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A SPLITTING SUBGRADIENT ALGORITHM FOR SOLVING EQUILIBRIUM
PROBLEMS INVOLVING THE SUM OF TWO BIFUNCTIONS AND

APPLICATION TO COURNOT-NASH MODEL

Phung Minh Duc1 and Xuan Thanh Le2,∗

Abstract. In this paper we propose a splitting subgradient algorithm for solving equilibrium problems
involving the sum of two bifunctions. At each iteration of the algorithm, two strongly convex subpro-
grams are required to solve separately, one for each component bifunction. In contrast to the splitting
algorithms previously proposed in Anh and Hai (Numer. Algorithms 76 (2017) 67–91) and Hai and
Vinh (Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 111 (2017) 1051–1069), our algorithm is
convergent for paramonotone and strongly pseudomonotone bifunctions without any Lipschitz type as
well as Hölder continuity condition of the bifunctions involved. Furthermore, we show that the ergodic
sequence defined by the algorithm iterates converges to a solution without paramonotonicity property.
Some numerical experiments on differentiated Cournot-Nash models are presented to show the behavior
of our proposed algorithm with and without ergodic.
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1. Introduction

Let H be a real Hilbert space endowed with weak topology defined by the inner product 〈·, ·〉 and its induced
norm ‖ · ‖. Let C ⊆ H be a nonempty closed convex subset and f : H×H → R∪ {+∞} a bifunction such that
f(x, y) < +∞ for every x, y ∈ C. The equilibrium problem defined by the Nikaidô–Isoda–Fan inequality that
we are going to consider in this paper is given as

Find x ∈ C : f(x, y) ≥ 0 ∀y ∈ C. (EP)

This inequality first was used in 1955 by Nikaidô and Isoda [23] in convex game models. Then in 1972 Ky Fan [9]
called this inequality a minimax one and established existence theorems for Problem (EP). After the appearance
of the paper by Blum and Oettli [6], Problem (EP) has been attracted much attention of researchers. It has
been shown in [4, 6, 19] that some important problems such as optimization, variational inequality, Kakutani
fixed point and Nash equilibrium can be formulated in the form of (EP). Many papers concerning the solution
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existence, stabilities as well as algorithms for Problem (EP) have been published (see e.g., [11,13,16,20,25–27],
the survey paper [4], and the interesting monograph [5]).

A basic method for Problem (EP) is the subgradient (or projection) one, where the sequence of iterates is
defined by taking

xk+1 = min
{
λkf

(
xk, y

)
+

1
2
‖y − xk‖2 : y ∈ C

}
, (1.1)

with λk is some appropriately chosen real number. Note that in the variational inequality case, where f(x, y) :=
〈F (x), y − x〉, the iterate xk+1 defined by (1.1) becomes

xk+1 = PC

(
xk − λkF

(
xk
))
,

where PC stands for the metric projection onto C. It is well known that under certain conditions on the
parameter λk, the projection method is convergent if f is strongly pseudomonotone or paramonotone [7, 13].
However when f is monotone, it may fail to converge. In order to obtain convergent algorithms for monotone,
even pseudomonotone, equilibrium problems, the extragradient method first proposed by Korpelevich [15] for
the saddle point and related problems has been extended to equilibrium problems [25]. In this extragradient
algorithm, at each iteration, it requires solving the two strongly convex programs

yk = min
{
λkf

(
xk, y

)
+

1
2
‖y − xk‖2 : y ∈ C

}
, (1.2)

xk+1 = min
{
λkf

(
xk, y

)
+

1
2
‖y − yk‖2 : y ∈ C

}
, (1.3)

which may cause computational cost. In order to reduce the computational cost, several convergent algorithms
that require solving only one strongly convex program or computing only one projection at each iteration
have been proposed for some classes of bifunctions such as strongly pseudomonotone and paramonotone with
or without using an ergodic sequence (see e.g., [2, 7, 27]). In another direction, also for the sake of reducing
computational cost, some splitting algorithms have been developed (see e.g., [1,10,18]) for monotone equilibrium
problems where the bifunction f can be decomposed into the sum of two bifunctions. In these algorithms the
convex subprograms (resp. regularized subproblems) involving the bifunction f can be replaced by two convex
subprograms (resp. regularized subproblems), one for each component bifunction independently. However, for the
convergence, these algorithms require Lipschitz type or Hölder continuity conditions on the involved bifunctions.

For solving the equilibrium problems, in this paper we propose a splitting subgradient algorithm with the
following main features. At each iteration, it requires solving only one strongly convex program. Similar to
the algorithm in [1, 10], in the case where the bifunction f can be represented as the sum of two bifunctions
f1 + f2, this strongly convex subprogram can be replaced by two strongly convex subprograms, one for each
component bifunction f1 and f2. Nevertheless, for the convergence, our algorithm does not require any additional
conditions such as Hölder continuity and Lipschitz type condition of these bifunctions. Furthermore, we show
that the ergodic sequence defined by the iterates obtained by our algorithm is convergent to a solution without
paramonotonicity property. We apply the two versions of the algorithm (with and without ergodic sequence)
for solving some versions of a differentiated Cournot-Nash model. Some preliminary computational results for
comparing the proposed algorithms with the ones in [2, 27] are reported.

The remaining part of the paper is organized as follows. The next section gives preliminaries containing some
lemmas that will be used in proving the convergence of the proposed algorithm. Section 3 is devoted to the
description of the algorithm and its convergence analysis for both versions with and without ergodic. Some
numerical experiments are presented in Section 4. Section 5 closes this paper with some conclusions.

