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DIFFERENTIAL IN INFRASTRUCTURE NETWORKS

Akin Kanli and Zeynep Nihan Odabaş Berberler∗

Abstract. Let G = (V, E) be a graph of order n and let B(D) be the set of vertices in V \D that have
a neighbor in the vertex set D. The differential of a vertex set D is defined as ∂(D) = |B(D)| − |D|
and the maximum value of ∂(D) for any subset D of V is the differential of G. A set D of vertices of
a graph G is said to be a dominating set if every vertex in V \ D is adjacent to a vertex in D. G is
a dominant differential graph if it contains a ∂-set which is also a dominating set. This paper is devoted
to the computation of differential of wheel, cycle and path-related graphs as infrastructure networks.
Furthermore, dominant differential wheel, cycle and path-related types of networks are recognized.
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1. Introduction

In this paper, simple, finite and undirected graphs without loops and multiple edges are considered. Let
G = (V,E) be a graph with vertex set V and edge set E. The order of G is given by |V (G)| = n and the
size is defined as |E(G)| = m where | ∗ | denotes the number of elements in the set (i.e. the cardinality). The
neighborhood of a vertex v ∈ V (G) is the set of vertices adjacent to v, denoted NG(v) or just N(v), and the
closed neighborhood of v is given by N [v] = N(v) ∪ {v}. Thus, N(v) = {u ∈ V (G)|uv ∈ E(G)} and N(v) is
referred to as the open neighborhood of v. The degree of a vertex v ∈ V is defined as d(v) = |N(v)|. For a set
S ⊆ V , N(S) =

⋃
v∈S N(V ) and N [S] = N(S) ∪ S. An end-vertex or a pendant or pendent vertex is a vertex

of degree one and its neighbor is called a support vertex. For S ⊆ V (G), the subgraph of G induced by S is
denoted by G[S]. Let G and H be two disjoint graphs. The join of graphs G and H, denoted by G ∨ H, is
obtained from the disjoint union G and H by adding the edges {xy|x ∈ V (G), y ∈ V (H)} [21].

For any real number x we define the ceiling function dxe as the smallest integer greater than or equal to x
and similarly we define the floor function bxc as the largest integer smallest than or equal to x.

Graph theoretic techniques provide a convenient tool for the investigation of networks. It is well-known that
an interconnection network can be modeled by a graph with vertices representing sites of the network and edges
representing links between sites of the network. Therefore various network problems can be studied by graph
theoretical methods.

The differential in graphs is a subject of increasing interest, both in pure and applied mathematics. The
research and application of the ∂(G) appears mainly in computational mathematics. The differential of a graph
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was introduced in [17] in 2006, and studied by several authors [1–9,14,16,19,20], motivated by its applications
to information diffusion in social networks. The study of the mathematical properties of the differential in
graphs stated in [1–9, 14, 16, 17, 19, 20]. This parameter has been studied by many authors, both from the
viewpoint of combinatorics and from the viewpoint of the algorithmic complexity. We refer to the papers
[1–9, 14, 16, 17, 19, 20] and the literature quoted therein. Since computing the differential of a graph is NP-
complete in general, it becomes an interesting question to calculate differential for some special classes of
interesting or practically useful graphs. In the following sections we will deal with this question.

Let G = (V,E) be a graph of order n, for every set D ⊆ V let B(D) be the set of vertices in V \ D that
have a neighbor in the vertex set D. The differential of D is defined as ∂(D) = |B(D)|− |D| and the differential
of a graph G, written ∂(G), is equal to max {∂(D) : D ⊆ V }. We will say that D ⊆ V is a differential set or
∂-set if ∂(D) = ∂(G) is called a ∂-set or differential set. Note that the connectivity of G is not an important
restriction, since if G has connected components G1, . . . , Gk, then ∂(G) = ∂(G1) + . . . + ∂(Gk). Therefore,
we will only consider connected graphs.

A set D of vertices of a graph G is said to be a dominating set if every vertex in V \ D is adjacent to
a vertex in D. The domination number of G, denoted by γ(G) is the minimum size of a dominating set of G [21].
Research on domination in graphs has not only important theoretical signification, but also varied application
in such fields as computer science, communication networks, ad hoc networks, biological and social networks,
distributed computing, coding theory, and web graphs. Dominating sets in graphs are natural models for facility
location problems in operations research. In general, the concept of dominating sets in graph theory finds wide
applications in different types of communication networks. A broadcast from a communication vertex is received
by all its neighbors. This is captured by the notion of domination in a graph. Finally, we will say that G is
a dominant differential graph if it contains a ∂-set which is also a dominating set. Some examples of dominant
differential graphs are complete graphs, star graphs, wheel graphs, and path graphs Pn and cycle graphs Cn

with n = 3k or n = 3k + 2.
The rest of the paper is structured as follows. In Section 2, the known results in literature are overviewed.

