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LOWER AND UPPER BOUNDS FOR THE CONTINUOUS SINGLE FACILITY
LOCATION PROBLEM IN THE PRESENCE OF A FORBIDDEN REGION AND

TRAVEL BARRIER

Intesar M. Al-Mudahka∗, Marwa S. Al-Jeraiwi and Rym M’Hallah

Abstract. In this paper, we investigate FRB, which is the single facility Euclidean location problem in
the presence of a (non-)convex polygonal forbidden region where travel and location are not permitted.
We search for a new facility’s location that minimizes the weighted Euclidean distances to existing
ones. To overcome the non-convexity and non-differentiability of the problem’s objective function, we
propose an equivalent reformulation (RFRB) whose objective is linear. Using RFRB, we limit the search
space to regions of a set of non-overlapping candidate domains that may contain the optimum; thus
we reduce RFRB to a finite series of tight mixed integer convex programming sub-problems. Each sub-
problem has a linear objective function and both linear and quadratic constraints that are defined on
a candidate domain. Based on these sub-problems, we propose an efficient bounding-based algorithm
(BA) that converges to a (near-)optimum. Within BA, we use two lower and four upper bounds for the
solution value of FRB. The two lower and two upper bounds are solution values of relaxations of the
restricted problem. The third upper bound is the near-optimum of a nested partitioning heuristic. The
fourth upper bound is the outcome of a divide and conquer technique that solves a smooth sub-problem
for each sub-region. We reveal via our computational investigation that BA matches an existing upper
bound and improves two more.
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1. Introduction

Facility location problems appear in many challenging real-world applications: supply chain management,
distribution management, transportation, health, and telecommunication networks. They occur in plant layouts,
in location of schools, hospitals, fire stations, garbage damps, utility plants, and manufacturing cells, in design
of circuit boards and pipe networks for ships or buildings, in routing of communication networks and robots,
etc. Some of these facility location problems impose limitations on the location. For example, it is impossible to
locate a new facility in one or more regions or to travel through certain regions such as lakes, mountains, and
military areas. These restrictions give rise to restricted facility location problems with travel permitted (FR)
and with barriers to travel (FRB).
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In this paper, we tackle FRB, a single facility location problem with one (non-)convex polygonal forbidden
region RF and barrier to travel, where we measure distances using the Euclidean norm. Given a continuous
two-dimensional space and a set of existing facilities characterized by their positive weights, we search for a new
facility’s location that minimizes the total weighted Euclidean distance between the new facility and existing
ones. The new facility can’t be located in Int(RF ), the interior of RF . Similarly, travel across RF is prohibited.
For all practical purposes, a facility is mapped to a point on the plane as its size is negligible.

Despite its relevance, FRB is difficult. It is non-differentiable and non-convex due to the Euclidean distance
measure. It is generally approached heuristically, with emphasis on identifying local optima using an iterative
procedure that solves a series of unconstrained problems [6] or on finding “efficient” bounds [13]. Some of these
bounds are based on the relaxation of the location and travel constraints; relaxations that result in convex but
non-differentiable problems.

In this paper, we propose an approach that optimizes FRB while overcoming FRB’s non-differentiability.
Using this approach, we reduce the search space by excluding any region that can’t contain the optimum; thus,
we decrease the computational effort, in particular when RF is non-convex. We further divide the reduced search
space into a finite set of convex sub-regions (candidate domains). For each distinct polygonal sub-region, we
rewrite FRB as an equivalent differentiable convex reformulation (RFRB), with tighter constraints, a linear
objective, but both convex and non-convex constraints. In addition, for any candidate domain, we transform
RFRB into a tight mixed integer convex program with a linear objective function, and smoothen its binary
non-differentiable relaxation using the differentiable, convex reformulation of the unrestricted Euclidean multi-
facility location problem [25].

This convex reformulation has a linear function and both linear and quadratic constraints. It maps a sub-
region into a convex set by recognizing that the optimal distance of a point X (within the sub-region) to an
existing facility that is invisible to X is the shortest of two dominant paths. The length of either path is the sum
of a variable term corresponding to the Euclidean distance between X to a vertex of RF , and a constant term
representing the length of the shortest distance from this vertex to the existing facility [6]. The two vertices
of RF are those that delimit the RF path blocking the visibility of X. The length of the dominant path is
therefore convex: It is the sum of a convex function and a constant. In addition, this reformulation overcomes
the non-differentiability of the distance expression when the location of the new facility coincides with a vertex
of RF .

In summary, we map FRB to a series of differentiable, convex mixed integer programming (MINLP) sub-
problems, with linear objectives, convex constraints, and convex regions whose points share identical visibility
features with respect to existing facilities and to RF ’s vertices. We solve these sub-problems using an MINLP
solver. We use their solution values to derive two lower and four upper bounds for FRB. The two lower and
two upper bounds are the result of FRB’s relaxations, which drop the location and travelling constraints. The
third upper bound is the result of a nested partitioning (NP) based heuristic. NP converges to (near-)global
optima [27]. It maintains both a global and a local view on FRB’s domain. It partitions the feasible region and
investigates each region, but backtracks when it deems that it is no longer searching in the most promising
region. The fourth upper bound is the result of an exact divide and conquer (DC) technique. In DC, we only
solve non-dominated RFRB sub-problems; i.e., its least cost solution is a global optimum for FRB. When we
halt DC before exploring all regions, DC returns a tight upper bound.

We explore these aforementioned bounds in a bounding-based algorithm (BA). We benefit BA from DC’s
exact search while avoiding the computational effort of determining the expressions of the linear boundaries of
each sub-region. We use DC as a local search in the neighborhood of the incumbent. That is, we curtail DC’s
search to the most promising regions; i.e., to those sharing a border with the incumbent. Our application of
BA to new and benchmark instances supports the good quality of the obtained solutions and the tightness of
the bounds. BA improves two existing upper bounds and matches another.

In Section 2, we review pertinent literature on FR, FRB, and NP. In Section 3, we define and model the prob-
lem. In Section 4, we describe the proposed solution approach, which converts the non-convex non-differentiable
FRB into a finite set of mixed-integer differentiable convex programs that are solved using off-the-shelf software.
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In Section 5, we report the computational results, which highlight the tightness of the lower and upper bounds.
Finally, in Section 6, we summarize the work and present possible extensions.

2. Literature review

In Sections 2.1 and 2.2, we preview the literature on the Euclidean unrestricted and restricted single facility
location problems. In Section 2.3, we present NP. Finally, in Section 2.4, we highlight our contribution.

2.1. On Euclidean single facility location problems

The earliest version of the single facility location problem is the classic Weber problem (WP). It searches for a
new facility’s location that minimizes the sum of the weighted Euclidean distances between the new facility and
existing ones. Kuhn [19] proves that the optimal location must lie in the convex hull of existing facilities. The
convex hull of a set of vertices is the smallest convex polygon that contains them. For WP, Weiszfeld [34] proposes
a fixed-point iterative approach, known as Weisfeld’s algorithm. Katz and Cooper [16] outperform Weiszfeld’s
algorithm using a gradient method with an inexact quadratic fit based line-search. Drezner [9] presents a
sensitivity analysis for WP. Love et al. [20] prove the convexity of WP’s objective function. Convexity insures
that any local optimum is a global optimum.

Several approaches address the non-differentiability of the Euclidean norm function. Francis et al. [10] add an
epsilon term to the distance function and develop a hyperploid approximation that converges to the optimum
via a steepest descent. Sherali and Al-Loughani [25] present two equivalent convex differentiable reformulations
that can be solved using standard nonlinear solvers. Their first reformulation has a linear objective function and
both linear and quadratic constraints. Even though the quadratic constraints are nonconvex, the overall feasible
region is a convex set. Their second reformulation is based on Lagrangian duality. Sherali and Al-Loughani
[26] propose a conjugate sub-gradient algorithm with line search strategies embedded within the variable target
value method.

Torres [32] considers a WP constrained to a closed convex set. He combines the iterative Weiszfeld’s function
with an iterative orthogonal projection over the feasible set. Ghaderi et al. [11] address the uncapacitated
location allocation WP heuristically. Kazakovtsev [17] offers a heuristic for the single-facility constrained WP
with the connected feasible region bounded by arcs of equal radii. The heuristic augments Weiszfeld’s algorithm
with a procedure that determines the closest feasible solution to a point.