2. Preliminaries

We recall from [4] the following well-known definition on monotonicity of bifunctions.
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Definition 2.1. A bifunction f : H×H → R ∪ {+∞} is said to be

(i) strongly monotone on C with modulus β > 0 (shortly β-strongly monotone) if

f(x, y) + f(y, x) ≤ −β‖y − x‖2 ∀x, y ∈ C;

(ii) monotone on C if
f(x, y) + f(y, x) ≤ 0 ∀x, y ∈ C;

(iii) strongly pseudomonotone on C with modulus β > 0 (shortly β-strongly pseudomonotone) if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ −β‖y − x‖2 ∀x, y ∈ C;

(iv) pseudomonotone on C if
f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0 ∀x, y ∈ C.

(v) paramonotone on C with respect to a set S if

x∗ ∈ S, x ∈ C and f (x∗, x) = f (x, x∗) = 0 implies x ∈ S.

Clearly in the case of optimization problem when f(x, y) = ϕ(y) − ϕ(x), the bifunction f is paramonotone
on C with respect to the solution set of the problem minx∈C ϕ(x). It is obvious that (i) =⇒ (ii) =⇒ (iv) and
(i) =⇒ (iii) =⇒ (iv). Note that a strongly pseudomonotone bifunction may not be monotone. Paramonotone
bifunctions have been used in e.g., [27, 28]. Some properties of paramonotone operators can be found in [12],
where a multivalued monotone operator T is called paramonotone on C ⊆ domT if for every x, y ∈ C we have
u ∈ T (x), v ∈ T (y), 〈u− v, x− y〉 = 0 implies u ∈ T (y), v ∈ T (x). The following remark gives a connection
between paramonotone operators and paramonotone bifunctions.

Remark 2.2. Let T be a convex, compact valued multivalued operator on C. The bifunction f(x, y) :=
maxu∈T (x) 〈u, y − x〉 is paramonotone with respect to the solution set S(C, f) of Problem (EP) if T is para-
monotone on C.

Proof. Suppose T is paramonotone on C and let x∗ ∈ S(C, f), x̄ ∈ C such that f (x∗, x̄) = f (x̄, x∗) = 0. On
one hand, since x∗ ∈ S(C, f), there exists u∗ ∈ T (x∗) such that 〈u∗, x− x∗〉 ≥ 0 for every x ∈ C. In particular
we have 〈u∗, x̄− x∗〉 ≥ 0. On the other hand, by definition we have f (x∗, x̄) = max {〈u, x̄− x∗〉 : u ∈ T (x∗)} .
Since f (x∗, x̄) = 0, this means 〈u∗, x̄− x∗〉 ≤ 0. So we obtain

〈u∗, x̄− x∗〉 = 0. (2.1)

Since f (x̄, x∗) = 0, there exists ū ∈ T (x̄) satisfying 〈ū, x∗ − x̄〉 = 0, which together with (2.1) implies
〈u∗ − ū, x∗ − x̄〉 = 0. By paramonotonicity of T , we have u∗ ∈ T (x̄), which implies

f(x̄, x) := max
u∈T (x̄)

〈u, x− x̄〉 ≥ 〈u∗, x− x̄〉 = 〈u∗, x− x∗〉+ 〈u∗, x∗ − x̄〉 ≥ 0 ∀x ∈ C.

Hence x̄ solves the problem (EP), i.e., x̄ ∈ S(C, f). Therefore f is paramonotone with respect to S(C, f). �

The following well known lemmas will be used for proving the convergence of the algorithm to be described
in the next section.

Lemma 2.3 (see [29], Lem. 1). Let {αk} and {σk} be two sequences of nonnegative numbers such that αk+1 ≤
αk + σk for all k ∈ N, where

∑∞
k=1 σk <∞. Then the sequence {αk} is convergent.

Lemma 2.4 (see [3], Lem. 2.39). Let H be a Hilbert space,
{
xk
}

a sequence in H and C be a nonempty subset
of H. Suppose that:



S1398 P.M. DUC AND X.T. LE

(i) For every x ∈ C,
{
‖xk − x‖

}
k∈N converges.

(ii) Every weak cluster point of the sequence
{
xk
}

belongs to C.

Then the sequence
{
xk
}

converges weakly to a point in C.

Lemma 2.5 (see [24]). Let H be a Hilbert space,
{
xk
}

a sequence in H. Let {rk} be a sequence of nonnegative

number such that
∑∞

k=1 rk = +∞ and set zk :=
∑k

i=1 rix
i∑k

i=1 ri
· Assume that there exists a nonempty, closed convex

set S ⊂ H satisfying:

(i) For every z ∈ S, limn→∞ ‖zk − z‖ exists.
(ii) Any weakly cluster point of the sequence

{
zk
}

belongs to S.

Then the sequence
{
zk
}

converges weakly to a point in S.

Lemma 2.6 (see [31]). Let {λk} , {δk} , {σk} be sequences of real numbers such that

(i) λk ∈ (0, 1) for all k ∈ N;
(ii)

∑∞
k=1 λk = +∞;

(iii) lim supk→+∞ δk ≤ 0;
(iv)

∑∞
k=1 |σk| < +∞.

Suppose that {αk} is a sequence of nonnegative real numbers satisfying

αk+1 ≤ (1− λk)αk + λkδk + σk ∀k ∈ N.

Then we have limk→+∞ αk = 0.

3. The algorithm and its convergence

In what follows, for the following equilibrium problem

find x ∈ C : f(x, y) ≥ 0 ∀y ∈ C (EP)

we suppose that f(x, y) = f1(x, y) + f2(x, y) and that fi(x, x) = 0 (i = 1, 2) for every x, y ∈ C. The following
assumptions for the bifunctions f, f1, f2 will be used in the sequel.

(A1) For each i = 1, 2 and each x ∈ C, the function fi(x, ·) is convex and sub-differentiable, while for each
y ∈ C the function f(·, y) is weakly upper semicontinuous on C.

