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MINIMIZING TOTAL COMPLETION TIME FOR FLOWSHOP SCHEDULING
PROBLEM WITH UNCERTAIN PROCESSING TIMES

Muberra Allahverdi1,∗ and Ali Allahverdi2

Abstract. The four-machine flowshop scheduling problem is investigated with the objective of
minimizing total completion time. Job processing times are uncertain where only the lower and upper
bounds are known. This problem is common in some manufacturing environments. Some mathematical
(dominance) relations are established, and an algorithm (with ten scenarios) is proposed. The proposed
algorithm converts the four-machine problem to a single machine problem for which an optimal solution
is known for the deterministic problem. The difference among the scenarios is related to the weights
assigned to the lower and upper bounds of processing times on the machines. The proposed algorithm
is further improved by the established mathematical relations and are evaluated based on extensive
computational experiments. The computational results indicate that three scenarios of the proposed
algorithm perform much better than the others, and the errors of these three scenarios get better as
the size of the problem increases. The results are statistically verified by constructing the confidence
intervals.
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1. Introduction

We consider the flowshop scheduling problem which is very common in the production scheduling. Practical
research and case studies in production scheduling was recently surveyed [20] where they considered different
industries including furniture, electronics, food, and pharmaceuticals. Fuchigami and Rangel [20] analyzed the
considered practical problems and concluded that about 70% of considered real life case studies were in the
flowshop scheduling area. Fuchigami and Rangel [20] also described the applications of four-machine flowshop
scheduling problem, which is the focus of this paper. It should be noted that they described the case when
processing times are certain. As we will describe below, there exist environments where processing times are
uncertain. Therefore, in this paper, we address the environments where processing times are uncertain.

The performance measure of total completion time is an important performance measure in production
scheduling as it affects the inventory levels and lead times [18]. Moreover, minimizing this performance measure
not only enables a time-based competition but also results in reduced work in process [19]. Furthermore, the
total completion time needs to be minimized for companies to remain competitive [17].
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Processing times are assumed to be known with fixed values in the vast majority of the scheduling literature as
pointed out [22,27]. This assumption is certainly valid for some manufacturing systems. On the other hand, the
assumption is not valid for some other real-world manufacturing systems as a wide range of uncertainties exist
in them [21, 30]. Lack of experience, machine operator fatigue, condition of auxiliary devices for holding jobs
at appropriate positions on machines, untested processing technology, conditions of the tools are some factors
causing uncertainty in job processing times, e.g., Tayanithi et al. [29]. Moreover, past data are not available for
new jobs where only some bounds can be predicted. Hence, processing times cannot be modeled as deterministic
for such manufacturing systems.

Kouvelis and Yu [23] pointed out that modeling job processing times by certain probability distributions is
not appropriate for all manufacturing systems as factors such as worker skill levels, supplier yield problems,
machine conditions determine uncertainty in processing times. Although processing time distributions may not
be known, it has been observed that upper and lower bounds on processing times are easy to obtain in many
manufacturing systems, e.g., Sotskov et al. [28].

We consider manufacturing systems with uncertain processing times where only lower and upper bounds are
known. The processing times are random variables where the probability distributions are not known. Let tj,m
denote the processing time of job j (j ∈ I = {1, 2, . . . , n}) on machine m (m ∈M = {1, . . . , 4}). tj,m satisfies
LBtj,m ≤ tj,m ≤ UBtj,m where LBtj,m denotes the lower bound and UBtj,m denotes the upper bound of tj,m.
The only known information about jobs is the lower and upper bounds.

The considered problem has been investigated in the literature for two or three machines. More specifically,
dominance relations were given [12] for the problem of F2/LBtj,m ≤ tj,m ≤ UBtj,m/Cmax. Allahverdi and
Aydilek [6] also investigated the same problem where they proposed several polynomial time algorithms. They
indicated by computational experiments that one of their algorithms yields close to the optimal solution. The
two machine problem with uncertain processing times was addressed [7] with respect to maximum lateness, i.e.,
F2/LBtj,m ≤ tj,m ≤ UBtj,m/Lmax. They provided different heuristics and showed that one of their heuristics
performs well.

Sotskov et al. [28] established some dominance relations for the F2/LBtj,m ≤ tj,m ≤ UBtj,m/
∑
Ci problem

where the objective was to minimize total completion time. Aydilek and Allahverdi [16] also addressed the
same problem and proposed different heuristics, which use the lower and upper bounds on job processing times.
They indicated by computational experiments that the performance of one of their heuristics was superior for
the considered different distributions of processing times. The three-machine case was investigated [28]. They
established some dominance relations for the F3/LBtj,m ≤ tj,m ≤ UBtj,m/

∑
Ci problem. Allahverdi and

Allahverdi [9] provided some dominance relations and proposed several algorithms for the F4/LBtj,m ≤ tj,m ≤
UBtj,m/Cmax problem.

Different scheduling environments have also been investigated in the scheduling literature when job processing
times are uncertain and only the lower and upper bounds are known, e.g., [13–15,24,25].

We investigate the four-machine flowshop scheduling problem with the objective of minimizing total com-
pletion time with uncertain processing times within some bounds, i.e., F4/LBtj,m ≤ tj,m ≤ UBtj,m/

∑
Ci in

this paper. We establish some dominance relations and propose an algorithm with ten scenarios for the prob-
lem. Formulation of the problem along with some dominance relations are presented in the next section. The
proposed algorithm is described in Section 3, while evaluation of the proposed algorithm with ten scenarios is
conducted in Section 4. Lastly, Section 5 presents the conclusions.

