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SERVICE-ORIENTED PERFORMANCE OF INVENTORY MODELS WITH
PARTIAL INFORMATION ON UNIMODAL DEMAND LEAD-TIME
DISTRIBUTIONS

GERRIT K. JANSSENS, LOTTE VERDONCK"* AND KATRIEN RAMAEKERS

Abstract. Facing uncertainty in demand, companies try to avoid stock-outs by holding safety
inventories, depending on a pre-set customer service level. The knowledge of the demand distribu-
tion during lead-time serves to determine the safety inventory level. Many times the distribution is not
fully known, except maybe for its range, mean or variance. However literature shows that the perfor-
mance of holding safety stock strongly depends on the characteristics of the distribution. One option is
to protect against the worst case distribution given some information like range or moments. But this
worst, case is a two-point distribution, bringing unbelief to managers that such an occurrence would
ever appear. Mostly they share the opinion that the demand distribution is unimodal. This research
develops a technique to derive the safety stock for unimodal demand distributions of which the mode
either is known or can be estimated. In this way, the managers obtain solutions to the decision problem
including a higher belief that the related type of distribution might appear in practice.
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1. INTRODUCTION AND BACKGROUND

Inventory management has received a lot of attention both in the business world and in the academic world.
Investment in inventories might be very high and the business world is confronted with fluctuations in inventories
in time and with uncertainties both in demand and supply which directly influence decisions on inventories.
The academic world provides managers with sophisticated systems for inventory management that enable them
to take correct and timely decisions. Many decision models concentrate on the determination of inventory
replenishment quantities based on relevant costs like order costs or storage costs. Most of these models assume
deterministic demand patterns. But in real life uncertainties appear both in demand, as in supply or even in
the quality of the delivered goods. This research investigates in detail a specific case of inventory management
decisions in the case of demand uncertainty.

In inventory management decisions on order quantities and safety stocks are made on the basis of optimisa-
tion models taking a performance measure into consideration which might be cost-oriented or service-oriented.
Cost-oriented measures take into consideration costs related to a customer’s order when the item ordered is
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temporarily out of stock. Two extreme policies are proposed in the scientific literature: complete back ordering or
complete lost sales, but in practice many intermediate policies may be applied. In the “complete backordering”
policy, demand, when out of stock, is backordered and filled as soon as an adequate-size replenishment arrives.
In the “complete lost sales” case, demand, when out of stock, is lost. The customer goes elsewhere to satisfy the
need [30]. In both policies a cost is related to the stock-out. In the former case, it leads to additional transport
costs, additional paper work, and a delay in payment. In the latter case, it leads to an opportunity cost as
lost sales lead to lost profits. Performance measures of the service-oriented type may be expressed relatively as
a probability of a stock-out during a certain replenishment period, or may be expressed absolutely in terms of
the expected number of units short, which is a direct indication for lost sales. These types of measures do not
explicitly include a cost for additional paperwork or transport cost or loss of goodwill as, in practice, experience
shows that these costs are hard to determine.

Both in the cost-oriented as in the service-oriented performance evaluation, a specific integral plays an
important role in the decision making. This integral is defined by [30] as the expected shortage per replenishment
cycle (ESPRC):

+oo
ESPRC :/t (x —t)f(z)dx, (1.1)

in which it is assumed that the demand X in a replenishment lead time has a probability density function f(x)
and an order is placed at some time when the inventory position is at or below level t.

If ordered per quantity @, the fraction backordered is equal to ESPRC/Q and a performance measure,
indicated as P, is defined as:

P, =1-ESPRC/Q (see [30], p. 299). (1.2)

Consider the case of a complete backordering policy. As each replenishment is of size @, the fraction back-
ordered is ESPRC/Q, and the fraction of demand satisfied directly from shelf is 1 — ESPRC/Q. So, P, is
a measure in the case of backordering. In the case of lost sales, the alternative service measure is needed. That
is because the demand per replenishment cycle is not just @ but @ + ESPRC. The service measure “fraction of
demand satisfied directly from shelf” is rather 1 — ESPRC/(Q + ESPRC).

While this study concentrates on service-oriented performance, also in cost-oriented types of performance
measures the integral (1.1) is of high relevance. This is illustrated in two examples.

Example 1.1. In a study by [11] a (Q,t) inventory system with backordering is studied. In such a policy
a fixed order quantity @) is ordered in case the inventory position reaches a level ¢ or below. The objective is
to determine values of () and ¢ so that the long run average of the total of ordering, storage and backordering
costs are minimised. The long run average cost function equals:
KD Q xD [T
Cost :+h<—t—u>+ (x —t)f(z) dx, (1.3)
Q 2 Q Ji

in which K = the fixed order cost, D = the average demand per period, h = the unit storage cost per period,
1 = the mean lead-time demand, 7 = the unit shortage cost, and F(z) is the cumulative distribution of the
lead-time demand with density function f(x). The last term in the cost function (1.3) corresponds to the earlier
defined performance measure in equation (1.1).

Example 1.2. Another example relates to the newsboy problem, which symbolises a single-period inventory
problem. A decision has to be made on a single purchase before the start of the selling period and can be used
only to satisfy the demand during that period. The demand is random. The trade-off relates to overstocking
forcing the disposal to sell at very low price or understocking losing the opportunity to make a profit. The
relevant costs can be determined on the basis of the ending inventory, making use of k,, which is the cost per
unit of positive inventory remaining at the end of the period (known as overage cost), and k,,, which is the cost
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per unit of unsatisfied demand (known as underage cost) [25]. The value of the expected cost ® of the decision
problem, for a demand distribution with density function f(x) and a fixed order quantity @ is given by:

Q 00
3(Q) = / ko(Q — 2) f(x) da + /Q kul( — Q)f () de. (1.4)

Other formulations of equation (1.4) exist, of which one is specifically of interest to this study. It is given by
[28] as:

oo

B(Q) = ko(@ — 1) + (o + Eu) /Q (z— Q)f(x) de, (1.5)
where p is the expected value of the demand distribution. This formula is used to obtain optimal values in
a (R, S)-policy stochastic production/inventory control problem. An (R, S) policy is a periodic review policy
in which the inventory level is only observed at intervals of length R. If the inventory is at level y, a quantity
S—y is ordered to bring the inventory position to S. Explicit formulas are obtained in the case the demand in
the single-period follows a normal distribution.

