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MINIMUM STATUS OF TREES WITH GIVEN PARAMETERS

ZHENE PENG AND BoO ZHOU*

Abstract. The status of a vertex v in a connected graph G is defined as the sum of the distances
from v to all other vertices in G. The minimum status of G is the minimum of status of all vertices
of G. We give the smallest and largest values for the minimum status of a tree with fixed parameters
such as the diameter, the number of pendant vertices, the number of odd vertices, and the number of
vertices of degree two, and characterize the unique extremal trees.
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1. INTRODUCTION

We consider simple and undirected graphs. Let G be a connected graph of order n with vertex set V(G). The
distance between vertices u and v in G, denoted by dg(u,v), is the length of a shortest path connecting v and
v in G. The status of a vertex u in G is defined as [9, 15]

sa(u) = Z da(u,v).

veV(G)
The minimum status of G, denoted by s(G), is defined as [9,24,27]
$(@) = min{sg(u): v e V(G)}.

In the literature, the status of a vertex is also known as the distance [12,26], the transmission [21,25,29,30], or
the total distance [6] of a vertex, and if n > 2, the normalized status —sq(u) of vertex u in G is called the
average distance from vertex u to all other vertices of G, see [2]. The status or normalized status of a vertex
may be used to measure its closeness centrality in the network [13,14]. The minimum status of a graph G is also
studied through the proximity of G, defined as ﬁs(G), see, e.g., [1-5]. Recall that the mean vertex derivation
of G, defined as +s(G), was also studied in [31].

Aouchiche and Hansen [2] gave sharp lower and upper bounds for the minimum status of a graph as a function
of its order, and characterized the extremal graphs, and they also gave a sharp lower bound for the minimum
status of a graph with fixed order and diameter. A trivial lower bound for the minimum status of a connected

graph of order n is n — 1, which is achieved if and only if there is a vertex of degree n — 1. Let G be a connected
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graph of order n. They showed that s(G) < L%Qj with equality if and only if G is either the cycle C,, or the

path P,. If G is a tree, then this result has also been given in [31]. Aouchiche and Hansen [1] gave Nordhaus-

Gaddum-type inequalities for the minimum status of a graph, i.e., lower and upper bounds for s(G) + s(G) and
5(G)s(G) in terms of the order of G with both G and G being connected, where G is the complement of G.
Lin et al. [24] established sharp lower and upper bounds for the minimum status of a graph with maximum
degree, and they characterized extremal graphs for the lower bound and gave a necessary condition for graphs
attaining the upper bound. Rissner and Burkard [27] gave alternate and simple proofs for the results in [24],
and showed that the minimum status and the radius achieve their minimum (maximum, respectively) values
at the same type of trees when order and maximum degree are given. Liang et al. [22] gave sharp lower and
upper bounds for the minimum status of a tree with fixed matching number (domination, respectively), and
characterize the extremal trees. Related work may be found in [2,3,10,28].

A vertex in a graph is a pendant vertex if its degree is one, and a vertex in a graph is an odd (even,
respectively) vertex if its degree is odd (even, respectively). By Handshaking Theorem, a graph possesses an
even number of odd vertices. A vertex is an internal vertex if its degree is at least two. A tree whose internal
vertices all have degree at least three is called a series-reduced tree or a homeomorphically irreducible tree
[7,16,17]. That is, a series-reduced tree has no vertices of degree two.

Following the above work, in this paper, we give sharp lower and upper bounds for the minimum status of
trees using parameters, including the diameter, the number of pendant vertices, the number of odd vertices,
and the number of vertices of degree two, and we also characterize all extremal cases. In some cases, the bounds
may be extended to connected graphs.

2. PRELIMINARIES

For a proper subset U of vertices of a graph G, G — U denotes the subgraph of G obtained by deleting
the vertices from U (and the incident edges), and in particular, we write G — v for G — {v} if U = {v}. For
a subset F; of edges of G, G — E; denotes the subgraph obtained from G by deleting all the edges in Fq, and
in particular, we write G — uv for G — {uv} if Ey = {uv}. For a subset Es of unordered vertex pairs of distinct
vertices of G, if each element of Es is not an edge of G, then G + E5 denotes the graph obtained from G by
adding all elements of Es as edges, and in particular, we write G + uv for G + {uv} if Ey = {uv}.

For a vertex v in a graph G, N¢(v) denotes the set of vertices adjacent to v (i.e., neighbors of v) in G, and
the degree of v, denoted by dg(v), is equal to |Ng(v)|. For k > 1, we say a path P = vg...v; in a graph G
is a pendant path (of length k) at vg if 0g(vg) > 2, dg(vg) = 1, and if k > 2, 0g(v1) = -+ = dg(vg—1) = 2.
A pendant path of length one is also known as a pendant edge.

If P is a pendant path of length £ at vertex v in a graph G, then G is said to be obtained from G— (V(P)\{v})
by attaching a pendant path of length ¢ at v. Particularly, if ¢/ = 1, say P = vw, then we also say that G is
obtained from G — w by attaching a pendant edge at v (or a pendant vertex to v).

A caterpillar is a tree with a path such that each vertex of the tree either lies on this path or is adjacent to
a vertex in this path. Note that S,, and P, are caterpillars.