2.2. On the restricted single facility location problem

Herein, we classify the literature according to the problem type: FR and FRB. Aneja and Parlar [2] stipulate
that if X∗WP , the optimum of the unrestricted WP, lies in the interior of RF , then FR’s optimum lies on the
RF ’s boundary that is closest to X∗WP . They then propose an approximate algorithm for FR when RF is a
convex polygon. They further provide an exact algorithm when RF consists of non-convex polygons. Butt and
Cavalier [7] study the rectilinear unweighted multiple facility FR in the presence of congested non-intersecting
convex polygonal regions and no existing facility is in RF . They transform the problem into an unconstrained
network problem that is further reduced via a combinatorial search.

Klamroth [18] offers an exhaustive survey of FRB approaches and applications. Katz and Cooper [14–16]
address FRB for three types of RF s: a single circle, non-intersecting circles, and a single convex polygon.
They prove that FRB is non-convex non-linear, and has a discontinuous objective function, and a non-convex
constraint set. They infer that the optimum lies within the convex hull of existing facilities and vertices of RF .
They employ constrained optimization for the first two cases and a discrete search for the third case. The search
chooses the least cost location among points of a grid. Butt [5] shows that a non-convex RF can be replaced
by its convex hull Conv(RF ) as long as no existing facility lies in the interior Conv(RF ). Aneja and Parlar [2]
apply simulated annealing to FRB under general lp-metric distances and (non-)convex polygonal RF s. They
assimilate the problem to a network that is represented via a visibility graph.
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A visibility graph is an undirected graph G(N, E) whose set of nodes N = V ∪ P where P = P1, . . . , Pn is
the set of existing facilities and V is the set of vertices of RF . Its set of arcs E includes all arcs that connect
any two visible nodes of N , where a node may be an existing facility Pi ∈ P or a vertex v ∈ V . If the direct line
segment connecting two locations does not pass through Int(RF ), then an arc connects them in the graph. It
follows that E connects pairs of nodes of N without intersecting Int(RF ) and G(N, E) is a graph of inter-visible
locations for a set of points and obstacles. G(N, E) can be constructed using the method of Wangdahl et al.
[33] or any of the algorithms mentioned in Ghosh and Mount [12]. When RF is non-convex and none of the
existing facilities lies in the interior of Conv(RF ), we ease the computational burden by using V ′, the set of
vertices of Conv(V ), in lieu of V . Indeed, V ′ has fewer vertices than V . Evidently, when RF is convex, V ′ = V .
In Algorithm 1, we describe how we generate FRB’s visibility graph.

Algorithm 1. Visibility graph for FRB.
1: Input

– V : set of vertices vf ∈ RF , f = 1, . . . , F ;
– P : set of existing facilities Pi ∈ P , i = 1, . . . , n;
– X∗WP : relaxed solution of WP;

2: Let N = V ∪ P and E = ∅;
3: Construct the set O of all pairs of points (τ, π), such that π ∈ P , τ ∈ N , and τ 6= π;
4: Select one pair (τ, π) from O;
5: If the line joining π to τ doesn’t intersect Int(RF ), then append arc (τ, π) to E;
6: Discard pairs (τ, π) and (π, τ) from O;
7: If O 6= ∅, go to Line 4;
8: For each arc (τ, π) ∈ G(N,E), compute the Euclidean distance between τ and π;

9: return G(N,E): Visibility graph;

In Figure 1, we give the visibility graph of an instance with three existing facilities P = {P1, P2, P3} and with
a rectangular forbidden region defined by V = {v1, v2, v3, v4}. The visibility graph is delimited by Conv(P );
i.e., by the triangle (P1, P2, P3). The set of nodes N = {P1, P2, P3, v1, v2, v3, v4}. The set E of arcs consists of
the arcs connecting every pair of visible nodes; e.g., P1 is visible to v1; thus an arc connects P1 to v1. But, P1

is invisible to v3; thus no arc connects P1 to v3.
Aneja and Parlar [2] employ Dijkstra’s algorithm on the visibility graph to find the shortest path between

any candidate location and existing facilities. They reduce the set of candidate solutions and infer an important
result when X∗WP , the optimum of WP, lies in RF (WP is a relaxation of FRB.) When RF is convex, FRB’s
optimum lies on the nearest boundary of RF to X∗WP ; otherwise, it may only lie on the boundary points that
may be joined to X∗WP by a line segment that is embedded in RF .

Butt and Cavalier [6] consider FRB with convex polygonal RF s. They decompose the solution space into
regions such that the shortest feasible path from any point of the region to an invisible existing facility is
unique and passes through a fixed visible intermediate vertex of RF . For each region, they formulate FRB as an
MINLP and solve it. They then choose the best solution among all regions. Nevertheless, not all boundaries are
linear; consequently, the convexity of the regions is not guaranteed. In addition, determining the mathematical
expression of every boundary is difficult. Consequently, they propose a heuristic FORBID, which starts with a
good solution and iteratively solves a series of unconstrained WPs.

Bischoff and Klamroth [3] improve FORBID. They slightly modify the partitioning of FRB’s domain. They
develop a visibility gridline’s partitioning that generates convex sub-regions with linear boundaries, denoted
candidate domains. All points of a candidate domain share the same visibility properties with respect to existing
facilities and vertices of RF s. The authors reduce FRB to a finite series of NLMIPs; each defined on a specific
candidate domain and having a nonlinear objective function. The NLMIPs use binary variables that choose the
correct distance function of a point to an existing facility, where only dominant paths are considered. Because
of the complexity of the sub-problems, the authors apply a genetic algorithm.
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Figure 1. Visibility graph of an instance with three existing facilities and a rectangular for-
bidden region.

For FRB with non-intersecting convex polygonal RF s and no existing facility located within any RF ,
McGarvey and Cavalier (2003) use an exact procedure that divides the plane into discrete regions. Satya-
narayana et al. [23] apply a sloping line search to FRB. Prakash et al. [22] propose a reduced search for FRB
with polygonal and elliptical RF s.

2.3. On nested partitioning

NP is a randomized search for the global optimization of difficult large-scale combinatorial problems
[27, 28, 30, 31]. It imitates human’s tackling of complicated problems [28]. When the search space is large,
humans divide it into regions, and investigate each region separately [1]. They use sampled information to
decide whether to further investigate a particular region or to consider an alternative one. Similarly, NP focuses
on the most promising region of the search space while maintaining a global perspective. It either shrinks the
most promising region or backtracks when it deems that it may have missed the region containing the global
optimum. The most promising region is determined in each iteration based on information obtained from random
sampling of the entire feasible region and from local search. In each iteration, NP performs four steps.

(1) Partitioning divides the feasible region into mutually disjoint M + 1 sub-regions, whose union covers the
feasible search space and whose intersection is nil. The partitioning is not uniform: It favors the most
promising region by partitioning it into M sub-regions, and aggregates all other regions into region M + 1.

(2) Random sampling selects arbitrarily a point from each of the M +1 sub-regions. It can be uniform or biased
towards solutions that are more likely to lead to the optimum. Based on the M + 1 random samples, NP
assesses the potential of each region to contain the global optimum.

(3) Selecting the most promising region is based on a comparison of the values of the sampled points.
(4) Finally, NP chooses either further partitioning or backtracking. If the most promising region is one of the

M sub-regions, then NP further partitions this sub-region. Otherwise, it backtracks to region M + 1.

The four steps may be implemented generically or adapted to the structure of the problem. Despite its wide
spectrum of applications in planning and scheduling, logistics and transportation, supply chain design, data
mining, and health care, NP hasn’t been applied to facility location problems.
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Table 1. Related algorithms in the literature.

Existing literature Proposed algorithm

Description Similarity Difference

[2] When the solution of the unrestricted problem WP

lies in RF, the optimal location of the new facility

lies on a specific boundary of RF.

=

[5] If no existing facility lies in Conv(RF ), RF can be

replaced by Conv(RF ).

=

[25] A differentiable convex reformulation for the unre-

stricted multi-facility location problem in the primal

space.

Incorporates the reformu-

lation for the visible exist-

ing facilities.

The presence of an RF .

[6] Used a visibility graph.

RF is convex.

= RF may be non-convex.

Partitioned the problem’s domain into mutually

exclusive regions whose borders may be nonlinear

and non-convex.

In each sub-region, the path to an invisible existing

facility is unique.

Decomposes the solution

space into mutually exclu-

sive regions.

