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NORDHAUS-GADDUM TYPE RESULTS FOR CONNECTED AND TOTAL
DOMINATION

RANA KHOEILARY, HOSSEIN KARAMI!, MUSTAPHA CHELLALI?,
SEYED MAHMOUD SHEIKHOLESLAMI! AND LUTZ VOLKMANN?

Abstract. A dominating set of G = (V, E) is a subset S of V such that every vertex in V — S
has at least one neighbor in S. A connected dominating set of G is a dominating set whose induced
subgraph is connected. The minimum cardinality of a connected dominating set is the connected dom-

ination number 7.(G). Let 6*(G) = min{d(G), §(G)}, where G is the complement of G and §(G) is the
minimum vertex degree. In this paper, we improve upon existing results by providing new Nordhaus—

Gaddum type results for connected domination. In particular, we show that if G and G are both

connected and min{v.(G),7.(G)} > 3, then 7.(G) +7.(G) <4+ (§*(G) — 1) (ﬁ + ﬁ) and

Ye(@)ve(G) < 2(6*(G)—1) (m + ﬁ + %) +4. Moreover, we establish accordingly results for

total domination.
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1. INTRODUCTION

In extremal graph theory, many problems seek the extreme values of graph parameters on families of graphs.
Nordhaus—Gaddum type results study the extreme values of the sum (or product) of a parameter on a graph
and its complement, following the classic paper of Nordhaus and Gaddum [15] solving these problems for the
chromatic number on n-vertex graphs.

For domination problems, multiple edges and loops are irrelevant, so we forbid them. We use V(G) and E(G)
for the vertex set and edge set of a graph G. For a vertex v € V(G), the open neighborhood N(v) is the set
{v € V(G) | uwv € E(G)} and the closed neighborhood Nv] is the set N(v) U {v}. The open neighborhood N(S)
of a set S C V is the set |J,cg N(v), and the closed neighborhood N[S] of S is the set N(S)U S. The degree
of a vertex v € V is dg(v) = |N(v)|. The minimum and maximum vertexr degrees in G are denoted 0(G) and
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A(G), respectively. We denote the complement of G by G, and we let §*(G) = min{4(G),5(G)}. It is worth
mentioning that if G is a graph of order n, then 6*(G) < ”51. Given graphs G and H, the cartesian product
GUOH is the graph with vertex set V(G) x V(H) and edge set defined by making (u,v) and (u’,v") adjacent if
and only if either (1) v = v/ and vv’ € E(H) or (2) v =v" and wu’ € E(G).

A subset S of vertices of G is a dominating set if N[S] = V. A connected dominating set (respectively, total
dominating set) of G is a dominating set whose induced subgraph is connected (respectively, without isolated
vertices). The minimum cardinality of a connected dominating set (respectively, a total dominating set) is the
connected domination number ~.(G) (respectively, total domination number v4(G)). A connected dominating
set will be abbreviated cd-set, while a total dominating set by td-set. A cd-set of minimum cardinality is called a
~e-set. Likewise, a y;-set is defined similarly. Since any cd-set of order at least two is also a td-set, . (G) < 7.(G)
for every nontrivial connected graph G with A(G) < |[V(G)| — 1. Moreover, it is worth noting that diam(G) > 3
if and only if 7.(G) < 2.

Inequalities of Nordhaus-Gaddum type have been proved for many graph invariants including various domi-
nation parameters. The excellent survey by Aouchiche and Hansen [1] provides a large collection of Nordhaus—
Gaddum relations up to the year 2013. Furthermore, by imposing constraints on graphs and their complements,
many of these results can be improved. For the connected and total domination numbers that are the focus of
our study, the following bounds have been proved.