(A2) If
{
xk
}
⊂ C is bounded, then for each i = 1, 2, the sequence

{
gk

i

}
with gk

i ∈ ∂2fi

(
xk, xk

)
is bounded.

(A3) The bifunction f is monotone on C.

Assumption (A2) has been used in e.g., [28]. Note that Assumption (A2) is satisfied if the functions f1 and
f2 are jointly weakly continuous on an open convex set containing C (see [30], Prop. 4.1).

The dual problem of (EP) is
find x ∈ C : f(y, x) ≤ 0 ∀y ∈ C. (DEP)

We denote the solution sets of (EP) and (DEP) by S(C, f) and Sd(C, f), respectively. A relationship between
S(C, f) and Sd(C, f) is given in the following lemma.

Lemma 3.1 (see [14], Prop. 2.1).

(i) If f(·, y) is weakly upper semicontinuous and f(x, ·) is convex for all x, y ∈ C, then Sd(C, f) ⊆ S(C, f).
(ii) If f is pseudomonotone, then S(C, f) ⊆ Sd(C, f).



A SPLITTING SUBGRADIENT ALGORITHM S1399

Therefore, under the assumptions (A1)–(A3) one has S(C, f) = Sd(C, f). In this paper we suppose that
S(C, f) is nonempty. The algorithm below is a subgradient one for paramonotone or strongly pseudomono-
tone equilibrium problems (EP). The stepsize is taken as in the subgradient method for nonsmooth convex
optimization problems.

Algorithm 1. A splitting subgradient algorithm for solving paramonotone or strongly pseudomonotone equi-
librium problems.

Initialization: Seek x0 ∈ C. Choose a sequence {βk}k≥0 ⊂ R satisfying the following conditions

∞∑

k=0

βk = +∞,
∞∑

k=0

β2
k < +∞.

Iteration k = 0, 1, . . .:
Take gk

1 ∈ ∂2f1
(
xk, xk

)
, gk

2 ∈ ∂2f2
(
xk, xk

)
.

Compute

ηk := max
{
βk, ‖gk

1‖, ‖gk
2‖
}
, λk :=

βk

ηk
,

yk := arg min

{
λkf1

(
xk, y

)
+

1

2
‖y − xk‖2 | y ∈ C

}
,

xk+1 := arg min

{
λkf2

(
xk, y

)
+

1

2
‖y − yk‖2 | y ∈ C

}
.

Theorem 3.2. In addition to the assumptions (A1)–(A3) we suppose that f is paramonotone on C, and that
either int C 6= ∅ or for each x ∈ C both bifunctions f1(x, ·), f2(x, ·) are continuous at a point in C. Then
the sequence

{
xk
}

generated by Algorithm 1 converges weakly to a solution of (EP). Moreover, if f is strongly
pseudomonotone, then

{
xk
}

strongly converges to the unique solution of (EP).

Proof. (i) We first show that, for each x∗ ∈ S(f, C), the sequence
{
‖xk − x∗‖

}
is convergent.

Indeed, for each k ≥ 0, for simplicity of notation, let

hk
1(x) := λkf1

(
xk, x

)
+

1
2
‖x− xk‖2,

hk
2(x) := λkf2

(
xk, x

)
+

1
2
‖x− yk‖2.

Since f1

(
xk, ·

)
is convex and subdifferentiable by Assumption (A1), the functions hk

1 is strongly convex with
modulus 1 and subdifferentiable, which implies that for any uk

1 ∈ ∂hk
1

(
yk
)

we have

hk
1

(
yk
)

+
〈
uk

1 , x− yk
〉

+
1
2
‖x− yk‖2 ≤ hk

1(x) ∀x ∈ C. (3.1)

On the other hand, since yk is a minimizer of hk
1(x) over C, by the regularity condition and the optimality

condition for convex programming, we have 0 ∈ ∂hk
1

(
yk
)

+NC

(
yk
)

in which NC

(
yk
)

is the normal cone of C
at yk. This implies that there exists uk

1 ∈ ∂hk
1

(
yk
)

satisfying uk
1 ∈ −NC

(
yk
)
, or equivalently,

〈
uk

1 , x− yk
〉
≥ 0

for all x ∈ C. Hence, from (3.1), for each x ∈ C, it follows that

hk
1

(
yk
)

+
1
2
‖x− yk‖2 ≤ hk

1(x),
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i.e.,

λkf1

(
xk, yk

)
+

1
2
‖yk − xk‖2 +

1
2
‖x− yk‖2 ≤ λkf1

(
xk, x

)
+

1
2
‖x− xk‖2,

or equivalently,
‖yk − x‖2 ≤ ‖xk − x‖2 + 2λk

(
f1

(
xk, x

)
− f1

(
xk, yk

))
− ‖yk − xk‖2. (3.2)

Using the same argument for xk+1, we obtain

‖xk+1 − x‖2 ≤ ‖yk − x‖2 + 2λk

(
f2

(
xk, x

)
− f2

(
xk, xk+1

))
− ‖xk+1 − yk‖2. (3.3)

Combining (3.2) and (3.3) yields

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖yk − xk‖2 − ‖xk+1 − yk‖2

+ 2λk

(
f1

(
xk, x

)
+ f2

(
xk, x

))
− 2λk

(
f1

(
xk, yk

)
+ f2

(
xk, xk+1

))
= ‖xk − x‖2 − ‖yk − xk‖2 − ‖xk+1 − yk‖2

+ 2λkf
(
xk, x

)
− 2λk

(
f1

(
xk, yk

)
+ f2

(
xk, xk+1

))
. (3.4)