In the following sections, the differential of wheel, cycle and path-related types of networks are computed and
exact formulae are derived.

2. Known results

Theorem 2.1 ([9]). The differential of

(a) the complete graph Kn of order n is ∂(Kn) = n− 2;
(b) the path Pn of order n is ∂(Pn) =

⌊
n
3

⌋
;

(c) the cycle Cn (n ≥ 3) of order n is ∂(Cn) =
⌊

n
3

⌋
;

(d) the star K1,n of order n+ 1 is ∂(K1,n) = n− 1;
(e) the complete bipartite graph Km,n of order m+ n is

∂(Km,n) = max {m− 1, n− 1,m+ n− 4};
(f) the wheel Wn of order n+ 1 is ∂(Wn) = n− 1.

Theorem 2.2 ([7]). A graph G is dominant differential if and only if ∂(G) = n− 2γ(G).

3. Differential in wheel related networks

In this section, the differential of wheel-related networks including gear and helm networks are calculated
(Fig. 1).

3.1. Gear networks

Gear network is a wheel graph with a vertex added between each pair adjacent graph vertices of the outer
cycle. Gn has 2n+ 1 vertices and 3n edges [12]. Gn includes an even cycle C2n. There are two types of vertices
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Figure 1. (a) Gear network Gn for n = 6. (b) Helm network Hn for n = 5.

of C2n in Gn as vertices of degree two and three, respectively. The vertices of degree two are referred to as
minor vertices and vertices of degree three to as major vertices [15]. The central vertex c of Gn has degree of
n. Label the major and minor vertices, respectively, as v0, . . . , vn−1 and w0, . . . , wn−1 and let wi be adjacent to
the vertices vi and vi+1 for 0 ≤ i ≤ n− 1, where i+ 1 is taken modulo n.

Theorem 3.1. The differential of the gear network Gn of order 2n+ 1 is

∂(Gn) =
{

2 +
⌊

2n−3
3

⌋
, if n = 3;

n− 1, if n ≥ 4.

Proof. If we take the central vertex c and so D1 = {c}, then we have that B {D1} = {v0, . . . , vn−1} and so
∂ (D1) = n− 1, and taking any other subset of V (Gn) to the set D1 yields ∂ (D1) ≤ n− 1.

If we take a major vertex vi (0 ≤ i ≤ n − 1) of Gn to the set D2, that is D2 = {vi}, then we have
B (D2) = {c, wi−1, wi}, where i− 1 is taken modulo n, yielding ∂ (D2) = 2.

Let S1 = V (Gn) \NGn [vi] and so we have that Gn[S1] = C2n−3. If we take the maximal ∂-set of Gn[S1] to
the set D2 having the set D3, then since ∂(Cn) =

⌊
n
3

⌋
, we receive ∂ (D3) = ∂ (D1) + ∂(C2n−3) = 2 +

⌊
2n−3

3

⌋
,

and taking any other subset of V (Gn) to the set D3 yields ∂ (D3) < 2 +
⌊

2n−3
3

⌋
.

If we take a minor vertex wi (0 ≤ i ≤ n − 1) of Gn to the set D4, that is D4 = {wi}, then we have
B (D4) = {vi, vi+1}, where i+ 1 is taken modulo n, yielding ∂ (D4) = 1.

Let S2 = V (Gn) \ {c,NGn
[wi]} and so we have that Gn[S2] = C2n−3. If we take the maximal ∂-set of Gn[S2]

to the set D4 having the set D5, then since ∂(Cn) =
⌊

n
3

⌋
and the maximal ∂-set of Gn[S2] includes at least one

major vertex, we receive ∂ (D5) = ∂ (D4) + (∂(C2n−3) + 1) = 2 +
⌊

2n−3
3

⌋
, and taking any other subset of V (Gn)

to the set D5 yields ∂ (D5) < 2 +
⌊

2n−3
3

⌋
.

By the definition of graph differential, among all the differential sets, we get

∂(Gn) = max {∂(Dk)} (1 ≤ k ≤ 5)

∂(Gn) =
{

2 +
⌊

2n−3
3

⌋
, if n ≤ 6;

n− 1, if n ≥ 4.