2. Notation and dominance relations

In this section, we first denote the notation used in the paper in Section 2.1 while the problem formulation
and dominance relations are described in Section 2.2.
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2.1. Notation

n: Number of jobs
m: Number of machines
TCT: Total completion time
tj,m: Processing time of job j on machine m
t[j,m]: Processing time of the job in position j on machine m
C[j]: Completion time of the job in position j
LBtr,k: Lower bound of the processing time of job r on machine k
UBtr,k: Upper bound of the processing time of job r on machine k
Ω[j,m]: Total idle time on the kth machine up to the completion time of the job in position j for machine m

SP[j,m] = t[1,k] + . . .+ t[j,m] for k = 1, . . . , 4.

2.2. Problem formulation and dominance relations

Let ω[j,2] = SP[j,1] − SP[j−1,2] where SP[0,2] = 0, then it is known that Ω[j,2] = max{ω[1,2], ω[2,2], . . . , ω[j,2]}
[1]. Furthermore, let ω[j,3] = Ω[j,2] + SP[j,2] − SP[j−1,3] where SP[0,3] = 0, it is also known that
Ω[j,3] = max{ω[1,3], ω[2,3], . . . , ω[j,3]} [2]. Moreover, let ω[j,4] = Ω[j,3] + SP[j,3] − SP[j−1,4] where SP[0,4] = 0,
then, it can be shown that Ω[j,4] = max{ω[1,4], ω[2,4], . . . , ω[j,4]}. Therefore, the completion time of the job in
position j is computed as

C[j] = SP[j,4] + Ω[j,4] for j = 1, 2, . . . , n. (2.1)

Therefore, the total completion time is given by

TCT =
n∑
j=1

C[j]. (2.2)

Consider a job sequence φ1 such that job h is an arbitrary position β and job g is in position β+1 Let sequence
φ2 be derived from sequence φ1 by interchanging only jobs h and g. Let δ1 denote a subsequence containing the
jobs in positions 1, 2, . . . , β−1, and δ2 denote a subsequence containing the jobs in positions β+1, . . . , n where n
denotes the number of jobs. Note that both subsequences δ1 and δ2 comprise of the same jobs in both sequences
φ1 and φ2. Therefore, the sequences φ1 and φ2 can be written as φ1 = {δ1, h, g, δ2} and φ2 = {δ1, g, h, δ2}.

It should be noted that

LBtr,k ≤ tr,k ≤ UBtr,k for r = g, h and k = 1, . . . , 4, (2.3)

where LBtr,k and UBtr,k denote lower and upper bounds of the processing time of job r on machine k (tr,k).
For the two sequences φ1 and φ2,

ω[β,2] (φ1) = SP[β−1,1] (φ1) + th,1 − SP[β−1,2] (φ1) (2.4)
ω[β,2] (φ2) = SP[β−1,1] (φ2) + tg,1 − SP[β−1,2] (φ2) (2.5)

ω[β+1,2] (φ1) = SP[β−1,1] (φ1) + th,1 + tg,1 − SP[β−1,2] (φ1)− th,2 (2.6)
ω[β+1,2] (φ2) = SP[β−1,1] (φ2) + tg,1 + th,1 − SP[β−1,2] (φ2)− tg,2. (2.7)

In the equations (2.4–2.7)

SP[β−1,1] (φ1) = SP[β−1,1] (φ2) and SP[β−1,2] (φ1) = SP[β−1,2] (φ2) (2.8)

since both two sequences φ1 and φ2 have the same jobs in positions 1, . . . , β − 1.
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Moreover, it follows by definition of ω[j,3] that

ω[β,3] (φ1) = max
{

Ω[β−1,2] (φ1), ω[β,2] (φ1)
}

+ SP[β−1,2] (φ1) + th,2 − SP[β−1,3] (φ1) (2.9)
ω[β,3] (φ2) = max

{
Ω[β−1,2] (φ2), ω[β,2] (φ2)

}
+ SP[β−1,2] (φ2) + tg,2 − SP[β−1,3] (φ2) (2.10)

ω[β+1,3] (φ1) = max
{

Ω[β−1,2] (φ1), ω[β,2] (φ1) , ω[β+1,2] (φ1)
}

+ SP[β−1,2] (φ1) + th,2 + tg,2 − SP[β−1,3] (φ1)− th,3 (2.11)
ω[β+1,3] (φ2) = max

{
Ω[β−1,2] (φ2), ω[β,2] (φ2), ω[β+1,2] (φ2)

}
+ SP[β−1,2] (φ2) + tg,2 + th,2 − SP[β−1,3] (φ1)− tg,3. (2.12)

Given that both sequences have the same jobs in positions 1, . . . , β − 1,

SP[β−1,3] (φ1) = SP[β−1,3] (φ2) . (2.13)

It also follows by definition of ω[j,4] that

ω[β,4] (φ1) = max
{

Ω[β−1,3] (φ1), ω[β,3] (φ1)
}

+ SP[β−1,3] (φ1) + th,3 − SP[β−1,4] (φ1) (2.14)
ω[β,4] (φ2) = max

{
Ω[β−1,3] (φ2) , ω[β,3] (φ2)

}
+ SP[β−1,3] (φ2) + tg,3 − SP[β−1,4] (φ2) (2.15)

ω[β+1,4] (φ1) = max
{

Ω[β−1,3] (φ1), ω[β,3] (φ1), ω[β+1,3] (φ1)
}

+ SP[β−1,3] (φ1) + th,3 + tg,3 − SP[β−1,4] (φ1)− th,4 (2.16)
ω[β+1,4] (φ2) = max

{
Ω[β−1,3] (φ2), ω[β,3] (φ2), ω[β+1,3] (φ2)

}
+ SP[β−1,3] (φ2) + tg,3 + th,3 − SP[β−1,4] (φ1)− tg,4. (2.17)

Since the sequences φ1 and φ2 have the same jobs in positions 1, . . . , β − 1,

SP[β−1,4] (φ1) = SP[β−1,4] (φ2) . (2.18)

Theorem 2.1. If UBtg,r ≤ LBth,r for r = 1, 2, 3 hold, then

max
{

Ω[β−1,4] (φ2) , ω[β,4] (φ2)
}
≤ max

{
Ω[β−1,4] (φ2) , ω[β,4] (φ1)

}
.