Larger sub-regions that are convex and whose linear

boundaries are based on the visibility grids of [3].

Distance function based on the visible vertices of RF .

Decomposed the shortest travelling feasible path to

an invisible existing facility into a variable and a con-

stant part.

=

Equivalent reformulation: MIP with nonlinear objec-

tive function.

Tighter NLP with a linear objective function and

(non-)linear differentiable convex constraints and

non-linear non-convex constraints.

Problem decomposed into a finite series of con-

vex unconstrained sub-problems that are non-

differentiable at the visible vertices of RF .

= Tighter MINLP sub-problems with linear objective

function and (non-)linear constraints.

Its binary relaxation is smooth and differentiable.

Iterative solution procedure: FORBID:

Solves a series of unconstrained WPs.

Requires a very good starting solution.

Terminates at a local optimum of FRB.

Bounding Algorithm uses two lower and four upper

bounds sequentially to improve the incumbent.

Does not require a starting solution.

Uses NP only when needed.

DC applied only on the most promising regions.

DC solves the smooth reformulation.

A local optimum. A near-global optimum is guaranteed.

When an optimum is sought, BA applies DC.

[18] Developed relaxation based lower and upper bounds. = Bounds based on the relaxation of the equivalent

reformulation.

[23] Applied a sloping line search to FRB. (Non-)convex RF .

Two test problems.

Improved solution for the two test problems.

[3] A convex RF .

Proposed visibility grids partitioning.

Developed visibility properties.

Introduced the notion of dominant paths and the

touching point property.

= Proved that the number of feasible dominating paths

is two.

Iterative solution approach.

Used genetic algorithm to select the sub-problems.

Solved a series of convex MIP sub-problems with

nonlinear objective function.

Applied heuristics. NP is applied to improve the incumbent.

2.4. Contribution

The surveyed literature reflects the difficulty of FRB. It lacks an efficient exact algorithm for FRB, whose
objective is non-convex and non-differentiable. In Table 1, we list FRB related approaches.

In Table 1, we ordered the related literature by publication year and specified their similarities/differences
with respect to the proposed approach. Based on this comparison, we explore, in this paper, the results of Aneja
and Parlar [2], Butt [5], and Sherali and Al-Loughani [25]. We follow the streamline of Butt and Cavalier [6] and
Bischoff and Klamroth [3] except that we consider a non-convex RF as well. We avoid the non-differentiability
of the reformulation when the optimal location of the new facility coincides with one of the visible vertices
of RF . Furthermore, our equivalent reformulation is tighter and has a linear objective. The relaxation of the
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MINLP sub-problems is convex and smooth. Every sub-problem corresponds to a convex region obtained from
the visibility grid lines partitioning. Its distance constraints consider only the two dominant feasible paths to
the invisible existing facility. We obtain the global minimum by solving all sub-problems.

In this paper, our two lower bounds and two upper bounds are the result of relaxations of the equivalent
RFRB and not of FRB as in Klamroth [18]. Our third upper bound is an NP’s near-optimum. Our fourth upper
bound is the result of DC, which solves the smooth sub-problems on every region generated from the visibility
grid lines. We incorporate the bounds in a bounding algorithm, which applies DC to the most promising regions
only; i.e., those that share borders with the current incumbent.

3. Model formulation

In Section 3.1, we describe FRB, its reduced solution space, and the shortest travelling distance between
two points under the visibility concept. In Section 3.2, we present the differentiable convex reformulation of the
FRB sub-problems, and give related algorithms.

3.1. Problem definition

Herein, we consider the Euclidean distance single facility location problem in the presence of a forbidden
region RF and travel barriers. Let existing facility Pi, i = 1, . . . , n, be defined by its coordinates (ai, bi), and
by its strictly positive weight wi. Let RF be a (non-)convex polygonal set defined by its set V of F vertices.
Travelling through and locating the new facility X∗ ∈ Int(RF ) are forbidden. The goal is to find the coordinates
(x∗, y∗) ∈ R2 \ Int(RF ) of X∗ such that (x∗, y∗) minimizes the total weighted Euclidean paths to all existing
facilities:

FRB min
X∈R2\Int(RF )

f(X) =
n∑

i=1

wid(X, Pi) (3.1)

where d(X, Pi) is the traveling distance between Pi and X. In the absence of a forbidden region, d(X, Pi) is the
Euclidean distance:

d(X, Pi) =
√

(x− ai)2 + (y − bi)2,

and FRB reduces to WP, whose optimum lies in the convex hull of existing facilities. In the presence of a
forbidden region, RF may block the visibility of X to Pi. Therefore, d(X,Pi) is the actual Euclidean travel
distance between Pi and X. It is the length of the shortest path that links Pi and X without crossing Int(RF ).
For example, consider Figure 2, where RF is the triangle (v1, v2, v3), and the dotted lines represent the feasible
Euclidean paths from X to P1 and P2. The point X is visible to P1; thus,

d(X, P1) =
√

(x− a1)2 + (y − b1)2.

On the other hand, X is invisible to P2; therefore d(X, P2) is the minimal length of two paths: X, v2, P2 and
X, v3, P2. It follows that

d(X, P2) = min{d(X, v2) + d(v2, P2), d(X, v3) + d(v3, P2)}.

In fact, thanks to the “Barrier Touching Property” [3], the shortest feasible path connecting a point X to an
invisible Pi is a piecewise linear path with breaking points in vertices v of RF . We determine the length of the
shortest path between every Pi and every RF ’s vertex that is visible to Pi using a visibility graph.

The feasible region for FRB is R2 \ Int(RF ). However, the master candidate domain MC is a limited subset
of the points of R2 \ Int(RF ). FRB’s optimum lies within Conv(P ∪ V ′). Hence, any FRB solution procedure
should restrict its search to MC.

MC depends on the convexity of RF and on the position of X∗WP , the optimum of WP.
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Existing facility Forbidden region Feasible Euclidean path

(a) (b)

Figure 2. Feasible Euclidean paths between X and existing facilities P1 and P2. (a) P1 is
visible to X. (b) P2 is invisible to X.

– When RF is convex, two cases arise.
• X∗WP ∈ Int(RF ); thus, FRB’s optimal solution lies on the nearest boundary of RF . Subsequently, MC =

MCC = MCC1 where MCC1 is the set of points that are on RF ’s boundary nearest to X∗WP .
• X∗WP /∈ Int(RF ); thus, MC=MCC = MCC2 = Conv(P ∪ V ) \ Int(RF ).

– When RF is non-convex, two cases also arise.
• X∗WP ∈ Int(RF ); thus, MC = MCNC = MCNC1, where MCNC1 is the set of RF boundary points which

can be joined to X∗WP by a line segment that lies entirely in RF .
• X∗WP /∈ Int(RF ), two further cases arise.
◦ If no existing facility lies in Int(Conv(RF )), then MCNC = MCNC2=Conv(P ∪ V ′) \ Int(Conv(V ′));
◦ otherwise, MCNC= MCNC3=Conv(P ∪ V ) \ Int(RF ).

Evidently, unless WP is solved, it is impossible to know whether X∗WP ∈ Int(RF ).

3.2. Equivalent differentiable reformulation of FRB

The FRB equivalent reformulation partitions MC into mutually exclusive convex candidate domains Rj whose
points share the same visibility property and whose boundaries are linear. It defines the length of the shortest
distance di between an existing facility Pi, i = 1, . . . , n, and a point X ∈ Rj as

di =

{√
(x− ai)2 + (y − bi)2, ∀Pi ∈ K

min
k∈K∩V

{s(Pi, k) + d(k, X)}, ∀Pi /∈ K (3.2)

where K is the candidate set; i.e., K contains every node k ∈ P ∩ V that is visible to X. s(Pi, k) is the length
of the shortest feasible path from Pi to a vertex k ∈ K ∩ V . Naturally,

d(X,Pi) ≤ d(X, k) + d(k, Pi), ∀Pi ∈ P, ∀k ∈ K.
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RFRB reformulates FRB using decision variables di, i = 1, . . . , n, and (x, y).

