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NORDHAUS–GADDUM TYPE RESULTS FOR CONNECTED AND TOTAL
DOMINATION

Rana Khoeilar1,∗, Hossein Karami1, Mustapha Chellali2,
Seyed Mahmoud Sheikholeslami1 and Lutz Volkmann3

Abstract. A dominating set of G = (V,E) is a subset S of V such that every vertex in V − S
has at least one neighbor in S. A connected dominating set of G is a dominating set whose induced
subgraph is connected. The minimum cardinality of a connected dominating set is the connected dom-
ination number γc(G). Let δ∗(G) = min{δ(G), δ(G)}, where G is the complement of G and δ(G) is the
minimum vertex degree. In this paper, we improve upon existing results by providing new Nordhaus–
Gaddum type results for connected domination. In particular, we show that if G and G are both

connected and min{γc(G), γc(G)} ≥ 3, then γc(G) + γc(G) ≤ 4 + (δ∗(G)− 1)
(

1
γc(G)−2

+ 1

γc(G)−2

)
and

γc(G)γc(G) ≤ 2(δ∗(G)−1)
(

1
γc(G)−2

+ 1

γc(G)−2
+ 1

2

)
+4. Moreover, we establish accordingly results for

total domination.
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1. Introduction

In extremal graph theory, many problems seek the extreme values of graph parameters on families of graphs.
Nordhaus–Gaddum type results study the extreme values of the sum (or product) of a parameter on a graph
and its complement, following the classic paper of Nordhaus and Gaddum [15] solving these problems for the
chromatic number on n-vertex graphs.

For domination problems, multiple edges and loops are irrelevant, so we forbid them. We use V (G) and E(G)
for the vertex set and edge set of a graph G. For a vertex v ∈ V (G), the open neighborhood N(v) is the set
{u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood N [v] is the set N(v) ∪ {v}. The open neighborhood N(S)
of a set S ⊆ V is the set

⋃
v∈S N(v), and the closed neighborhood N [S] of S is the set N(S) ∪ S. The degree

of a vertex v ∈ V is dG(v) = |N(v)|. The minimum and maximum vertex degrees in G are denoted δ(G) and
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∆(G), respectively. We denote the complement of G by G, and we let δ∗(G) = min{δ(G), δ(G)}. It is worth
mentioning that if G is a graph of order n, then δ∗(G) ≤ n−1

2 . Given graphs G and H, the cartesian product
G�H is the graph with vertex set V (G)× V (H) and edge set defined by making (u, v) and (u′, v′) adjacent if
and only if either (1) u = u′ and vv′ ∈ E(H) or (2) v = v′ and uu′ ∈ E(G).

A subset S of vertices of G is a dominating set if N [S] = V. A connected dominating set (respectively, total
dominating set) of G is a dominating set whose induced subgraph is connected (respectively, without isolated
vertices). The minimum cardinality of a connected dominating set (respectively, a total dominating set) is the
connected domination number γc(G) (respectively, total domination number γt(G)). A connected dominating
set will be abbreviated cd-set, while a total dominating set by td-set. A cd-set of minimum cardinality is called a
γc-set. Likewise, a γt-set is defined similarly. Since any cd-set of order at least two is also a td-set, γt(G) ≤ γc(G)
for every nontrivial connected graph G with ∆(G) < |V (G)|− 1. Moreover, it is worth noting that diam(G) ≥ 3
if and only if γc(G) ≤ 2.

Inequalities of Nordhaus–Gaddum type have been proved for many graph invariants including various domi-
nation parameters. The excellent survey by Aouchiche and Hansen [1] provides a large collection of Nordhaus–
Gaddum relations up to the year 2013. Furthermore, by imposing constraints on graphs and their complements,
many of these results can be improved. For the connected and total domination numbers that are the focus of
our study, the following bounds have been proved.

Theorem 1.1. If G and G are nontrivial connected graphs of order n, then

(i) ([12]) γc(G) + γc(G) ≤ δ∗(G) + 4− (γc(G)− 3)(γc(G)− 3); sharp for δ∗(G) ≥ 2.
(ii) ([4]) (γc(G)− 2)(γc(G)− 2) ≤ δ∗(G) + 2.

(iii) ([12]) γc(G) + γc(G) ≤ 3n
4 when δ∗(G) ≥ 3 and n ≥ 14; sharp when 4 divides n.