While the linear programming approach, which has been used before in [18], is also in this research the
main technique, the formulation of the constraints is different in the case of knowledge of the mode. While it
is definitely not classical in inventory decision-making to make use of the mode of a distribution instead (or as
a surplus to) the variance, it is innovative and the solution is less confronting in comparison with the two-point
distribution for the worst-case distribution without knowledge of the mode. Of course, such an innovation leads
to the question which information, “variance” or “mode”, is of higher value. This question is also touched in
this research. In a real-life situation with possibly thousands of stocked items in the warehouse, it might be
questioned what the additional value is of a computational effort for solving linear programs, which is definitely
higher than using the normal distribution approach with the estimates of mean and variance of the demand
distribution. It is our advice that the approach, as introduced here, might be useful and cost-saving in two
cases: (1) in the case in which, from observation of historical data, it can be concluded that the shape of the
distribution is far from a normal distribution, being either very skewed or bimodal; and (2) in the case where
stock-outs are commercially important in terms of service or cost, and the company wants to avoid a stock-out
at all price. For items with a low service level target, the solution of the linear program might not add any
additional value. Also the use of the upper bound is most probably too conservative for this type of items.

The main contribution of this article is the development of a linear program, which can be used by an inventory
manager to decide on the reorder point. In contrast to the worst case solution with respect to holding a safety
stock, which is a two-point distribution, this approach leads to a solution which fits more to the knowledge in
the mind of the inventory manager as they mostly experience a demand distribution to be unimodal, even if
the mode of this distribution is not exactly known.

Example 1.3. Tt is assumed that the demand for a product lies in the range [0, 50] during the lead-time
period. Furthermore assume that the mean equals 35 and the standard deviation equals 20. The worst case for
the measure “expected number of units short” is realised when the demand is a two-point distribution located
in the points 8.3 and 50, with respective probabilities 0.36 and 0.64. In most cases, the manager would probably
tell that the product definitely has not this type of discrete distribution, defined in only two points.

In the following sections the methodology for obtaining solutions to the direct and inverse problems is
presented. First, in Section 2, the relevant literature is reviewed. In Section 3, the case with known range, first
and second moments is highlighted. In Sections 4 and 5, the case of unimodal distributions with known unique
mode, range, first and second moments is studied. Section 6.1 offers a solution for the inverse problem. In the
case of unimodal demand distributions, it is assumed that the value of the unique mode is exactly known.
In practice only an expert opinion or a statistical estimate of the mode may be available. The sensitivity of the
results with respect to the uncertainty on the value of the mode is studied in Section 6.2. The sensitivity of the
results with respect to the uncertainty on the value of the upper bound of the demand interval is investigated
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in Section 6.3. Section 7 illustrates how the methodology would work in a real-life environment. Simulated data
for demand during a number of periods are generated. From the data set the parameters for the methodology
are obtained (range, moments and mode). With this information, our method is further applied.

2. LITERATURE REVIEW

This research aims to warn a person responsible for inventory management for the impact of the probability
distribution of the demand during lead-time on the performance of his/her decisions. Numerous simulation
studies have supported this warning. These studies stress the fact that, in case the functional form of the
distribution is not (fully) known, the common assumption of making use of the normal distribution might be
very harmful. Naddor [24] finds that false assumptions about the distribution may lead to higher cost in the case
of extreme distributions, but that, with realistic distributions, only the first and second moments are essential.
On the other side, Bartezzaghi et al. [1] show a significant impact of the shape of the demand distribution on
the service level, based on a large set of experiments. Their analysis shows that the shape is a primary factor in
the determination of inventories and that the impact of different demand shapes on inventories is comparable
to the effect of doubling the coefficient of variation of the demand distribution. Furthermore, Kéki et al. [20]
show the impact of the demand distribution shape on replenishment, based on experiments with qualitative
shape characteristics (normal, positively skewed, negatively skewed, and bimodal). For example, they find that
the safety stock requirement of positively skewed demand distribution is 137% higher compared to negatively
skewed demand distributions, with identical expected value and variance. Heuts et al. [15] investigate the
influence of skewness and kurtosis on the inventory decisions, by making using of the Schmeiser-Deutsch class of
distributions. This class of distributions is well-suited for solving problems in operations research or industrial
engineering where distributions are required with specified values of skewness or kurtosis. Given this information,
the distribution needs four parameter values to generate variables (for simulation) or to use as an approximate
approach to known distributions. They show that asymmetry of the demand distribution has a large effect on the
inventory decisions and, by this, also on the cost. It could be even an unreasonable assumption that the demand
obeys a known distribution for several types of agricultural products. In such a case an inventory replenishment
policy has been proposed on the mean of the distribution only [4]. Scarf et al. [29] has done pioneering work for
a robust solution of the news-vendor problem where the probability distribution of the demand is ambiguous
(read: only first and second moments are known). His approach is to find the worst-case solution and make the
decision to avoid this case. Perakis and Roels [26] decide on order quantities for the news-vendor problem, not
from a viewpoint of the worst-case solution , but from a viewpoint of maximum regret of not acting optimally.
In [18] an approach has been developed to obtain the reorder point based on the knowledge of the mean and
variance of the demand distribution, which is the same information as required for the use of the normal
distribution (as many times used in commercial software). The approach is a worst-case approach, which means
that its solution protects the decision-maker against the worst distribution with the same mean and variance,
as used in the normal distribution approach. This means that, even in the worst case distribution assumption,
the pre-set service level is obtained. Table 1 gives an overview of a number of approaches, as discussed in the
literature review, to handle cost-oriented or service-oriented inventory decision-making in which full knowledge
of demand distributions are confronted with their partial information counterparts. Also a few non-probabilistic
approaches are included in the table.

Demand forecasting and inventory management are inevitably connected. While this connection might be
recognised by practicians, it can be observed that the academic literature has shown little interest and, even
if some early articles on this matter have appeared long ago [3]. Also recently some authors claim that the
connection has not been investigated in a sufficient way [32].

In the last decade some considerable effort has been paid to slow-moving items, more especially those with
intermittent demand. Long after Croston’s work [5], a lot of interest has been shown and methods have been
developed and have been refined for items, which have zero demand in some time periods [31].
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TABLE 1. Overview of approaches of inventory decision models using partial information of the
distribution of the demand during lead-time.