RFRB min fRFRB(X) =
n∑

i=1

widi (3.3)

subjectto d2
i i ≥ (x− ai)2 + (y − bi)2, i = 1, . . . , n (3.4)

di ≥ (x− ai), i = 1, . . . , n

di ≥ (y − bi), i = 1, . . . , n

di ≥ (ai − x), i = 1, . . . , n

di ≥ (bi − y), i = 1, . . . , n

di = min
∀k∈K∩V

{s(Pi, k) + d(k,X)} ∀Pi /∈ K (3.5)

Equation (3.3) minimizes the sum of the weighted distances. Equation (3.4) impose lower bounds on the distances
between a feasible location X and a facility Pi. The distance must be at least as large as the Euclidean distance,
and as the absolute values of the horizontal and vertical distances that separate X and Pi. Equation (3.5)
chooses, among all candidate paths joining X to an invisible existing facility Pi, the smallest length path. This
path must pass through an RF vertex that is visible to Pi.

Theorem 3.1. RFRB is a convex equivalent restatement of FRB.

Proof. Suppose X̄ = (x̄, ȳ) solves FRB. When d̄ is computed via equation (3.2), (x̄, ȳ) solves RFRB. Because it
is linear, the objective function of RFRB is convex and differentiable. Constraints (3.5) define a non-convex set
[6,18]. RFRB without equation (3.5) reduces to the unrestricted problem of Sherali and Al-Loughani [25], who
proved that despite the non-convexity of the quadratic constraints (3.4), the overall feasible region is a convex
set. In fact, the set of points

Si =
{

(x, y, di) : (x− ai)2 + (y − bi)2 ≤ d2
i , di ≥ 0

}
can be equivalently represented as

Si =
{

(x, y, di) : |
√

(x− ai)2 + (y − bi)2| ≤ di

}
,

which is a convex set. Subsequently, RFRB without (3.5) is a convex program. �

Solving RFRB faces three challenges:

(1) Defining the constraints of RFRB depends on the visibility property of X. It requires defining the candidate
set K, which depends on the location of X with respect to the existing facilities and RF .

(2) The number of feasible paths that must be considered for constraint (3.5) increases as the number of visible
vertices of RF and the number of invisible existing facilities increase.

(3) The non-convexity and the non-differentiability of constraint (3.5) prevent optimization solvers from reach-
ing a global optimum.

These difficulties are handled as follows.

3.2.1. Determining K

First, we decompose the candidate domain MC into J convex regions Rj , j = 1, . . . , J , such that all points
of a region Rj share the same visibility property but no two regions have identical visibility properties. For
this decomposition, we use the visibility grid line’s partitioning of Algorithm 2. We divide MC according to the
boundaries of Pi’s shadow, which is the set of feasible points that are invisible to Pi. When no Pi ∈ P lies in
Conv(V ) and RF is non-convex, we extend the facets of Conv(V ) to bisect Conv(P ∪ V ); otherwise, we extend
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Algorithm 2. Partitioning scheme.
1: Input

– V : set of vertices vf ∈ RF , f = 1, . . . , F ;
– P : set of existing facilities Pi ∈ P , i = 1, . . . , n;
– V ′: set of vertices of Conv(RF );

2: if (RF is convex) or (RF is non-convex but no existing facility lies in Int(RF )) then
3: Bisect Conv(P ) with the boundaries of the shadow of each facility Pi, i = 1, . . . , n, with respect to the vertices of V ′;
4: Extend each facet of Conv(RF ) until the borders of Conv(P );
5: else
6: Bisect Conv(P ) with the boundaries of the shadow of each facility Pi, i = 1, . . . , n, with respect to the vertices of V ;
7: Extend each facet of RF until the borders of Conv(P );
8: end if

9: return Rj , j = 1, . . . , J : Candidate domains of the solution space;

the facets of RF . In the former case, we partition MCNC instead of partitioning FRB’s solution space because
Conv(V ) has fewer facets than RF . In the following, we present the pseudocode of Algorithm 2, which is the
partitioning algorithm of [3]. Evidently, when RF is convex, Conv(RF ) = RF .

With MC partitioned, we determine using Algorithm 3, for each region Rj , the candidate set Kj of all existing
facilities and RF ’s vertices that are visible to Rj ’s points. We choose a point r ∈ Rj and identify the existing
facilities and RF ’s vertices that are visible to r. When the line joining r to an existing facility Pi (or to a vertex
v ∈ V ) intersects Int(RF ), then Pi (or v) is invisible to r; otherwise it is visible.

Algorithm 3. Constructing the candidate set Kj .
1: Input

– V : set of vertices vf ∈ RF , f = 1, . . . , F ;
– P : set of existing facilities Pi ∈ P , i = 1, . . . , n;
– Rj , j = 1, . . . , J : Candidate domains of the solution space;

2: Set Kj = ∅;
3: Choose a random point r ∈ Rj ;
4: for Pi ∈ P do
5: if the line joining r to Pi intersects Int(RF ) then
6: Pi is invisible to Rj ;
7: else
8: add Pi to Kj ;
9: end if

10: end for
11: for v ∈ V do
12: if the line joining r to v intersects Int(RF ) then
13: v is invisible to Rj ;
14: else
15: add v to Kj ;
16: end if
17: end for
18: return Kj , j = 1, . . . , J : candidate set of region Rj ;

For illustrative purposes, consider the example of Figure 3a. This instance has four existing facilities: P =
{P1, P2, P3, P4}, and a triangular RF with V = {v1, v2, v3}. In Line 3 of Algorithm 3, we bisect the boundary
of the shadow of each existing facility with the borders of Conv(P ). In Line 4, we extend the three facets
v1v2, v2v3, and v3v1 to reach the convex hull’s border as we show in Figure 3b. Based on these bisections, we
divide MCC into 19 candidate domains, where each candidate domain is convex with linear boundaries. Using
Algorithm 3, we determine the visibility properties of adjacent candidate domains R1 and R2. Candidate sets
K1 = {P1, P2, P4, v1, v2, v3} for R1 and K2 = {P1, P2, P4, v1, v2} for R2 are different.
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Existing facilities Convex Hull Barrier Gridline

a- b-

Figure 3. Partitioning the solution space. (a) Convex hull. (b) Division steps.

For each region Rj , j = 1, 2, . . . , J , characterized by its candidate set Kj , equation (3.5) is equivalent to

di = min
∀k∈Kj∩V

{s(Pi, k) + d(k,X)}, j = 1, 2, . . . , J. (3.6)

In this way, our decomposition handles the first difficulty associated with RFRB.
Second, with Kj , j = 1, . . . , J, at hand, we solve RFRB for each region Rj and obtain its solution value

f∗SRFRB(Rj). Because (i) Rj is the intersection of visibility grid lines, (ii) any visibility grid line is convex,
(iii) the intersection of convex sets is convex, and (iv) the solution space is bounded by the convex hull whose
boundaries are linear, Rj is convex with linear boundaries:

Rj = {X ∈ R2 : gjh(X) ≤ 0, h = 1, . . . ,mj}, j = 1, 2, . . . , J (3.7)

where gjh : R2 −→ R for h = 1, . . . ,mj , and mj is the number of constraints defining the boundaries of Rj .
Therefore, sub-problem SRFRB(Rj) is differentiable and convex.

Third and last, we deduce the global minimal cost of fRFRB :

f∗RFRB = min
j=1,...,J

{f∗SRFRB(Rj)} . (3.8)

3.2.2. Reducing the number of feasible paths

The number of feasible paths that satisfy the barrier touching property (BT) is large. When candidate domain
Rj has several feasible paths to an invisible facility Pi, Bischoff and Klamroth [3] suggest deleting dominated
ones; i.e., paths having at least two intermediate breaking points in Kj . Deleting dominated paths reduces the
set Kj ∩V of equation (3.6) to a set RKji that includes only vertices in Kj ∩V . RKji consists of the last visible
breaking points in the shortest feasible paths that satisfy BT from some invisible Pi to the points of Rj . We
summarize the construction of RKji in Algorithm 4.