(iv) ([12]) γc(G) + γc(G) ≤ δ∗(G) + 2 when γc(G), γc(G) ≥ 4, with equality possible if and only if δ∗(G) = 6.
(v) ([10]) γt(G) + γt(G) ≤ n+ 2.

Throughout this paper, G is a connected graph of order n whose complement G is also connected. Note that
this yields n ≥ 4. For such graphs G, we establish the following sharp upper bound for γc(G) + γc(G) which
improves the bound of item (i) in Theorem 1.1.

γc(G) + γc(G) ≤ 4 + (δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2

)
·

This bound is our main result and most of results of Theorem 1.1 and others follow from a closer examination
of its proof. In the last two sections, we will also provide upper bounds on the sums γt(G) + γt(G) and γt(G) +
sdγt

(G) where sdγt
(G) is the minimum number of edges that must be subdivided in order to increase the total

domination number.
Before closing this section, we recall a result of [8] and that every connected graph G contains a spanning

tree with at least ∆(G) leaves.

Theorem 1.2 ([8]). If G is a connected n-vertex graph, then γc(G) ≤ n−∆(G).

2. Bounds on γc(G) + γc(G)

In this section we present sharp upper bounds on the sum γc(G) + γc(G).

Theorem 2.1. If G and G are connected graphs with min{γc(G), γc(G)} ≥ 3, then

γc(G) + γc(G) ≤ 4 + (δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2

)
·

This bound is sharp for every value of δ∗(G) ≥ 2.
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Proof. We first observe that since min{γc(G), γc(G)} ≥ 3, we have diam(G) = diam(G) = 2. Let x be a vertex
in G of degree δ(G), and let X = V (G)−N [x]. We deduce from γc(G) ≥ 3 that X 6= ∅. Also, since diam(G) = 2,
N(x) dominates X.

In the sequel, we consecutively select disjoint sets S0, . . . , Sk−1 in N(x) that almost dominate X, and disjoint
sets X0, . . . , Xk−1 in X which are not dominated by S0, . . . , Sk−1, respectively. Let T0 = N(x), and let S0 be
a largest subset of N(x) that does not dominate X. Let X0 = X −N(S0) and T1 = T0 − S0. By the choice of
S0, for any vertex y ∈ T1, the set S0 ∪ {y} dominates X and thus y dominates X0. Note that T1 may possibly
dominate X. Now, if T1 does not dominate X, then we stop and if T1 dominates X, then let S1 be a largest
subset of T1 that does not dominate X. Let X1 = X −N(S1) and T2 = T1 − S1. We continue constructing sets
T0, . . . , Tk with T0 ⊃ . . . ⊃ Tk (where k ≥ 1), sets S0, . . . , Sk−1 and X0, . . . , Xk−1 such that:

(a) For each i < k, Ti dominates X.
(b) For each i < k, Si is a largest subset of Ti that does not dominate X, and Ti+1 = Ti − Si.
(c) For each i < k, Xi = X −N(Si).
(d) Tk does not dominate X.

Since Ti dominates X but Si does not (for any i < k), all of T0, . . . , Tk are nonempty. Moreover, by construc-
tion, Si ∪ {yi} dominates X whenever yi ∈ Ti+1. Thus Si ∪ {x, yi} is a cd-set of G, and hence

|Si| ≥ γc(G)− 2 (2.1)

for each i ∈ {0, 1, . . . , k − 1}. For each i ∈ {0, . . . , k − 1}, let xi be a vertex of Xi, and let xk be a vertex of X
that is not dominated by Tk. Since N(x) =

(⋃k−1
i=0 Si

)
∪ Tk, the set {x, x0, . . . , xk} is a cd-set of G and thus

k ≥ γc(G)− 2. (2.2)

Since δ(G) = |Tk|+
∑k−1
i=0 |Si| and |Tk| ≥ 1, inequality (2.1) implies

δ(G) ≥ 1 + k(γc(G)− 2). (2.3)

Hence

γc(G) ≤ δ(G)− 1
k

+ 2 (2.4)

and

k ≤ δ(G)− 1
γc(G)− 2

· (2.5)

By (2.2), (2.4) and (2.5), we have

γc(G) + γc(G) ≤
(
δ(G)− 1
γc(G)− 2

+ 2
)

+
(
δ(G)− 1
γc(G)− 2

+ 2
)

= 4 + (δ(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2

)
· (2.6)