Author

Partial information

Distributions

Cost or service

Naddor [24]

Bartezagghi et al. [1]

Kiki et al. [20]

Chen et al. [4]

Janssens and Ramaekers [18]
Scarf [29]

Perakis and Roels [26]

Heuts et al. [15]

Dey and Chakraborthy [8]
Bertsimas and Thiele [2]

Li et al. [22]

This research

Mean, variance, range
Coefficient of variation
Mean, variance

Constant demand rate
Mean, variance, range

Mean, variance

Mean, variance, mode,
range
Mean, variance, skew-

ness and kurtosis param-
eters
Triangular fuzzy number

Mean, variance

Single point or interval
forecast
Mean, variance,
mode

range,

Poisson, Beta, Uniform, Nega-
tive binomial, Two-point
Uniform, Normal, Beta,
modal

Bi-

Normal, Positive skewed, Neg-
ative skewed, Bi-modal
No distribution used

Distribution-free
Distribution-free

Truncated normal, Gamma,

Log-normal, Negative binomial
Schmeiser-Deutsch

No distribution: fuzzy demand
Gamma, Log-normal, Normal

No distribution: single point or
interval transformed in belief

distribution
Distribution-free

Cost function for (s, S)-policy by discrete
dynamic programming
Service level (percentage of satisfied demand)

Cost function (facility, capacity, transporta-
tion, shortage) for (Q, R)-policy

Cost function (holding, order, deterioration,
purchase) by system dynamic model

Service level (units short) by linear program-
ming

Profit function (maximize minimum profit)
by analytical solution

Minimax regret for news-vendor problem

Cost function (per unit, purchase, holding,
shortage) for the (s, g)-model

Cost function in the fuzzy sense for the peri-
odic review control system

Cost function over finite period (order, hold-
ing, shortage) by robust linear programming
Cost function (purchase, holding, shortage)
by belief-rule-based inference methodology

Service level (units short) by linear program-
ming
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In a stable business environment, the demand probability distribution can be estimated using historical data.
Historical data may be not or not sufficiently available in a dynamic business environment, after introduction of
recent products on the market, or in the case of slow moving items. In some cases, first and second moments of
the distribution might be calculated, but no further statement can be made on the type of demand distribution.
Sometimes one must rely on domain experts to estimate the demand probability distribution, typically through
its mean and variance.

In both cases, one should be aware of the errors of the estimation. In the former case because of the small
number of statistical data, in the latter case because of judgmental errors. Empirical evidence exists that experts
do not perform well in providing subjective estimates on mean and variance. Zapata-Vazquez et al. [33] show
that poor estimates for the mean may come out of expert judgments, but Garthwaite et al. [12] show that
there exist “misconceptions about variance” and mostly it is underestimated, because the physical meaning of
a variance is difficult to grasp.

It should be noted that also non-probabilistic inventory control strategies have been formulated as valid
alternatives. Amongst these alternatives fuzzy mathematical programming [8], robust optimisation [2] and
a belief-rule-based inference methodology [22] need to be taken into consideration.

In case only partial information on the probability density function is available (like range, mean or variance),
we determine the worst-case distribution. The mathematical development, however, shows that the worst-case
distributions (in case mean and variance are known) are discrete distributions in which the mass is concen-
trated in two points, with at least one point located at a boundary of the finite range. This property has
already been described by [29]. The presentation of such a solution to a manager could lead to an expression
of unbelief, stating that such a type of demand distribution does not appear in the practical case under study.
At the end of this section, this statement is explained in more detail by means of an example. A most typical
explanation for this unbelief is that the distribution is not bimodal, but has a single mode such as the normal
distribution or skewed distributions like the Gamma-distribution. Such a statement certainly does not imply
that bimodal distributions for demand in a lead-time period do not appear in practice but they are not common.
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But the fact that the distribution should have a shape with a single mode, has motivated this study to investigate
what influence this additional information has on the determination of worst-case distributions.

3. A GUIDELINE ON HOW TO HANDLE THE DECISION PROBLEM WITH INCOMPLETE
INFORMATION ON DEMAND

In this section, an example is worked out to illustrate how the problem needs to be solved. It will be illustrated
that the direct problem leads to a linear programming problem in determining the value of the performance
measure but that the decision problem involves a set of nonlinear constraints to deal with. This section shows
how to formulate the linear program to obtain the value of the direct problem and how to handle the nonlinear
constraints in the decision problem. The current section is based on material which appeared in [18]. The
following section extends this idea in the context of unimodal demand distributions.

In this section, the partial information on the demand during lead time includes the finite support of the
distribution, and the first and second moments. Let the size of the demand X for a specific product in a finite
period have a distribution F with first two moments m; = E(X) and ms = E(X?). The distribution F is defined
on the finite interval [a, b]. Without loss of generalisation, the development is continued with the demand during
lead-time defined on the interval [0, b].

From a mathematical point of view, the problem is to find the following bounds:

Isrlg(;/o (x —t)+dF(z), (3.1)
and -
it [ @ 0.dr@) (3.2)

where (z —t)4 stands for max(x —t,0), ¢ is the class of all distribution functions F which have first and second
moments m; and ms, and which have support in R®%. Let further 6> = my — m?. We assume t to be strictly
positive.

In this section, we consider the supremum version of the relevant integral in equation (3.1). Let f1, fo, ..., fa
be functions on . Functions f1, fo, ..., fn_1 are used to obtain the moments of order 1 till n—1 and function f,
stands for the number of units short. For any 2z’ = (21,...,2,_1) € "1, we consider the primal maximisation
problem:

o0
P(z') = sup { / (x— 1), dF(x)|I(F)] , (3.3)
Feo LJo
where I(F) is a set of integral equality constraints of the type [ fi(x)dF(z) = z,(i = 1,...,n — 1) and
fn = (z — t)+. In our application, the constraints are moment constraints, i.e. the first and second moment
equalities and the obvious constraint because any member of ¢ is a probability distribution.

/dF(m) - 1,/xdF(x) _ ml,/xzdF(x) . (3.4)

which means that:

n=3
filz) ==
fo(z) = 22
fs(@) = (x —t)+
21 =My
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The extreme distributions for both supremum and infimum problems have been shown to be two-point or
three-point distributions [7]. The integral may be approximated by a sum making use of finite masses p; in
a larger number of points x;. Its formulation looks like:

Maxz:(a:Z — )+ X pi, (3.5)

subject to

> pi=1, (3.6)
Zl‘i X pi =my, (37)
Zx? X p; = ma, (3.8)

and p; > 0, 0 < z; < b. However, any refinement in granularity leads to an increased number of variables
both in the objective function (3.5) and in the three constraints (3.6) to (3.8). This phenomenon does not
guarantee any convergence towards the exact upper bound. This is because in each subsequent linear program,
by increasing the number of points z;, the set of decision variables p; changes. Also the constraints (3.6) to (3.8)
in subsequent linear programs have no link with their predecessors. The optimisation problem (3.3) and (3.4)
has a dual program of the type:

Q(%') = inf (y1m1 + yama + yslyi F1(0) + y2 fa(0) + yz > J??)(e))
0., (3.9)

where the infimum is over all ¥y = (y1,%2,93) € R satisfying the constraints indicated after the slash. The
functions f;(0) (i = 1,...,n) are defined on J. In the situation for the family of distributions on a finite interval
[0,0], where b is a fixed positive number, the three functions are [13]:

AO0)=0, F0)=0 Ff0)=@-0; (0<0<b). (3.10)

Mostly the size of the set J is infinite, so the number of linear constraints on y is infinite. In [13] an idea is
launched to replace J by a large finite subset of J and then to solve the so obtained linear program. Through
a careful selection of the #-values convergence to the supremum is guaranteed as exemplified by [17]. This is
because subsequent linear programs look very similar. The set of decision variables remains the same. Further-
more, all constraints from the predecessor programs remain. More constraints are added, which is pushing the

approximate solution to the real solution. The optimisation problem (3.9) can thus be approximated by the
problem Q4:

QYY) = yienm (y1m1 + yomo + ys|y10; + 1207 +y3 > (0, —t)4) ,

(%:ijJ:Q“wM). (3.11)

A numerical example is taken from [19] to illustrate how the approximation method works. It aims at under-
standing more easily the case under study in this research, i.e. the case of unimodal distributions. Also the way
how to formulate and how to solve the inverse problem is based on [19].