To illustrate the application of Algorithm 4, we consider the candidate domain R1 of Figure 3b. P3 is invisible
to any point X ∈ R1. There are four paths that satisfy BT and that connect P3 to any point X ∈ R1. These
paths go through the vertices v1, v2, v3; i.e., initially, RK13 = K1 ∩ V = {v1, v2, v3}, as in Line 3. These paths
are X − v1 − v3 − P3, Xv1 − v2 − P3, X − v2 − P3, and X − v3 − P3. For the first (resp. second) path, nodes v1

and v3 (resp. v1 and v2) are breaking points despite being members of candidate set K1. These two paths are
longer than the paths passing through v2−P3, or v3−P3, respectively. We therefore delete them as per Line 6.
Subsequently, v2 and v3 are the appropriate intermediate points on the path from any point X ∈ R1 to facility
P3. Consequently, RK13 = K1 ∩ V = {v2, v3}. For any invisible Pi ∈ P of a candidate domain Rj , set RKji has
2 vertices, as follows.
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Algorithm 4. Constructing RKji for a candidate domain Rj .
1: Input

– Rj , j = 1, . . . , J : Candidate domains of the solution space;
– Kj , j = 1, . . . , J : Candidate sets associated to Rj ;

2: for Pi /∈ Kj do
3: Define set RKji = Kj ∩ V ;
4: Choose a random point r ∈ Rj ;
5: if a path from rj to Pi shares at least two vertices with RKji then
6: delete these vertices from RKji;
7: end if
8: end for
9: return RKji, j = 1, . . . , J, i = 1, . . . , n: Reduced candidate sets RKji with respect to Pi /∈ Kj ;

Lemma 3.2. Let Kj be the candidate set for a candidate domain Rj, then the reduced candidate set RKji with
respect to an existing facility Pi includes only two intermediate points.

Proof. Take a vertex v ∈ RKji. By definition, v is an intermediate point; i.e., v is the last visible breaking point
for any shortest path satisfying BT from any invisible Pi to the points of Rj . Hence v is the only visible vertex
in RKji that belongs to one side of RF. Because FRB is solved in a two-dimensional space, only two sides of
RF are considered. The second point of RKji has the same features but is on the other side of RF . Thus RKji

has two points. �

Using Lemma 3.2, there are only two dominant paths from any invisible existing facility Pi to the points
of a candidate domain Rj , where each path passes through an intermediate point of RKji. This reduces the
computational time for solving the RFRB sub-problems whose equations (3.6) are replaced by:

di = min
∀ks∈RKji, s=1,2

{cksi + dXks
}, ∀Pi /∈ Kj , j = 1, . . . , J. (3.9)

Decision variable di is the minimal length of two feasible paths from points of Rj to an invisible existing facility
Pi. Each path passes through a visible vertex ks that belongs to RKji. The cost of a path is the sum of a variable
component dXks

and a fixed component cksi. dXks
is the Euclidean distance from X ∈ Rj to ks, whereas cksi is

the length of the feasible shortest path from ks to Pi. Both dXks and cksi are computed via the visibility graph
and Dijkstra’s Algorithm. cksi is constant for a given set RKji.

To choose the dominant path from the two alternative paths connecting Pi /∈ Kj to X ∈ Rj , we solve an
assignment problem whose binary variables lji = 1 if the first intermediate point k1 ∈ RKji yields the shortest
path, and 0 otherwise. Using lji, we rewrite equation (3.9) as

di ≤ dXks
+ cksi

di ≥ dXks
+ cksi − L ∗ lji

di ≥ dXks + cksi − L ∗ (1− lji) s = 1, 2,∀Pi /∈ Kj , j = 1, . . . , J, (3.10)

where L is a large positive number that is larger than dXks + cksi for any feasible solution X. For example, we
can set L to the Euclidean distance between the farthest extreme points of Conv(P ). In the first constraint of
equation (3.10), we set an upper bound on di. In the second and third constraints, we choose the shortest path
and subsequently set the optimal value of di. Because cksi, s = 1, 2, is constant, minimizing di is equivalent
to minimizing the Euclidean distance dXk. The smallest dXk = 0 when X = ks; i.e., when the location of
the new facility coincides with vertex ks = (aks , bks). Therefore, dXk is convex but non-differentiable when
X = ks. To avoid this non-differentiability, we treat dXk as in equation (3.5). Let k1 = (ak1 , bk1) ∈ RKji and
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k2 = (ak2 , bk2) ∈ RKji, then we rewrite constraint (3.9) as:

d2
Xks
≥ (x− aks

)2 + (y − bks
)2, ∀Pi /∈ Kj , (3.11)

dXks ≥ (x− aks) ∀Pi /∈ Kj ,

dXks
≥ (y − bks

) ∀Pi /∈ Kj ,

dXks
≥ (aks

− x) ∀Pi /∈ Kj ,

dXks ≥ (bks − y) ∀Pi /∈ Kj ,

di ≤ dXks
+ cksi s = 1, 2, ∀Pi /∈ Kj , ∀Rj , (3.12)

di ≥ dXks + cksi − L ∗ lji s = 1, 2, ∀Pi /∈ Kj , ∀Rj

di ≥ dXks
+ cksi − L ∗ (1− lji) s = 1, 2, ∀Pi /∈ Kj , ∀Rj (3.13)

where decision variable lji ∈ {0, 1}. Therefore, we reformulate a sub-problem of RFRB on Rj as:

SRFRB(Rj) min fSRFRB(Rj) =
n∑

i=1

widi (3.14)

subjectto d2
i ≥ (x− ai)2 + (y − bi)2, ∀Pi 6∈ Kj

di ≥ (x− ai), ∀Pi 6∈ Kj

di ≥ (y − bi), ∀Pi 6∈ Kj

di ≥ (ai − x), ∀Pi 6∈ Kj

di ≥ (bi − y), ∀Pi 6∈ Kj

di ≥ 0, ∀Pi 6∈ Kj

di = min
∀k∈K∩V

{s(Pi, k) + d(k,X)} ∀Pi /∈ K

d2
Xks
≥ (x− aks)2 + (y − bks)2, ∀Pi /∈ Kj , s = 1, 2

dXks
≥ (x− aks

) ∀Pi /∈ Kj , s = 1, 2
dXks

≥ (y − bks
) ∀Pi /∈ Kj , s = 1, 2

dXks ≥ (aks − x) ∀Pi /∈ Kj , s = 1, 2
dXks

≥ (bks
− y) ∀Pi /∈ Kj , s = 1, 2

di ≤ dXks
+ cksi s = 1, 2, ∀Pi /∈ Kj , ∀Rj ,

di ≥ dXks + cksi − L ∗ lji s = 1, 2, ∀Pi /∈ Kj , ∀Rj

di ≥ dXks
+ cksi − L ∗ (1− lji) s = 1, 2, ∀Pi /∈ Kj , ∀Rj

gjh(X) ≤ 0, h = 1, . . . ,m

lji ∈ {0, 1} j = 1, . . . , J, i = 1, . . . , n

fSRFRB(Rj) is a convex MINLP defined on convex region Rj whose boundaries are linear. It has a linear
objective function but includes both linear and non-linear constraints. Its binary relaxation is differentiable;
therefore, we apply standard procedures for solving differentiable MINLPs. Subsequently, we obtain the global
optimum of FRB by solving a finite series of smooth linear relaxations of sub-problems SRFRB(Rj).

3.2.3. Finding the global optimum

To solve SRFRB(Rj) for every candidate domain Rj , and deduce the global optimum of FRB, we determine
(i) the candidate set Kj of every Rj , (ii) its reduced candidate set RKji, for all Pi /∈ Kj , and (iii) the linear
expressions of its boundaries. Even though this is theoretically possible, it is practically difficult as the number
of regions increases with the increase of the number of existing facilities and of vertices of RF . To overcome
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this difficulty, we apply BA, which employs a set of developed bounds on f∗RFRB . We stop BA once the search
obtains a good solution; thus, we avoid the computational complexity of an exact search.

4. Proposed approach

In Sections 4.1 and 4.2, we propose, respectively, lower and upper bounds. In Section 4.3, we describe the
bounding based algorithm and explain how it explores the aforementioned bounds.

4.1. Lower bounds

FRB has two restrictions: (i) The new location can’t lie in Int(RF ), and (ii) traveling through Int(RF ) is
prohibited. Relaxing either restriction and solving the relaxed problem exactly, we obtain a lower bound for
FRB. Herein, we consider two relaxations: WP, which drops both restrictions; and FR, which drops the second
restriction.

Because WP is non-differentiable, we use its equivalent reformulation RWP, given by equations (3.3) and (3.4).
RWP has no visibility issue. In addition, RWP is convex and differentiable. Let X∗RWP be an optimum of RWP
and fRWP (X∗RWP ) be its objective value. Then fRWP (X∗RWP ) is a valid lower bound for FRB [18]; that is,
fRWP (X∗RWP ) ≤ f∗FRB , where f∗FRB is FRB’s optimal objective value. Evidently, when feasible to FRB, X∗RWP

is FRB’s global optimum; i.e., fRWP (X∗RWP ) = f∗FRB .