By symmetry, we also have γc(G) + γc(G) ≤ 4 + (δ(G)− 1)
(

1
γc(G)−2 + 1

γc(G)−2

)
, and the desired inequality is

proved.
To prove the sharpness, for each integer ` ≥ 3, we will provide a connected graph G` of order `2 + ` + 1

such that δ(G`) = `, γc(G`) = ` + 1, δ(G`) = `2 − ` + 1, γc(G`) = 3, and γc(G`) + γc(G`) = ` + 4, hereby
achieving the bound. The graph G` is constructed as follows. Let H1 = H2 = K`, with V (H2) = {v1, . . . , v`},
and consider the cartesian product H1�H2. Then add a star of order `+ 1 with center y and leaves x1, . . . , x`,
where for each i ∈ {1, . . . , `} we join xi to all vertices of the ith copy of H1 in H1�H2, that is to all vertices
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Figure 1. The graph G2, plus H1 and H2.

of H1�H2 with second coordinate vi. See Figure 1 for an example of G3 (along with H1 and H2). Note that
diam(G`) = diam(G`) = 2 and δ∗(G`) = `.

It remains to show that γc(G`) = 3 and γc(G`) = ` + 1. Since diam(G`) = 2, we have γc(G`) ≥ 3. On the
other hand, if u and w are neighbors of x1 and x2 in G` other than y, then {y, u, w} is a connected dominating
set of G` and so γc(G`) = 3. Now to see that γc(G`) = `+ 1, we first note that {y, x1, . . . , x`} is a cd-set of G`,
and thus γc(G`) ≤ `+ 1. To get the lower bound, let S be a cd-set of G`, and let Ti = N [xi]−{y}. If S does not
intersect Ti, which includes xi and vertices of a copy of H1, then dominating Ti requires that S contains y and
a vertex from each copy of H2. This requires ` + 1 vertices. Thus |S| ≥ ` + 1 unless S intersects each of the `
disjoint sets T1, . . . , T` exactly once. But then dominating y without reaching size `+ 1 requires that S contains
some xi, and the latter (xi) has no neighbor in S, which is again not connected. Therefore γc(G) = `+ 1. �

Corollary 2.2. If G and G are connected n-vertex graphs, then γc(G) + γc(G) ≤ n+ 1.

Proof. If min{γc(G), γc(G)} = 2, then the result follows from Theorem 1.2, and if min{γc(G), γc(G)} ≥ 3, then
the result follows from Theorem 2.1. �

Theorem 2.1 will be useful to establish the next upper bound for the product of γc(G)−2 and γc(G)−2 that
was first shown in [4]. However, we will provide in addition a characterization of extremal graphs attaining this
upper bound.

Corollary 2.3. If G and G are connected graphs, then

(γc(G)− 2)(γc(G)− 2) ≤ δ∗(G)− 1.

Proof. If γc(G) = 2 or γc(G) = 2, then the result is immediate. Hence we assume that γc(G), γc(G) ≥ 3. By
Theorem 2.1, γc(G) + γc(G) − 4 ≤ (δ∗(G) − 1)

(
γc(G)+γc(G)−4

(γc(G)−2)(γc(G)−2)

)
and the result follows from the fact that

γc(G) + γc(G)− 4 > 0. �

Let F be the family of graphs G such that δ∗(G) = 1, or γc(G) = δ(G) + 1 and γc(G) = 3, or γc(G) = 3 and
γc(G) = δ(G) + 1.

Theorem 2.4. Let G and G be connected graphs with min{γc(G), γc(G)} ≥ 2. Then (γc(G)− 2)(γc(G)− 2) =
δ∗(G)− 1 if and only if G ∈ F .
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Proof. If δ∗(G) = 1, then clearly γc(G) = 2 or γc(G) = 2 and thus (γc(G)− 2)(γc(G)− 2) = δ∗(G)− 1. Hence
assume that δ∗ ≥ 2, and let γc(G) = δ(G)+1 and γc(G) = 3 (the case γc(G) = 3 and γc(G) = δ(G)+1 is similar).
By Corollary 2.3 we have δ(G)− 1 = (γc(G)− 2)(γc(G)− 2) ≤ δ∗(G)− 1 and hence (γc(G)− 2)(γc(G)− 2) =
δ∗(G)− 1.