Proof of Theorem 2.1. It follows from equations (2.3–2.5) and (2.8) that

ω[β,2] (φ2) ≤ ω[β,2] (φ1) . (2.19)

Since UBtg,1 ≤ LBth,1. Moreover, it follows from equations (2.3), (2.9), (2.10), (2.13), and (2.19) that

ω[β,3] (φ2) ≤ ω[β,3] (φ1) . (2.20)

Since UBtg,2 ≤ LBth,2. Now it follows from equations (2.3), (2.13–2.15), (2.18), (2.20) that

ω[β,4] (φ2) ≤ ω[β,4] (φ1) . (2.21)

Since UBtg,3 ≤ LBth,3. Then, by equation (2.21)

max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2)
}
≤ max

{
Ω[β−1,4] (φ1), ω[β,4] (φ1)

}
.

Since Ω[β−1,4] (φ1) = Ω[β−1,4] (φ2) as a result of both sequences having the same jobs in positions
1, . . . , β − 1. �

Theorem 2.2. If UBtg,r ≤ LBth,r for r = 1, 2, 3 and UBth,r ≤ LBtg,r+1 for r = 1, 2, 3 hold, then

max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2)
}
≤ max

{
Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1)

}
.
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Proof of Theorem 2.2. It follows from equations (2.5), (2.7) and (2.8) that

ω[β+1,2] (φ2) ≤ ω[β,2] (φ2) . (2.22)

Since UBth,1 ≤ LBtg,2. Furthermore, it follows from equations (2.10), (2.12), (2.13), (2.22) that

ω[β+1,3] (φ2) ≤ ω[β,3] (φ2) . (2.23)

Since UBth,2 ≤ LBtg,3. By equations (2.15), (2.17), (2.18) and (2.23),

ω[β+1,4] (φ2) ≤ ω[β,4] (φ2) . (2.24)

Since UBth,3 ≤ LBtg,4. Since UBtg,r ≤ LBth,r for r = 1, 2, 3, equation (2.21) is satisfied.
It then follows from equations (2.21) to (2.24) that

max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2)
}
≤ max

{
Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1)

}
.

�

Theorem 2.3. If UBtg,r ≤ LBth,r for r = 1, 2, 3 and UBtg,r ≤ LBtg,r+1 for r = 1, 2, 3 hold, then

max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2)
}
≤ max

{
Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1)

}
.

Proof of Theorem 2.3. By equations (2.4), (2.5), (2.7), and (2.8),

ω[β,2] (φ2) ≤ ω[β,2] (φ1) and (2.25)
ω[β+1,2] (φ2) ≤ ω[β,2] (φ1) . (2.26)

Since UBtg,1 ≤ LBth,1 and UBtg,1 ≤ LBtg,2. Furthermore, by equations (2.9), (2.10), (2.12), (2.13), (2.25), and
(2.26),

ω[β,3] (φ2) ≤ ω[β,3] (φ1) and (2.27)
ω[β+1,3] (φ2) ≤ ω[β,3] (φ1) . (2.28)

Since UBtg,2 ≤ LBth,2 and UBtg,2 ≤ LBtg,3.
Moreover, it follows from equations (2.14), (2.17), (2.18), (2.27), and (2.28) that

ω[β+1,4] (φ2) ≤ ω[β,4] (φ1) . (2.29)

Since UBtg,3 ≤ LBtg,4. Since UBtg,r ≤ LBth,r for r = 1, 2, 3, equation (2.21) is satisfied, then it follows from
equations (2.21) and (2.25–2.29) that

max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2)
}
≤ max

{
Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1)

}
.

�

Theorem 2.4. If the following condition (i) and either (iia) or (iib) hold

(i) UBtg,4 ≤ LBth,4
(iia) UBtg,r ≤ LBth,r for r = 1, 2, 3 and UBth,r ≤ LBtg,r+1 for r = 1, 2, 3
(iib) UBtg,r ≤ LBth,r for r = 1, 2, 3 and UBtg,r ≤ LBtg,r+1 for r = 1, 2, 3

then [
C[β] (φ2) + C[β+1] (φ2)

]
≤
[
C[β] (φ1) + C[β+1] (φ1)

]
.
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Proof of Theorem 2.4. For jobs in positions β and β + 1 in the two sequences φ1 and φ2,

C[β] (φ1) = SP[β−1,4] (φ1) + th,4 + max
{

Ω[β−1,4] (φ1), ω[β,4] (φ1)
}

(2.30)
C[β] (φ2) = SP[β−1,4] (φ2) + tg,4 + max

{
Ω[β−1,4] (φ2), ω[β,4] (φ2)

}
(2.31)

C[β+1] (φ1) = SP[β−1,4] (φ1) + th,4 + tg,4 + max
{

Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1)
}

(2.32)
C[β+1] (φ2) = SP[β−1,4] (φ2) + tg,4 + th,4 + max

{
Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2)

}
. (2.33)

We obtain from equation (2.18) that[
C[β] (φ2) + C[β+1] (φ2)

]
−
[
C[β] (φ1) + C[β+1] (φ1)

]
= tg,4 − th,4

max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2)
}

+ max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2)
}

−max
{

Ω[β−1,4] (φ1), ω[β,4] (φ1)
}
−max

{
Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1)

}
. (2.34)

By Theorem 2.1
max

{
Ω[β−1,4] (φ2), ω[β,4] (φ2)

}
≤ max

{
Ω[β−1,4] (φ1), ω[β,4] (φ1)

}
. (2.35)

Since UBtg,r ≤ LBth,r for r = 1, 2, 3 from conditions (iia) and (iib) of Theorem 2.4. Moreover, it follows from
Theorems 2.2 and 2.3 that

max{Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2)} ≤ max{Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1)} (2.36)

if either conditions (iia) or (iib) of Theorem 2.4 holds. Therefore, it follows from equations (2.34) to (2.36) and
the condition (i) of Theorem 2.4 that[

C[β] (φ2) + C[β+1] (φ2)
]
≤
[
C[β] (φ1) + C[β+1] (φ1)

]
.