Similarly, because FR is non-differentiable, we use its equivalent reformulation RFR, given by equations (3.3)–
(3.4) and X /∈ Int(RF ). Let X∗RFR be an optimum of RFR and fRFR(X∗RFR) its value. Then fRFR(X∗RFR) is a
valid lower bound for FR [18]: fRFR(X∗RFR) ≤ f∗RFR. Evidently, when feasible to FRB, X∗RFR is FRB’s global
optimum; i.e., fRFR(X∗RFR) = f∗FRB . In general, the optimal solution X∗RFR of RFR yields a tighter lower bound
to RFRB than X∗RWP : fRWP (X∗RWP ) ≤ fRFR(X∗RFR) ≤ f∗FRB . Let the lower bound LB = fRFR(XFR).

4.2. Upper Bounds

When not in Int(RF ), X∗RWP serves as the initial incumbent for FRB. Its associated FRB’s cost
fRFRB (X∗RWP ) is a valid upper bound to FRB: f∗FRB ≤ fRFRB (X∗RWP ) . Of course, evaluating fRFRB(X)
of any point X requires defining the visibility properties, the visibility graph and applying Djikstra’s algorithm.
X∗RFR is always outside Int(RF ). Thus, X∗RFR serves an initial incumbent to FRB. Its associated FRB’s cost
fRFRB(X∗RFR) is a valid upper bound to FRB: f∗FRB ≤ fRFRB(X∗RFR).

4.2.1. An NP-based upper bound

In Algorithm 5, we detail NP’s steps. Ideally, the initial partitioning should mimic Butt’s [5] division of the
convex hull of FRB’s feasible region. However, the boundaries of those sub-regions are not well behaved. In
addition, their number becomes large as n increases. Instead, Lines 3–9 of Algorithm 5, we use an adapted
initial partitioning. When RF is non-convex and MC = MCNC2, we draw (i) a vertical line passing through
X∗RWP such that it bisects the borders of the convex hull, and (ii) M−1 arbitrary vertical lines dividing domain
MC; thus, we obtain M + 1 regions. Otherwise, we select an edge of MC and divide it with arbitrary vertical
lines. For the random sampling (cf. Lines 10–13), we choose an arbitrary point rj ∈ Rj , j = 1, . . . ,M + 1. For
every rj , we evaluate RFRB’s objective function value. (For the initial iteration, we use X∗RWP as the sampled
point of the first region.) In Line 15 of Algorithm 5, we select the most promising region; i.e., the region
whose sampled point has the least FRB’s cost. In Line 16, we update UB whenever we encounter an improving
solution. In Lines 17–19, we stop NP when the stopping criterion holds; specifically, when UB − LB < 0.10 or
three consecutive iterations do not improve UB. In Lines 20–23, we either further partition the current region or
backtrack to the aggregated region. Regardless, we divide the selected region into M sub-regions and aggregate
the others into region M + 1. In Line 24, we iterate the above steps.
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Algorithm 5. Nested partitioning.
1: Input

– (ai, bi), i = 1, . . . , n: position of existing facility Pi;
– wi, i = 1, . . . , n: weight of existing facility Pi;
– V = {v1, . . . , vF }: vertices of forbidden region RF ;
– LB: current lower bound;
– UB: current upper bound;
– Xinc: incumbent solution;
– M : number of partitions of NP;
– Q: number of iterations of NP;

2: Set Counter = 0;
3: if RF is non-convex, MC = MCNC2, and Xinc lies in Conv(V ) then
4: Partition MC into M + 1 regions using M vertical lines;
5: Bisect the lines with the borders of Conv(P ∪ V );
6: else
7: Partition MC into M + 1 regions by M arbitrary vertical lines with one line passing through Xinc;
8: Bisect the lines with the borders of Conv(P ∪ V );
9: end if

10: for Rj , j = 1, . . . ,M + 1 do
11: take a random point rj;
12: determine its visibility properties, its Kj , and its FRB’s cost;
13: end for
14: choose the region Rp whose random point rp has the minimum cost;
15: set the current region to Rp.
16: update UB and Xinc if the minimum cost is less than UB;
17: if the stopping criterion is satisfied then
18: stop
19: end if
20: if rp belongs to any of the first M regions then
21: further partition this region and aggregate the other M regions;
22: else
23: partition the aggregated region and aggregate the M regions;
24: set Counter = Counter + 1 and go to 10.
25: end if
26: return Upper bound UB for RFRB and incumbent solution Xinc;

4.2.2. Divide and conquer

In Algorithm 6, we detail the two steps of DC: division and conquering. In the division step, we partition
(as in Algorithm 2) the master candidate domain MC into J finite convex candidate domains Rj , j = 1, . . . , J,
whose boundaries are linear and whose points share identical visibility properties Kj and identical distance
functions. For the conquering step, we select the set SR of most promising domains. SR consists of the domain
that includes Xinc and its neighboring domains. For every domain Rj ∈ SR, we identify the visibility properties
Kj , the reduced candidate sets RKji with respect to every invisible Pi, and all the linear constraints defining
the boundaries. We then solve SRFRB(Rj) via an MINLP solver. When we encounter an improving solution,
we update UB, Xinc, and SR. An improved UB suggests that Xinc might belong to a new domain. The new
SR includes all the unvisited domains that are adjacent to the region of the new Xinc. Before conquering a
domain of SR, we check the satisfaction of its stopping criterion; we stop when UB−LB < 0.1. DC is therefore
a heuristic when we stop before conquering all regions of MC, and is an exact method otherwise.

4.3. BA

In Algorithm 7, we explain how BA combines the obtained lower and upper bounds. First, we solve RWP.

– When X∗RWP ∈ Int(RF ), we construct MC depending on the convexity of RF .
• When RF is convex, we set MC=MCC1 to RF ’s edge nearest to X∗RWP , and force FRB’s solution to lie

on this edge.



156 I.M. AL-MUDAHKA ET AL.

Algorithm 6. Divide and conquer.
1: Input

– (ai, bi), i = 1, . . . , n: position of existing facility Pi;
– wi, i = 1, . . . , n: weight of existing facility Pi;
– V = {v1, . . . , vF }: vertices of forbidden region RF ;
– LB: current lower bound;
– UB: current upper bound;
– Xinc: incumbent solution;
– MC: master candidate domain;
– Q: number of iterations of NP;

# Division steps
2: Partition MC into candidate regions Rj , j = 1, . . . , J (as in Algorithm 2);
3: Determine the region R1 of MC that includes Xinc;
4: Determine SR, the set of regions that are adjacent to R1 including R1.

# Conquering steps
5: for Rj ∈ SR do
6: if Rj has been investigated then
7: go to 15;
8: else
9: determine its Kj , and RKji for any invisible Pi;

10: determine the linear constraints representing the boundaries of Rj ;
11: define and solve SRFRB(Rj) using an MINLP solver;
12: if f∗SRFRB < UB then
13: set Xinc = X∗SRFRB , UB = f∗SRFRB , and redefine SR;
14: end if
15: if stopping criterion is satisfied then
16: stop;
17: end if
18: end if
19: end for
20: return Upper bound UB for RFRB and incumbent solution Xinc;

• When RF is non-convex, we set MC=MCNC1 to the edges that can be joined to X∗RWP with line segments
that lie entirely in RF . We solve as many relaxed FR problems as there are edges. Each relaxed FR is
augmented with linear constraints forcing the solution to be on a specific edge. We choose the least cost
solution as FR’s global minimum X∗FR. Because X∗FR /∈ Int(RF ), we set Xinc = X∗FR, UB = f∗FRB (X∗FR),
and LB = f∗RWP (X∗FR). To improve UB, we perform a search on Xinc’s edge. We update Xinc whenever
we improve UB. We stop when the stopping criterion is satisfied; specifically, when UB− LB < 0.1.

– When X∗RWP /∈ Int(RF ), we proceed depending on the visibility of existing facilities to X∗RWP .
• When visible to all existing facilities, X∗RWP is feasible to RFRB, and f∗RFRB = f∗RWP . Hence, we stop

and return X∗RWP as FRB’s global minimum and f∗RWP as its minimal cost.
• When X∗RWP is invisible to at least one existing facility, we create MC. If RF is convex, we set MC=MCC.