Thus, the proof holds. �

Remark 3.2. We can easily observe that γ(Gn) = d 2n
3 e and by Theorem 2.2 we conclude that gear networks

are dominant differential for n = 3, 4, 6.
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3.2. Helm networks

Helm Hn is a network of order 2n+1 obtained from a wheel Wn with cycle Cn having a pendant edge attached
to each vertex of the cycle. Hn consists of the vertex set V (Hn) = {vi|0 ≤ i ≤ n− 1}∪ {ui|0 ≤ i ≤ n− 1}∪ {c}
and edge set E(Hn) = {vivi+1|0 ≤ i ≤ n− 1} ∪ {viui|0 ≤ i ≤ n− 1} ∪ {vic|0 ≤ i ≤ n− 1}, where i+ 1 is taken
modulo n [12]. The central vertex c of Hn has a vertex degree of n. There are two types of vertices in Hn \ {c}
as the vertices of degree four and one, respectively. The vertices of degree one and four are referred to as minor
and major vertices, respectively [15].

Theorem 3.3. The differential of the helm network Hn of order 2n+ 1 is

∂(Hn) =
{

3 + 2
⌊

n−3
3

⌋
, if n = 3;

n− 1, if n ≥ 4.

Proof. If we take the central vertex c of Hn to the set D1, then we have B {D1} = {v0, . . . , vn−1} yielding
∂ (D1) = n− 1, and taking any other subset of V (Hn) to the set D1 yields ∂ (D1) < n− 1.

If we take a major vertex vi(0 ≤ i ≤ n − 1) of Hn to the set D2, that is D2 = {vi}, then we have
B (D2) = {c, ui, vi+1, vi−1}, where i+ 1 and i− 1 are taken modulo n, yielding ∂ (D2) = 3.

Let S1 = V (Hn) \NHn
[vi] and so we have that Hn[S1] = P ∗n−3 where P ∗n is the path graph of order n with

a pendant vertex attached to each vertex of the path. If we take the maximal ∂-set of Pn−3 to the set D2 having
the set D3, then since ∂(Pn) =

⌊
n
3

⌋
and every vertex of Pn−3 is adjacent to a pendant vertex, we receive

∂ (D3) =

{
∂ (D2) + ∂(Pn−3) +

⌊
n−3

3

⌋
, if n = 3k or n = 3k + 1;

∂ (D2) + ∂(Pn−3) + dn−3
3 e, if n = 3k + 2,

∂ (D3) =

{
3 + 2

⌊
n−3

3

⌋
, if n = 3k or n = 3k + 1;

3 +
⌊

n−3
3

⌋
+
⌈

n−3
3

⌉
, if n = 3k + 2,

where k ∈ Z and taking any other subset of V (Hn) to the set D3, yields

∂ (D3) <

{
3 + 2

⌊
n−3

3

⌋
, if n = 3k or n = 3k + 1;

3 +
⌊

n−3
3

⌋
+
⌈

n−3
3

⌉
, if n = 3k + 2.

If we take a minor vertex ui(0 ≤ i ≤ n − 1) of Hn to the set D4, then we have B (D4) = {vi}, yielding
∂ (D4) = 0.

Let S2 = V (Hn) \NHn
[ui] and so we have the graph Hn[S2] including the central vertex c, n− 1 major and

n− 1 minor vertices of Hn, and also n− 1 major vertices induce the subgraph Pn−1 in Hn[S2]. If we take the
maximal ∂-set of Pn−1 to the set D4 having the set D5, then since ∂(Pn) =

⌊
n
3

⌋
and every major vertex is

adjacent to a pendant vertex and the central vertex c, we receive

∂ (D5) =

{
∂ (D4) + ∂(Pn−1) + 1 +

⌊
n−1

3

⌋
, if n = 3k + 1 or n = 3k + 2;

∂ (D4) + ∂(Pn−1) + 1 + dn−1
3 e, if n = 3k,

∂ (D5) =

{
2
⌊

n−1
3

⌋
+ 1, if n = 3k + 1 or n = 3k + 2;⌊

n−1
3

⌋
+
⌈

n−1
3

⌉
, if n = 3k,

where k ∈ Z and taking any other subset of V (Hn) to the set D5 yields

∂ (D5) <

{
2
⌊

n−1
3

⌋
+ 1, if n = 3k + 1 or n = 3k + 2;⌊

n−1
3

⌋
+
⌈

n−1
3

⌉
+ 1, if n = 3k.
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Figure 2. (a) Bipyramid network BP(n). (b) n-gon book of k-pages network B(n, k) for
n = 4, n = 5.

By the definition of graph differential, among all the differential sets, we get

∂(Hn) = max {∂(Dl)} (1 ≤ l ≤ 5)

∂(Hn) =
{

3 + 2
⌊

n−3
3

⌋
, if n = 3;

n− 1, if n ≥ 4.

Thus, the proof holds. �

4. Differential in cycle related networks

In this section, the differential of cycle-related graphs including k-pyramid and n-gon book of k-pages networks
are calculated (Fig. 2).

4.1. k-pyramids

The join graph Cn ∨ Nk (n ≥ 3, k ≥ 1), where Nk is the null graph of order k, is called k-pyramid and is
denoted by kP (n). The 2-pyramid network Cn ∨N2 is called bipyramid network and is denoted by BP(n). The
1-pyramid network Cn ∨N1 is the wheel graph Wn [12].