�

Theorem 2.5. For r = β + 2, . . . , n, if either (iia) or (iib) of Theorem 2.4 holds,

ω[r,4] (φ2) ≤ ω[r,4] (φ1) .

Proof of Theorem 2.5. For r = β + 2, . . . , n

ω[r,4] (φ1) = max
{

Ω[β−1,3] (φ1), ω[β,3] (φ1), ω[β+1,3] (φ1), . . . , ω[r,3] (φ1)
}

+ SP[β−1,3] (φ1) + th,3 + tg,3 +
r∑

p=β+2

t[p,3] (φ1)

− SP[β−1,4] (φ1)− th,4 − tg,4 −
r−1∑

p=β+2

t[p,4] (φ1) (2.37)

ω[r,4] (φ2) = max
{

Ω[β−1,3] (φ2), ω[β,3] (φ2), ω[β+1,3] (φ2), . . . , ω[r,3] (φ2)
}

+ SP[β−1,3] (φ2) + tg,3 + th,3 +
r∑

p=β+2

t[p,3] (φ2)

− SP[β−1,4] (φ2)− tg,4 − th,4 −
r−1∑

p=β+2

t[p,4] (φ2) (2.38)
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where
∑β+1
p=β+2 t[p,4] (φ1) =

∑β+1
p=β+2 t[p,4] (φ2) = 0. Since both sequences φ1 and φ2 have the same jobs in

positions β + 2, . . . , n

r∑
p=β+2

t[p,3] (φ1) =
r∑

p=β+2

t[p,3] (φ2) (2.39)

r−1∑
p=β+2

t[p,4] (φ1) =
r−1∑

p=β+2

t[p,4] (φ2) (2.40)

ω[r,3] (φ1) = ω[r,3] (φ2) . (2.41)

Then, it follows from equation (2.20) and either equation (2.23) or equation (2.28) that max
{
ω[β,3] (φ2) ,

ω[β+1,3] (φ2)
}
≤ max

{
ω[β,3] (φ1), ω[β+1,3] (φ1)

}
.

Hence, equations (2.13), (2.18) and (2.37–2.41) imply

ω[r,4] (φ2) ≤ ω[r,4] (φ1) . (2.42)

�

Theorem 2.6. For r = β + 2, . . . , n
C[r,4] (φ2) ≤ C[r,4] (φ1)

provided that the conditions in either Theorem 2.2 or Theorem 2.3 hold.

Proof of Theorem 2.6. For r = β + 2, . . . , n

C[r] (φ1) = SP[β−1,4] (φ1) + th,4 + tg,4 +
r∑

p=β+2

t[p,4] (φ1)

+ max
{

Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1), . . . , ω[r,4] (φ1)
}

(2.43)

C[r] (φ2) = SP[β−1,4] (φ2) + th,4 + tg,4 +
r∑

p=β+2

t[p,4] (φ2)

+ max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2), . . . , ω[r,4] (φ2)
}
. (2.44)

Note that
∑r
p=β+2 t[p,4] (φ1) =

∑r
p=β+2 t[p,4] (φ2) as both sequences have the same jobs in those positions, and

hence, from equations (2.18), (2.43), and (2.44)

C[r] (φ2)− C[r] (φ2) = max
{

Ω[β−1,4] (φ2), ω[β,4] (φ2), ω[β+1,4] (φ2), . . . , ω[r,4] (φ2)
}

−max
{

Ω[β−1,4] (φ1), ω[β,4] (φ1), ω[β+1,4] (φ1), . . . , ω[r,4] (φ1)
}
. (2.45)

Then, it follows from equation (2.45) and either Theorem 2.2 or Theorem 2.3 that C[r,4] (φ2) ≤ C[r,4] (φ1). �

Lemma 2.7. For r = 1, . . . , β − 1,
C[r,4] (φ2) = C[r,4] (φ1) .

Proof of Lemma 2.7. The proof follows from that fact that both sequences have the same jobs in positions
r = 1, . . . , β − 1. �

Theorem 2.8. Assume jobs g and h are adjacent in a sequence and they satisfy condition (i) and either (iia)
or (iib) given below,

(i) UBtg,4 ≤ LBth,4
(iia) UBtg,r ≤ LBth,r for r = 1, 2, 3 and UBth,r ≤ LBtg,r+1 for r = 1, 2, 3
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(iib) UBtg,r ≤ LBth,r for r = 1, 2, 3 and UBtg,r ≤ LBtg,r+1 for r = 1, 2, 3

then, TCT (φ2) ≤ TCT (φ1). In other words, given that jobs g and h are adjacent, job g should precede job h in
order to minimize total completion time.

Proof of Theorem 2.8. It follows from Lemma 2.7 that

C[r,4] (φ2) = C[r,4] (φ1) for r = 1, . . . , β − 1. (2.46)

Moreover, from Theorem 2.4 we have[
C[β] (φ2) + C[β+1] (φ2)

]
≤
[
C[β] (φ1) + C[β+1] (φ1)

]
. (2.47)

Also, by Theorem 2.6
C[r,4] (φ2) ≤ C[r,4] (φ1) For r = β + 2, . . . ,n. (2.48)

Finally, it follows from equations (2.2) and (2.46–2.48) that

TCT (φ2) ≤ TCT (φ1) .