A quasi-pendant vertex is a vertex that is adjacent to a pendant vertex.

The median of a connected graph G is the set of vertices of G with minimum status. The median of a tree
consists of either one vertex or two adjacent vertices [12, 18, 31].

Lemma 2.1 ([19,20,31]). Let T be a nontrivial tree of order n. Then a vertex x is in the median of T if and
only if |V (C)| < 5 for every component C of T' — x.

It follows from Lemma 2.1 that any pendant vertex in a tree with at least 3 vertices can not be in the median
of this tree.
For a graph G with an cut edge uv, let Gy, = G — {vw : w € Ng(v) \ {u}} + {vw : w € Ng(v) \ {u}}.

Lemma 2.2 ([22]). Let G be a connected graph and uv be a cut edge of G. If uv is not a pendant edge of G,
then s(G) > s(Gyy).
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Lemma 2.3 ([22]). Let T be a tree with uw € V(T') and Np(u) = {u1,...,ur}, where k > 3. For 1 <i <k, let
T; be the component of T —wu containing u;. For w € V(Ts), let T' =T — {uu; : 3 <i <t} + {wu; : 3 <i < t},
where 3 <t < k. If |V(T1)| > |V(T2)|, then s(T") > s(T).

For integers n, r and ¢ with » > ¢ > 0 and r + t + 2 < n, we denote by D, (r,t) the caterpillar formed by
attaching r pendant edges to one terminal vertex and ¢ pendant edges to the other terminal vertex of a path
P, Ifr+t=mn—1, then D,(r,t) is just the star S,,. Note that D,(1,1) = P, = D,(1,0).

Lemma 2.4 ([22]). If r+t+2<n andr >t > 2, then s(D,(r,t)) > s(Dp(r+1,t —1)).

Lemma 2.5. If2<a<n—1, then s(D,([$],|%])) = L%J

Proof. Tt is evident for a = 2,n — 1. Suppose that 3 <a <n — 2.
Note that the diameter of D, ([%],[%]) is n — a + 1. By Lemma 2.1, the vertex of distance |2=2*L1] from
pendant vertex adjacent to a vertex of degree [§| 4 1 is in the median of D, ([5],[%]). Thus, if n — a is odd,

then

nfg+1_1
a a . al] n—a-+1 al n—a-+1
(51 15)) =2 X a5l B
_n2—a2—|—2a—1
4 b

and if n — a is even, then

(o (5] 13))

> oaeae gl gt 5] ()

7
Jj=1 Jj=1

(5) + ety

n—a n—a
> 1

Thus
nfoa’i2-l ity g s odd
S (Dn ({g-‘ ) {gJ)) = % if n — a is even and a is even
% if n — ais even and a is odd
_|n?—a®+ QaJ
L 4 7
as desired. (]

For a nontrivial tree T with u € V(T') and integers p,q > 1, let Ty, , be the tree obtained by attaching two
pendant paths, one of length p and one of length ¢, at w.

Lemma 2.6. Let T be a nontrivial tree with w € V(T). If p> q+ 2 and ¢ > 1, then s(Tup.q) > s(Tup—1,9+1)-

Proof. Let H = Ty.p 4. Let P =vg...v, and Q = wy ... w, be the two pendant paths at u (= vg = wy) in H.
Let H' = H — vp_1vp + wqvp. Let © be a vertex in the median of H. As p > ¢, it follows from Lemma 2.1 that
z g V(Q)\ {u}.

Case 1. z € V(T).

By Lemma 2.1, z is also in the median of H'. As we go from H to H’, the distance between z and v, is
decreased by p— (¢+1) (which is at least 1) and the distance between x and any other vertex remains unchanged.
Therefore

s(H') = s(H) = sp/(2) — su(x) < -1 <0,
implying that s(H) > s(H').
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FIGURE 1. The tree T(r,t).

Case 2. z € V(P) \ {u}.
Assume that © = v;, and if two vertices in V(P) \ {u} are in the median of H, we choose v; with smaller
index . As dy(x) = 2, there are exactly two components in H — z. Let n be the order of H. By Lemma 2.1, we

have dp(x,vp) = [ 5], i.e., p—i = [5]. By Lemma 2.1, v;_; is in the median of H'. Note that dg(vi—1,v,) —

dp(vi,vp) =i4+q— bJ, dpr(vi1,2) —dg (v, 2) =1 for z € {viy1,...,vp_1}, and dpyr(vi_1, 2) —dg (v, 2) = —1
for z € V(H) \ {vi—1,...,vp}. Thus, we have

s(H') — s(H) = s (vi—1) — su(vg)

= Z dg(vie1,2) — Z dp (i, 2)

2V (H') 2eV(H)

(40 [2) 41010 -1 (a-p-2+9

=p+q—n+1<0,
implying that s(H) > s(H’). O

Let r and ¢ be positive integers. For a nontrivial tree T and a caterpillar C' of degrees one or three with
a diametral path wj...ury¢41, where v; is the unique neighbor of wu; outside path w;...u,4¢y1 for each
2 < i <r+t let T(r,t) be the tree of order 2(r +t) — 1 + |V(T')| consisting of 7" and C such that they
share a unique common vertex v, 1, see Figure 1. Note that T'(r,t) — (V(T) \ {vr4+1}) is a caterpillar of degrees
one or three with diametral path u; ... wu,4441, where v; is the unique neighbor of u; outside path wy ... up4¢11
for each 2 < i <r -+t

Lemma 2.7. Let T be a nontrivial tree. If r >t > 2, then
s(T(r+1,t—1)) > s(T(r,t)).