Example 3.1. Assume a demand distribution defined on a finite interval [0, 50], with first and second moments
my1 = 25 and my = 725. The upper bounds for various values of ¢ and k£ are shown in Table 2. The exact values
for the upper bounds, obtained with a very large number of constraints, are 16.37931 for ¢ = 10, 5.0 for t = 25
and 1.37931 for ¢ = 40.
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TABLE 2. Upper bounds on the expected number of units short.

k=10 k=20 k=40 k=280

t=10 16.3333 16.3636 16.3768 16.3784
t=25 5.0000 5.0000 5.0000 5.0000
t =40 1.3333 1.3636 1.3768 1.3784

Let us call this problem “the direct problem”, as it calculates the upper (or lower) bounds on the expected
number of units short, given the partial information on the DDLT (in Example 3.1, partial information means
range, first and second moments). But from a management point of view, it is of interest to determine the value
of ¢ to meet a pre-set service level (in this expressed as the expected number of units short in a lead-time period).
Similar to the approximation, as used in formula (3.11), a method will be worked out in which the objective
function is minimized satisfying a set of constraints evaluated in a discrete number of points x;(i = 1...k).
This approach leads to the solution of the continuous problem if k£ — oo.

This leads to an optimisation problem, where:

t = the reorder point

p; = the probability mass in point x;

z1 = the expected value

z9 = the absolute second moment

z3 = the maximum allowed expected number of items short.
The optimisation problem [P1] might be formulated as:

[P1] Min ¢, (3.12)

subject to

> pi=1, (3.13)
Zﬂﬁi X pi = 21, (3.14)
fo X D; = 22, (3.15)

i

Z(ffz —1)4p;i < 23, (3.16)

%

where (z; — t)4 stands for max(z; —¢,0) and x; takes values (i x b)/k for i = 1... k. The decision variables in
[P1] are ¢t and p; (i = 1...k), where k represents the number of discrete points which have been chosen in the
experiment.
The non-linear constraint (3.16) may be approximated by letting the value of ¢ coincide with one of the x;
values (so as k — oo, the approximation takes the correct value). In such a way, the constraint is linearised.
In the case ¢ coincides with a point x; then

Zpi(xi - .73j)+ < Z3. (317)
i=1

A binary variable needs to be introduced to indicate the condition “¢ = z;”. In the case ¢ does not coincide
with a point z;, a general truth should be indicated, for example, “the expected number of units short cannot
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TABLE 3. Minimal required inventory level based on the maximum expected number of units short.

k=10 k=20 k=40 k=280

z3 =2 25.0000 25.0000 25.0000 25.0000
zz3 =4 25.0000 22.5000 21.2500 21.2500
z3 =6 20.0000 20.0000 20.0000 19.3750

be larger than the expected demand”, expressed by a binary variable y;:

y; =1ift = a;,
= 0 if else.

As t can coincide with only one x; value, the additional constraint is introduced:

dyi=1 (3.18)

The y variable is introduced in constraint (3.17) as:
n
> pilwi — )y < zsy; + 21(1 - y;). (3.19)
i=1

Finally, a link should be made between t and the value of x with which ¢ coincides.
t> T;iY; Vj (320)
If y; = 0, a universal truth is mentioned.

Example 3.2. The elaboration above will be illustrated by means of a numerical example similar to the one
demonstrated above. With the support of the demand distribution equal to [0, 50], an expected value z; = 25
and a second moment zo = 725, Table 3 presents the minimal amount of inventory for different values of z3
(maximum expected number of items short) and varying sizes k of the evaluation point set. The exact values,
obtained with a very high value of k, for the minimal inventory level are 25 for z3 = 2, 21 for z3 = 4 and 19 for
Z3 = 6.

Note that in experiments, like the one in Table 3, subsequent increasing values of k need to include all
constraints from its previous values to ensure convergence.

4. THE CASE OF UNIMODAL LEAD-TIME DEMAND DISTRIBUTIONS

Sometimes it is considered difficult to observe or to estimate both first and second moments, but experts have
an opinion on the unimodality of distributions, either or not with some additional knowledge on the expected
value. The estimation of the mode of a distribution, be it in a subjective manner or via limited data, for use
in inventory management, is not classical. But the use of an estimate of the mode has been common in expert
opinion on the duration of activities in project planning, where experts estimate three values: an optimistic,
a most likely (or modal) and a pessimistic duration [23,27]. More applications on three-point approximations
of probability distributions can be found in [21]. We are not aware of any studies investigating the quality of
a subjective judgment of the mode. This type of studies has been done for accuracy on estimation of the
mean and variance only [16]. In this case, we consider how to handle this type of partial information, including
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knowledge of the mode, to obtain bounds on the performance measure under study. First, some additional
definitions are introduced and afterwards it is shown how this problem can be transferred into the one described
in Section 2.

Let I be an interval on the real line . A fixed point m € I is called the mode. For a € I, we denote by
1, the indicator function of the closed interval with extremities m and a. Thus 14 = 14, if @ < m and
la = 1pm,qg if a > m.

A m-unimodal density function is a density function increasing (not necessarily strict) at the left of m and
decreasing (not necessarily strict) at the right of m. The convolution of two symmetric unimodal distributions
on R is symmetric and unimodal. A linear combination with positive coefficients of m-unimodal densities is a
m~unimodal density, with the positive coefficients summing up to 1. In particular, 1, is a m-unimodal density
and any linear combination with positive coefficients of such indicator functions is a m-unimodal density.

The problem of finding extreme values for the performance measure “expected number of units short” will be
transformed to the problem in the previous section by making use of a probabilistic version of a formal criterion
by Khintchine [9,10]. It states that a stochastic variable Z is unimodal with mode at the origin 0 and domain
I if and only if Z has the same distribution as the product UV of two independent variables such that U is
distributed uniformly in [0, 1] and V is defined on the domain I.