�

3. An algorithm with ten scenarios (Scenarios: AL1–AL10)

The problem investigated in this paper is strongly NP-hard since a special case of this problem is
strongly NP-hard. Specifically, the two-machine flowshop scheduling problem with deterministic processing time
(i.e., k = 2 and Uti,k = Lti,k for all i = 1, 2, . . . , n) is strongly NP-hard, Pinedo [26]. Therefore, it is unlikely that
the considered problem has a polynomial time solution. Hence, approximate solutions, algorithms or heuristics,
need to be investigated for the problem. It is known from scheduling literature that advanced algorithms or
meta-heuristics cannot be used for problems with uncertain processing times, e.g., Allahverdi and Aydilek [6].
This is because advanced algorithms or meta-heuristics are based on the exact values of tj,k and small changes
in processing times significantly affects the quality of the solution. However, the value of tj,k could be any
value between LBti,k and UBti,k where even the distributions of tj,k’s are not known. Therefore, a decision
on constructing a schedule should be based only on the bounds of processing times (LBti,k and UBti,k), i.e.,
it cannot be based on tj,k’s as they are not known until the processing times have been completed.

The sequence obtained by ordering jobs based on the Shortest Processing Time (SPT) is optimal with respect
to total completion time performance measure when jobs have known processing times, i.e., LBti,1 = UBti,1,
for a single machine scheduling problem. We propose an algorithm with ten scenarios, which are based on the
idea of converting the four-machine flowshop problem to a single machine problem by giving different weights
to the lower and upper bounds of processing times on different machines. Steps of the algorithm are given next.

Steps of the Algorithm with Scenarios AL1–AL10

Step 1: Select n (given).
Step 2: Select values LBti,k and UBti,k (given) for i = 1, .., n and k = 1, . . . , 4.
Step 3: Let r = 1.
Step 4: tr (1) =

∑4
j=1 (0.25 ∗ LBtr,j + 0.75UBtr,j).

Step 5: tr (2) =
∑4
j=1 (0.75 ∗ LBtr,j + 0.25UBtr,j).

Step 6: tr (3) = 0.25 ∗
(

LBtr,1+UBtr,1
2

)
+ 0.25 ∗

(
LBtr,2+UBtr,2

2

)
+ 0.25 ∗

(
LBtr,3+UBtr,3

2

)
+ 0.25 ∗

(
LBtr,4+UBtr,4

2

)
.

Step 7: tr (4) = 0.7 ∗
(

LBtr,1+UBtr,1
2

)
+ 0.1 ∗

(
LBtr,2+UBtr,2

2

)
+ 0.1 ∗

(
LBtr,3+UBtr,3

2

)
+ 0.1 ∗

(
LBtr,4+UBtr,4

2

)
.

Step 8: tr (5) = 0.1 ∗
(

LBtr,1+UBtr,1
2

)
+ 0.7 ∗

(
LBtr,2+UBtr,2

2

)
+ 0.1 ∗

(
LBtr,3+UBtr,3

2

)
+ 0.1 ∗

(
LBtr,4+UBtr,4

2

)
.
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Step 9: tr (6) = 0.1 ∗
(

LBtr,1+UBtr,1
2

)
+ 0.1 ∗

(
LBtr,2+UBtr,2

2

)
+ 0.7 ∗

(
LBtr,3+UBtr,3

2

)
+ 0.1 ∗

(
LBtr,4+UBtr,4

2

)
.

Step 10: tr (7) = 0.1 ∗
(

LBtr,1+UBtr,1
2

)
+ 0.1 ∗

(
LBtr,2+UBtr,2

2

)
+ 0.1 ∗

(
LBtr,3+UBtr,3

2

)
+ 0.7 ∗

(
LBtr,4+UBtr,4

2

)
.

Step 11: tr (8) = 0.3 ∗
(

LBtr,1+UBtr,1
2

)
+ 0.2 ∗

(
LBtr,2+UBtr,2

2

)
+ 0.2 ∗

(
LBtr,3+UBtr,3

2

)
+ 0.3 ∗

(
LBtr,4+UBtr,4

2

)
.

Step 12: tr (9) = 0.35∗
(

LBtr,1+UBtr,1
2

)
+ 0.15∗

(
LBtr,2+UBtr,2

2

)
+ 0.15∗

(
LBtr,3+UBtr,3

2

)
+ 0.35∗

(
LBtr,4+UBtr,4

2

)
.

Step 13: tr (10) = 0.4 ∗
(

LBtr,1+UBtr,1
2

)
+ 0.1 ∗

(
LBtr,2+UBtr,2

2

)
+ 0.1 ∗

(
LBtr,3+UBtr,3

2

)
+ 0.4 ∗

(
LBtr,4+UBtr,4

2

)
.

Step 14: Let r = r + 1.
Step 15: If r < n, go to Step 4, else go to Step 16.
Step 16: Let p = 1.
Step 17: Sequence the jobs according to SPT based on tr (p) and let the resulting sequence be called πp.
Step 18: Let p = p+ 1.
Step 19: If p < 10, go to Step 17, else go to Step 20.
Step 20: Set b = 1 and z = 1.
Step 21: Set th,k = t[b,k] (πz) for k = 1, . . . , 4 and tg,k = t[b+1,k] (πz) for k = 1, . . . , 4.
Step 22: If th,k and tg,k satisfy any of the conditions of Theorem 2.8, swap the jobs in positions b and b+ 1 of

the sequence πz.
Step 23: Set b = b+ 1.
Step 24: If b < n, go to Step 21.
Step 25: Let z = z + 1.
Step 26: If z < 10, go to Step 21, else go to Step 27.
Step 27: The sequence πp is the solution of the algorithm with scenario ALp.

4. Computational experiments

The performances of proposed algorithm with scenarios AL1 to AL10, with respect to total completion
time performance measure, are compared with each other based on randomly generated data. First the
upper bounds on processing times are generated where UBtj,m is generated from the uniform distribution of
U (1, 100). This uniform distribution has a large variance, and hence, it is usually used in the scheduling lit-
erature for generating processing times. On the other hand, LBtj,m is generated from the uniform distribution
of U (max (1,UBtj,m −∆) ,UBtj,m), where ∆ is set at three values of 10, 20, and 30. Generating LBtj,m and
UBtj,m in this way is commonly used in the literature for uncertain processing times, e.g., Aydilek et al. [15].