Proof. Let H = T(r,t). Let T1 and T be the components of G — w,; containing uq and u,4441, respectively.
Let
HI =H — {ur+1vr+1a ur+2vr+2} + {ur+lvr+2; ur+2vr+1}-
Then H' 2 T(r+1,t—1). As |[V(T)| =2t — 1 < 2r — 1 = |V(T1)|, we have = ¢ V(T3) by Lemma 2.1.
Case 1. z € V(7).

By Lemma 2.1, z is also in the median of H'. Note that dg (z,2) — dg(x,z) = 1 for z € V(T1) U {ur41},
dp/(z,2) —dg(x,z) = —1 for z € V(T») \ {v,12}, and the distance between x and a vertex of V(T) U {v,42}
remains unchanged. Thus

s(H') —s(H) = sy (z) — sp ()
=1-(V(T)[+1) = 1-(V(T2)| = 1)
= |V(Ty)| = [V(T2)| + 2> 0,

implying that s(H') > s(H).
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Case 2. x € V(T1), or & = u, 41 and |V(Th)| = | 5], |5] — 1.

By Lemma 2.1, z is also in the median of H'. As we go from H to H’, the distance between x and a vertex
of V(T) is increased by 1, the distance between z and v,19 is decreased by 1, and the distance between z and
any other vertex remains unchanged. Thus s(H') — s(H) = |[V(T)| — 1 > 0, i.e., s(H') > s(H).

Case 3. 2 = u,4y and |V(T1)| < [ 5] — 2.

By Lemma 2.1, u,12 is a vertex in the median of H'. Note that dps (uri2,2) — dg(urs1,2) = 1 for z €
V(T1), du'(ury2,2) — dg(upg1,2) = —1 for z € V(T3) \ {tps2,vr42}, and dg/ (tyy2,2) = dg(ups1,2) for
z € V(T)U {vp42}. Thus

s(H') = s(H) = sp(trs2) = su(uri1) = [V(T1)] = ([V(T2)] = 2) > 0,
implying that s(H') > s(H). O

Lemma 2.8. Let T be a caterpillar with the largest minimum status in the class of caterpillars of order n with
t > 1 wvertices of degree two and mazximum degree three, or in the class of caterpillars of order n with t > 1
vertices of degree two and one or two vertices of maximum degree four, where each vertex of degree four has
three pendant neighbors. Let U be the set of vertices of degree two in T. Then U induces a path in T.

Proof. Suppose that U does not induce a path in 7. Let P = ug...uq be a diametral path of T'. Then there
are three vertices u;, uj, ue with 1 <4 < j < £ < d— 1 with d7(u;) = 3 and u;,u¢ € U. Let T1 and T5 be
the nontrivial components of 7' — u; containing u; and u,, respectively. Let v; be the pendant neighbor of u;.
Assume that [V(T1)| > |[V(T3)|. Let T = T — u;v; + ugvj. By Lemma 2.3, s(T") > s(T), a contradiction. O

For a,b > 0 with 2(a + b+ 1) < n, let C,(a,b) be the tree obtained from the path P,_,_; with consecutive
vertices uq, ..., Uy_q_p by attaching a pendant vertex v; to u; for each ¢ with 2 < i < a 4+ 1 and each ¢ with
n—a—2b<i<n-—a-—>b-— 1. In particular C,(0,0) is just the path P,.

Lemma 2.9. If6>0,a>b+2, and 2(a +b) + 2 < n, then
s(Cpla—1,0+1)) > s(Cn(a,b)).
Proof. Let T = Cp(a,b). Let T" =T — 14410441 + Un—q—2b—1Va+1. Then TV = Cp(a — 1,0+ 1).
Case 1. 2a > {%]
Note that T'— Urnz1] 4 contains exactly two nontrivial components of orders 2[ 2] —1 and n—1—2[ 2],

respectively. By Lemma 2.1, u (251741 is in the median of T and T". As we go from T to T”, the distance between
4

+
U1y and v, is increased by n —a —2b—1 — ([272] +1) — (a+1— ([2] + 1)) (which is equal to

n — 2(a + b) — 2, larger than 0), and the distance between UTnt1] g and any other vertex remains unchanged.
4
Thus s(T") > s(T), as desired.