Conversely, assume that (γc(G)− 2)(γc(G)− 2) = δ∗(G)− 1. If δ∗(G) = 1, then obviously G ∈ F . Hence let
δ∗(G) ≥ 2. In the sequel, we will use the same notations as in the proof of Theorem 2.1. Clearly, since δ∗(G) ≥ 2,
we have γc(G) ≥ 3 and γc(G) ≥ 3. Then all inequalities (2.1)–(2.6) occurring in the proof of Theorem 2.1 become
equalities, in particular

|Si| = γc(G)− 2 (2.7)

for each i ∈ {0, 1, . . . , k − 1},
k = γc(G)− 2 (2.8)

and

δ(G) = 1 +
k−1∑
i=0

|Si| = 1 + k(γc(G)− 2). (2.9)

Thus

γc(G) =
δ(G)− 1

k
+ 2 (2.10)

and

k =
δ(G)− 1
γc(G)− 2

· (2.11)

We consider two cases.

Case 1. γc(G) = 3.
Then by (2.7) and (2.9) we have |Si| = 1 for each i ∈ {0, 1, . . . , k − 1}, |Tk| = 1 and δ(G) = k + 1. Let

Si = {zi} for i ∈ {0, . . . , k − 1} and Tk = {zk}. Let G1 be the subgraph of G induced by {z0, . . . , zk}. Assume
first that G1 has an isolated vertex, say z0. Since γc(G) = 3, there exists a vertex y ∈ V (G) − N [x] that is
not dominated by z0. It follows that {x, y, z0} is a cd-set of G and thus γc(G) = 3. We conclude from (2.8)
and (2.9) that k = 1 and γc(G) = δ(G) + 1 = δ(G∗) + 1 yielding G ∈ F . Assume now that G1 has no isolated
vertex. Without loss of generality, let z0z1 ∈ E(G). If each zj (j ≥ 2) has a neighbor in {z0, z1}, then {z0, z1}
is a cd-set of G, a contradiction. Hence, we may assume, without loss of generality, that z2 has no neighbor in
{z0, z1}. Then {x, z2, x2, . . . , xk}, where xi ∈ Xi and xk is a vertex of X not dominated by Tk, is a cd-set of G
of cardinality k + 1, contradicting the fact that γc(G) = k + 2.

Case 2. γc(G) ≥ 4.
By (2.7) and (2.9), we have |S0| = |S1| = · · · = |Sk−1| = γc(G) − 2, |Tk| = 1 and δ(G) = k(γc(G) − 2) + 1.

It follows that (i) any subset of N(x) of size γc(G) − 1 dominates X = V (G) − N [x], and (ii) for any subset
W of N(x) of size γc(G) − 2, there exists a subset W ′ of X = V (G) − N [x] that is not dominated by W and
any vertex of N(x) −W is adjacent to all W ′. Let G2 be the subgraph induced by N(x). We distinguish the
following situations.

Subcase 2.1. diam(G2) ≥ 3.
Let z1, z2 ∈ V (G2) be two vertices at distance at least three in G2. Since γc(G) ≥ 4, there is a vertex

z ∈ X − (N(z1)∪N(z2)). Then {z1, z2, z, x} is a cd-set of G and so γc(G) ≤ 4. It follows from (2.8) that k ≤ 2.
If k = 1, then we have δ = |S0| + 1 = γc(G) − 1 and γc(G) = 3. Hence γc(G) = δ(G) + 1 and γc(G) = 3 and
thus G ∈ F . Now, let k = 2. Then we have δ = |S0|+ |S1|+ 1 = 2(γc(G)− 2) + 1 = 2γc(G)− 3 and γc(G) = 4.
If dG2(y) ≤ γc(G)− 3 for some y ∈ V (G2), then |NG2 [y]| ≤ γc(G)− 2 and for y′ ∈ X not dominated by NG2 [y]
in G, {x, y, y′} is a cd-set of G which is a contradiction. Thus dG2(y) ≥ γc(G)− 2 for each y ∈ V (G2). But then
δ(G) ≥ |NG2(z1)|+ |NG2(z2)|+ 2 ≥ 2γc(G)− 2, a contradiction.
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Subcase 2.2. diam(G2) = 2.
Let y ∈ V (G2) be an arbitrary vertex and Y = V (G2)−N [y]. Using an argument similar to that described

in the proof of Theorem 2.1, we can construct sets T ′0, . . . , T
′
s with T ′0 ⊃ . . . ⊃ T ′s (where s ≥ 1), sets S′0, . . . S

′
s−1

and sets X ′0, . . . X
′
s−1 such that:

(a) For each i < s, T ′i dominates Y .
(b) For each i < s, S′i is a largest subset of T ′i that does not dominate Y , and T ′i+1 = T ′i − S′i.
(c) For each i < s, X ′i = Y −N(S′i).
(d) T ′s does not dominate Y .