From gk
1 ∈ ∂2f1

(
xk, xk

)
and f1

(
xk, xk

)
= 0, it follows that

f1

(
xk, yk

)
− f1

(
xk, xk

)
≥
〈
gk

1 , y
k − xk

〉
,

which implies
−2λkf1

(
xk, yk

)
≤ −2λk

〈
gk

1 , y
k − xk

〉
. (3.5)

By using the Cauchy–Schwarz inequality and the fact that ‖gk
1‖ ≤ ηk, from (3.5) one can write

−2λkf1

(
xk, yk

)
≤ 2

βk

ηk
ηk‖yk − xk‖ = 2βk‖yk − xk‖. (3.6)

By the same argument, we obtain

−2λkf2

(
xk, xk+1

)
≤ 2βk‖xk+1 − xk‖. (3.7)

Replacing (3.6) and (3.7) to (3.4) we get

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2λkf
(
xk, x

)
+ 2βk‖yk − xk‖+ 2βk‖xk+1 − xk‖ − ‖yk − xk‖2 − ‖xk+1 − yk‖2. (3.8)

Take x = xk in (3.8), since f
(
xk, xk

)
= 0, we obtain

‖xk+1 − xk‖2 ≤ 2βk‖yk − xk‖+ 2βk‖xk+1 − xk‖ − ‖yk − xk‖2 − ‖xk+1 − yk‖2.

It follows that (
‖xk+1 − xk‖ − βk

)2
+
(
‖yk − xk‖ − βk

)2
+ ‖xk+1 − yk‖2 ≤ 2β2

k.

Hence
(
‖xk+1 − xk‖ − βk

)2 ≤ 2β2
k, and consequently we have

‖xk+1 − xk‖ ≤ 3βk. (3.9)

Replacing (3.9) to (3.8), we obtain

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2λkf
(
xk, x

)
+ 2βk‖yk − xk‖+ 6β2

k − ‖yk − xk‖2 − ‖xk+1 − yk‖2

≤ ‖xk − x‖2 + 2λkf
(
xk, x

)
+ 6β2

k + 2βk‖yk − xk‖ − ‖yk − xk‖2

≤ ‖xk − x‖2 + 2λkf
(
xk, x

)
+ 7β2

k −
(
‖yk − xk‖ − βk

)2
≤ ‖xk − x‖2 + 2λkf

(
xk, x

)
+ 7β2

k. (3.10)
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Note that by definition of x∗ ∈ S(f, C) = Sd(f, C) we have f
(
xk, x∗

)
≤ 0. Therefore, by taking x = x∗ in (3.10)

we obtain
‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 7β2

k + 2λkf
(
xk, x∗

)
≤ ‖xk − x∗‖2 + 7β2

k. (3.11)

Since
∑∞

k=0 β
2
k < +∞ by assumption, in virtue of Lemma 2.3, it follows from (3.11) that the sequence{

‖xk − x∗‖
}

is convergent.

(ii) We now prove that any cluster point of the sequence
{
xk
}

is a solution of (EP).

Indeed, from (3.11) we have

−2λkf
(
xk, x∗

)
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 7β2

k ∀k ∈ N.

By summing up we obtain

2
∞∑

k=0

λk

(
−f
(
xk, x∗

))
≤ ‖x0 − x∗‖2 + 7

∞∑
k=0

β2
k <∞. (3.12)

On the other hand, by Assumption (A2) the sequences
{
gk

1

}
,
{
gk

2

}
are bounded. This fact, together with the

construction of {βk}, implies that there exists M > 0 such that ‖gk
1‖ ≤ M, ‖gk

2‖ ≤ M,βk ≤ M for all k ∈ N,
and consequently

ηk = max
{
βk, ‖gk

1‖, ‖gk
2‖
}
≤M ∀k ∈ N.

So we have
∞∑

k=0

λk =
∞∑

k=0

βk

ηk
≥ 1
M

∞∑
k=0

βk,

and since
∑∞

k=0 βk = +∞, we obtain
∞∑

k=0

λk = +∞.

Since f
(
xk, x∗

)
≤ 0 for all k ∈ N, it follows from (3.12) that

lim sup f
(
xk, x∗

)
= 0 ∀x∗ ∈ S(C, f).

Fixed x∗ ∈ S(C, f) and let
{
xkj
}

be a subsequence of
{
xk
}

such that

lim sup f
(
xk, x∗

)
= lim

j
f
(
xkj , x∗

)
= 0.

Since
{
xkj
}

is bounded, we may assume that
{
xkj
}

weakly converges to some x̄. Since f (·, x∗) is weakly upper
semicontinuous by Assumption (A1), we have

f (x̄, x∗) ≥ lim f
(
xkj , x∗

)
= 0. (3.13)

Then it follows from the monotonicity of f that f (x∗, x̄) ≤ 0. On the other hand, since x∗ ∈ S(C, f), by
definition we have f (x∗, x̄) ≥ 0. Therefore we obtain f (x∗, x̄) = 0. Again, the monotonicity of f implies
f (x̄, x∗) ≤ 0, and therefore, by (3.13) one has f (x̄, x∗) = 0. Since f (x∗, x̄) = 0 and f (x̄, x∗) = 0, it follows
from paramonotonicity of f that x̄ is a solution to (EP).