Case 2. 2a < {%]

Let x = upn7 . and ' = urnq_ . ,,. By Lemma 2.1, z is in the median of T and z’ is in the median of T".
|—21 a |—21 atl

Let T} be the component of T'— x containing u1, and T the component of T'— 2’ containing w,_,_p. Note that

1 if z € V(Tl) \ {Ua+1}

dp/(2',2) —dp(x,z) = {_1 if z € V(Ty)

and

dr (x',vg41) — dr(2,v041) =n—a—2b—1— ([g—‘ —a—|—1) - ([gi‘ —a— (a—|—1)>

:an[g]H(afb)flzz
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If 2a +1= (%1, then © = ug41, Vat1 € V(T1), and thus

s(T') = s(T) = sy (') — sr(x)

V(T)| = V(T2)| + dre (2, vas1) = dr(@,vat)

2 ([31-2) - ([5] =) +2>0

and otherwise, we have

s(T") — s(T) = s/ (x') — sr(x)
= [V(TV)| = 1 = [V(T2)| + dr/ (2, var1) — dr(2,va11)

- (31-)-1- (3] +2>o

It follows that s(T”) > s(T), as desired. O

3. MINIMUM STATUS AND DIAMETER

In this section, we give sharp lower and upper bounds for the minimum status of a tree with fixed diameter,
and characterize the unique trees achieving these bounds.

Let F;, 4 be the caterpillar obtained by attaching n—d—1 pendant vertices to VUrd of the path Py11 = vp ... vq,
where 2 < d < n—1. Define F, ,,_1 = P,. Particularly, F}, o = S,, and F,, 3 = D, (n —3,1). The lower bound in
the following theorem has been obtained in [2] for a connected graph of order n and diameter d. However, we
include a proof here for completeness.

Theorem 3.1. Suppose that T is a tree of order n > 4 with diameter d, where 2 < d <n —1. Then

MZDT

sUﬁZn—l—d+{

with equality if and only if T = F, 4.
Proof. Let x be a vertex in the median of 7" and P a diametral path of T'. Then

Z dp(z,v) Z dr(z,v)

veV(P) veV(T)\V(P)
>s(P)+ >, 1
veV(T)\V(P)
d+1)2
=n—-1—-d+ {( —Z ) J

with equality if and only if z is in the median of P and all vertices outside P are adjacent to x, i.e.,
T=F, O

Corollary 3.2. Suppose that T is a tree of order n, and T 2 S,,. Then s(T) > n with equality if and only if
T=D,(n—3,1). Moreover, if T % D,,(n—3,1), then s(T') > n+1 with equality if and only if T = F,, 4, D,,(n—4,2).

Proof. Let d be the diameter of T'. Let f(d) =n—1—-d+ {(dﬂ J for 2 < d <n—1. It is easy to see that

fld+1) > f(d) for 2 < d<n-2 AsT 2 S,, we have d > 3. If d > 4, then by Theorem 3.1, we have
s(T) > f(d) > f(4) = n+1 with equalities if and only if T' = F), 4. If d = 3, then T' = D, (r,n — 2 —r) for some
rwith"T_2 <r <n-—3, and in this case, s(T) =2n —3 —r, whichisnifr=n—-3,n+1if r =n—4 and at
least n +2 if r < n — 5. O
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Theorem 3.3. Suppose that T is a tree of order n > 4 with diameter d, where 2 < d <n —1. Then

oT) < {d(2n4d)+1J

with equality if and only if T = D, ([2=EL], | 2=g+l |),

Proof. By Lemma 2.5, we have s(D,, ([2=2H], | 2=d+1 |)) = Ld@"%d)“y

Let T be a tree of order n with diameter d such that its minimum status is as large as possible. By the value
of s(Dy, ([2=EL], [ 2=4+L ])), we only need to show that T' & D, ([2=EHL], | 2=g+L |),

It is trivial if d = 2,n — 1.

Suppose that 3 < d < n — 2. Let o be the number of quasi-pendant vertices in T'. Then there are at least two
pendant vertices with different neighbors, i.e., a > 2.

We claim that « = 2. Otherwise, a > 3. Let P = vg ... vq be a diametral path of T'. As vg and vy are pendant
vertices, v1 and v4—1 are quasi-pendant vertices in T'. Since o > 3, d7(v;) > 3 for some ¢ with 2 < i < d—2. For
z € Np(v;), let T, be the component of T'—v; containing z. Let w be a neighbor of v; outside P such that the order
of T, is maximum among the components of T'—v; except T, _, and Ty, . Let p = max{dr(vi,z) : @ € V(T)}.
As d = dr(vo,vq) = dr(vi,v0) + dr (v, v4), we have p < dp(v;,v0) =4 and p < dp(vi,vq) = d — i. Assume that
|V (Ty,_,)| > |V (Ty,,,)|- Suppose that p < d —i. Let 7" =T — v;w + v;;1w. Then P is still a diametral path of
T’ i.e., T' is a tree of order n with diameter d. By Lemma 2.3, s(T") > s(T), a contradiction. Thus p = d — i.

Let x be a vertex in the median of T'.

Suppose that |V (Ty,_,)| > 5. Let T” be the tree obtained from T — vy, by deleting all edges in T, and adding
all edges in {vg_12 : z € V(T})}. By Lemma 2.1,  may be chosen in V(T,,_,), and z is also in the median
of T'. As we go from T to T’, the distance between = and any vertex different from w is increased or remains
unchanged. Thus s(77)—s(T') = sy (z)—sr(z) > dp(z,w)—dr(z,w) = d—i—1 > 0, implying that s(T") > s(T),
a contradiction. It follows that |V(T,,_,)| < %. Similarly, if |V (T,)| > %, then, as above, we may form a tree
T from T — v;v;41 by deleting all edges in T,,,, and adding all edges in {viz: 2z € V(T,,,,)}, and 2 € V(Ty)
is in the median of T and T”, such that s(T") — s(T') > dr/(x,v;11) — dr(x,v;41) =i — 1 > 0, a contradiction.
So |V(Ty)| < . By Lemma 2.1, x = v;.