First let dG2(y) ≤ γc(G)−3. Thus |NG2 [y]| ≤ γc(G)−2. Let y′ be a vertex of X not dominated by NG2 [y]. Then
{x, y, y′} is a cd-set of G, implying that γc(G) = 3. By (2.8), we have k = 1, and by (2.9) we get γc(G) = δ(G)+1.
Therefore G ∈ F . Now, we can assume that dG2(y) ≥ γc(G) − 2 for each y ∈ NG(x). If |S′i| ≤ γc(G) − t for
some i, with t ≥ 3, then S′i ∪ {x, y′} whenever y′ ∈ X −N(S′i) (see (ii) of Case 2), is a cd-set of G which leads
to a contradiction. Hence |S′i| ≥ γc(G)− 2 for each i ∈ {0, . . . , s− 1}. Let |T ′s|+

∑s
i=0 |X ′i| = m(γc(G)− 2) + j,

where m ≥ 0 and 0 ≤ j ≤ γc(G)− 3. Note that either m 6= 0 or j 6= 0. Using (2.9) we obtain

1 + k(γc(G) + 2) = δ(G)

= 1 +
s−1∑
i=0

|S′i|+ |T ′s|+
s∑
i=0

|X ′i|

≥ s(γc(G)− 2) + 1 + |T ′s|+
s∑
i=0

|X ′i|

= s(γc(G)− 2) + 1 +m(γc(G)− 2) + j,

and by (2.8) we have

γc(G)− 2 ≥ s+m+
j

γc(G) + 2
· (2.12)

If m = 0 or m = 1 and j = 0, then for any vertex y′ ∈ X not dominated by T ′s ∪ (∪si=0X
′
i), the set

{x, y′, z1, . . . , zs−1} whenever zi ∈ X ′i for each i, is a cd-set of G and (2.12) leads to s ≥ s + m + j
γc(G)+2 ,

which is a contradiction. Hence m ≥ 2 or m = 1 and j ≥ 1. By construction of the sets and fact (i), we have
|T ′s| ≤ γc(G) − 2. For any vertex y′ ∈ X not dominated by T ′s, the set {x, y′, y, z1, . . . , zs−1} whenever zi ∈ X ′i
for each i, is a cd-set of G and (2.12) leads to s+ 1 ≥ s+m+ j

γc(G)+2 which is a contradiction. �

The next result shows that the bound in Theorem 1.1(i) is a consequence of Theorem 2.1 when
min{γc(G), γc(G)} ≥ 3.

Corollary 2.5 ([12]). If both G and G are connected graphs with min{γc(G), γc(G)} ≥ 3, then

γc(G) + γc(G) ≤ 4 + δ∗(G)− (γc(G)− 3)(γc(G)− 3).

Proof. If min{γc(G), γc(G)} = 3, then by Corollary 2.3, max{γc(G), γc(G)} ≤ 1 + δ∗(G). Therefore γc(G) +
γc(G) ≤ 4 + δ∗(G) = 4 + δ∗(G) − (γc(G) − 3)(γc(G) − 3). Hence we can assume that min{γc(G), γc(G)} ≥ 4.
Let x = γc(G)− 2 and y = γc(G)− 2. Thus by Theorem 2.1, γc(G) + γc(G) ≤ 4 + (δ∗(G)− 1)( 1

x + 1
y ). Now to

complete the proof, it is enough to show that

(δ∗(G)− 1)
(

1
x

+
1
y

)
≤ δ∗(G)− (x− 1)(y − 1)

= (δ∗(G)− 1)− xy + xy

(
1
x

+
1
y

)
,
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or equivalently

(δ∗(G)− 1− xy)
(

1
x

+
1
y

)
≤ δ∗(G)− 1− xy.

This last inequality is always true because of 1
x + 1

y ≤ 1 and δ∗(G)− 1− xy ≥ 0 (by Cor. 2.3). �

The following result also shows that the upper bound in Theorem 1.1(iv) can be easily obtained by using
Theorem 2.4 and Corollaries 2.3 and 2.5.