If the lead-time demand X is defined on [0, b] with mode located at m, then the theorem can be applied for
a variable Z = X — m and the variable V' is defined on [—m, b — m]. In this case it is true for every function f
that E[f(Z)] = E[f*(V)] where

fH(@) = E[fUV)|V = ],
/ f(r)dr. (4.1)

The theorem in equation (4.1) is explained here. For a rigorous proof, the reader should consult ([10],
p. 158). Let X and Y be independent random variables with distributions F' and G, and assume that X > 0.
The product Z = XY has a distribution function U of Z by integrating

P(Z <HX =2) =G (t) - (4.2)

xT

More specifically, if X is distributed uniformly over [0, 1], then

Ult) = /Olc (i) dz. (4.3)

Choose a value h > 0 and denote Uy, the distribution function which agrees with U at the points 0, £h, +2h, ...,
so Uy (nh) = U(nh) and Uy, is linear between nh and (n + 1)h. This means that U, has a density uj, which is
a step function with discontinuities at the points nh. The step function can be written as

anﬁf (%) (4.4)

where f(x) =1 for 0 <z <1 and f(z) = 0 elsewhere. The function is monotone in (—o0,0) and in (0, 4+oc0) if
prn > 0 for all n. It is a probability density if > p, = 1. Note that U is unimodal if all U}, are unimodal. But
now the function can be written as Z;, = XV}, where X is distributed uniformly in (0,1) and P{Y},, = nh} = p,.
That means Uy, is unimodal with G replaced by an arithmetic distribution G}, (concentrated on the points
0,+h,£2h,...). By letting h — 0, the proof of the theorem is obtained.

Let us define Y = V + m. Then Y is defined without further restrictions on [0,b] and E[f(X)] = E[g(Y)]
where:

= f(r+m)dr. (4.5)
x—m
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In the case of the function f representing the expected number of units short, one has f(z) = (x —t)4, so
this means:

Ifm<t:
Ifrx<m:
1 0
g(x):m—a:/m_m(T—’_m_t)erT:O (4.6)
Ifm<ax<t:
1 r—m
= —t)odr=0. 4.7
s@)= == [ rrm—tdr (@7)
Ift<ax<b:
1 r=m 1(x—1t)2
= —t) dr = ——- % 4.8
o@) = = [ rrm—tyar=gE (45)
which can be written, for 0 < z < b and = # m as:
1((z—1)4)°
_ a 4.9
o) = 5 0 (19)

The case m > t is not taken into consideration here. This means, for example in the case of symmetric
demand distributions, that a negative safety stock would be held. For the greater part of the products, such
a policy does not make sense.

In the remaining part of this paper, the application of the results will be illustrated for two problems, which
we call the direct problem and the inverse problem. The direct problem obtains upper and lower bounds for the
performance measure “expected number of units short”, given a reorder point t. The inverse problem obtains
upper and lower bounds for the reorder point ¢ given a maximum value for the expected number of units short.
Both problems are solved in two cases which are different in terms of availability of partial information: (1) the
finite range [0, b] and the mode m of the demand during lead-time are known; and (2) the finite range [0, ], the
mode m and the expected value m; of the demand during lead-time are known.

5. THE DIRECT PROBLEM

In this section on the direct problem, we aim to compare the upper and lower bounds obtained in the case of
two additional types of information to the mean, i.e. (1) the mode in addition to the mean, and (2) the variance
in addition to the mean. The first subsection investigates briefly the influence of the knowledge of the mode
only. It serves as comparison with results of the second subsection.

5.1. Unimodal demand distributions with known range and mode, no moments known

The dual problem of this problem can be formulated, similar to (3.9), as:
Q(2") = inf (y3|y3 > f3(9)) (5.1)

where the values of fs (0) are calculated from equation (4.9) for m < t. In this case no linear program needs to
be solved as the maximum value of fg (9) is the solution to the upper bound problem.

As m < t, equation (4.9) is increasing in z, so its maximum value is obtained for x = b. The extreme
distribution, associated with the upper bound, is a uniform distribution on [m,b]. The extreme distribution,
associated with the lower bound, can, for example, be the uniform distribution on [0, m], which means the lower
bound is equal to zero.
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TABLE 4. Data for the case no moments known and m < ¢.

m 5,15

[a,b] [0, 50]
t 10, 25

TABLE 5. Upper and lower bounds on the number of units short.

Upper Lower

5) 17.7778  0.0000
15)  8.9286 0.0000

10 (m
25 (m

TABLE 6. Data for the case with expected value known and m < t.

mi 25

m 5

[a, b] [0, 50]
Number of approximation points (k) 10, 20, 40, 80
t 10

TABLE 7. Upper and lower bounds on the number of units short.

k=10 k=20 k=40 k=280

Upper bounds 16.0000 16.0000 16.0000  16.0000
Lower bounds  15.3125 15.3125 15.3125 15.3125

Example 5.1. The data for the first illustration are given in Table 4. The objective function values are shown
in Table 5. The interval is the same as in Examples 3.1 and 3.2. Two values of the reorder point ¢t = 10 and ¢t = 25
are chosen from Example 3.1.

The results in Table 4 are not comparable to those in Table 2 as both optimisation problems use different
information on the demand. Table 2 uses the mean and variance and Table 4 uses the mode.

5.2. Unimodal demand distributions with known range, expected value and mode

This section, compared to Section 5.1, adds information on the expected value of the demand distribution,
next to range and mode.

Example 5.2. The data for the second illustration are given in Table 6. The objective function values, as
obtained through the dual linear programs, are shown in Table 7.

Due to the additional constraint on the expected value the upper bounds are lower than or equal to the values
in Table 5, and the lower bounds are higher than or equal to the values in Table 5. Note that the value of the
number of discrete points in the approximation, k, is not of importance in this case, so, already for & = 10, the
optimal values of the bounds are obtained. But this phenomenon observed cannot be generalised.
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TABLE 8. Data for the case with expected value and variance known.

ma 25

m2 725

[a, b] [0, 50]
Number of approximation points (k) 10, 20, 40, 80
t 10

TABLE 9. Upper and lower bounds on the number of units short.

k=10 k=20 k=40 k=280

Upper bounds 16.3333 16.3636 16.3768 16.3784
Lower bounds  15.0000 15.0000 15.0000 15.0000

5.3. Unimodal demand distributions with known range, expected value and variance

In this section another type of additional information is taken into consideration, i.e. the variance instead of
the mode. In such a way a comparison study on specific cases can be made whether knowledge of the mode or
the variance offers most additional information to the knowledge of the expected value.

Example 5.3. The data for the third illustration are given in Table 8. The objective function values as obtained
through the dual linear programs are shown in Table 9.

Comparing Tables 7 and 9, it can be stated that the mode contains more information than the variance as
both upper and lower bounds are closer to each other. This observation, however, cannot be generalised but the
technique proposed, at least, allows for this type of evaluation.