Let a = |V(Ty,_,)| and ¢ = |V(T)|. Let Vo = V(T},) if a+c < | 5] and let Vj be a subset of V(T,) consisting
of | 5] — a vertices otherwise. Let 7" be the tree obtained from T — v;,, by deleting all the edges in T3, and
adding all edges in {vi1z: 2z € Vo}U{vg_12: 2 € V(T3,) \ Vo }. Then v; is also in the median of 7" by Lemma 2.1.
This is true for a + ¢ > [ § | because from a + ¢+ [V(T,,,)| < n —1 we have |[V(T,, ;)| +a+c— 5] < 5.

As we go from T to T, the distance between v; and any vertex different from w is increased or remains
unchanged. Thus s(T") — s(T) = spv(v;) — sp(v;) > dpo(vi,w) — dr(v;,w) = min{i,d —i} —1=d—i—1>0,
implying that s(T") > s(T'), a contradiction. Now we have proved that o = 2. That is, T = D,,(p, ¢) for some
p, g with p+¢g=mn—d+ 1. By Lemma 2.4, we have T = Dn(["_Td“], L”‘T‘”lj) a

For 3 <d <n-—1,let F = D,([=22], |2=¢tL]) and h(n,d) = s(F). Let zy be the edge of F with

dp(z) > 2 and 0p(y) = 1+ [2=2HL]. Then F,, = D, ([*=0H 2= DF ) By Lemma 2.2, we have
h(n,d) > h(n,d —1).

Let P, ; be the tree obtained from the path P,_; = v;...v,_; by attaching a pendant edge at vertex v;,
where 2 <4 < [§]. Note that P, » = D,(2,1).

Corollary 3.4. Suppose that T is a tree of order n, and T 2 P,,. Then s(T) < L#j with equality if and only
if T = Dy,(2,1). Moreover, if T 2 D,(2,1), then s(T) < L#J with equality if and only if T = D, (2,2), P, 3.

Proof. Let d be the diameter of T. Then d < n — 2. If d < n — 3, then by Theorem 3.3, s(T) < h(n,d) <
h(n,n —3) = L”zT_égj with equalities if and only if "= D, (2,2). If d = n — 2, then T'= P, ; with 2 < i < | §],

and s(7T) is equal to L"24_3j if i =2, L”24_8J if i = 3, and is at most L”24_8J —1ifi>4. O
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Note that, if v and v are two nonadjacent vertices in a connected graph G, then s(G) > s(G + uv).
Suppose that G is a unicyclic graph of order n > 4 with diameter d, where 2 < d < n — 2. By Theorem 3.3,

S(G)S{d(2n—4d)+1J

with equality if and only if G is isomorphic to a graph with diameter d obtained from Dn([”_Td“}, L”‘T‘HJ)
by adding an edge between two pendant vertices.

The eccentricity eg(u) of vertex w in a connected graph G is its distance to a farthest vertex. If u is a vertex
such that dg(u,v) = eg(v), then u is called an eccentric vertex of v. Recall that the radius of G is defined to
be the minimum eccentricities of all vertices of G. Let diam(G) and r(G) be the diameter and radius of G,
respectively. A vertex v is central if eg(v) = r(G). Buckley and Lewinter [8] characterized graphs that have
diameter-preserving spanning trees. They showed that a connected graph G has a diameter-preserving spanning
tree if either

(1) diam(G) = 2r(G), or
(2) diam(G) = 2r(G) and G contains a pair of adjacent central vertices x and y that have no common eccentric
vertex.

Let G be a connected graph with diameter-preserving spanning trees, and let d be the diameter of GG, where
2 <d <n—1. Then s(G) < s(T) for a spanning tree T of diameter d of G. Thus, by Theorem 3.3, we have
s(G) < s(T) < |22 DHL | with equality if G 2 D, ([2=9+1], | =gt |),

4. MINIMUM STATUS AND NUMBER OF PENDANT VERTICES

In this section, we give sharp lower and upper bounds for the minimum status of a tree with fixed number of
pendant vertices, and characterize the unique trees achieving these bounds.

For 2 < p < n—1, let P(n, p) be the set of trees of order n with p pendant vertices. Particularly, P(n,2) = {P,}
and P(n,n — 1) = {S,}.

For 3 <p <n-—1,let S, , be the tree with p pendant paths of almost equal lengths (i.e., n — 1 — pL”TTlJ
pendant paths of length L"lej +1and p+ pL"leJ — (n — 1) pendant paths of length L%J) at a common
vertex. Particularly, Sy, ,—1 = S,. Let S, 2 = P,.

Theorem 4.1. Suppose that T € P(n,p), where 2 < p <mn —1. Then

pl22 )7 — (20— p—2)| 251

™Y >n—1-—
s(T)>n 5

with equality if and only if T = S, .