Let u1, u2, u3, . . . , un be the vertices of Cn and w1, w2, w3, . . . , wk be the vertices of Nk. Then, we have
deg(ui) = k + 2 (1 ≤ i ≤ n) and deg(wj) = n (1 ≤ j ≤ k).

Theorem 4.1. The differential of the k-pyramid network kP (n) of order n+ k is

∂(kP (n)) =

n− 1,

 if n = 3t and n ≥ 3k+3
2 ;

if n = 3t+ 1 and n ≥ 3k+2
2 ;

if n = 3t+ 2 and n ≥ 3k+1
2 ;⌊

n
3

⌋
+ k, otherwise,

where t ∈ Z.

Proof. If we take a vertex wj (1 ≤ j ≤ k) of Nk in kP (n) to the set D1, that is D1 = {wj}, then we have
B (D1) = {u1, . . . , un} and so ∂ (D1) = n − 1, and taking any other subset of V (kP (n)) to the set D1 yields
∂ (D1) < n− 1.

If we take the maximal ∂-set of Cn in kP (n) to the set D2, then since ∂(Cn) =
⌊

n
3

⌋
and every vertex

ui (1 ≤ i ≤ n) of Cn in kP (n) is adjacent to every vertex wj (1 ≤ j ≤ k) of Nk, we have ∂ (D2) =
⌊

n
3

⌋
+ k, and

taking any other subset of V (kP (n)) to the set D2 yields ∂ (D2) <
⌊

n
3

⌋
+ k.
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By the definition of graph differential, we have

∂(kP (n)) = max {∂(Dp)} (p = 1, 2)

∂(kP (n)) =


n− 1,


if n = 3t and n ≥ 3k+3

2 ;

if n = 3t+ 1 and n ≥ 3k+2
2 ;

if n = 3t+ 2 and n ≥ 3k+1
2 ;⌊

n
3

⌋
+ k, otherwise,

where t ∈ Z. Thus, the proof holds. �

Corollary 4.2. The differential of the bipyramid network BP(n) of order n+ 2 is

∂(BP(n)) =

{⌊
n
3

⌋
+ 2, if n = 3;

n− 1, if n > 3.

Remark 4.3. Since the wheel network Wn is 1-pyramid network Cn ∨N1, by taking k = 1, the value of ∂(Wn)
in Theorem 2.1(f) holds.

Remark 4.4. We can easily observe that γ(kP (n)) = k and by Theorem 2.2 we conclude that k-pyramids are
dominant differential networks for n = 3t and n = 3k;

n = 3t+ 1 and n = 6k−1
2 ;

n = 3t+ 2 and n = 3k − 1,

where t ∈ Z.

4.2. n-gon books

When k copies of Cn (n ≥ 3) share a common edge, it will form an n-gon book of k pages and is denoted
by B(n, k). The degree set of B(n, k) is {2, k + 1} [12]. Therefore, the vertices of B(n, k) are of two kinds:
vertices of degree 2 are referred to as minor vertices and vertices of degree k+ 1 to as major vertices. For k = 1,
we notice that B(n, k) ∼= Cn.

Theorem 4.5. The differential of the n-gon book of k (k > 1) pages network B(n, k) of order (n− 2)k + 2 is

∂(B(n, k)) =
{

nk
3 , if n = 3t;
k
(⌊

n−4
3

⌋
+ 2
)
− 2, if n 6= 3t,

where t ∈ Z.

Proof. If we take one of the major vertices of B(n, k)-say vertex u, to the set D1, that is D1 = {u}, then since
|NB(n,k)(u)| = k + 1, we have ∂ (D1) = k.

Let S1 = V (B(n, k)) \NB(n,k)[u] and so we have that B(n, k)[S1] =
⋃k

i=1 Pn−3. If we take the maximal ∂-set
of B(n, k)[S1] to the set D1 having the set D2, then since ∂(Pn) =

⌊
n
3

⌋
, we have ∂ (D2) = k

⌊
n−3

3

⌋
+ k.

For n = 3t + 1 (t ∈ Z), if we take the other major vertex of B(n, k)-say vertex v to the set D2 having the
set D3, then we have ∂ (D3) ≤ (k

⌊
n−3

3

⌋
+ k) + (k − 2) = k

⌊
n−3

3

⌋
+ 2k − 2, and taking any other subset of

V (B(n, k)) to the set D3 yields ∂ (D3) < k
⌊

n−3
3

⌋
+ 2k − 2.