When RF is non-convex and no Pi ∈ Conv(RF ), we set MC=MCNC2; otherwise we set MC=MCNC3.
We set LB = f∗RWP , UB = f∗RFRB (X∗RWP ), and Xinc = X∗RWP .

We employ NP with a maximum number of iterations Q = 5, and M = 2 partitions. When NP’s incumbent is
unsatisfactory, we apply DC. When the stopping criterion is satisfied, we stop at a near optimum: X∗ = X∗RWP .

5. Computational results

In this section, we assess BA’s performance. Because the literature lacks instances of single facility problems
with one polygonal forbidden region under Euclidean distances with best known solutions, we use seven FRB
problems. The first four are new. Instances 1–3 have identical parameters but different RF locations. Instance 4
has 3 existing facilities and a squared RF . Instances 5 and 6 are those of Satyanarayana et al. [23]. Their solution
X∗literature is very close the border of RF . Instance 7 is due to Aneja and Parlar [2]. We detail all the instances
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Algorithm 7. Bounding based algorithm.
1: Input

– (ai, bi), i = 1, . . . , n: position of existing facility Pi;
– wi, i = 1, . . . , n: weight of existing facility Pi;
– V = {v1, . . . , vF }: vertices of forbidden region RF ;

2: Solve RWP and set LB = f∗RWP

(
X∗RWP

)
;

3: if X∗RWP /∈ Int(RF ) and X∗RWP is visible to all existing facilities then
4: Set UB = f∗RWP , X∗ = X∗RWP , z∗ = f∗RWP , and stop.
5: else
6: Construct RFRB’s visibility graph, and set X∗ = X∗RWP and UB = f∗RWP

(
X∗RWP

)
;

7: end if
8: if X∗RWP ∈ Int(RF ) then
9: if RF is convex then

10: construct MCC1, the set of RF ’s boundaries that are nearest to X∗RWP .
11: else
12: Construct MCNC1, the set RF ’s boundaries whose points can be joined to X∗RWP with line segments that lie entirely in

Int(RF );
13: end if
14: For every boundary in MC, augment FR with a linear constraint representing the boundary and solve the augmented problem.

15: Set Xinc to the minimal FR’s cost solution X∗FR among all candidate solutions and set UB = f∗RFRB

(
X∗FR

)
;

16: if the stopping criterion is satisfied then
17: set X∗ = X∗FR, z∗ = UB, and stop;
18: else
19: on the edge containing X∗FR, perform a line search, update Xinc and UB; stop;
20: end if
21: end if
22: if X∗RWP /∈ Int(RF ) and X∗RWP is invisible to at least one existing facility then
23: if the stopping criterion is satisfied then
24: X∗ = Xinc and z∗ = UB; stop;
25: else
26: if RF is convex then
27: set MC = MCC2 = Conv(P ∪ V ) \ Int(RF );
28: else
29: if no existing facility lies in the Conv(V ) then
30: set MC = MCNC2 = Conv(P ∪ V ) \ Int(Conv(V );
31: else
32: set MC = MCNC3 = Conv(P ∪ V ) \ Int(RF );
33: apply NP;
34: apply DC;
35: end if
36: end if
37: end if
38: end if
39: set X∗ = Xinc and z∗ = UB, and stop;
40: return Best solution X∗ = (x∗, y∗) of the new facility, and z∗ its objective function value;

in Table 2. In Column 1, we indicate the instance “Ins”. In Columns 2 and 3, we specify the number of existing
facilities and their coordinates. In Columns 4–6, we report the number and coordinates of the vertices of the
forbidden region RF . Finally, in Column 6, we indicate whether RF is convex. In Figure 4, we present the
instances along with their relaxed optima X∗RWP .

We summarize the results in Table 3. In Column 1, we indicate the instance. In Columns 2 and 3, we report the
ifeasibility of X∗RWP to the problem. In Columns 4 and 5, we display f∗RWP and f∗FR. The lower bound LB equals
f∗RWP when X∗RWP /∈ Int(RF ), and equals f∗FR otherwise. For the latter case (i.e., when X∗RWP ∈ Int(RF )), the
proposed approach constructs MC from the boundaries of RF , and solves as many problems as MC has edges. It
retains the least cost solution displayed in Column 6. It then undertakes a line search along the most promising
edge in MC and reports the best solution in Column 7. In the former case (i.e., when X∗RWP /∈ Int(RF )), it
assesses the true cost of X∗RWP given by fRFRB (X∗RWP ) as displayed in Column 8. It next applies NP and DC
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Table 2. Characteristics of the seven tested instances.

Ins n P F RF RF convex?

1 4 (0, 0), (1, 4), (5, 5), (4, 1) 3 (2, 2), (2.5, 3), (3, 2) Yes
2 4 (0, 0), (1, 4), (5, 5), (4, 1) 3 (1, 2), (1.5, 3), (2, 2) Yes
3 4 (0, 0), (1, 4), (5, 5), (4, 1) 3 (.5, 1), (1, 2), (1.5, 1) Yes
4 3 (0, 0), (1, 4), (5, 5), (4, 1) 4 (2.5, 3), (2.5, 4), (3.5, 4), (3.5, 3) Yes
5 9 (1, 8), (7, 16), (18, 18), (23,

15), (22, 11), (19, 6), (18, 2),
(14, 3), (7, 6)

5 (3, 10), (4, 13), (7, 14), (9, 12),
(9, 9), (5, 7)

Yes

6 8 (3, 9), (6, 12), (8, 15), (17, 16),
(16, 13), (21, 13) (19, 7), (9, 5)

6 (8, 8), (8, 11), (11, 14), (13, 12),
(17, 10), (13, 7)

No

7 4 (0, −10), (0, 11.6), (11, 11.6),
(11, −10)

21 (1, 3), (2, 4), (2, 5), (4, 4), (3, 8),
(4, 7), (5.5, 9), (7, 7), (8, 8), (7,
4), (9, 5), (9, 4), (10, 3), (9, 2),
(9, 1) (6, 2), (7, 0), (4, 0), (5, 2),
(2, 1), (2, 2)

No

whose best solution values f∗RFRB−NP and f∗RFRB−DC are given in Columns 9 and 10, respectively. Finally,
in Column 11, we report the optimality gap UB − LB. The superscript † indicates that UB = z∗, the proven
optimal solution value.

For Instance 1, X∗RWP is infeasible to FRB; i.e., X∗RWP = (2.5, 2.5) ∈ Int(RF ) with f∗RWP = 11.314. Because
all weights are equal, any of RF ’s edges might include X∗FRB . Therefore, we set MC = MCC1 to include the
three boundaries of RF . To obtain X∗FR for a given boundary, we augment RWP by the linear constraint
representing the boundary. Among the three solutions, we retain the least cost one X∗FR = (2.313, 2.626), and
set LB = f∗FR = 11.328 and UB = fRFRB (X∗FR) = 11.954. Finally, we undertake a line search, on the edge
containing X∗FR, and update UB to 11.409 for Xinc = (2.5, 3); thus, we reduce UB−LB to 0.081. We can prove
that Xinc = (2.5, 3) is the global optimum by applying DC as an exact method. For this, we partition MC =
MCC2 into 19 convex candidate domains, as in Figure 5, solve SRFRB(Rj), j = 1, . . . , 19, and retain the least
cost 11.409.

For Instance 2, X∗RWP = (2.5, 2.5) is outside RF and is visible to all existing facilities, as we show in Figure 6.
Thus, LB = f∗RWP = 11.314, and UB = f∗FRB = 11.314. In fact, X∗RWP is the global optimum.

For Instance 3, X∗RWP = (2.5, 2.5), which is outside RF but is invisible to existing facility (0, 0), as we show
in Figure 7. Thus, LB = f∗RWP = 11.314 and UB = fFRB (X∗RWP ) = 11.382. Neither NP nor DC further
improve this solution, which can be proven to be the global optimum.

For Instance 4, X∗RWP = (3.150, 1.987), which lies outside RF but is invisible to facility (3, 6) as we show in
Figure 8. Thus, LB = f∗RWP = 9.837 and UB = fRFRB (X∗RWP ) = 9.953. Applying NP doesn’t improve UB.
Applying DC, we partition MC = MCC2 = Conv(P ∪V )\ Int(RF ) into 19 candidate domains Rj , j = 1, . . . , 19,
but solve SRFRB(Rj) only on the most promising regions. We thus obtain X∗ = (3.479, 1.919) ∈ R1 with
f∗RFRB−DC = 9.892 as its best solution. We can prove that f∗RFRB−DC = 9.892 is the global optimum by
solving SRFRB(Rj), j = 1, . . . , 19. For this instance, LB is quite tight.