Theorem 1.1. If G and G are nontrivial connected graphs of order n, then

(1) ([12) 7e(G) +7(G) < 6*(G) + 4 = (7e(G) = 3)(7e(G) = 3); sharp for 6*(G) = 2.
(i) (4) (7e(G) = 2)(7e(G) —2) < 6°(G) + 2.
(i) ([19) 7e(G) + 7e(G) < 2 when 6*(G) > 3 and n > 14; sharp when 4 divides n.
(iv) ([12]) 7e(G) +7e(G) < 0°(G) + 2 when 7(G),7e(G) > 4, with equality possible if and only if 6*(G) = 6.
(v) ([20) %(G) +1(G) <n+2.

Throughout this paper, G is a connected graph of order n whose complement G is also connected. Note that
this yields n > 4. For such graphs G, we establish the following sharp upper bound for ~.(G) + v.(G) which
improves the bound of item (i) in Theorem 1.1.

(G +2(@) < 44 0°(0) - 1) (g + e )

This bound is our main result and most of results of Theorem 1.1 and others follow from a closer examination
of its proof. In the last two sections, we will also provide upper bounds on the sums v;(G) +7:(G) and v (G) +
sd,, (G) where sd,, (G) is the minimum number of edges that must be subdivided in order to increase the total
domination number.

Before closing this section, we recall a result of [8] and that every connected graph G contains a spanning
tree with at least A(G) leaves.

Theorem 1.2 ([8)). If G is a connected n-vertex graph, then v.(G) < n — A(G).

2. BOUNDS ON 7.(G) + 7.(G)
In this section we present sharp upper bounds on the sum v.(G) + v.(G).

Theorem 2.1. If G and G are connected graphs with min{v.(G),v.(G)} > 3, then

16+ @ <4+ @) -1 (g5 3 )

This bound is sharp for every value of 6*(G) > 2.
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Proof. We first observe that since min{v.(G),7.(G)} > 3, we have diam(G) = diam(G) = 2. Let x be a vertex
in G of degree §(G), and let X = V(G) — N[z]|. We deduce from ~.(G) > 3 that X # . Also, since diam(G) = 2,
N(z) dominates X.

In the sequel, we consecutively select disjoint sets Sy, ..., Sk_1 in N(z) that almost dominate X, and disjoint
sets Xo,...,Xk—1 in X which are not dominated by Sy, ..., Sk_1, respectively. Let Ty = N(x), and let Sy be
a largest subset of N(x) that does not dominate X. Let Xg = X — N(Sp) and T} = Ty — Sp. By the choice of
So, for any vertex y € Ty, the set S U {y} dominates X and thus y dominates Xj. Note that 77 may possibly
dominate X. Now, if 77 does not dominate X, then we stop and if 77 dominates X, then let S; be a largest
subset of T} that does not dominate X. Let X; = X — N(S7) and Ty = T} — S1. We continue constructing sets
To,..., 1 with Ty D ... D T} (Where k> 1), sets Sg,...,Sk_1 and Xq,..., Xx_1 such that:

(a) For each i < k, T; dominates X.

(b) For each i < k, S; is a largest subset of T; that does not dominate X, and T;11 = T; — S;.
(c) Foreachi <k, X; =X — N(5;).

(d) Ty does not dominate X.

Since T; dominates X but S; does not (for any ¢ < k), all of Ty, ..., T} are nonempty. Moreover, by construc-
tion, S; U {y;} dominates X whenever y; € T;1. Thus S; U {x,y;} is a cd-set of G, and hence

|Sil = 7e(G) — 2 (2.1)

for each i € {0,1,...,k —1}. For each i € {0,...,k — 1}, let x; be a vertex of X;, and let x, be a vertex of X
that is not dominated by T}. Since N(z) = (Uf;ol Si) U Ty, the set {z, 20, ..., 2%} is a cd-set of G and thus

Since 0(G) = |Tx| + Zi::ol |Si| and |T)| > 1, inequality (2.1) implies

5(G) = 1+ k(7.(G) - 2). (2.3)
Hence
7e(G) < 5(G])€_ Lo (2.4)
and 5@) 1
@ 2

By (2.2), (2.4) and (2.5), we have

=4+ (8(G) - 1) ( + ) : (2.6)

By symmetry, we also have 7.(G) + 7.(G) < 4+ (6(G) — 1) (%(61:)72 +2 (51)_2)

, and the desired inequality is
proved.