If we take D4 = {u, v} as the set of major vertices, then we have ∂ (D4) = 2k − 2.
For n 6= 3t + 1 (t ∈ Z), let S2 = V (B(n, k)) \ NB(n,k)[D3] and so we have that B(n, k)[S2] =

⋃k
i=1 Pn−4.

If we take the maximal ∂-set of B(n, k)[S2] to the set D4 having the set D5, then since ∂(Pn) =
⌊

n
3

⌋
, we have

∂ (D5) = 2k − 2 + k
⌊

n−4
3

⌋
, and taking any other subset of V (B(n, k)) yields ∂ (D5) < 2k − 2 + k

⌊
n−4

3

⌋
.
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Figure 3. (a) Comet network Cs,t. (b) Double comet network DC(n, a, b). (c) Lollipop networks
Ln,d for n = 10 and d = 5. (d) Et

p network.

By the definition of graph differential, among the differential sets, we receive for k > 1

∂(B(n, k)) = max {∂(Di)} (1 ≤ i ≤ 5)

∂(B(n, k)) =

{
k
(⌊

n−3
3

⌋
+ 1
)
, if n = 3t;

k
(⌊

n−4
3

⌋
+ 2
)
− 2, if n 6= 3t,

where t ∈ Z. The theorem is thus proved. �

Remark 4.6. We can easily observe that

γ(B(n, k)) =

{
1 + k

⌈
n−3

3

⌉
, if n = 3t or n = 3t+ 2;

2 + k
⌈

n−4
3

⌉
, if n = 3t+ 1,

where t ∈ Z and by Theorem 2.2 we conclude that n-gon books are dominant differential networks for n = 3t+2
and k = 2 or n = 3t (t ∈ Z).

5. Differential in path related networks

In this section, the differential of path-related networks including comet, double comet, lollipop and Et
p

networks are calculated (Fig. 3).

5.1. Comet networks

The comet Cs,t where s and t are positive integers, denotes the tree obtained by identifying the center of the
star K1,s with an end-vertex of Pt, the path of order t. So Cs,1

∼= K1,s and C1,p−1
∼= Pp [13]. Let the center of

the star K1,s -that is one end-vertex of Pt be the vertex c.

Theorem 5.1. The differential of the comet network Cs,t of order s+ t is

∂(Cs,t) = s+
⌊
t− 2

3

⌋
·
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Proof. If we take the center vertex c of K1,s in Cs,t to the set D1, that is D1 = {c}, then we receive ∂ (D1) = 5.
Let S1 = V (Cs,t) \NCs,t

[c] and so we have that Cs,t[S1] = Pt−2. If we take the maximal ∂-set of Cs,t[S1] to
the set D1 having the set D2, then since ∂(Pn) =

⌊
n
3

⌋
, we have ∂ (D2) = s+

⌊
t−2
3

⌋
, and taking any other subset

of V (Cs,t) to the set D2 yields ∂ (D2) < s+
⌊

t−2
3

⌋
.

If we take one of the vertices of K1,s except the center vertex c in Cs,t to the set D3, then we have ∂ (D3) = 0.
Let S2 = V (Cs,t) \NCs,t)[D3] and so we have that Cs,t[S2] = Pt−1. If we take the maximal ∂-set of Cs,t[S2]

to the set D3 having the set D4, then since ∂(Pn) =
⌊

n
3

⌋
, we have ∂ (D4) =

⌊
t−1
3

⌋
, and taking any other subset

of V (Cs,t) to the set D4 yields ∂ (D4) <
⌊

t−1
3

⌋
.

If we take the maximal ∂-set of Pt to the set D5 such that c ∈ B (D5), then since ∂(Pn) =
⌊

n
3

⌋
, we have

∂ (D5) =
⌊

t
3

⌋
.

If we take the center vertex c of K1,s in Cs,t to the set D5 having the set D6, then we have ∂ (D6) =
⌊

t
3

⌋
+s−2,

and taking any other subset of V (Cs,t) to the set D6 yields ∂ (D6) <
⌊

t
3

⌋
+ s− 2.

By the definition of graph differential, we get

∂(Cs,t) = max {∂(Di)} (1 ≤ i ≤ 6)

∂(Cs,t) = s+
⌊
t− 2

3

⌋
·

Thus the proof holds. �

Remark 5.2. We can easily observe that γ(Cs,t) = 1 + d t−2
3 e and by Theorem 2.2 we conclude that comets

are dominant differential networks for t = 3k + 2 or t = 3k + 4 (k ∈ Z).