Corollary 2.6 ([12]). If both G and G are connected graphs with min{γc(G), γc(G)} ≥ 4, then γc(G)+γc(G) ≤
δ∗(G) + 2.

Proof. If γc(G) > 4 or γc(G) > 4, then the result immediately follows from Corollary 2.5. Hence we assume that
γc(G) = γc(G) = 4. By Corollary 2.3, we have δ∗(G) ≥ 5. But with these data, we deduce from Theorem 2.4
that G does not belong to F , and thus δ∗(G) ≥ 6. Clearly, the result is valid in this case. �

Now, we turn our attention to the product of γc(G) and γc(G) for which we provide the next upper bound.

Theorem 2.7. If G and G are connected n-vertex graphs with min{γc(G), γc(G)} ≥ 3, then

γc(G)γc(G) ≤ 2(δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2
+

1
2

)
+ 4.

Furthermore, this bound is sharp for the cycle C5.

Proof. Expanding and collecting terms in the inequality of Corollary 2.3 yields γc(G)γc(G) ≤ 2(γc(G)+γc(G))+
δ∗(G)− 5. Moreover, Theorem 2.1 implies that

γc(G)γc(G) ≤ 2(γc(G) + γc(G)) + δ∗(G)− 5

≤ 2
(

4 + (δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2

))
+ δ∗(G)− 5

= 2(δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2

)
+ δ∗(G) + 3

= 2(δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2
+

1
2

)
+ 4.

�

Corollary 2.8. Let G and G be connected n-vertex graphs.
(1) ([4]) If min{γc(G), γc(G)} ≥ 4, then γc(G)γc(G) ≤ 3

2 (n− 1).
(2) If min{γc(G), γc(G)} = 3, then γc(G)γc(G) ≤ 3

2 (n+ 1). This bound is sharp for the cycle C5.
(3) ([12]) If min{γc(G), γc(G)} = 2, then γc(G)γc(G) ≤ 2n− 4. This bound is sharp for the path P4.

Proof. (1) Let min{γc(G), γc(G)} ≥ 4. Corollary 2.6 yields δ∗(G) ≥ 6. Now, if δ∗(G) < n−1
2 , then Theorem 2.7

implies that

γc(G)γc(G) ≤ 2(δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2
+

1
2

)
+ 4 ≤ 3

2
(n− 4) + 4 <

3
2

(n− 1).

Hence assume that δ∗(G) = n−1
2 , and thus n ≥ 11. If γc(G) = γc(G) = 4, then the result is immediate and

if max{γc(G), γc(G)} ≥ 5, then Theorem 2.7 yields γc(G)γc(G) ≤ 4
3 (n− 3) + 4 ≤ 3

2 (n− 1).

(2) Let min{γc(G), γc(G)} = 3. Corollary 2.6 yields max{γc(G), γc(G)} ≤ n+1
2 and so γc(G)γc(G) =

min{γc(G), γc(G)} ·max{γc(G), γc(G)} ≤ 3
2 (n+ 1).

(3) Let min{γc(G), γc(G)} = 2. Then the result follows from Theorem 1.2.

�
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3. Bounds on the sum and product of γt(G) and γt(G)

In this section, we give some upper bounds on the sum γt(G) + γt(G) and the product γt(G)γt(G). Most of
these results are immediate consequences of Theorems 2.1, 2.4, 2.7 and Corollary 2.3. Recall that γt(G) ≤ γc(G)
for every connected graph G with ∆(G) < n(G)− 1.

Theorem 3.1. If G and G are connected graphs with min{γt(G), γt(G)} ≥ 3, then

γt(G) + γt(G) ≤ 4 + (δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2

)
·

This bound is sharp for the graph G` constructed in Theorem 2.1.

Corollary 3.2. If G and G are non-trivial connected n-vertex graphs, then

γt(G) + γt(G) ≤ n+ 1.

Theorem 3.3. If G and G are connected n-vertex graphs with min{γc(G), γc(G)} ≥ 3, then

γt(G)γt(G) ≤ 2(δ∗(G)− 1)
(

1
γc(G)− 2

+
1

γc(G)− 2
+

1
2

)
+ 4.

This bound is sharp for the cycle C5.

Theorem 3.4. If G and G are connected graphs with min{γt(G), γt(G)} ≥ 2, then

(γt(G)− 2)(γt(G)− 2) ≤ δ∗(G)− 1.