To prove the sharpness, for each integer ¢ > 3, we will provide a connected graph G, of order ¢2 + ¢ + 1
such that §(Gy) = ¢, 7.(Ge) = L+ 1, 6(Gy) = 2 — L + 1, 7.(Gy) = 3, and .(Gy) + 7.(G¢) = £ + 4, hereby
achieving the bound. The graph G, is constructed as follows. Let Hy = Hy = Ky, with V/(Hz) = {v1,..., v},
and consider the cartesian product H1[JH5. Then add a star of order ¢ + 1 with center y and leaves x1,...,xy,

where for each i € {1,...,¢} we join z; to all vertices of the ith copy of H; in H;[OH,, that is to all vertices



S856 R. KHOEILAR ET AL.
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FIGURE 1. The graph Gs, plus H; and Ho.

of HiOH, with second coordinate v;. See Figure 1 for an example of G3 (along with H; and Hs). Note that
diam(G) = diam(G;) = 2 and §*(G,) = ¢.

It remains to show that v.(G¢) = 3 and 7.(G,) = £ + 1. Since diam(Gy) = 2, we have 7.(G;) > 3. On the
other hand, if u and w are neighbors of 21 and x2 in Gy other than y, then {y, u,w} is a connected dominating
set of Gy and so 7.(G¢) = 3. Now to see that v.(G) = £+ 1, we first note that {y,z1,..., 2} is a cd-set of Gy,
and thus v.(G¢) < £+1. To get the lower bound, let S be a cd-set of Gy, and let T; = N[z;] — {y}. If S does not
intersect T3, which includes z; and vertices of a copy of Hi, then dominating 7T; requires that S contains y and
a vertex from each copy of Hs. This requires £ 4+ 1 vertices. Thus |S| > £+ 1 unless S intersects each of the ¢
disjoint sets 77, ..., Ty exactly once. But then dominating y without reaching size £+ 1 requires that S contains
some z;, and the latter (z;) has no neighbor in S, which is again not connected. Therefore 7.(G) = ¢+ 1. O

Corollary 2.2. If G and G are connected n-vertex graphs, then v.(G) + v.(G) < n + 1.

Proof. If min{v.(G),7.(G)} = 2, then the result follows from Theorem 1.2, and if min{v.(G),7.(G)} > 3, then
the result follows from Theorem 2.1. d

Theorem 2.1 will be useful to establish the next upper bound for the product of 7.(G) —2 and 7.(G) — 2 that

was first shown in [4]. However, we will provide in addition a characterization of extremal graphs attaining this
upper bound.

Corollary 2.3. If G and G are connected graphs, then

(7e(G) = 2)(7(G) —2) < 6°(G) - 1.

Proof. If 7.(G) = 2 or 7.(G) = 2, then the result is immediate. Hence we assume that v.(G),7.(G) > 3. By

Theorem 2.1, 7.(G) + 7.(G) — 4 < (6*(G) — 1) ( (yj(céfzgi:(ca()é;f2)> and the result follows from the fact that

Ve(G) +7e(G) =4 > 0. .

Let F be the family of graphs G such that 6*(G) = 1, or 7.(G) = §(G) + 1 and v.(G) = 3, or 7.(G) = 3 and

7(G) = §(@) + 1.

Theorem 2.4. Let G and G be connected graphs with min{v.(GQ),7.(G)} > 2. Then (7.(G) — 2)(7.(G) — 2) =
0*(G) — 1 if and only if G € F.
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Proof. If §*(G) = 1, then clearly 7.(G) = 2 or 7.(G) = 2 and thus (7.(G) — 2)(7.(G) —2) =6"(G) — 1. Hence

assume that §* > 2, and let 7.(G) = §(G)+1 and 7.(G) = 3 (the case 7.(G) = 3 and 7.(G) = §(G)+1 is similar).
By Corollary 2.3 we have §(G) — 1 = (7.(G) — 2)(7.(G) — 2) < §*(G) — 1 and hence (7.(G) — 2)(7.(G) —2) =
0*(G) — 1.