5.2. Double comet networks

For a, b > 1, n ≥ a + b + 2 by DC(n, a, b) we denote a double comet, which is a tree composed of a path
containing n − a − b vertices with a pendent vertices attached to one of the ends of the path and b pen-
dent vertices attached to the other end of the path. Thus, DC(n, a, b) has n vertices and a + b leaves [11].
Let v1, v2, . . . , va, u1, u2, . . . , ub, w1, w2, . . . , wn−a−b be the vertex set of the double comet DC(n, a, b), which is
obtained from a path Pn−a−b of vertices w1, w2, . . . , wn−a−b by attaching the pendant vertices u1, u2, . . . , ub to
the one end vertex w1 of Pn−a−b and attaching the pendant vertices v1, v2, . . . , va to the other end vertex wn

of Pn−a−b.

Theorem 5.3. The differential of the double comet network DC(n, a, b) of order n (a, b > 1, n− a− b > 2) is

∂(DC(n, a, b)) = a+ b+
⌊
n− a− b− 4

3

⌋
·

Proof. If we take the vertex w1 of DC(n, a, b) to the set D1, that is ∂ (D1) = a.
Let S1 = V (DC(n, a, b)) \ NDC(n,a,b)[w1] and so we have that DC(n, a, b)[S1] = Cb,n−a−b−2,

where Cb,n−a−b−2 is a comet graph of order n − a − 2. If we take the maximal ∂-set of
DC(n, a, b)[S1] to the set D1 having the set D2, then since ∂(Cs,t) = s +

⌊
t−2
3

⌋
, we receive

∂ (D2) = a + b +
⌊

n−a−b−4
3

⌋
, and taking any other subset of V (DC(n, a, b)) to the set D2 yields

∂ (D2) < a+ b+
⌊

n−a−b−4
3

⌋
.

If we take the vertex wn−a−b of DC(n, a, b) to the set D3, then we have ∂ (D3) = b.
Let S2 = V (DC(n, a, b)) \ NDC(n,a,b)[wn] and so we have that DC(n, a, b)[S2] = Ca,n−a−b−2. If we take

the maximal ∂-set of DC(n, a, b)[S2] to the set D3 having the set D4, then since ∂(Cs,t) = s +
⌊

t−2
3

⌋
,

we have ∂ (D4) = b + a +
⌊

n−a−b−4
3

⌋
, and taking any other subset of V (DC(n, a, b)) to the set D4 yields

∂ (D4) < b+ a+
⌊

n−a−b−4
3

⌋
.

If we take the vertex vi (1 ≤ i ≤ a) of DC(n, a, b) to the set D5, then we have ∂ (D5) = 0.
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Let S3 = V (DC(n, a, b)) \NDC(n,a,b)[vi] and so we have that DC(n, a, b)[S3] = Ka−1 ∪Cb,n−a−b−1. If we take
the maximal ∂-set of DC(n, a, b)[S3] to the set D5 having the set D6, then since ∂(Cs,t) = s +

⌊
t−2
3

⌋
, we have

∂ (D6) = ∂(Cb,n−a−b−1) = b +
⌊

n−a−b−3
3

⌋
, and taking any other subset of V (DC(n, a, b)) to the set D6 yields

∂ (D6) < b+
⌊

n−a−b−3
3

⌋
.

If we take the vertex uj (1 ≤ j ≤ b) of DC(n, a, b) to the set D7, then we have ∂ (D7) = 0.
Let S4 = V (DC(n, a, b)) \NDC(n,a,b)[uj ] and so we have that DC(n, a, b)[S4] = Kb−1 ∪Ca,n−a−b−1. If we take

the maximal ∂-set of DC(n, a, b)[S4] to the set D7 having the set D8, then since ∂(Cs,t) = s +
⌊

t−2
3

⌋
, we have

∂ (D8) = ∂(Ca,n−a−b−1) = a +
⌊

n−a−b−3
3

⌋
, and taking any other subset of V (DC(n, a, b)) to the set D8 yields

∂ (D8) < a+
⌊

n−a−b−3
3

⌋
.

For n − a − b = 3k + 1 (k ∈ Z), if we take the maximal ∂-set of Pn−a−b to the set D9 such that
w1 ∈ B (D9) or wn−a−b ∈ B (D9), then since ∂(Pn) =

⌊
n
3

⌋
, we have ∂ (D9) =

⌊
n−a−b

3

⌋
. If w1 ∈ B (D9),

then let S5 = V (DC(n, a, b)) \ NDC(n,a,b)[D9 ∪ B (D9)] and so we have DC(n, a, b)[S5] = Kb ∪ K1,a.
If we take the maximal ∂-set of DC(n, a, b)[S5] to the set D9 having the set D10, then since ∂(K1,n) = n − 1,
we have ∂(D10) =

⌊
n−a−b

3

⌋
+ (a− 1). If we take the vertex w1 of DC(n, a, b) to the set D10 having the set D11,

we have ∂(D11) =
⌊

n−a−b
3

⌋
+ (a + b − 3), and taking any other subset of V (DC(n, a, b)) to the set D11 yields