The equality holds if and only if δ∗(G) = 1 or γt(G) = γc(G) = δ(G) + 1 and γt(G) = γc(G) = 3 or γt(G) =
γc(G) = 3 and γt(G) = γc(G) = δ(G) + 1.

For the proof of the next result, it is necessary to recall the following two results.

Theorem 3.5 ([16]). If G is a connected graph of order n with δ(G) ≥ 4, then γt(G) ≤ 3n
7 .

Theorem 3.6 ([14]). If G is a n-vertex graph with δ(G) ≥ 2 such that d(u) + d(v) ≥ 5 for every two adjacent
vertices u and v of G, then γt(G) ≤ n/2.

Theorem 3.7. If G and G are connected graphs of order n ≥ 14 with δ(G) ≥ 2 such that 5 ≤ dG(u) + dG(v) ≤
n− 3 for every two adjacent vertices u and v of G, then γt(G) + γt(G) ≤ n/2 + 2.

Proof. If γt(G) = 2, then the result is immediate from Theorem 3.6. Hence, we assume that γt(G) ≥ 3. Since
dG(u) + dG(v) ≤ n − 3 for every two adjacent vertices u and v of G, we have γt(G) ≥ 3. Moreover, since
min{γt(G), γt(G)} ≥ 3, we have diam(G) = diam(G) = 2. Assume first that δ(G) = 2, and let u be a vertex of
degree 2, with NG(u) = {u1, u2}. Since diam(G) = 2, {u, u1, u2} is a td-set of G and so γt(G) = 3. On the other
hand, it follows from dG(u)+dG(ui) ≤ n−3 that there is a vertex u′i ∈ V (G)−{u, u1, u2} such that uiu′i 6∈ E(G)
for i = 1, 2. Then {u, u′1, u′2} is a td-set of G, implying that γt(G) = 3. Hence γt(G) + γt(G) = 6 ≤ n/2 + 2
because n ≥ 10.

Now let δ(G) ≥ 3. Since γt(G) ≥ 3 and since dG(x) + dG(y) ≤ n− 3 for every two adjacent vertices x and y
of G, we have δ(G) ≥ 3. If min{γt(G), γt(G)} ≥ 4, then by Theorem 1.1(iv), we have

γt(G) + γt(G) ≤ δ∗(G) + 2

≤ n− 1
2

+ 2

<
n

2
+ 2.
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Hence, we may assume, without loss of generality, that γt(G) = 3. If γt(G) = 4, then the result is immediate
since n ≥ 10. Thus let γt(G) ≥ 5. Since diam(G) = 2, we have δ(G) ≥ 4. By Theorem 3.5, it follows that

γt(G) + γt(G) ≤ 3 +
3n
7
≤ n

2
+ 2,

and the proof is complete. �

The next result that was first proven in [10], follows from a closer examination of the proof of Theorem 3.7.

Corollary 3.8. If G and G are both connected with n(G) ≥ 14 and δ∗(G) ≥ 3, then γt(G) + γt(G) ≤ n/2 + 2.

Before seeing the sharpness of the bound in Corollary 3.8, we have to note that for every graph G of order n
and minimum degree at least 3, γt(G) ≤ n/2 (see [2]), and this bound is attained for the following family G of
cubic graphs constructed in [5]. For k ≥ 1, let Gk be the graph constructed as follows. Consider two copies of
the path P2k with respective vertex sequences a1b1a2b2 . . . akbk and c1d1c2d2 . . . ckdk. Let A = {a1, a2, . . . , ak},
B = {b1, b2, . . . , bk}, C = {c1, c2, . . . , ck}, and D = {d1, d2, . . . , dk}. For each i ∈ {1, 2, . . . , k}, join ai to di and
bi to ci. To complete the construction of the graph Gk, join a1 to c1 and bk to dk. Let G = {Gk | k ≥ 1}.
Moreover, for k ≥ 2, one can easily see that for every Gk ∈ G, we have δ(Gk) = n−4 ≥ 3 and γt(Gk) = 2. Since
Corollary 14 is stated for graphs of order n ≥ 14 and δ∗(G) ≥ 3, the upper bound of Corollary 14 is sharp for
any graph Gk ∈ G with k ≥ 4.