Conversely, assume that (7.(G) — 2)(7.(G) — 2) = 6*(G) — 1. If 6*(G) = 1, then obviously G € F. Hence let
6*(G) > 2. In the sequel, we will use the same notations as in the proof of Theorem 2.1. Clearly, since 6*(G) > 2,

we have 7.(G) > 3 and v.(G) > 3. Then all inequalities (2.1)—(2.6) occurring in the proof of Theorem 2.1 become
equalities, in particular

|Si] = 7e(G) — 2 (2.7)
for each i € {0,1,...,k — 1},
k=7.(G) -2 (2.8)
and -
5(G) =1+ _|Si] =1+ k(7(G) - 2). (2.9)
=0
Thus
Ye(G) = &k_l +2 (2.10)
and 5(G) -1
k= (eT) (2.11)

We consider two cases.

Case 1. v.(G) = 3.

Then by (2.7) and (2.9) we have |S;| = 1 for each i € {0,1,...,k — 1}, |Tx| = 1 and §(G) = k + 1. Let
S; ={z} fori €{0,...,k — 1} and T}, = {z}. Let G1 be the subgraph of G induced by {z, ..., 2, }. Assume
first that G has an isolated vertex, say zg. Since 7.(G) = 3, there exists a vertex y € V(G) — N[z] that is
not dominated by zg. It follows that {z,y,20} is a cd-set of G and thus 7.(G) = 3. We conclude from (2.8)
and (2.9) that k = 1 and 1.(G) = 6(G) + 1 = §(G*) + 1 yielding G € F. Assume now that G; has no isolated
vertex. Without loss of generality, let 2021 € E(G). If each z; (j > 2) has a neighbor in {2, 21}, then {zg, 21}
is a cd-set of G, a contradiction. Hence, we may assume, without loss of generality, that z5 has no neighbor in
{20,21}. Then {z, 2, 22,..., 71}, where z; € X; and xy, is a vertex of X not dominated by T}, is a cd-set of G

of cardinality k + 1, contradicting the fact that v.(G) = k + 2.

Case 2. 7.(G) > 4.

By (2.7) and (2.9), we have |Sp| = [S1] = -+ = |Sk=1] = 7(G) — 2, |Tk| = 1 and §(G) = k(7.(G) — 2) + 1.
It follows that (i) any subset of N(x) of size 7.(G) — 1 dominates X = V(G) — NJz|, and (ii) for any subset
W of N(z) of size 7.(G) — 2, there exists a subset W’ of X = V(G) — N[x] that is not dominated by W and
any vertex of N(x) — W is adjacent to all W’. Let G5 be the subgraph induced by N(x). We distinguish the
following situations.

Subcase 2.1. diam(G3) > 3.
Let z1,20 € V(G2) be two vertices at distance at least three in Ga. Since v.(G) > 4, there is a vertex
2z € X — (N(21) UN(22)). Then {z1, 29, 2,2} is a cd-set of G and so 7.(G) < 4. It follows from (2.8) that k < 2.

If £ = 1, then we have § = |Sp| + 1 = 7.(G) — 1 and ~.(G) = 3. Hence 7.(G) = 6(G) + 1 and ~.(G) = 3 and
thus G € F. Now, let k = 2. Then we have § = |So| + |S1| + 1 = 2(7.(G) — 2) + 1 = 27.(G) — 3 and 7.(G) = 4.
If dg, (y) < v.(G) — 3 for some y € V(Ga), then |Ng,[y]| < 7.(G) — 2 and for ' € X not dominated by Ng,[y]
in G, {x,y,y'} is a cd-set of G which is a contradiction. Thus dg, () > 7.(G) — 2 for each y € V(G>). But then