∂(D11) <
⌊

n−a−b
3

⌋
+ (a+ b−3). If wn−a−b ∈ B (D9), then let S6 = V (DC(n, a, b))\NDC(n,a,b)[D9∪B (D9)] and

so we have DC(n, a, b)[S6] = Ka ∪K1,b. If we take the maximal ∂-set of DC(n, a, b)[S6] to the set D9 having the
set D10, then since ∂(K1,n) = n−1, we have ∂(D10) =

⌊
n−a−b

3

⌋
+(b−1). If we take the vertex w1 of DC(n, a, b)

to the set D10 having the set D11, we have ∂(D11) =
⌊

n−a−b
3

⌋
+ (b + a − 3), and taking any other subset of

V (DC(n, a, b)) to the set D11 yields ∂(D11) <
⌊

n−a−b
3

⌋
+ (b+ a− 3).

For n − a − b = 3k or n − a − b = 3k + 2 (k ∈ Z), if we take the maximal ∂-set of Pn−a−b to the set D12

such that w1, wn−a−b ∈ B(D12), then since ∂(Pn) =
⌊

n
3

⌋
, we have ∂(D12) =

⌊
n−a−b

3

⌋
. If we take the vertex

w1 ∈ V (DC(n, a, b)) to the set D12 having the set D13, we have ∂(D13) =
⌊

n−a−b
3

⌋
+ (b − 2). If we take the

vertex wn−a−b ∈ V (DC(n, a, b)) to the set D13 having the set D14, we have ∂(D14) =
⌊

n−a−b
3

⌋
+ (b + a − 4),

and taking any subset of V (DC(n, a, b)) to the set D14 yields ∂(D14) <
⌊

n−a−b
3

⌋
+ (b + a − 4). If we take the

vertex wn−a−b ∈ V (DC(n, a, b)) to the set D12 having the set D15, then we have ∂(D15) =
⌊

n−a−b
3

⌋
+ (a− 2).

By the definition of graph differential, we get

∂(DC(n, a, b)) = max {∂(Dl)} (1 ≤ l ≤ 15)

∂(DC(n, a, b)) = a+ b+
⌊
n− a− b− 4

3

⌋
for a, b > 1 and n− a− b > 2.

Thus the proof holds. �

Remark 5.4. We can easily observe that γ(DC(n, a, b)) = 2 + dn−a−b−4
3 e for a, b > 1 and by Theorem 2.2

we conclude that double comets are dominant differential networks for n−a−b = 3k or n−a−b = 3k+1 (k ∈ Z).

5.3. Lollipop networks

The lollipop network Ln,d is a graph obtained from a complete graph Kn−d and a path Pd, by joining one of
the end vertices of Pd [18], let this vertex be the vertex u, to all the vertices of Kn−d.

Theorem 5.5. The differential of the lollipop network Ln,d (d > 1) of order n is

∂(Ln,d) = n− d+
⌊
d− 2

3

⌋
·

Proof. If we take the vertex u of Ln,d to the set D1, that is D1 = {u}, then we have ∂ (D1) = n− d.
Let S1 = V (Ln,d)\NLn,d

[u] and so we have that Ln,d[S1] = Pd−2. If we take the maximal ∂-set of Ln,d[S1] to
the set D1 having the set D2, then since ∂(Pn) =

⌊
n
3

⌋
, we have ∂ (D2) = n− d+

⌊
d−2
3

⌋
, and taking any other

subset of V (Ln,d) to the set D2 yields ∂ (D2) < n− d+
⌊

d−2
3

⌋
.
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If we take one of the vertices of Kn−d to the set D3, then we have ∂ (D3) = n− d− 1.
Let S2 = V (Ln,d) \NLn,d

[D3] and so we have that Ln,d[S2] = Pd−1. If we take the maximal ∂-set of Ln,d[S2]
to the set D3 having the set D4, then since ∂(Pn) =

⌊
n
3

⌋
, we have ∂ (D4) = n− d− 1 +

⌊
d−1
3

⌋
, and taking any

other subset of V (Ln,d) to the set D4 yields ∂ (D4) < n− d− 1 +
⌊

d−1
3

⌋
.

If we take the maximal ∂-set of Pd to the set D5, such that u ∈ B (D5), then since ∂(Pn) =
⌊

n
3

⌋
, we have

∂ (D5) =
⌊

d
3

⌋
.

If we take the ∂-set of Kn−d to the set D5 having the set D6, then since ∂(Kn) = n − 2, we get
∂ (D6) =

⌊
d
3

⌋
+ n− d− 2 and taking any other subset of V (Ln,d) to the set D6 yields ∂ (D6) <

⌊
d
3

⌋
+ n− d− 2.