Once LBtj,m and UBtj,m are generated, tj,m (LBtj,m ≤ tj,m ≤ UBtj,m) needs to be generated for an instance
of processing time, between the lower and upper bounds, in order to compare the performance of the proposed
algorithm with different scenarios. Assuming a specific distribution for generating processing times (between
the lower and upper bounds) is not appropriate since we do not know its distribution. Therefore, we consider
four different distributions which are uniform, positive linear, negative linear, and normal. The considered
distributions are representative of many distributions as they are representatives of symmetric, positively skewed,
and negatively skewed distributions. These are the distributions which Aydilek et al. [15] also used to evaluate
the performance of their algorithms.

We now describe the four distributions used for generating processing times. For the uniform distribution,
ti,k is generated from U (LBti,k,UBti,k). For the normal distribution, mean µ is set to the average of the lower and
upper bounds, i.e., (LBti,k + UBti,k) /2, and the standard deviation σ is set to (UBti,k − LBti,k) /6. Generating
ti,k from a normal distribution with this mean and standard deviation may result in a value which is outside
LBti,k and UBti,k with a small probability, in which case we regenerate ti,k such that it falls between LBti,k and
UBti,k. That is to say, the normal distribution used to generate ti,k is truncated. For positive linear and negative
linear distributions, the probability density functions are fp (ti,k) = 2 (ti,k − LBti,k) /x (UBti,k − LBti,k)2 and
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Table 1. Computational results for normal distribution.

N
Scenario ∆ 200 300 400 500 600 Avg.

AL1 10 0.82 0.53 0.45 0.39 0.32 0.50
AL2 0.78 0.56 0.46 0.37 0.32 0.50
AL3 0.78 0.53 0.46 0.36 0.32 0.49
AL4 10.24 10.91 11.37 11.58 11.80 11.18
AL5 15.65 16.85 17.61 18.21 18.46 17.36
AL6 17.81 18.60 19.23 19.71 19.95 19.06
AL7 19.55 20.30 20.68 20.98 21.15 20.53
AL8 2.49 2.92 2.88 3.25 3.29 2.97
AL9 6.76 7.65 7.84 8.36 8.52 7.83
AL10 11.01 12.08 12.46 13.00 13.29 12.37
AL1 20 0.94 0.68 0.55 0.50 0.44 0.62
AL2 0.90 0.64 0.50 0.49 0.41 0.59
AL3 0.87 0.62 0.49 0.49 0.39 0.57
AL4 10.79 11.55 11.84 12.14 12.30 11.72
AL5 16.46 17.66 18.14 18.70 19.15 18.02
AL6 18.51 19.26 19.94 20.40 20.64 19.75
AL7 20.31 20.89 21.37 21.73 21.91 21.24
AL8 2.63 2.97 3.24 3.39 3.56 3.16
AL9 7.06 7.86 8.34 8.68 8.97 8.18
AL10 11.49 12.43 13.10 13.52 13.90 12.89
AL1 30 1.04 0.84 0.67 0.60 0.55 0.74
AL2 0.98 0.75 0.61 0.52 0.48 0.67
AL3 0.91 0.68 0.58 0.48 0.45 0.62
AL4 11.07 11.85 12.22 12.65 12.76 12.11
AL5 16.68 17.69 18.48 19.21 19.57 18.33
AL6 18.77 19.69 20.38 20.73 21.13 20.14
AL7 20.77 21.48 21.88 22.20 22.40 21.75
AL8 2.75 3.10 3.31 3.55 3.60 3.26
AL9 7.29 8.11 8.60 9.02 9.18 8.44
AL10 11.83 12.89 13.54 13.99 14.19 13.29

fn (ti,k) = 2 (UBti,k − ti,k) /x (UBti,k − LBti,k)2 for ti,k ∈ (LBti,k,UBti,k) , respectively. Figure 1 shows all four
distributions for generating processing times between the lower and upper bounds.

Performances of the proposed algorithm with scenarios AL1 to AL10 are compared with each other based
on two performance measures: average percentage error (Error) and standard deviation (Std). The percentage
error is defined as

Error (ALi) = 100 ∗ TCT (ALi)−min{TCT (AL1), . . . ,TCT (AL10)}
min{TCT (AL1), . . . ,TCT (AL10)}

·

We consider five different values for n, which are 200, 300, 400, 500, and 600. Furthermore, we consider three
values of 10, 20, and 30 for ∆, and four distributions (positive, negative, uniform, and normal). A total of 60
(5∗ 3∗ 4) combinations are considered. Since for each combination, 1000 replications are generated, a total of
60 000 problems are generated.

The computational results are given in Tables 1, 2, 3, and 4 for the normal, uniform, positive linear, and
negative linear distributions, respectively. In Tables 1–4, the first column denotes the scenario, the second
column shows the ∆ value, the next five columns indicate the number of jobs. Each value in the tables is the
average of 1000 replications. The final column in the Tables 1–4 is the average over different number of jobs.
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Table 2. Computational results for uniform distribution.

N
Scenario ∆ 200 300 400 500 600 Avg.