0(G) > |Ng,(z1)] + | N, (22)| + 2 > 27.(G) — 2, a contradiction.
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Subcase 2.2. diam(Gz) = 2.
Let y € V(G2) be an arbitrary vertex and Y = V(G3) — N[y|. Using an argument similar to that described
in the proof of Theorem 2.1, we can construct sets T, ..., T, with Tj) D ... D T, (where s > 1), sets S, ... S, _;

S
and sets X{,...X._; such that:

(a) For each i < s, T} dominates Y.
(b) For each i < s, S is a largest subset of T; that does not dominate Y, and T}, = T} — S;.
(c) Foreachi<s, X/ =Y — N(S)).
(d)

T! does not dominate Y.

First let dg, (y) < 7.(G)—3. Thus |Ng, [y]| < 7.(G)—2. Let 3’ be a vertex of X not dominated by Ng,[y]. Then
{x,y,y'} is a cd-set of G, implying that v.(G) = 3. By (2.8), we have k = 1, and by (2.9) we get 7.(G) = §(G)+1.
Therefore G € F. Now, we can assume that dg,(y) > v.(G) — 2 for each y € Ng(z). If |S]| < 7.(G) —t for
some 4, with ¢ > 3, then S U {z,y'} whenever ¢’ € X — N(S!) (see (ii) of Case 2), is a cd-set of G which leads
to a contradiction. Hence |S}| > 7.(G) — 2 for each i € {0,...,s — 1}. Let |T7| + >°7_o | X!| = m(7.(G) — 2) + j,
where m > 0 and 0 < j < 7.(G) — 3. Note that either m # 0 or j # 0. Using (2.9) we obtain

1+ k(1e(G) + 2) = 6(G)
s—1 s

=14+ ) IS+ T+ > IX])
i=0 =0

> 5(7(G) —2) + 14T + 3 |X
1=0
=5(7(G) = 2) + 1 + m(7.(G) — 2) + 4,

and by (2.8) we have

- J
(G)=2>s+m+ —=——- 2.12
7e(G) G 1o (2.12)
If m =0orm =1and j = 0, then for any vertex y' € X not dominated by T; U (Uf_yX]), the set
{z,9/,21,...,25—1} whenever z; € X! for each i, is a cd-set of G and (2.12) leads to s > s+ m + W,

which is a contradiction. Hence m > 2 or m = 1 and j > 1. By construction of the sets and fact (i), we have
IT;| < 7.(G) — 2. For any vertex y' € X not dominated by Ty, the set {z,y',y, 21,...,25s-1} Whenever 2; € X/
for each 4, is a cd-set of G and (2.12) leads to s +1 > s+ m + W which is a contradiction. O

The next result shows that the bound in Theorem 1.1(i) is a consequence of Theorem 2.1 when
min{7:(G),7.(G)} = 3.

Corollary 2.5 ([12]). If both G and G are connected graphs with min{v.(G),v.(G)} > 3, then

Ve(G) +7e(G) <4+ 6%(G) = (7(G) = 3)(7(G) — 3).

Proof. If min{~v.(G),7.(G)} = 3, then by Corollary 2.3, max{7.(G),7.(G)} < 1+ 6*(G). Therefore .(G) +
Ye(G) € 4+ 6(G) = 4+ 6 (Q) — (7(G) — 3)(7.(G) — 3). Hence we can assume that min{v.(G),7.(G)} > 4.
Let = 7.(G) — 2 and y = 7c(G) — 2. Thus by Theorem 2.1, 7.(G) +7.(G) < 4+ (6*(G) — 1)(% + %) Now to
complete the proof, it is enough to show that '

(5*(G) 1) (H;) < 5(C) — (z— D)y~ 1)

T

— (@) 1)~y +ay (3 4.
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or equivalently

(6*(G) — 1 — zy) (i + ;) < 54(G) — 1 — ay.