Thus it follows from (i), (ii), and Lemma 2.4 that the sequence
{
xk
}

converges weakly to a solution to (EP).
We now turn to the case that f is strongly pseudo-monotone. By this assumption, (EP) has a unique solution

(see [21], Prop. 1). Let x∗ be the unique solution of (EP). By definition of x∗ we have

f (x∗, x) ≥ 0 ∀x ∈ C,
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which, by strong pseudo-monotonicity of f , implies

f (x, x∗) ≤ −β‖x− x∗‖2 ∀x ∈ C. (3.14)

By choosing x = xk in (3.14) and then applying to (3.8) we obtain

‖xk+1 − x∗‖2 ≤ (1− 2βλk)‖xk − x∗‖2 + 7β2
k ∀k ∈ N,

which together with the construction of βk and λk, by virtue of Lemma 2.6 with δk ≡ 0, implies that

lim
k→+∞

‖xk − x∗‖2 = 0,

i.e., xk strongly converges to the unique solution x∗ of (EP). �

The following simple example shows that without paramonotonicity, the algorithm may not be convergent.

Example 3.3. Let us consider the following instance of (EP), taken from [8], where C := R2 and f(x, y) :=
〈Ax, y − x〉 with

A =
[

0 1
−1 0

]
.

For all x, y ∈ C we have f(x, y) + f(y, x) = 〈A(x− y), y − x〉 = (x2 − y2)(y1 − x1) − (x1 − y1)(y2 − x2) = 0,
so f is monotone on C. It has already shown in [8] that x∗ = (0, 0)T is the unique solution of this problem.
Note that for all x = (x1, x2)T ∈ C we have

f (x∗, x) =
〈[

0 1
−1 0

] [
0
0

]
,

[
x1

x2

]〉
= 0

and

f (x, x∗) =
〈[

0 1
−1 0

] [
x1

x2

]
,

[
−x1

−x2

]〉
= −x2x1 + (−x1)(−x2) = 0.

Hence f (x∗, x) = f (x, x∗) = 0 for all x ∈ C, and therefore f is not paramonotone.
Let f1(x, y) = 0 and f2(x, y) = f(x, y) = x2y1−x1y2, then we have f(x, y) = f1(x, y)+f2(x, y). Furthermore,

f1, f2 satisfy assumptions (A1) and (A2). Let {βk} be any sequence satisfying the conditions in the initialization
step of Algorithm 1. Applying this algorithm with f = f1 + f2, in iteration k we obtain

yk = arg min
{
λkf1

(
xk, y

)
+

1
2
‖y − xk‖2 | y ∈ R2

}
= arg min

{
1
2
‖y − xk‖2 | y ∈ R2

}
= xk.

Therefore we have

λkf2

(
xk, y

)
+

1
2
‖y − yk‖2 = λkf2

(
xk, y

)
+

1
2
‖y − xk‖2

= λk

(
xk

2y1 − xk
1y2

)
+

1
2
(
y1 − xk

1

)2
+

1
2
(
y2 − xk

2

)2
=

1
2

(
y2

1 − 2a1y1 +
(
xk

1

)2)
+

1
2

(
y2

2 − 2a2y2 +
(
xk

2

)2)
=

1
2

(
(y1 − a1)2 + a2

1 −
(
xk

1

)2)
+

1
2

(
(y2 − a2)2 + a2

2 −
(
xk

2

)2)
.
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Here a1 = xk
1 − λkx

k
2 and a2 = xk

2 + λkx
k
1 . It follows that

xk+1 = arg min
{
λkf2

(
xk, y

)
+

1
2
‖y − yk‖2 | y ∈ R2

}
= arg min

{
1
2

(y1 − a1)2 +
1
2

(y2 − a2)2 | y ∈ R2

}
= (a1, a2)T =

(
xk

1 − λkx
k
2 , x

k
2 + λkx

k
1

)T
.

Thus, ‖xk+1‖2 = (1+λ2
k)‖xk‖2 > ‖xk‖2 if xk 6= 0, which implies that the sequence

{
xk
}

does not converge to the
solution x∗ = 0 for any starting point x0 6= 0. ut

In order to obtain the convergence without paramonotonicity we use the iterate xk to define an ergodic
sequence by taking

zk :=
∑k

i=0 λix
i∑k

i=0 λi

·

We then have the following convergence result.

Theorem 3.4. Under the assumptions (A1)–(A3), the ergodic sequence
{
zk
}

converges weakly to a solution of
(EP).

Proof. In the proof of Theorem 3.2, we have shown that the sequence
{
‖xk − x∗‖

}
is convergent. From the

definition of zk and the Silverman–Toeplitz theorem (see e.g., [22], Thm. 1.1.), the sequence
{
‖zk − x∗‖

}
is

convergent, too. In order to apply Lemma 2.4, now we show that all weakly cluster points of
{
zk
}

belong to
S(f, C). Indeed, using the inequality (3.11), by taking the sum of its two sides over all indices we have

2
k∑

i=0

λif(x, xi) ≤
k∑

i=0

(
‖xi − x‖2 − ‖xi+1 − x‖2 + 7β2

i

)
= ‖x0 − x‖2 − ‖xk+1 − x‖2 + 7

k∑
i=0

β2
i

≤ ‖x0 − x‖2 + 7
k∑

i=0

β2
i .

By using this inequality, from definition of zk and convexity of f(x, ·), we can write

f
(
x, zk

)
= f

(
x,

∑k
i=0 λix

i∑k
i=0 λi

)

≤
∑k

i=0 λif(x, xi)∑k
i=0 λi

≤
‖x0 − x‖2 + 7

∑k
i=0 β

2
i

2
∑k

i=0 λi

· (3.15)

As we have shown in the proof of Theorem 3.2 that

λk =
βk

ηk
≥ βk

M
·
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Since
∑∞

k=0 βk = +∞, we have
∑∞

k=0 λk = +∞. Then, it follows from (3.15) that

lim sup
k

f
(
x, zk

)
≤ 0. (3.16)

Let z̄ be any weakly cluster of
{
zk
}

. Then there exists a subsequence
{
zkj
}

of
{
zk
}

such that zkj ⇀ z̄. Since
f(x, .) is lower semicontinuous, it follows from (3.16) that

f(x, z̄) ≤ 0.

