let Sy = V(DC(n,a,b)) \ Npc(n,an)lu;] and so we have that DC(n, a,b)[Ss] = Kp—1 UCq p—a—p—1. If we take
the maximal O-set of DC(n, a,b)[S4] to the set D7 having the set Ds, then since 9(Cs,;) = s + |52, we have
0(Dg) = 0(Cam—g—b-1) =0+ L%_b_ﬂ, and taking any other subset of V(DC(n,a,b)) to the set Dg yields
a(Dg) <a-+ L%_Z)_?)J

For n —a—b = 3k+ 1 (k € Z), if we take the maximal 0-set of P,_,_; to the set Dg such that
w; € B(Dy) or wy—a—p € B(Dy), then since (P,) = |%]|, we have 0(Dy) = |2=2=L|. If w; € B(Dy),
then let S5 = V(DC(n,a,b)) \ Npcm,ap[De U B(Dy)] and so we have DC(n,a,b)[S5] = K, U K.
If we take the maximal 0-set of DC(n, a, b)[S5] to the set Dy having the set D1g, then since 9(K; ) =n — 1,
we have 9(Dqg) = L”‘T‘H’J + (a —1). If we take the vertex w; of DC(n, a,b) to the set D1g having the set D1y,
we have 9(Dyq1) = L”_g_bJ + (a + b — 3), and taking any other subset of V/(DC(n,a,b)) to the set Dy; yields
d(D11) < [ 2=2=2| + (a+b—3). If wy—q—p € B(Dy), then let S = V(DC(n, a, b))\ Npc(n,ap [DeUB (Dy)] and
so we have DC(n, a,b)[Ss] = K, UK 5. If we take the maximal d-set of DC(n, a, b)[Se] to the set Dy having the
set Dyg, then since (K1 ,,) = n—1, we have 9(Dyo) = | == | 4 (b—1). If we take the vertex w; of DC(n, a, b)
to the set Do having the set D1, we have 9(D;;1) = L"‘T‘H’J + (b+ a — 3), and taking any other subset of
V(DC(n,a,b)) to the set Dy yields d(D11) < |2=4=L| + (b+a — 3).

Forn—a—-b=3korn—a—b=3k+2 (k€ Z), if we take the maximal J-set of P,,_,_p to the set Do
such that wy, w,—q—p € B(D12), then since 9(P,) = L%J, we have 9(D12) = L"‘T‘H’J If we take the vertex

wy € V(DC(n,a,b)) to the set Dy5 having the set Dy3, we have 0(Dy3) = |2=2=2| + (b — 2). If we take the

vertex wy—q—p € V(DC(n,a,b)) to the set D3 having the set D14, we have 9(D14) = L"*g*bJ + (b+a—4),
and taking any subset of V(DC(n,a,b)) to the set Dy4 yields O(D14) < |2=2=L| + (b4 a — 4). If we take the
vertex wy—q—p € V(DC(n,a,b)) to the set D12 having the set D15, then we have 9(D15) = L%J + (a—2).

By the definition of graph differential, we get

d(DC(n,a,b)) =max{0(D;)} (1 <1<15)

chm@w»:a+b+{”_“;b_4

Thus the proof holds. O

J fora,b>1landn—a—0>2.

Remark 5.4. We can easily observe that y(DC(n,a,b)) = 2+ [2=2-2=47 for a,b > 1 and by Theorem 2.2
we conclude that double comets are dominant differential networks for n—a—b =3k or n—a—b = 3k+1 (k € Z).

5.3. Lollipop networks

The lollipop network L, 4 is a graph obtained from a complete graph K, _4 and a path Py, by joining one of
the end vertices of Py [18], let this vertex be the vertex u, to all the vertices of K,_g4.

Theorem 5.5. The differential of the lollipop network Ly, 4 (d > 1) of order n is

d—2
i = |12
Proof. If we take the vertex u of Ly, 4 to the set Dy, that is D1 = {u}, then we have 0 (D1) =n —d.
Let S1 = V(Ln,4)\ Ni, ,[u] and so we have that L, 4[S1] = Py_2. If we take the maximal d-set of L, 4[S1] to
the set Dy having the set Da, then since d(P,) = L%J, we have 9 (Ds) =n —d+ L%J, and taking any other
subset of V(L q) to the set Dy yields 9 (D2) <n—d+ |452].
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If we take one of the vertices of K,,_4 to the set D3, then we have 9 (D3) =n—d — 1.

Let So = V(Ln,a) \ N, ,[D3] and so we have that L, q[S2] = P;—1. If we take the maximal 0-set of Ly, 4[S5]
to the set D3 having the set Dy, then since 9(P,,) = L%J, we have 0 (Dy) =n—d—1+ L%J, and taking any
other subset of V (L, 4) to the set Dy yields 0 (Dy) <n—d—1+ [%J

If we take the maximal O-set of P; to the set Dy, such that v € B(Ds), then since d(P,) = | 2], we have
d(Ds) = |4].

If we take the O-set of K,_4 to the set Ds having the set Dg, then since 9(K,) = n — 2, we get
9(Dg) = || +n—d—2 and taking any other subset of V(Ly 4) to the set Dg yields 0 (Dg) < [ 4| 4+n—d—2.

By the definition of graph differential, we get

Thus the proof holds. O

Remark 5.6. We can easily observe that v(L, q) =1+ f%] for d > 1 and by Theorem 2.2 we conclude that
lollipop networks are dominant differential for d =3k +2 or d =3k + 4 (k € Z).

5.4. Ef) networks

The network E; is a tree of order pt+ 2 obtained from a path with two vertices having one of the end-vertices
attached to t legs and each leg has p vertices [10]. Let the end-vertex attached to ¢ legs be the vertex ¢, and the
vertex degree of the vertex c is deg(c) = ¢+ 1.

Theorem 5.7. The differential of the Ef) network of order pt + 2 is

a(E;):tQp;lJ +1).

Proof. If we take the vertex c of El to the set Dy, then we have 9 (D;) = t.

Let S1 =V (E}) \ Ng:[c] and so we have that E}[S1] = U;_1 Pp—1. If we take the maximal d-set of E%[S]
to the set Dy having the set Ds, then since 9(P,) = L%J, we have 9 (Dy) =t +t Lpg;lJ, and taking any other
subset of V/(E}) to the set Dy yields 0 (D2) <t -+t L%J

If we take the other end-vertex that is adjacent to the vertex ¢ in P to the set Ds, then we have 0 (D3) = 0.

Let Sy =V (E) \ Nt [D3] and so we have that E[So] = Ui, P,. If we take the maximal d-set of E}[S2] to
the set D3 having the set Dy, then since (P,) = | 2|, we receive 0 (Dy) =t | 2], and taking any other subset
of V(E}) to the set Dy yields 0 (Dy) <t |%].

If we take the maximal d-set of one of the legs to the set Ds such that ¢ € B (Dj), then since d(P,) = | %],
we have 0 (Ds) = |21 .

If we take the maximal O-sets of t —1 legs of Efj to the set D5 having the set Dg, since 9(P,) = L%J , We receive
0 (Dg) = Lp—glJ + (t—1) |2], and taking any other subset of V (E!) to the set Dg yields 0 (Dg) <t +t Lp—glJ

By the definition of graph differential, we get

0 (E;) =max{0(D;)} (1 <i<6)
p—1
d(E,) _thJ +1).
Thus the proof holds. O

Remark 5.8. We can easily observe that v (Ef) = 1 + t[251] and by Theorem 2.2 we conclude that E!
networks are dominant differential for p =3k or p =3k + 1 (k € Z).
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