AL1 10 0.75 0.57 0.44 0.36 0.33 0.49
AL2 0.74 0.55 0.43 0.39 0.35 0.49
AL3 0.70 0.54 0.44 0.38 0.34 0.48
AL4 10.39 10.94 11.38 11.59 11.94 11.25
AL5 15.76 16.58 17.54 18.05 18.56 17.30
AL6 17.72 18.59 19.28 19.64 20.09 19.06
AL7 19.71 20.16 20.67 20.86 21.27 20.53
AL8 2.56 2.85 3.05 3.11 3.36 2.99
AL9 6.83 7.52 8.00 8.24 8.62 7.84
AL10 11.12 11.94 12.59 12.92 13.32 12.38
AL1 20 0.94 0.70 0.60 0.56 0.45 0.65
AL2 0.88 0.71 0.54 0.44 0.43 0.60
AL3 0.91 0.66 0.54 0.47 0.43 0.60
AL4 10.70 11.44 11.77 12.05 12.47 11.69
AL5 16.23 17.45 18.25 18.65 19.16 17.95
AL6 18.40 19.27 19.91 20.17 20.72 19.69
AL7 20.31 21.09 21.49 21.51 21.88 21.26
AL8 2.68 3.05 3.22 3.37 3.70 3.20
AL9 7.07 7.86 8.35 8.60 9.10 8.20
AL10 11.45 12.45 13.06 13.41 13.97 12.87
AL1 30 1.07 0.86 0.67 0.61 0.59 0.76
AL2 0.96 0.70 0.59 0.51 0.46 0.64
AL3 0.96 0.71 0.59 0.52 0.43 0.64
AL4 10.94 11.84 12.25 12.33 12.70 12.01
AL5 16.52 17.74 18.55 18.95 19.53 18.26
AL6 18.79 19.65 20.34 20.65 21.03 20.09
AL7 20.84 21.52 21.78 21.88 22.37 21.68
AL8 2.96 3.08 3.30 3.52 3.68 3.31
AL9 7.39 8.07 8.54 8.89 9.20 8.42
AL10 11.84 12.85 13.43 13.83 14.18 13.23

Average errors of the algorithm with the ten scenarios for the 1000 replications are shown in Figure 2 with
respect to the four distributions while the standard errors of the replications are given in Figure 3. As can be
seen from the figures, the errors and standard deviations of the scenarios are in general proportional. This is
due to a large number of replications.

As seen from Figures 2 and 3, the best performing scenarios are AL1, AL2, and AL3 among the considered ten
scenarios. To show that these three scenarios are the best statistically, 95% confidence intervals of the average
errors for the scenarios are constructed which are given in Table 5.

It is clear from Table 5 that the confidence intervals for errors of scenarios AL1, AL2, and AL3 do not overlap
with those of the others and are much smaller compared to them. Statistically this shows that, the algorithm
with scenarios AL1, AL2, and AL3 perform the best among the considered ten scenarios. However, confidence
errors of the three scenarios AL1, AL2, and AL3 overlap and it is difficult to statistically state that one performs
better than the rest.

Since the best performing scenarios are AL1, AL2, and AL3 and since their performances are so close to each
other, it is interesting to know why they are performing well. The main difference between these three scenarios
and the other scenarios is that the same weight is given to the processing times of all the four machines in
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Table 3. Computational results for positive linear distribution.

N
Scenario ∆ 200 300 400 500 600 Avg.

AL1 10 0.77 0.53 0.46 0.37 0.30 0.49
AL2 0.76 0.51 0.44 0.36 0.29 0.47
AL3 0.74 0.51 0.43 0.35 0.29 0.46
AL4 10.00 10.67 11.23 11.46 11.66 11.00
AL5 15.39 16.34 17.21 17.82 18.24 17.00
AL6 17.54 18.29 18.97 19.37 19.73 18.78
AL7 19.37 19.95 20.22 20.70 20.92 20.23
AL8 2.40 2.72 2.95 3.16 3.31 2.91
AL9 6.46 7.36 7.84 8.19 8.45 7.66
AL10 10.60 11.68 12.33 12.76 13.12 12.10
AL1 20 0.93 0.61 0.55 0.46 0.41 0.59
AL2 0.87 0.70 0.57 0.46 0.42 0.60
AL3 0.89 0.62 0.56 0.45 0.38 0.58
AL4 10.33 11.14 11.43 11.71 12.05 11.33
AL5 15.86 16.93 17.74 18.12 18.66 17.46
AL6 17.95 18.72 19.45 19.69 20.24 19.21
AL7 19.74 20.41 20.86 21.07 21.42 20.70
AL8 2.64 2.90 3.07 3.29 3.41 3.06
AL9 6.85 7.64 8.03 8.39 8.69 7.92
AL10 11.07 12.05 12.62 13.03 13.47 12.45
AL1 30 0.93 0.70 0.62 0.52 0.46 0.65
AL2 0.99 0.80 0.67 0.59 0.54 0.72
AL3 0.88 0.68 0.56 0.51 0.43 0.61
AL4 10.55 11.25 11.71 11.97 12.24 11.54
AL5 16.04 17.26 17.89 18.39 18.82 17.68
AL6 18.08 19.03 19.55 19.99 20.31 19.39
AL7 19.97 20.70 21.06 21.28 21.61 20.92
AL8 2.70 2.92 3.14 3.41 3.56 3.15
AL9 7.00 7.70 8.28 8.55 8.84 8.07
AL10 11.30 12.25 12.97 13.29 13.68 12.70

these three scenarios while different weights are given to the processing time of the four machines in the other
scenarios.

Figure 4 shows the errors of scenarios with respect to the three values of ∆ As expected the errors of all
scenarios slightly increase as ∆ increases. This is because as ∆ increases, the uncertainty, i.e., the gap between
the lower and upper bounds of the processing times increases.

Figure 5 indicates errors of the scenarios with respect the number of jobs, i.e., the size of the problem. It is
interesting to note that while errors of scenarios AL4–AL10 increase as n increases, those of the best performing
scenarios AL1, AL2, and AL3 decrease. This is yet another advantage of the best performing three scenarios.

The effect of the developed dominance relation (Thm. 2.8) in Step 22 of the scenarios was also explored. It was
observed that the improvement, on the average, was less than 10%.

Finally, the computation time (CPU) of the algorithm was also investigated. It was observed that there is
no difference among different scenarios of the algorithm with respect to the CPU time. It was also observed
that the CPU time does not change with respect to value either. Furthermore, the CPU time does not change
with respect to different distributions used to generate processing times. However, the CPU time changes as
the number of jobs n changes. The change of CPU time (in seconds) with respect to n is given in Table 6.
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Table 4. Computational results for negative linear distribution.