6. THE INVERSE PROBLEM

6.1. Unimodal demand distributions with known range, expected value and mode

Similar to Section 2, the decision might be formulated to answer the following question: given a mazimum
expected number of units short, what should be the safety inventory at least (or at most)? In this section the
focus is put only on the option “at most”, which is the relevant option for the industry. However, in the case of
unimodal distributions, with known unique mode, some transformations need to be included in the nonlinear
optimisation model.

In comparison with the development in Section 2, the objective function (3.12) and constraint (3.13) remain
unchanged as a solution of points for which the probability mass is looked for. Constraint (3.14) requires
a change as, through the transformation, the expected value on the right hand side of the equality is no longer
valid. The transformed variable Y in Section 3 has expected value:

EY)=vi =2xm; —m. (6.1)

Constraint (3.15) is not of relevance in this section as we consider only the knowledge of the mode and the first
moment of the demand distribution. Also constraint (3.16) requires a change. The function (z; — t)+ needs to
be replaced by (4.9).

Example 6.1. The approach for unimodal distributions with known finite range, unique mode and expected
value is illustrated by means of an example, with data shown in Table 10. For this example, the same range and
expected value of the examples in the previous sections are chosen.
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TABLE 10. Data for the case with given maximal expected number of units short.

mi 25
m 32
[a, b] [0, 50]
Number of approximation points (k) 80

Maximal expected number of units short (z3) 2.25

In the optimisation model, it is assumed that m < t (which is, for practice, the more realistic case). The
non-linear optimisation model to be solved is formulated as:

[P2] Min t, (6.2)

subject to

=1, (6.3)
Zl‘i X p; =V, (64)

Z 1 ((z: — t);)?

0 < z3. .
5 z—m X Ppi S z3 (65)

i
Note that, due to equation (6.1), »; = 18, and that, similar to the procedure followed in Section 2, the non-linear

constraint (6.5) may be approximated by letting the value of ¢ coincide with one of the z;-values. Also here
a binary variable is introduced to indicate the condition “t = x;”, expressed as:

y; = 1if t =z,

else = 0.

The construction of the linear program is illustrated in Appendix A by means of a small example (with & = 11).
The non-linear constraint (6.5) is replaced by 11 constraints, indicating which of the x;-points coincides with ¢.
So (6.5) is replaced by:
2
ZEM X pi < 2.25 x y; + 18 x (1 — y;), (6.6)
- 2 xz;—32 - / I

with j = 0...10 and ; = 5 x j. Appendix A shows a matrix with the coeflicients at the left hand side of
inequality (6.6). Further it shows the Lingo code in expanded form for the linear program of the example. The
program results in a value ¢ = 35. In the next sections, the sensitivity of this value to varying values of the
mode m and the upper bound of the demand interval b are investigated.

6.2. Sensitivity of the reorder level to the mode

As this paper deals explicitly with unimodal demand distributions, the knowledge of the mode is of high
importance. From an inventory practical viewpoint, the mode needs to be estimated. While the mode has the
advantage of being the least biased (compared to mean and median), it is more difficult to calculate than the
mean and the median. For discrete data involving a relatively small number of possible values, the mode is
easily calculated as the most frequent value. For continuous data, the methods by [6] and by [14] have been
proposed. The former method is sensitive to the size of the interval selected, and the latter method is sensitive
to outliers. These findings make it useful to check the impact of a wrong estimate of the mode on the decision
on safety stock.
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FIGURE 1. Sensitivity of the reorder level ¢ to the mode value m.

First, note that the determination of ¢ is independent of the mode m in case the unknown distribution is
symmetric. This is the case in our example from Table 9: the range is [0, 50] and the expected value equals 25.
In this simple case, the expected value of number of units short can be determined in an analytical way as:
1(b—t)?

Z3 = —

L (6.7)

The value of the mode m does not appear in equation (6.7).

Example 6.2. As an illustration, the data from previous Section 6.1 in Table 10 are used, but sensitivity is
explored against the values of the mode m. The risk towards the decision-maker exists in the fact that m might
be smaller than estimated. The exploration of the sensitivity towards m leads to a horizontal line in Figure 1 as
t = 35 is sufficient, independent of m. For illustrative purposes, Figure 1 also shows the sensitivity towards m
for an asymmetrical distribution (expected value equals 20, z3 remains 2.25 as in Tab. 9). Figure 1 shows the
required reorder level ¢ in function of the values of m, ranging from 28 downwards to the value 0. The range in
the experiment is extremely large but shows that the required reorder level hardly ranges from 30 till 34. This
fact illustrates that the qualitative aspect of having a unimodal distribution for the demand during lead-time
is of greater importance than the knowledge of the modal value.

6.3. Sensitivity of the reorder level to the upper bound of the demand distribution
interval

Many inventory studies in an environment of uncertainty make use of distributions defined on the positive
real axis [0, +00). The developments in this research make use of a finite interval [0, b] with b > 0. As the upper
bound of such a distribution defined on a finite interval is hard to estimate, in this section a sensitivity analysis
is performed on the influence of the value of the upper bound b. Figure 2 shows the results of the optimisation
model for varying values of the upper bound b in combination with varying values of the mode m as some
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FIGURE 2. Sensitivity of the reorder level ¢ to the upper bound of the demand interval b.

interaction between both parameters might be expected. Also, here, the case of an asymmetric distribution
(with expected value equal to 20) is chosen. In the case a symmetric distribution was imposed (expected value
equal to 25) only a single line could be shown as the function between ¢ and b is independent of m.

Figure 2 shows an increase of the reorder level in function of increasing values of the upper bound b, which is
to be expected, but the slope of the function is different according to the value of the mode m. More specifically,
it can be observed that the slope increases with lower values of the mode. In the extreme distributions, for
smaller values of the mode, most part of the probability mass is assigned between the mode and the upper
bound.

7. SIMULATION STUDY MAKING USE OF THE DEVELOPED METHODOLOGY

In this section a simulated environment is developed and illustrated for the theory developed in the previous
sections. It is the aim of this section to start from a set of demand data, as a manager would be confronted with,
and then apply the technique with various types of partial information. In the first subsection, the generation
of the data for the Demand During Lead-Time (DDLT) is explained and how the relevant parameters for
our method are determined. In the second subsection, the results of the optimization models, with varying
partial information, are presented. This comparison might give a view on the relevance of pieces of distribution
information like range, moments and/or mode.

7.1. Data generation

The series of DDLT data are generated by a simulation method. DDLT data are generated, following
a triangular distribution. The range of the distribution equals [0, 50] as in the examples in the previous sections.
The mode of the triangular distribution is chosen as (15, 25, 35) to mimic a left-asymmetric, symmetric and
right-symmetric triangular distribution. To include a sense of real-life, a not-too-long, series is generated (in
this case, arbitrarily set at 20 periods) in order to avoid a theoretical long-term distribution but allowing for
characteristics of small samples. In order to make meaningful conclusions on the simulation results, a number of
stochastic replications of the same experimental setting are done (in this case, arbitrarily set at 5 replications).