By the definition of graph differential, we get

∂(Ln,d) = max {∂(Di)} (1 ≤ i ≤ 6)

∂(Ln,d) = n− d+
⌊
d− 2

3

⌋
for d > 1.

Thus the proof holds. �

Remark 5.6. We can easily observe that γ(Ln,d) = 1 + dd−2
3 e for d > 1 and by Theorem 2.2 we conclude that

lollipop networks are dominant differential for d = 3k + 2 or d = 3k + 4 (k ∈ Z).

5.4. Etp networks

The network Et
p is a tree of order pt+2 obtained from a path with two vertices having one of the end-vertices

attached to t legs and each leg has p vertices [10]. Let the end-vertex attached to t legs be the vertex c, and the
vertex degree of the vertex c is deg(c) = t+ 1.

Theorem 5.7. The differential of the Et
p network of order pt+ 2 is

∂
(
Et

p

)
= t

(⌊
p− 1

3

⌋
+ 1
)
.

Proof. If we take the vertex c of Et
p to the set D1, then we have ∂ (D1) = t.

Let S1 = V
(
Et

p

)
\NEt

p
[c] and so we have that Et

p[S1] =
⋃t

i=1 Pp−1. If we take the maximal ∂-set of Et
p[S1]

to the set D1 having the set D2, then since ∂(Pn) =
⌊

n
3

⌋
, we have ∂ (D2) = t + t

⌊
p−1
3

⌋
, and taking any other

subset of V (Et
p) to the set D2 yields ∂ (D2) < t+ t

⌊
p−1
3

⌋
.

If we take the other end-vertex that is adjacent to the vertex c in P2 to the set D3, then we have ∂ (D3) = 0.
Let S2 = V

(
Et

p

)
\NEt

p
[D3] and so we have that Et

p[S2] =
⋃t

i=1 Pp. If we take the maximal ∂-set of Et
p[S2] to

the set D3 having the set D4, then since ∂(Pn) =
⌊

n
3

⌋
, we receive ∂ (D4) = t

⌊
p
3

⌋
, and taking any other subset

of V (Et
p) to the set D4 yields ∂ (D4) < t

⌊
p
3

⌋
.

If we take the maximal ∂-set of one of the legs to the set D5 such that c ∈ B (D5), then since ∂(Pn) =
⌊

n
3

⌋
,

we have ∂ (D5) =
⌊

p+1
3

⌋
.

If we take the maximal ∂-sets of t−1 legs of Et
p to the set D5 having the set D6, since ∂(Pn) =

⌊
n
3

⌋
, we receive

∂ (D6) =
⌊

p+1
3

⌋
+ (t− 1)

⌊
p
3

⌋
, and taking any other subset of V

(
Et

p

)
to the set D6 yields ∂ (D6) < t+ t

⌊
p+1
3

⌋
.

By the definition of graph differential, we get

∂
(
Et

p

)
= max {∂(Di)} (1 ≤ i ≤ 6)

∂
(
Et

p

)
= t

(⌊
p− 1

3

⌋
+ 1
)
.

Thus the proof holds. �

Remark 5.8. We can easily observe that γ
(
Et

p

)
= 1 + tdp−1

3 e and by Theorem 2.2 we conclude that Et
p

networks are dominant differential for p = 3k or p = 3k + 1 (k ∈ Z).



DIFFERENTIAL IN INFRASTRUCTURE NETWORKS S1259

References

[1] L.A. Basilio, S. Bermudo and J.M. Sigarreta, Bounds on the differential of a graph. Utilitas Math. 103 (2017) 319–334.

[2] S. Bermudo, On the differential and Roman domination number of a graph with minimum degree two. Disc. Appl. Math. 232
(2017) 64–72.

[3] S. Bermudo and H. Fernau, Lower bounds on the differential of a graph. Disc. Math. 312 (2012) 3236–3250.

[4] S. Bermudo and H. Fernau, Computing the differential of a graph: hardness, approximability and exact algorithms. Disc. Appl.
Math. 165 (2014) 69–82.

[5] S. Bermudo and H. Fernau, Combinatorics for smaller kernels: the differential of a graph. Theor. Comput. Sci. 562 (2015)
330–345.

[6] S. Bermudo, H. Fernau and J.M. Sigarreta, The differential and the Roman domination number of a graph. Appl. Anal. Disc.
Math. 8 (2014) 155–171.

[7] S. Bermudo, J.C. Hernández-Gómez, J.M. Rodŕıguez and J.M. Sigarreta, Relations between the differential and parameters in
graphs. Electron. Notes Disc. Math. 46 (2014) 281–288.

[8] S. Bermudo, L. De la Torre, A.M. Mart́ın-Caraballo and J.M. Sigarreta, The differential of the strong product graphs. Int. J.
Comput. Math. 92 (2015) 1124–1134.
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