Proof. 1t is trivial for p = 2,n — 1. Suppose that 3 <p <n — 2.
Let = be the vertex in S, , of degree p. By Lemma 2.1, z is in the median of S, ,. By direct calculation,

we have
L5 n—1 n—1
s E i feeron ) (55 )
= p p

=p SR o [P [ e

plE=L |2 — (20 —p—2)| 251
: |

=n—1-—
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Let T be a tree in P(n,p) such that its minimum status is as small as possible. By the value of s(S, ),
it suffices to show that T2 S, ;.

Suppose that there are at least two vertices with degree at least three in 7. Then we may choose two vertices,
say w1 and ws, in T with degree at least three, such that dr(wy,ws) is as small as possible. Let P = vg ... vy
be the unique path connecting w; and ws, where vg = wy and v, = ws. If the length of P is at least two, then
any internal vertex of P has degree two in T'. Let T}, be the component of T — v; containing w; and 7, the
component of T'— vy_1 containing ws.

Let Np(wi)\{v1} = {u1,...,us}. Fori =1,... s, let T,,, be the component of T'— w; containing wu;. Assume
that |V (Ty,)| < --- < |V(Ty.)|- Denote a = >0, |[V(Ty,)

Assume that |V(Ty,)| < |[V(Tw,)|- Let T/ = T — {wyu; 1 i = 2,...,8} + {wau; : i = 2,...,s}. Note that
the pendant vertices of T” are just pendant vertices of T, i.e., T’ € P(n,p). Let x be a vertex in the median of
T. Then z € V(Ty,) U {”Léj ey w_l}, which follows from Lemma 2.1 and the fact that [V/(T,,)| + [£] > 2

if £ > 2, and follows from Lemma 2.1 if ¢/ = 1.

Suppose that z € V(T,,,). By Lemma 2.1, z is also in the median of 7”. As we go from T to T, the distance
between x and a vertex of Uf_,V(Ty,) is decreased by dr(ws,ws), and the distance between x and any other
vertex remains unchanged. Thus

s(T") = s(T) = sy (x) — sp(x) = —dp(w1,w2) - a <0,

implying that s(I") < s(T), a contradiction. It follows that @ = v; for some i with |£] <i < ¢—1.

Note that s > 2 and |V (Ty,,)| =1+ Z;=1 [V(Ty;)| = |V(Ty,)| + s. Thus, we have |V(Ty,)| < [V(Tw,)| - 2,
implying that [V (Ty,)| — |V (Tw,)| +1 < 0.

Suppose that a < ¢ —i—1, d.e., i +a < £ — 1. Then ¢ > 2. By Lemma 2.1, v;1, is in the median of T".
Note that

a if z € {vg,...,vi—1 UV (Ty,)
drr(Viga,2) —dr(vi,2) = S —a if 2€V(Tyy)U{Vitat1, .-, 0e—1}
0—2i—a ifzeV(T,)U...UV(Ty,)
and
1+a—1 i+a—1
Y dri(viva,vy) = Y dr(vi,vy).
j=it+1 j=it1
Thus

$(T") = s(T) = s1/(vi4a) — s7(3)
=a(i + |V(Tu,)]) —a([V(Tw,)| +¢—i—a—1)+ ({ —2i —a)a
=ali+|V(Tu,)| = V(Tw,)| —l+i+a+1+0—2i—a)
= a([V(Tu,)| = [V(Tw,)| +1) <0,

implying that s(7") < s(T'), a contradiction. It follows that a > ¢ — i, where ¢ > 1. Then ws is in the median of
T’ by Lemma 2.1. Note that

{—1 ifZE{’Uo,...,’Ui_l}UV(Tul)
dT/(wg, Z) — dT(’UZ', Z) = 7(6 — Z) if z € V(TU,Q) \ {’wg}
—i if z€ V(Ty,)U...UV(Ty,)

and

-1 -1
Z dT/(w27’l)j) = Z dT(Ui7’l)j).

j=i+1 j=i+1
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Thus

s(T") = s(T) = s7:(wa) — s7(v;)

= =)+ |V(Tu)]) = (€ =) (|V(Tw,)| = 1) — ai
S =)@+ [V(Tu)| = [V(Two) [ + 1= 4)
= (=) (V(Tu,)| = [V(Tw,)| +1) <0,

implying that s(T”) < s(T), also a contradiction. Therefore, there is exactly one vertex with degree at least
three in T. As T € P(n,p), T consists of p pendant paths at a common vertex. Now by Lemma 2.6, we have
T8, O

Corollary 4.2. If 2 <p <n—2, then s(Syp) > $(Snp+1)-

Proof. Let x be the vertex of degree p in S, , and xy be an edge of a longest pendant path in S, ,, where if
p =2, x is any vertex of degree two and zy is in the longer sub-path with a terminal vertex x. By Lemma 2.2,
s(Snp) > s ((Sn,p)zy)- Note that (Snp),, € P(n,p+1). By Theorem 4.1, s <(S”»p)my) > 5(Sn,pt1). It follows
that s(Sn.p) > s(Snp+1)- O

Theorem 4.3. Suppose that T € P(n,p), where 2 <p <n —1. Then

n2_p2+2p

im <[22
with equality if and only if T = Dy, ([5],5]).

Proof. By Lemma 2.5, we have s(D,([5],[5])) = L"hzﬂj.