For Instance 5, X∗RWP = (15.75, 8.245) /∈ RF , but is invisible to facility (1,8). Thus, LB = f∗RWP = 78.345 and
UB = fRFRB (X∗RWP ) = 78.538. For BA, we set MC = MCC2 = Conv(P ∪V )\Int(RF ), and apply NP obtaining
the near optimum (15.75, 8.245) whose cost is 78.538. Were we to apply DC, we would have partitioned MC
into 40 convex regions. Herein, we only investigate the set SR of most promising regions, displayed in Figure 9.
SR = {R1, R2, R3, R4, R5}, where R1 is the incumbent’s region and R2, R3, R4, and R5 share borders with R1.
We solve SRFRB(Rj), j = 1, . . . , 5, and obtain the near-global optimum Xinc = (15.758, 8.09), located in R1

and whose cost is 78.530.
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Instance 1 Instance 2

Instance 3 Instance 4

Instance 5 Instance 6

Existing facilities Convex Hull Forbidden region

Figure 4. Relaxed solutions of the seven test instances.
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Table 3. Results.

Ins X∗
RW P LB UB UB− LB

∈
Int (RF )?

Visible to

∀Pi?

f∗RW P f∗F R fRF RB (X∗
F R) Line search fRF RB (X∗

RW P ) f∗RF RB−NP f∗RF RB−DC

1 Yes NA 11.314 11.328 11.954 †11.409 NA NA NA 0.081

2 No Yes 11.314 NA NA NA † 11.314 NA NA 0.000

3 No No 11.314 NA NA NA †11.382 11.382 11.382 0.068

4 No No 9.837 NA NA NA 9.953 9.953 †9.892 0.061

5 No No 78.345 NA NA NA 78.538 78.538 78.530 0.185

6 No No 56.004 NA NA NA 64.988 60.959 60.676 4.672

7 Yes NA 48.479 48.501 52.082 52.082 NA NA NA 3.581

Existing facilities Forbidden region Xbest-DC

Figure 5. Dispersion of DC’s local optima for Instance 1.

Existing facilities Forbidden region

Figure 6. Optimal solution of Instance 2.
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Existing facilities Forbidden region

Figure 7. Relaxed solution for Instance 3.

Existing facilities Forbidden region X
*

Figure 8. Solutions of SRFRB(Rj), j = 1, . . . , 19, for Instance 4.

The reported solution Xliterature = (15.759, 8.236) whose reported cost is fliterature = 78.345. fliterature is most
likely erroneous. It equals our lower bound LB, which we computed based on X∗RWP . Our computation shows
that fFRB (X∗literature) = 78.537, which exceeds the reported value by 0.192. This implies that BA improves the
best known solution of this instance by 0.0073.

For Instance 6, which has a non-convex polygonal RF , X∗RWP = (13.272, 11.904). Even though outside RF ,
X∗RWP is invisible to five existing facilities. Therefore, LB = f∗RWP = 56.004, UB = fRFRB (X∗RWP ) = 64.988,
and MC = MCNC2 = Conv(P ∪ V ) \ Int(Conv(V )), as we illustrate in Figure 10. Using NP, we reduce UB
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Existing facilities Convex hull Forbidden region X
*

Figure 9. Solutions of SRFRB(Rj), j = 1, . . . , 19, for Instance 5.

Existing facilities Convex hull Convex hull of forbidden region

X
*

Figure 10. MC and SR for Instance 6.

to 60.959; thus, we improve the best known bound fFRB (X∗literature) = 61.434 corresponding to X∗literature =
(14.777, 12.898).

Applying DC, we partition MC into 38 candidate domains but solve SRFRB(Rj), j = 1, . . . , 5, only on the
five most promising set of regions. We thus obtain the near-global minimum Xinc = (11, 14) and UB = 60.674.
This upper bound is obviously tighter than fFRB (X∗literature). Xinc = (11, 14) lies on the boundary of Conv(V ).
We suspect Xinc to be the global optimum.

For Instance 7, X∗RWP = (5.5, 0.8) with f∗RWP = 48.479. As we show in Figure 11, X∗RWP ∈ Int(RF ); thus, is
infeasible to FRB. Therefore, FRB’s optimum must lie on one of RF ’s boundaries. To obtain X∗FR, we construct
MC = MCNC1, which consists of the nine boundaries of RF . We show these boundaries in bold in Figure 11.
For every boundary, we solve RWP augmented by the linear constraint representing the boundary. Among all
solutions, we retain the least cost one: X∗FR = (5.5, 0), located on the boundary connecting (4, 0) and (7, 0),
with f∗FR = 48.501. Thus, LB = 48.501 and UB = fRFRB (X∗FR) = 52.082. We do not further improve UB when
we apply a line search on the segment connecting (4, 0) and (7, 0). In fact, UB matches the best known bound
from the literature.
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Existing facilities Convex hull Forbidden region

Local optima of FR X
*

Figure 11. Solutions of Instance 7.

In summary, we infer the following.

– The tightness of the lower bound depends on the instance and on the shape of the forbidden region.
– The solution of the relaxed problem may be optimal.
– NP and DC improve the solution of the relaxed problem in many instances and improve best known solutions.
– Applying a stopping criterion based on the absolute gap allows the early stopping of the proposed approach.

For example, for Instance 1, the approach will omit the line search; similarly, for Instance 3, the approach
will omit executing NP and DC.

The runtime of FRB for the above instances is relatively small for all practical reasons. It is of the order of few
minutes for all tested instances. In general, the runtime of FRB should not be an issue. FRB is usually solved
only at the design stage of a system. It is neither solved repetitively nor on-line. It is considered at the strategic
management level. Therefore, the solution time is not critical. The improvement in solution cost justifies a high
CPU time. Regardless, MINLP instances are solved using the mixed integer non-linear programming solver
CONOPT3, which uses CPLEX12.8 as the integer linear programming solver and DICOPT as the non-linear
programming solver. All these solvers are evoked from GAMS25.0, which is in turn evoked from FORTRAN.
The runtime of any of the MINLP problems did not exceed few seconds. Therefore, the runtime of any instance
is determined by the algorithmic set up; specifically, by the time needed to generate the visibility graph, which
is known to be at worst O

(
(F + n)3

)
.

6. Conclusion

In this paper, we focused on solving the single facility Euclidean location problem in the presence of a (non-)
convex polygonal forbidden region where location and travel are not permitted. This optimization problem is
non-differentiable and non-convex. We reduced the problem’s feasible domain by introducing a master candi-
date domain that excludes dominated regions. To overcome the non-convexity and non-differentiability of the
problem’s objective function, we proposed an equivalent tight reformulation. The reformulation has a linear
objective function, linear and convex quadratic constraints as well as non-convex, non-differentiable constraint
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sets. To handle the non-differentiability and non-convexity of the reformulation, we decomposed it into con-
vex sub-problems whose objective functions are linear and which are defined on convex sub-regions, obtained
by dividing the master candidate domain using a visibility grid lines partitioning. The binary relaxation of
each of these sub-problems is differentiable. Subsequently, we reduced the original problem to solving a finite
series of convex and differentiable sub-problems, that can be solved by mixed integer non-linear programming
optimization solvers.

In addition, we developed two lower and four upper bounds. The first lower bound is the solution value of
a relaxed version of the Weber problem where both location and travelling are permitted. The second, which
is tighter, is the solution value of the relaxed problem where location in the forbidden region is prohibited
but travel is permitted. The four upper bounds are FRB’s cost of RWP, FR, nested partitioning and divide
and conquer near-optima. The divide and conquer heuristic solves a series of RFRB sub-problems on the most
promising domains, which are convex and which have linear boundaries. We incorporated these bounds within a
bounding-based algorithm to approximately solve FRB. We presented our computational results and highlighted
the advantages of the proposed approach. In particular, the proposed methodology improves two best known
solutions and matches one.

We can extend the proposed method to larger sized Euclidean location problems with multiple new/existing
facilities, and one or more polygonal forbidden regions. We can modify the nested partitioning making it a stand
alone heuristic for larger instances. Finally, we can extend the proposed method to instances with different
distance metrics, stochastic weights, three-dimensional space, etc.
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