N
Scenario ∆ 200 300 400 500 600 Avg.

AL1 10 0.78 0.58 0.45 0.38 0.33 0.50
AL2 0.75 0.55 0.43 0.38 0.31 0.48
AL3 0.78 0.57 0.44 0.36 0.33 0.50
AL4 10.38 11.06 11.53 11.86 12.20 11.41
AL5 15.91 17.07 17.81 18.40 18.82 17.60
AL6 18.00 19.02 19.47 19.92 20.30 19.34
AL7 20.02 20.76 20.91 21.35 21.61 20.93
AL8 2.54 2.67 3.08 3.26 3.43 3.00
AL9 6.81 7.55 8.14 8.48 8.72 7.94
AL10 11.15 12.14 12.79 13.20 13.52 12.56
AL1 20 0.97 0.80 0.68 0.55 0.50 0.70
AL2 0.84 0.69 0.54 0.44 0.38 0.58
AL3 0.86 0.71 0.59 0.48 0.38 0.60
AL4 11.09 11.77 12.27 12.63 12.60 12.07
AL5 16.78 17.98 18.80 19.35 19.87 18.56
AL6 18.91 19.99 20.47 20.96 21.31 20.33
AL7 20.87 21.72 22.06 22.41 22.62 21.94
AL8 2.72 2.96 3.30 3.51 3.47 3.19
AL9 7.26 7.93 8.58 9.01 9.08 8.37
AL10 11.83 12.75 13.47 14.00 14.16 13.24
AL1 30 1.22 0.97 0.84 0.77 0.71 0.90
AL2 0.88 0.68 0.61 0.47 0.37 0.60
AL3 1.01 0.77 0.64 0.54 0.49 0.69
AL4 11.69 12.17 12.78 13.20 13.46 12.66
AL5 17.41 18.42 19.33 19.86 20.33 19.07
AL6 19.64 20.58 21.17 21.70 21.95 21.01
AL7 21.67 22.26 22.82 23.00 23.22 22.59
AL8 3.01 3.09 3.46 3.79 3.95 3.46
AL9 7.83 8.23 8.97 9.46 9.73 8.84
AL10 12.55 13.15 14.10 14.60 14.96 13.87

Table 5. Confidence intervals.

Scenario Avg. error 95% Confidence interval on the avg. error

AL1 0.63 (0.59–0.68)
AL2 0.58 (0.53–0.63)
AL3 0.57 (0.52–0.61)
AL4 11.66 (11.52–11.81)
AL5 17.88 (17.74–18.03)
AL6 19.66 (19.50–19.81)
AL7 21.19 (21.02–21.36)
AL8 3.14 (3.01–3.26)
AL9 8.14 (7.99–8.30)
AL10 12.83 (12.66–12.99)
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Table 6. CPU time of the algorithm.

n CPU time (s)

200 12.24
300 21.41
400 27.77
500 36.60
600 47.11

Figure 1. The distributions used for generating ti,k between LBti,k and UBti,k. (a) Normal.
(b) Uniform. (c) Negative Linear. (d) Positive Linear.
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Figure 2. Average of error of the scenarios for different distributions.

Figure 3. Average of std of the scenarios for different distributions.
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Figure 4. Average of error of the scenarios with respect to ∆.

Figure 5. Average of error of the scenarios with respect to n.



MINIMIZING TOTAL COMPLETION TIME FOR FLOWSHOP SCHEDULING PROBLEM S945

These values ae the average over all parameters. It should be noted that even for the extreme case of n = 600,
the CPU time is less than a minute. Therefore, the CPU time of the algorithm is not an issue.

5. Conclusions

In this paper, the four-machine flowshop scheduling problem is addressed with respect to the performance
measure of total completion time where processing times are uncertain. Only the lower and upper bounds
of processing times are known. It is known that the SPT sequence provides an optimal solution for the single
machine scheduling problem with the performance measure of total completion time. Therefore, the four-machine
flowshop problem is converted into a single machine problem where different SPT solutions (scenarios) are
obtained by using different weights to the lower and upper bounds of processing times on different machines.
Moreover, the scenarios are enhanced by using dominance relations that are developed in this paper.

The proposed algorithm with ten scenarios is evaluated through computational experiments. The computa-
tional experiments reveal that three of the scenarios (AL1, AL2, and AL3) are statistically performing better
than the other seven scenarios (AL4–AL10) for different distributions of job processing times and different gaps
between the lower and upper bounds of the processing times. Moreover, computational experiments also reveal
that errors of the best performing scenarios are decreasing as the size of the problem gets larger. It is important
to note that the common factor in the scenarios of AL1, AL2, and AL3 is that a similar weight is given to the
processing times of all the four machines.

Setup times are ignored in this paper. Ignoring setup times may be valid for some manufacturing problems
when setup times are very small compared to processing times. Allahverdi and Soroush [8] indicated that
ignoring setup times may not be valid for some other manufacturing environments. Recent research on scheduling
problems with separate setup times is summarized [3]. He stated that in order to improve resource utilization,
increase productivity, and eliminate waste, setup times have to be considered as separate from processing times.
Hence, an extension to the current research is to address the four-machine flowshop scheduling problem to
minimize total completion time where setup times are separate from processing times and where processing
times are uncertain and within some intervals.

In regular flowshop scheduling environments, we can have delay between successive operations. There are
many real-life problems where this is true. However, in some manufacturing environments, it is necessary to
have successive operations following one another without delay. Such flowshops ere known as no-wait flowshops.
No-wait flowshops are applicable in industries such as pharmaceutical, chemical, and plastic [4]. In the literature,
although some work has been conducted for no-wait flowshops with uncertain data, e.g., [5, 10,11] for the two-
machine case, the analysis conducted in this paper can be extended to no-wait flowshops with four machines.
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