Let T be a tree in P(n, p) such that its minimum status is as large as possible. From the value of the status of
Dy ([51,15]), it suffices to show that T' = D,,([£], [£]). It is trivial for p = 2, — 1. Suppose that 3 <p <n—2.

Let a be the number of quasi-pendant vertices in T'. Since the diameter of T is at least three, we have o > 2.
Suppose that o > 3. Then there are at least three components, say T,,, T, and T,, in T'— u for some vertex u,
and at least two of them are not nontrivial, where v, w, z € Nr(u). Assume that |V (T,)| > |V (Tw)| > |[V(T%)|.
Then T, and T, are nontrivial. Let u; be a quasi-pendant vertex of T,,. Then TV = T — uz + uyz is a tree in
P(n,p). By Lemma 2.3, s(T") > s(T), a contradiction. Therefore, we have o = 2. That is, T = D,,(¢1,¢2), where
01 >0y > 1 and {1 + fo = p. By Lemma 2.4, we have T'= D, ([ 5], [£]). O

We note that Theorem 4.3 follows also from Theorem 3.3. Suppose that T € P(n,p), where 2 < p <
n — 1. Let d be the diameter of T. As a diametral path contains exactly two pendant vertices, we have d <

n —p + 1. By Theorem 3.3, s(T) < h(n,d) < h(n,n —p+1) = L%J with equalities if and only if
T = Dy (245, |28 ) with d =n —p+1, e, T2 Du([3], [5))-

5. MINIMUM STATUS AND NUMBER OF ODD VERTICES

In this section, we give sharp lower and upper bounds for the minimum status of a tree with fixed number of
odd vertices, and characterize the unique trees achieving these bounds.
For integers n and k with 1 <k < |%], let O(n, k) be the set of trees of order n with 2k odd vertices [23].

Theorem 5.1. Suppose that T' € O(n, k), where 1 <k <[5 |. Then

s(f)zn—1-k VQ_lier(n—k—n Vz_li

with equality if and only if T = S, o, where if k = 5, then Sy, , = S,
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Proof. The case k = 1 is trivial as in this case, T2 P, = S, 5. The case k = [ 5| is also trivial as S, = 2|2 ]
is the unique tree of order n with smallest minimum status n — 1.

Suppose that 2 < k < | 5], i.e., 4 < 2k <n — 2. Let p be the number of pendant vertices of T'. Then p < 2k.
By Theorem 4.1 and Corollary 4.2, we have

$(T) > 5(Snp) > 8(Snox) =n—1—k {nQ—li +(n—k-1) V;IclJ

with equalities if and only if T'= S, ,, and p = 2k, i.e., T = S, 2. O

Theorem 5.2. Suppose that T' € Q(n, k), where 1 <k < |§]. Then

(
{ n+1 k)? J {2nk73k1+6k72nJ if k is odd
|

2 . .
”H k)? J {2"’“_3’“4"’67’3_2% —1 ifkiseven

with equality if and only if T = C,([551], [ 552 ).

Proof. Let a = [%1], b = [52] and ¢ = [®=%]. Then a +b = k — 1 and a = bb + 1. Let

H = Cy(a,b), whose vertices are labelled as before. Let 2 = v.. Then z is in the median of H by Lemma 2.1.
Let U={u;:i=1,....n+1—k}tand W ={v;:i=2,...,a+1,n+1—-k—b,...,n—k}. By direct calculation,

we have )2
n+1-—
5 dte) = s(Pusin) = | P
uelU
and
a b
dd@u)=> (c—1-a+i)+» (n+1-k—b—c+i)
ueWw i=1 i=1
1 b(b+1
= c—1—a)+$+(n+1—k—b—c)b+ (; )
_Ja(n —k—2a) +ala+1) ifa=5b
S Jle-1D)n+1-k—2a)+c—1—-a—a* ifa=b+1
(k—1)@n—3k+3) if & is odd,
(k=2) (2n+2 k) 4 [2H1=k] — 1 if k is even.
Thus

s(H)= de,u)

cU ueW
{(nJrl k) J {2nk73k1+6k72nJ if k is odd,

[(n+14—k)2J n {znk—sk?ﬁk—QnJ 1 if ks even.

Let T be a tree in O(n,k) such that its minimum status is as large as possible. By the value of
s(Cu([5521, L%J)) it suffices to show that T = C,,([551], [ 552 ]).

If k£ = 1, then it is obvious that T' = P,, = C,,(0,0).

Suppose that & > 2. We claim that the maximum odd degree of T is 3. Otherwise, dr(u) = 2t + 1 from
some u € V(T) and t > 2. Let Nr(u) = {uy,...,uz+1}. Let T; be the component of T — u containing w;,
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where 1 < ¢ < 2¢t 4+ 1. Assume that |V(T1)| > |V(T2)|. Let z be a pendant vertex of T' in V(T2), and let
T =T —{uu; : 3 < i< 2t}+ {zu; : 3 < i < 2t}. Note that the degrees of u and z are still odd in 7.
Then 77 € O(n, k). By Lemma 2.3, s(T") > s(T), a contradiction. Thus, the maximum odd degree of T is 3, as
claimed.