Since this inequality hold for arbitrary x ∈ C, it means that z̄ ∈ Sd(f, C) = S(f, C). Thus it follows from
Lemma 2.5 that the sequence

{
zk
}

converges weakly to a point z∗ ∈ S(f, C), which is a solution to (EP). �

4. Numerical experiments

This section aims to evaluate the performance of Algorithm 1 on some numerical examples. We also present
some experiments on comparing the performance of our proposed algorithm to the exact version of inexact
projected subgradient method proposed in [27] and the ergodic algorithm in [2]. We used MATLAB R2016a for
implementing the algorithms, and conducted all experiments on a computer with a Core i5 processor, 16 GB of
RAM, and Windows 10.

All the tested instances were taken in finite dimensional setting and designed to satisfy the assumptions (A1)–
(A3) as well as the convergence conditions of Algorithm 1 in Theorem 3.2 or Theorem 3.4. Since the iterative
points generated by the algorithm are proved to be convergent, in each test we terminated our MATLAB
program when the number of iterations is large enough (104 in our setting) to obtain an approximate solution.
For the same purpose and in spirit of (3.9), we also terminated our MATLAB programs when the distance
between two consecutive iteration points is small enough (10−3 in our setting, i.e., when ‖xk+1 − xk‖ ≤ 10−3,
or when ‖zk+1 − zk‖ ≤ 10−3 for the ergodic sequences).

4.1. Experiment 1

The problem instance in this subsection is designed for a twofold purpose. First, it is to illustrate our
motivation of splitting the bifunction involved in (EP). Second, it is to compare the performance Algorithm 1 to
the method proposed by Santos and Scheimberg in [27] without using the ergodic strategy, and the algorithm by
Anh et al. [2] for the ergodic sequence. For that we consider the following differentiated Cournot-Nash model.

There are n companies producing a common homogeneous commodity. For each company i = 1, . . . , n, let
xi ≥ 0 be the production level (i.e., the amount of commodity to be produced) of company i, and Ci the strategy
set of producing of this company. This means that the condition xi ∈ Ci must be satisfied for every i = 1, . . . , n,
and C := C1× . . .×Cn is the set of feasible production levels x = (x1, . . . , xn) of all these companies. The price
(per commodity unit) of company i is given by

pi(x) := α−
n∑

k=1

τikxk (with α > 0, τik ≥ 0).

For each company i = 1, . . . , n, let ci(x) = xtAix be the cost for producing its production level, in which
Ai =

(
ai

jk

)
n×n

is a square matrix with positive entries. The profit of company i is then given by

qi(x) = xipi(x)− ci(x).

Each company i seeks to maximize its profit by choosing the corresponding production level xi under the
presumption that the production of the other companies are parametric input. In this context, a Nash equilibrium
point for the model is a point x∗ ∈ C satisfying

qi (x∗[xi]) ≤ qi (x∗) ∀x ∈ C, i = 1, . . . , n,
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where x∗ ([xi]) stands for the vector obtained from x∗ by replacing the component x∗i by xi. It means that, if
some company i leaves its equilibrium strategy while the others keep their equilibrium positions, then the profit
of company i does not increase. The problem of finding such an equilibrium point can be formulated in form of
(EP) as follows.

(EP (ϕ)) Find x ∈ C such that ϕ(x, y) ≥ 0 for all y ∈ C,

with C = C1 × . . .× Cn and

ϕ(x, y) :=
n∑

i=1

(qi(x)− qi (x [yi]))

=
n∑

i=1

(
n∑

k=1

τikxk

)
(yi − xi) +

n∑
i=1

τiiyi(yi − xi)− α
n∑

i=1

(yi − xi)

+
n∑

i=1

ai
iiy

2
i + yi

∑
k 6=i

(ai
ik + ai

ki)xk − ai
iix

2
i − xi

∑
k 6=i

(ai
ik + ai

ki)xk


= ϕ1(x, y) + ϕ2(x, y).

Here ϕ1(x, y) = 〈Px+Qy − ᾱ, y − x〉 with

P :=

τ11 τ12 . . . τ1n

τ21 τ22 . . . τ2n

· · . . . ·
τn1 τn2 . . . τnn

 , Q :=

τ11 0 . . . 0
0 τ22 . . . 0
· · . . . ·
0 0 . . . τnn

 , ᾱ := (α, . . . , α)T ,

and ϕ2(x, y) =
∑n

i=1 hi(x, yi) with

hi(x, yi) = ai
iiy

2
i + yi

∑
k 6=i

(
ai

ik + ai
ki

)
xk − ai

iix
2
i − xi

∑
k 6=i

(
ai

ik + ai
ki

)
xk.

Note that by taking f1(x, y) := 〈(P +Q)x− ᾱ, y − x〉 and f(x, y) := f1(x, y) + ϕ2(x, y), we have

ϕ(x, y) = f(x, y) + 〈Q(y − x), y − x〉 .

Since Q is positive semidefinite, it follows from Mastroeni (2003) [17] Proposition 2.1 that the solution set
of (EP (ϕ)) coincides with the solution set of (EP (f)). Therefore, in order to obtain an equilibrium point of
(EP (ϕ)), we can solve the equilibrium problem (EP (f)) associated to the bifunction f .

For a numerical instance, we took n := 8, Ci := [10, 50] for all i = 1, . . . , n, and α := 45. The discount
coefficients τij were determined by

P := (τij)n×n =
1

100



11.75 22 2 33 17 4 40 18
18 13.75 1 22 3 2 33 10
4 1 1.25 1 2 5 4 7
11 15 0 17 10 0 40 10
5 1 2 27 9.5 4 30 10
8 2 5 2 4 5 8 14
22 14 8 25 11 16 26 20
14 2 4 19 17 8 35 12


,

which implies that

Q :=
1

100
diag (11.75, 13.75, 1.25, 17, 9.5, 5, 26, 12) .
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The matrices Ai’s are randomly generated in such a way that their entries are integers in [1, 10].