In order to offer full reproduction of our simulation results, the procedure of generating the demand data,
based on triangular distributions, is explained in detail. The generation for the triangular demand data is based
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TABLE 11. Symmetric triangular distribution.

Replication 1 2 3 4 5

Zo 6953867 9576389 48475613 3169483 T1777548
Range 44.74 38.97 42.61 41.82 42.63
First moment 24.71 26.87 25.96 26.08 26.67
Second moment  698.73 783.62 768.65 753.37 785.77
Mode 26.92 22.43 23.75 22.28 27.08

TABLE 12. Left-asymmetric triangular distribution.

Replication 1 2 3 4 5

Zy 6953867 9576389 48475613 3169483 T1777548
Range 43.77 36.95 41.25 42.71 41.28
First moment 21.17 23.22 22.53 21.49 23.09
Second moment  544.08 610.37 612.61 602.80 617.67
Mode 20.59 16.33 19.27 19.03 22.88

on generated data from a uniform distribution [0, 1]. The latter data are generated by a Linear Congruential
Generator (LCG) of the type
Z; = (aZ;—1 + ¢) mod m

where m is the modulus, a the multiplier, ¢ the increment and Zj the seed or starting value.

Note that the symbols m, a and ¢ should not be confused with the same symbols in the previous sections,
but these symbols are classical in the simulation literature, which explains why they are used here. Many such
LCG’s have been proposed and tested. In this case, a widely used generator, which has been proposed in the
Borland C**-package, is used. It has the following parameter values: m = 232, a = 22695477, and ¢ = 1. For
the 5 replications, the following values of the seed Z; are chosen from the vector Zo = (6953867, 9576 389,
48475613, 3169483, 71 777548) . The LCG generates integer values between 0 and 232 — 1, so by dividing this
integer value by its maximal attainable value, a variate U is obtained, which follows a uniform distribution in
the interval [0, 1]. Given the values of U, the triangular distributed values can be obtained by:

X=a++UDb—-a)(m—a) for 0 < U < F(m)
=b—/(1-U)(b—a)b—m) for F(m) <U < 1

where F'(m) = (m —a)/(b— a).

The parameter values, required for the application of the methods developed in the previous sections, are
obtained as follows: (1) the range: lower bound is zero and upper bound is the maximum value obtained from
the data; (2) the first moment: obtained as the sample mean from the data; (3) the second moment: obtained
from the sample mean and the sample variance from the data; and (4) the mode, as calculated by a method
by Dalenius [6]. Those parameters are shown in Table 11 for the symmetric distribution, Table 12 for the
left-asymmetric distribution, and Table 13 for the right-symmetric distribution.

7.2. Results of the optimization procedure

Given the parameters, obtained in the previous subsection, the optimization is run to obtain the decision
values for the re-order points. The value of the maximum expected value of the units short (z3) is chosen equal
to 2.25 (like in Sect. 6). Three tables are shown to present the results for the symmetric, left-asymmetric and
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TABLE 13. Right-asymmetric triangular distribution.

Replication 1 2 3 4 5

Zo 6953867 9576389 48475613 3169483 T1777548
Range 45.92 41.46 44.27 45.23 44.29
First moment 28.23 30.58 29.40 27.72 30.32
Second moment  888.35 997.46 960.61 903.33 993.76
Mode 31.62 32.51 31.94 25.06 31.80

TABLE 14. Reorder points for the symmetric distribution cases.

Replication 1 2 3 4 5
Normal approach 28.22  28.83 29.83 28.73 29.40
2-moment approach 32.25 31.47 34.23 3196 32.69

l-moment + mode approach 32.11 29.34 31.28 30.72 31.97

TABLE 15. Reorder points for the left-asymmetric distribution cases.

Replication 1 2 3 4 5
Normal approach 25.11  25.75 26.96 27.75 26.39
2-moment approach 29.56 34.51 38.38 40.37 38.87

1-moment + mode approach 29.35 26.30 28.67 28.92 29.16

TABLE 16. Reorder points for the right-asymmetric distribution cases.

Replication 1 2 3 4 5
Normal approach 31.92 32.58 33.36 33.68 33.05
2-moment approach 43.53 3898 41.88 42.88 41.86

1l-moment + mode approach 35.01 33.83 34.71 33.61 35.00

right-asymmetric cases. The tables present the re-order points for the five replications as calculated in three
ways. The first way, called the “Normal approach”, uses the classical formula to obtain the safety stock or
the re-order point, assuming the DDLT follows a normal distribution and mean and standard deviation are
known (in this case from sample values). For this way, no linear program is required. The second way, called
the “2-moment approach”, uses the sample first and second moments to obtain the re-order point by a linear
program, as developed in the previous sections. The third way, called the “l-moment + mode approach”, uses
the sample first moment and the mode estimation, as described in Appendix C, to obtain the re-order point by
a linear program, as developed in the previous sections.

A first observation, which can be made from Tables 14-16, is that the level of conservativeness is different
for the 2-moment and the 1-moment + mode approach. Both approaches are conservative as they look in a set
of distributions, with specific characteristics, for the worst case. In all tables, for all replications, the re-order
point for the 1-moment 4+ mode approach is lower than the one proposed by the 2-moment approach. It means
that the knowledge of the mode is worth more than the knowledge of the variance. And this, even if the range
of estimates of the mode is quite large. A second observation relates to the range of the proposed values for
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the re-order point. For the symmetric distribution cases, the ranges are nearly equal: 2.76 (34.23—31.47) versus
2.77 (32.11—29.34). But for the asymmetric cases, the ranges are much more different. For the left-asymmetric
distribution cases, the range for the 2-moment approach equals 10.81 (40.37—29.56) and, for the 1-moment +
mode approach, it equals 3.05 (29.35—26.30). For the right-asymmetric distribution cases, the range for the
2-moment approach equals 4.55 (43.53—38.98) and, for the 1-moment + mode, it equals 1.40 (35.01—33.61).
In both asymmetric cases, also the range for the 1-moment + mode approaches has the smaller range.

8. CONCLUSIONS

This work studies inventory management in an environment of uncertainty in demand. More specifically,
distributions of demand during lead time with partial information are considered. Unimodal distributions are
studied for which the range, the expected value, and the unique mode are known.

Given a service target for the inventory manager, defined as the average number short per replenishment
cycle, it is shown how a nonlinear optimisation model can be formulated to answer the question of the required
minimum reorder level, which leads the expected number of units short at most. Furthermore, a technique is
proposed how to approximate the nonlinear model by a linear programming model. Experiments are run to
investigate the influence of the number of evaluation points on the quality of the approximation.