This last inequality is always true because of L + i <1and §*(G) —1—ay >0 (by Cor. 2.3). O
The following result also shows that the upper bound in Theorem 1.1(iv) can be easily obtained by using
Theorem 2.4 and Corollaries 2.3 and 2.5.

Corollary 2.6 ([12]). If both G and G are connected graphs with min{v.(GQ),v.(G)} > 4, then v.(G) +7.(G) <
*(GQ) +2.

Proof. If 7.(G) > 4 or 7, (G) > 4, then the result immediately follows from Corollary 2.5. Hence we assume that
Ye(G) = 7.(G) = 4. By Corollary 2.3, we have §*(G) > 5. But with these data, we deduce from Theorem 2.4
that G does not belong to F, and thus §*(G) > 6. Clearly, the result is valid in this case. O

Now, we turn our attention to the product of 7.(G) and ~.(G) for which we provide the next upper bound.
Theorem 2.7. If G and G are connected n-vertex graphs with min{~.(G),v.(G)} > 3, then
1 1

Val * ].
(GB) <20°(E) = 1) (=g + = T )+t

Furthermore, this bound is sharp for the cycle Cs.

Proof. Expanding and collecting terms in the inequality of Corollary 2.3 yields v.(G)7.(G) < 2(7.(G)+7.(G)) +
0*(G) — 5. Moreover, Theorem 2.1 implies that

§2<4+5* )—1) <% 5+ Gl) >)+5*(G)5
=#(@ -1 <%<G1> 2t %<G1> . 2) o

Corollary 2.8. Let G and G be connected n-vertex graphs.
(1) ([4) If min{y(G),7e(G)} = 4, then %(G)%(G) < 5(n—1).
(2) If min{7.(G),7(G)} = 3, then v.(G)7:(G) < 3(n+1). This bound is sharp for the cycle Cs.
(3) ([12)) If min{v.(G),7.(G)} = 2, then 'yC(G)%(é) < 2n — 4. This bound is sharp for the path Pj.
Proof. (1) Let min{y.(G),v.(G)} > 4. Corollary 2.6 yields 6*(G) > 6. Now, if 6*(G) < 251, then Theorem 2.7
implies that
1 1 1

_ . 3 3
Ye(G)ve(G) < 2(6*(G) — 1) (%(G) — 02 + 2) +4< §(n —-4)+4< §(n —1).

Hence assume that 6*(G) = 271, and thus n > 11. If 7.(G) = 7.(G) = 4, then the result is immediate and
if max{yc(G),7.(G)} > 5, then Theorem 2.7 yields 7.(G)7.(G) < 5(n 3) +4<3(n-1).
(2) Let min{.(G),7:.(G)} = 3. Corollary 2.6 yields max{7.(G),7(G)} < 2 and so 7.(G)V.(G) =

min{y.(G), 7e(G)} - max{y.(G),7(G)} < 3(n +1).
(3) Let min{v.(G),7v.(G)} = 2. Then the result follows from Theorem 1.2.
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3. BOUNDS ON THE SUM AND PRODUCT OF ;(G) AND v(G)

In this section, we give some upper bounds on the sum ~;(G) + 7;(G) and the product v;(G)v:(G). Most of
these results are immediate consequences of Theorems 2.1, 2.4, 2.7 and Corollary 2.3. Recall that v,(G) < 7.(G)
for every connected graph G with A(G) < n(G) — 1.

Theorem 3.1. If G and G are connected graphs with min{v,(G),v:(G)} > 3, then

Y(G) +1(G) <4+ (6°(G)—1) (70(6‘1) — 5 (Gl) _2> :

This bound is sharp for the graph Gy constructed in Theorem 2.1.

Corollary 3.2. If G and G are non-trivial connected n-vertex graphs, then

7(G) + 1 (G) <n+ 1.
Theorem 3.3. If G and G are connected n-vertex graphs with min{~.(G),v.(G)} > 3, then

(@) (@) < 26%(G) — 1) (%(Gl) 7 (Gl) —+ ;) .