Let S := 1
2

(
(P +Q) + (P +Q)T

)
. Then on one hand we have S is symmetric and positive definite, which can

be checked by using MATLAB function “chol”. It follows that P + Q is also positive definite. An elementary
computation shows that

f1(x, y) + f1(y, x) = −(y − x)T (P +Q)(y − x) ≤ 0 ∀x, y ∈ C,

which implies the monotonicity of f1, thanks to the positive definiteness of P +Q. We furthermore have

ϕ2(x, y) + ϕ2(y, x) = −
∑
i 6=j

(yi − xi) (yj − xj)
(
ai

ij + ai
ji + aj

ij + aj
ji

)
= −zTAz

in which z = (z1, . . . , zn)T with zi = yi − xi for all i = 1, . . . , n, and A = (aij)n×n is a symmetric matrix with

aij = aji =

{
1
2

(
ai

ij + ai
ji + aj

ij + aj
ji

)
if i 6= j,

0 if i = j.

By this formula, the ij-entry of matrix A is defined only by the ij-entries and ji-entries of matrices Ai. In this
experiment, the matrices Ai are chosen so that the matrix A is positive semidefinite, and consequently

ϕ2(x, y) + ϕ2(y, x) = −zTAz ≤ 0,

which leads to monotonicity of ϕ2. So f = f1+ϕ2 is also monotone, meaning that condition (A3) is also satisfied.
As a remark, it follows from the positivity of ai

ii that ϕ2(x, y) is convex quadratic with respect to y. By the
construction of f1 and ϕ2, the conditions (A1) and (A2) are also satisfied, so all conditions of Theorem 3.2 are
fulfilled and therefore we can apply its version without using ergodic sequence.

On the other hand, it can also be checked that rank(S) = rank(P +Q) = 7 < n = 8. Thus, by Iusem (1998)
[12] Proposition 3.2, the bifunction f = f1 +ϕ2 is paramonotone, which ensures the convergence of Algorithm 1
and the projected subgradient method proposed in [27].

Table 1 presents the performance of three methods: original version of Algorithm 1 (denoted OSGA for short),
ergodic version of Algorithm 1 (denoted ESGA for short), and exact version of inexact projected subgradient
method proposed in [27] (abbreviated by EPSM). For the first two methods, we set βk = 10i

k+1 with i ∈ {0, 1, 2},
while the settings for the last method include βk = 10i

k+1 with i ∈ {0, 1, 2} and ρk = 1 (see [27] for details of the
method). In Table 1 we report the performance of these methods with respect to criteria of running time (in
seconds, reported in “Time” columns) and the number of iterations (reported in “Iter” columns). Three choices
for starting points were taken:

xa = (20, 20, . . . , 20), xb = (30, 30, . . . , 30), xc = (50, 50, . . . , 50).

It can be observed from Table 1 that the original version of Algorithm 1 (without using ergodic sequence)
has better performance than the ergodic version in both criteria: the number of executed iterations and running
time. In sense of running time, method EPSM performs best. It is due to the main operation in EPSM is
projection onto the set C, which can be quickly done thanks to the box structure of C. In another perspective,
the original version of Algorithm 1 performs best in sense of the number of executed iterations. Its performance
seems to be independent of the initial guess.
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Table 1. Performance of the considered methods.

Initial guess Method 1
k+1

10
k+1

100
k+1

Time Iter Time Iter Time Iter

OSGA 0.088 32 0.268 100 0.696 316
x0 = xa ESGA 4.246 2228 4.357 2313 6.164 3288

EPSM 0.018 1000 0.009 131 0.024 1279
OSGA 0.089 32 0.273 100 0.689 316

x0 = xb ESGA 2.495 1299 2.680 1400 4.730 2511
EPSM 0.013 999 0.021 2087 0.046 4581
OSGA 0.085 32 0.269 100 0.681 316

x0 = xc ESGA 0.117 45 0.562 257 3.011 1572
EPSM 0.011 999 0.068 8470 0.044 4999

4.2. Experiment 2

The key feature of the previous example is the paramononicity of the involved bifunctions. Requiring that
property, the performance of ergodic version of Algorithm 1 is not comparative to the original version, and also
to the method proposed in [27]. In order to highlight the advantage of the ergodic version of Algorithm 1, in
this subsection we consider an example in which the involved bifunction is not necessarily paramonotone. For
this example, both OSGA and EPSM methods cannot be applied due to the lack of the paramonotonicity of
the involved bifunction, but ESGA can.

Let us consider the differentiated Cournot-Nash model similar to the previous example, but with linear cost
functions

ci(xi) = µixi + ξi (µi > 0, ξi ≥ 0, i = 1, . . . , n).

Furthermore, we assume that there are additional constraints concerning lower and upper bounds on quota of
the commodity (i.e., there exist σ, σ ∈ R+ such that σ ≤ σ =

∑n
i=1 xi ≤ σ). The problem in this case can be

formulated in form of (EP) in which we can split the bifunction f as f(x, y) = f1(x, y) + f2(x, y) with

f1(x, y) = (Bx+ µ− ᾱ)T (y − x),

f2(x, y) = yT B̃y − xT B̃x,

in which µ = (µ1, . . . , µn) and

B =

 0 τ12 τ13 . . . τ1n

τ21 0 τ23 . . . τ2n

· · · . . . ·
τn1 τn2 τn3 . . . 0

 , B̃ =

τ11 0 0 . . . 0
0 τ22 0 . . . 0
· · · . . . ·
0 0 0 . . . τnn

 .
It is easy to check that f1, f2 are equilibrium functions satisfying conditions (A1)–(A3), so is f . By Theorem 3.4,
this ensures that the ergodic sequence generated from the iterative points of Algorithm 1 converges without
paramonotonicity of f . Therefore, in contrast to the previous experiment, in this experiment we do not need to
check the paramonotonicity of the bifuction f .