Finally, the sensitivity of the values of the mode and of the upper bound of the finite demand distribution
interval are tested. The experiments show that a reasonable misestimation of the mode is not of great importance.
More attention should be paid to the estimation of the upper bound of the demand distribution interval,
especially in combination with the knowledge of the mode.

APPENDIX A. CODE FOR EXAMPLE 6.1

Expanded Lingo code for the linear program with m; = 25, m = 32 and z3 = 2.25. As the Lingo code requires
all terms, including a decision variable, to appear on the left side, equation (6.6) takes the form:

ZEM X pi— 225 x y; + 18 x y; < 18
- 2 z;,-32 ! ' / T
(1) MIN =T +1000 x S; 4+ 1000 x S + 1000 x S5 + 1000 x S4 + 1000 x S5 + 1000 x Sg + 1000 x S7 + 1000 x
Ss + 1000 x Sg + 1000 x Sig + 1000 x Sy1;

(2) Po+Po+Ps+Py+Ps+Ps+Pr+Ps+Py+ Pig+ P =1,

(3) 5 ><P2+10><P3+].5><P4+20XP5+25><P6+30><P7+35XP8+40><P9+45XP10+50XP11 = 187
(4) —0.46296 x Py —2.27273 x P35 — 6.61764 x Py — 16.6667 x P5 — 44.6429 x Ps — 225 x P; +204.167 x Py +
100 x Py + 77.8846 x Pip + 69.4444 x P13 +15.75 x Y7 + 51 = 18;

(5) —0.56818 x Py —2.94118 x Py — 9.375 x P5 — 28.5714 x Ps — 156.25 x P; + 150 x Py 4 76.5625 x Py +
61.5385 x Pig + 56.25 x Pj1 + 15.75 X Yo + S5 = 18;

(6) —0.735294 x Py —4.16667 x P5; — 16.0714 x Ps — 100 x P; + 104.167 x Ps + 56.25 x Py +47.1154 x Pjg +
44.4444 x Py; +15.75 x Y3 + S5 = 18;

(7)  —1.04167 x Ps — 7.14286 x Ps — 56.25 x P7 + 66.66667 x Ps + 39.0625 x Py + 34.6154 x Py + 34.0278 x
Ppy +15.75 x Yy + S, = 18;

— 1.785714 x Ps — 25 x P; 4+ 37.5 x Pg + 25 x Py + 24.0385 X Pyg + 25 x P11 + 15.75 x Y5 4+ S5 = 18;

(9) —6.25 x Pr 4 16.6667 x Pg 4 14.0625 x Py + 15.3846 x Pyp + 17.3611 x P13 + 15.75 x Y5 + Sg = 18;

(10)  4.16667 x Ps + 6.25 x Py + 8.653846 x Pyo + 11.1111 x Pyy + 15.75 x Vs + Sy = 18;

(1 ) 1.5625 x Py + 3.84615 x Pyg + 6.25 x Pj; + 15.75 X Yg + Sg = 18;

(12) 0.961538 x Pyg + 2.77778 x P11 + 15.75 x Yy + Sg = 18;
(13)  0.694444 x Py1 + 15.75 x Y1 + Syo = 18;
(14) 15.75 x Y11 + Si1 = 18;
(15) T >=0;



(26)

END

T—-5xY,>=0

T—lOXY3
T—-15xY,
T—-20xY5
T — 25 x Yg
T—-30xY7
T—35XY8
T — 40 x Yy

coooooor

?

T — 45 X Y9 >= 0;
T —50 x Yq1 >=0;
Vi+Yo+Ys+Yu+Ys+Ys+Yr+Ys+Yo+Yio+Yu=1;
@BIN(Yl);@BIN(}/g);@BIN(Y},);@BIN(YZ;);@BIN(}%);@BIN(Y%;);@BIN(Y7);
@BIN(Ys); @BIN (Yo); @BIN (Yio); @BIN (Y11);

G.K. JANSSENS ET AL.

TABLE A.1. Coefficients z; and x; for inequality (6.6).

zi/r; 0 5 10 15 20 25

0 0 —0.4629 —22727 —6.6176 —16.666 —44.642
5 0 0 —0.5681 —2.9411 —9.375  —28.571
10 0 0 0 —0.7352 —4.1666 —16.071
15 0 0 0 0 —1.0416 —7.1428
20 0 0 0 0 0 —1.7857
25 0 0 0 0 0 0

30 0 0 0 0 0 0

35 0 0 0 0 0 0

40 0 0 0 0 0 0

45 0 0 0 0 0 0

50 0 0 0 0 0 0

TABLE A.2. Coefficients z; and x; for inequality (6.6).

zi/x; 30 35 40 45 50

0 —225 204.1667 100 77.88462  69.44444
5 ~156.25 150 76.5625 61.53846  56.25

10 —100 104.1667 56.25  47.11538  44.44444
15 —56.25  66.66667 39.0625 34.61538 34.02778
20 —25 37.5 25 24.03846 25

25 —6.25  16.66667 14.0625 15.38462 17.36111
30 0 4166667 6.25 8.653846 11.11111
35 0 0 15625  3.846154 6.25

40 0 0 0 0.961538  2.777778
45 0 0 0 0 0.694444
50 0 0 0 0 0
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APPENDIX B. NOTATION

The notation used throughout the paper is shown in Table B.1.

TABLE B.1. Notation.

X Stochastic demand during lead-time, with F'(z) as probability distribution
function, f(x) as probability density function, m; = E[X], and my = E [X2]

t Inventory reorder point level

Q Fixed order quantity

I =Ja,b] Finite support interval of the demand during lead-time distribution
witha>0and a <b

m Mode of unimodal distribution

v1 Transformed value of m; for unimodal distributions
Number of integral constraints in optimisation problem

z Pre-set maximum expected number of units short

T Discrete point in the interval [a, b]

i Probability mass in point x;

APPENDIX C. ESTIMATION OF THE MODE

As the estimation of the mode is far from popular — Dalenius [6] even calls it a neglected statistical para-
meter —, this appendix shows the procedure how the mode is estimated in the experiments from Section 7. The
procedure follows the estimator, called M; by Dalenius ([6], p. 113).

(1)

(2) Compute the differences z(j, k) = x4, — x; for j =1,...,n — k and some integer k < n.
(3) Choose the shortest interval (z;,z;4), i.e. min z(j, k).

(4) Choose the mid-point of the interval as estimate of the mode.

Order the sample values of size n, so that £1 <2 < ... <x; <... < Zjyp < ... < Tp.

Dalenius [6] gives no advice on the value of k. In his experiments he uses rather small values of k but observes
quite some variability using different k-values. Therefore, our approach is to estimate the mode using values
k =1...5, calculate the mode using the procedure and then averaging over the five values to obtain the value
to be used in Section 7.2.
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