This bound is sharp for the cycle Cs.
Theorem 3.4. If G and G are connected graphs with min{v,(G),v:(G)} > 2, then

(1(G) = 2)((G) = 2) < 6(G) - 1.

The equality holds if and only if 6*(G) =1 or 7(G) = 7e(G) = 6(G) + 1 and v,(G) = 7.(G) = 3 or %(G) =
1e(G) = 3 and 7(G) = 7.(G) = 6(G) + 1.

For the proof of the next result, it is necessary to recall the following two results.
Theorem 3.5 ([16]). If G is a connected graph of order n with 6(G) > 4, then v (G) < 32.

Theorem 3.6 ([14]). If G is a n-vertex graph with 6(G) > 2 such that d(u) + d(v) > 5 for every two adjacent
vertices u and v of G, then v(G) < n/2.

Theorem 3.7. If G and G are connected graphs of order n > 14 with §(G) > 2 such that 5 < dg(u) +dg(v) <

n — 3 for every two adjacent vertices u and v of G, then v(G) + 1 (G) < n/2 + 2.

Proof. If v(G) = 2, then the result is immediate from Theorem 3.6. Hence, we assume that v,(G) > 3. Since
de(u) + dg(v) < n — 3 for every two adjacent vertices u and v of G, we have v(G) > 3. Moreover, since
min{y;(G),v:(G)} > 3, we have diam(G) = diam(G) = 2. Assume first that §(G) = 2, and let u be a vertex of
degree 2, with Ng(u) = {uy, us}. Since diam(G) = 2, {u, u1,us} is a td-set of G and so 7:(G) = 3. On the other
hand, it follows from dg(u)+dg(u;) < n—3 that there is a vertex u} € V(G) —{u, u1,us} such that u;u; ¢ E(Q)
for i = 1,2. Then {u,u},ub} is a td-set of G, implying that v,(G) = 3. Hence v;(G) + % (G) = 6 < n/2 + 2
because n > 10.

Now let 6(G) > 3. Since 14(G) > 3 and since dg(z) + dg(y) < n — 3 for every two adjacent vertices z and y
of G, we have 6(G) > 3. If min{y(G),v:(G)} > 4, then by Theorem 1.1(iv), we have

Y(G) +7(G) < 6°(G) +2
< n; 1

n
—+2
<2+

+ 2
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Hence, we may assume, without loss of generality, that 7;(G) = 3. If (&) = 4, then the result is immediate

since n > 10. Thus let v(G) > 5. Since diam(G) = 2, we have 6(G) > 4. By Theorem 3.5, it follows that

W@ +n(@) <3+ < T+
and the proof is complete. [
The next result that was first proven in [10], follows from a closer examination of the proof of Theorem 3.7.
Corollary 3.8. If G and G are both connected with n(G) > 14 and §*(G) > 3, then v(G) +1(G) < n/2 + 2.

Before seeing the sharpness of the bound in Corollary 3.8, we have to note that for every graph G of order n
and minimum degree at least 3, 1:(G) < n/2 (see [2]), and this bound is attained for the following family G of
cubic graphs constructed in [5]. For k > 1, let G be the graph constructed as follows. Consider two copies of
the path Py with respective vertex sequences a1byagbs ... agby and cidicads . .. cpdy. Let A = {ay,as,...,a;},
B = {by,ba,..., b}, C ={c1,c2,...,c}, and D = {dy,ds,...,d}. For each i € {1,2,...,k}, join a; to d; and
b; to ¢;. To complete the construction of the graph G, join a; to ¢; and by to di. Let G = {Gy | k > 1}.
Moreover, for k > 2, one can easily see that for every G}, € G, we have §(Gy) = n—4 > 3 and v;(Gj) = 2. Since
Corollary 14 is stated for graphs of order n > 14 and §*(G) > 3, the upper bound of Corollary 14 is sharp for
any graph Gy € G with k > 4.