For the tested instances, we set Ci = [10, 50] for i = 1, . . . , n, σ = 10n + 10, σ = 50n − 10, and α = 120.
The initial guess was set to x0

i = 30 (i = 1, . . . , n). The values for parameters τij were randomly generated in
[0.5, 1.5] while the ones for µi were randomly chosen in [20, 40].

Table 2 shows that the choice of parameter βk is crucial for the convergence of the algorithm, since changing
the value of this parameter may significantly reduce the number of iterations. Furthermore, it proves the
applicability of the ergodic version of our proposed algorithm in solving differentiated Cournot-Nash model
with linear costs and joint constraints.
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Table 2. Performance of ergodic version of Algorithm 1 in solving differentiated Cournot-Nash
model with linear costs and additional joint constraints.

n βk Number of iterations

10 10/(k + 1) 1309
10 100/(k + 1) 419
15 10/(k + 1) 3108
15 100/(k + 1) 672
20 10/(k + 1) 5090
20 100/(k + 1) 610

4.3. Experiment 3

In this subsection we compare the performance of ergodic version of Algorithm 1 to the algorithm proposed
in [2]. For that we consider the following instance of equilibrium problem (EP).

Find x ∈ C : f(x, y) ≥ 0 ∀y ∈ C,

in which C = C1 × . . .× C5 with Ci = [1, 10], i = 1, . . . , 5, and

f(x, y) = 〈Px+Qy − ᾱ, y − x〉+
5∑

i=1

(
y3

i − x3
i

)
,

where

P =


3 3 3 0 1
2 9 8 0 6
2 6 8 5 5
6 6 4 8 0
5 10 6 10 3

 , Q =


21 23 17 15 21
23 50 36 21 18
17 36 76 27 60
15 21 27 25 27
21 18 60 27 66

 .
By setting

f1(x, y) = 〈Px+Qy − ᾱ, y − x〉 , f2(x, y) =
5∑

i=1

(
y3

i − x3
i

)
we see that f(x, y) = f1(x, y) + f2(x, y). Note that f1(x, y) is quadratic but not separable with respect to y, so
the subproblem of computing yk in Algorithm 1 is nothing but solving a quadratic strongly convex program.
Furthermore, f2(x, y) is not quadratic but separable with respect to y, so computing xk+1 in Algorithm 1 can
be done by solving n = 5 separated convex programs, each on one real variable.

Table 3 presents the performance of ergodic version of Algorithm 1 (denoted ESGA) and the ergodic algorithm
proposed in [2] (abbreviated by EA). For the former algorithm, we set βk = 10i

k+1 , while for the parameters in

the description of the latter algorithm we choose λk = 10i

k+1 (i ∈ {0, 1, 2, 3}). We compare the performance of
these algorithms in sense of running time. Three choices for starting points were taken:

xa = (1, 10, 1, 10, 1), xb = (5.5, 5.5, 5.5, 5.5, 5.5), xc = (10, 10, 10, 10, 10).

It can be observed from Table 3 that, regardless of the choices for parameters βk and λk, our proposed ergodic
algorithm performs better than the one proposed in [2]. The reasons are as follows. By splitting the equilibrium
function f(x, y) as f1(x, y)+f2(x, y), we then can exploit special properties of component bifunctions f1 and f2.
More precisely, that helps us to solve more easily the two subproblems in each step of our proposed algorithm:
one is a quadratic strongly convex program, while the other is equivalent to solving separated convex programs
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Table 3. Performance of the considered ergodic algorithms.

Initial guess Method Running time (s)

βk = λk = 1
k+1

βk = λk = 10
k+1

βk = λk = 100
k+1

βk = λk = 1000
k+1

x0 = xa ESGA 1.116 1.121 1.256 1.164
EA 3.601 3.866 4.099 3.533

x0 = xb ESGA 0.721 0.758 1.023 1.346
EA 3.154 3.029 2.718 2.388

x0 = xc ESGA 0.016 0.158 0.591 1.473
EA 6.075 6.487 6.125 4.805

on single real variable. However, the sum f = f1 + f2 does not inherit the properties of the summand functions
f1 and f2. The algorithm proposed in [2] applies directly on f and does not exploit special properties of f1 and
f2. That leads to the worse performance of this algorithm in comparison to our proposed one.

5. Conclusions

We have proposed splitting algorithms for equilibrium problems where the bifunction is the sum of the two
ones f1 and f2. At each iteration the proposed algorithms require solving two strongly convex programs, one
for each f1 and f2 separately. Under a paramononicity property, the convergence of the iterates to a solution
without any Lipschitz type condition as well as Hölder continuity of the bifunctions involved has been proved.
It also has been shown that the ergodic sequence defined by the iterates of the algorithm converges to a solution
without paaramonotonicity. We have applied the proposed algorithm to solve some versions of differentiated
Cournot-Nash equilibrium model. Some numerical results have been reported for these models with different
data. We have compared our algorithm to the one in [27] for paramonotone bifunction, and to the algorithm
in [2] for monotone case. The obtained computational results have shown that for paramonotone problems the
algorithm in [27] worked better in computing time, while for monotone problems the ergodic version of our
algorithm runs more quickly than that in [2].
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