4. Bounds on γt(G) + sdγt(G)

In this section we present upper bounds on the sum of the total domination number of a graph G and the total
domination subdivision number of the complement of G. Recall that the total domination subdivision number
sdγt(G) of a graph G is the minimum number of edges that must be subdivided in order to increase the total
domination number. Let us first recall some well-known results.

Theorem 4.1 ([3]). If G is a connected graph of order n ≥ 3, then γt(G) ≤ 2n
3 .

Let G10 be the graph obtained from the 10-cycle C10 = (v1v2 . . . v10) by adding the edge v1v6 and H10 be
the graph obtained from the 10-cycle C10 = (v1v2 . . . v10) by adding the edges v1v6 and v5v10.

Theorem 4.2 ([9]). If G 6∈ {C3, C5, C6, C10, G10, H10} is a connected graph of order n with δ(G) ≥ 2, then
γt(G) ≤ 4n

7 .

Theorem 4.3 ([2]). If G is a connected graph of order n with δ(G) ≥ 3, then γt(G) ≤ n
2 .

Theorem 4.4 ([7]). If G is a graph of order n ≥ 3 and γt(G) = 2 or 3, then 1 ≤ sdγt
(G) ≤ 3.

The join of two graphs G and H, G ∨H, is a graph formed from disjoint copies of G and H by connecting
every vertex of G to every vertex of H.

Theorem 4.5 ([11]). Let G be a connected graph of order n. The following statements are equivalent.

(1) γt(G) = 2 and sdγt
(G) = 3.

(2) G is isomorphic to Km ∨Kn−m for some 1 ≤ m ≤ n− 3.

Theorem 4.6 ([6]). If G is a connected graph of order n ≥ 3 different from K4, then sdγt
(G) ≤ b 2n3 c with

equality if and only if G is isomorphic to P3,K3,K1,3,K1,3 + e,K4 − e,K5 − e or K5.

Theorem 4.7 ([13]). If G is a connected graph of order n ≥ 3 different from K4, then sdγt
(G) ≤ n+1

2 .

Theorem 4.8 ([13]). If G is a connected graph of order n ≥ 3, then sdγt(G) ≤ γt(G) + 1.



S862 R. KHOEILAR ET AL.

Theorem 4.9. If G and G are connected graphs of order n ≥ 6, then

γt(G) + sdγt
(G) ≤ 2n

3
+ 2.

Proof. If γt(G) = 2, then the result is immediate by Theorem 4.6. If γt(G) = 3, then we deduce from Theorem 4.6
and the fact n ≥ 6 that sdγt(G) ≤ b 2n3 c−1 and so γt(G)+sdγt(G) ≤ 2n

3 +2. Hence we can assume that γt(G) ≥ 4.
If γt(G) = 2, then we deduce from Theorems 4.4, 4.5 and the connectedness of G that sdγt(G) ≤ 2 and thus
the result follows from Theorem 4.1. Hence we assume that γt(G) ≥ 3. It is clear that diam(G) = diam(G) = 2.
Observe that if δ(G) = 1, then γt(G) = 2, a contradiction. Also, if δ(G) = 2, then any vertex of degree two and
its neighbors form a td-set of G, contradicting the fact that γt(G) ≥ 4. Thus let δ(G) ≥ 3. If γt(G) = 3, then
sdγt

(G) ≤ 3 and the result follows from Theorem 4.3 and the fact that n ≥ 6. Hence assume that γt(G) ≥ 4.
By Theorem 3.1 that γt(G) + γt(G) ≤ 4 + (δ∗(G)− 1) ≤ 3 + n−1

2 < 2 + 2n
3 and the proof is complete. �

Theorem 4.10. If G and G are connected graphs of order n ≥ 11 with δ∗(G) ≥ 2, then

γt(G) + sdγt(G) ≤ 4n
7

+ 3.

Proof. If γt(G) ≤ 3, then the result follows by Theorems 4.4 and 4.2, and if γt(G) ≤ 3, then the result follows
from Theorem 4.7. Hence assume that γt(G) ≥ 4 and γt(G) ≥ 4. By Theorems 3.1 and 4.8 we conclude that

γt(G) + sdγt
(G) ≤ γt(G) + γt(G) + 1 ≤ δ∗(G) + 4

≤ n− 1
2

+ 4 <
4n
7

+ 3.

�

We conclude this section with the following open problem.

Problem 4.11. Is it true that for every connected graph G of order n ≥ 3, γt(G) + sdγt
(G) ≤ 2n

3 + 3?
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