4. BOUNDS ON %(G) + sd,,(G)

In this section we present upper bounds on the sum of the total domination number of a graph G and the total
domination subdivision number of the complement of G. Recall that the total domination subdivision number
sd, (G) of a graph G is the minimum number of edges that must be subdivided in order to increase the total
domination number. Let us first recall some well-known results.

Theorem 4.1 ([3]). If G is a connected graph of order n > 3, then v,(G) < 2.

Let G1o be the graph obtained from the 10-cycle C1g = (viv2...v10) by adding the edge vivg and Hig be
the graph obtained from the 10-cycle C19 = (v1v2...v10) by adding the edges v1vg and vsv1.

Theorem 4.2 ([9]). If G & {C5,C5,Cs,Cr0,G10, H10} is a connected graph of order n with 6(G) > 2, then
(G) < 2.

Theorem 4.3 ([2]). If G is a connected graph of order n with §(G) > 3, then v(G) < §.
Theorem 4.4 ([7]). If G is a graph of order n >3 and v,(G) =2 or 3, then 1 <sd,,(G) < 3.

The join of two graphs G and H, G V H, is a graph formed from disjoint copies of G and H by connecting
every vertex of G to every vertex of H.

Theorem 4.5 ([11]). Let G be a connected graph of order n. The following statements are equivalent.

(1) %(G) =2 and sd,, (G) = 3.
(2) G is isomorphic to K., V Ky for some 1 <m <n —3.

Theorem 4.6 ([6]). If G is a connected graph of order n > 3 different from Ky, then sd,, (G) < %] with
equality if and only if G is isomorphic to Ps, K3, K13, K13+ e, K4 —e, K5 —e or Ks.

Theorem 4.7 ([13]). If G is a connected graph of order n > 3 different from Ky, then sd., (G) < ”%rl

Theorem 4.8 ([13]). If G is a connected graph of order n > 3, then sd., (G) < 1(G) + 1.
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Theorem 4.9. If G and G are connected graphs of order n > 6, then
— 2
w(G) +sd,, (G) < ?” +2.

Proof. If v(G) = 2, then the result is immediate by Theorem 4.6. If 7;(G) = 3, then we deduce from Theorem 4.6
and the fact n > 6 that sd,, (G) < [%*] —1 and so 1(G)+sd, (G) < Z*+2. Hence we can assume that v,(G) > 4.

If v(G) = 2, then we deduce from Theorems 4.4, 4.5 and the connectedness of G that sd., (G) < 2 and thus

the result follows from Theorem 4.1. Hence we assume that v;(G) > 3. It is clear that diam(G) = diam(G) = 2.

Observe that if 6(G) = 1, then v(G) = 2, a contradiction. Also, if 6(G) = 2, then any vertex of degree two and

its neighbors form a td-set of G, contradicting the fact that v;(G) > 4. Thus let §(G) > 3. If 74(G) = 3, then

sd,, (G) < 3 and the result follows from Theorem 4.3 and the fact that n > 6. Hence assume that v,(G) > 4.
By Theorem 3.1 that 7 (G) + %(G) <4+ (6*(G) — 1) < 3+ 251 <2+ 2 and the proof is complete. O

Theorem 4.10. If G and G are connected graphs of order n > 11 with 6*(G) > 2, then

— 4
w(G) +sd., (G) < 7" +3.

Proof. If 4(G) < 3, then the result follows by Theorems 4.4 and 4.2, and if v;(G) < 3, then the result follows

from Theorem 4.7. Hence assume that v:(G) > 4 and v(G) > 4. By Theorems 3.1 and 4.8 we conclude that

11(G) 4545, (G) < 7(G) + 73(G) +1 < 67(G) + 4

n—1 4n
< 4 < — +3.
S5 +4 < 74—

We conclude this section with the following open problem.

Problem 4.11. Is it true that for every connected graph G of order n > 3, 14(G) + sd., (G) < Z* + 37
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