If k= %, then by Lemma 2.7, T'= C, ((%], L%J)

Suppose that k < Z. Then there is at least one even vertex in 7. We claim that all even vertices have degree

two. Otherwise, (5T(1j) = 2t for some w € V(T), where t > 2. Let Ny(w) = {w1,...,wa}. Let T; be the
component of T'—w containing w;, where 1 <4 < 2¢t. Assume that |V (T1)| > |V (T2)|. Let z be a pendant vertex
of T in V(T3), and let T" = T — wws + zws. Note that, in 7", the degree of w is odd and the degree of z is even.
Then T € O(n, k). By Lemma 2.3, s(T") > s(T'), a contradiction. Thus, all even vertices of T" have degree two.

Now, we claim T is a caterpillar. Otherwise, as the maximum degree of T' is three, there is a vertex u of
degree three in T such that u still has degree three in the tree obtained from T by deleting all pendant vertices.
Let Np(u) = {u1,usz,us}. Then dp(u;) > 2 for i = 1,2,3. Let T; be the component of T' — u containing wu;,
where ¢ = 1,2,3. Let U be the set of vertices of degree two in T. Suppose that U € V(T;) for any ¢ = 1,2, 3,
say v1 € V(T1) and ve € V(T3) for vi,v9 € U. Assume that |V (T1)| > |[V(T3)]. Let T* = T — uusz + vaus.
As 07« (u) = 2 and dp-(v2) = 3, we have T* € O(n, k). By Lemma 2.3, s(T*) > s(T), a contradiction. Therefore,
U C V(T;) for some i = 1,2,3, say U C V(Ty). Suppose that V(T3) (V(T3), respectively) contains r (¢,
respectively) vertices of degree three of T. Then T' = Ty (r + 1,¢t + 1) € O(n, k), where r,t > 1. Assume that
r > t. Note that Ty(r + 2,t) € O(n,k). By Lemma 2.7, s(T1(r + 2,t)) > s(T), a contradiction. Thus, T is
a caterpillar, as claimed. By Lemma 2.8, the set of all n — 2k vertices of degree two induces a path, and thus
T = Cy(a,b) for some a and b with a + b =k — 1. By Lemma 2.9, we have T' = C,,([£51], | 552 ). O

A vertex in a graph is called a branching vertex if its degree is at least three. Let T" be a tree of order n with
k branching vertices. Let p be the number of pendant vertices in T. Then p+2(n—p—k) + 3k < 2(n—1), i.e.,
p > k + 2. This implies that 2k +2 <k +p <n, and thus, k¥ < 5 — 1.

n

Corollary 5.3. Suppose that T is a tree of order n with k branching vertices, and 0 < k < 2 — 1. Then
s(T) < S(Cn([g“, LgJ)) with equality if and only if T = Cn((%k LgJ)

[N~}

Proof. If k = 0, then the result follows from the known fact that P, is the unique tree of order n whose minimum
status is maximum [2].

Suppose that k£ > 1. Let T be a tree of order n with k branching vertices such that its minimum status is as
large as possible.

Let A be the maximum degree of T'. Suppose that A > 4. Let v € V(T') and Nr(u) = {u1,...,ua}. Let T;
be the component of T'— u containing u;, where 1 <14 < A. Assume that |V (17)| > |V(T2)|. Let w be a pendant
vertex of T in V(T5), and let 7" = T — uuz + wugz. Then T” is a tree of order n with k branching vertices. By
Lemma 2.3, s(T") > s(T), a contradiction. Hence A = 3. Let p be the number of pendant vertices in 7. As
p+2(n—k—p)+3k=2(n—1), we have p = k + 2, and thus T is a tree of order n with 2k + 2 odd vertices.
By Theorem 5.2, we have T = C,,([£], [ £]). O

6. MINIMUM STATUS AND NUMBER OF VERTICES OF DEGREE TWO

For integers n and ¢t with 0 < ¢t < n — 2, let H(n,t) be the set of trees of order n with ¢ vertices of degree
two. Note that H(n,n —2) = {P,}, H(n,n — 3) = 0, and H(n,0) is the class of series-reduced trees of order n.
So we only consider trees in H(n,¢) with 0 <t <n — 4.

Theorem 6.1. Suppose that T € H(n,t), where 0 <t <n —4. Then
2

R | 7 M ] s
S Z=n—1— 2

with equality if and only if T =2 Sy —t—1.
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Proof. The case t = 0 is trivial as in this case S, (= Sp,n—1) is the unique tree of order n with smallest minimum
status n — 1.
Suppose that ¢ > 1. Let p be the number of pendant vertices of T'. As there is a vertex with degree at least 3,
we have p <n —t — 1. By Theorem 4.1 and Corollary 4.2, we have

n—1 |2 n—1
ST > s(5) > (5o ) 1 P D) ;<n+t— 1) 251

with equalities if and only if T =2 S, , and p=n—t—1, d.e., T = Sy, ,_¢_1. O

Lemma 6.2. Let T be a tree in H(n,t) such that s(T) is mazimum, where 0 <t < n — 4. Then the mazimum
degree of T is at most 4, T is caterpillar, and there are at most two vertices of degree four in T.

Proof. Let A be the maximum degree of T. Suppose that A > 5. Let u € V(T) with dr(u) = A(T) and let
Np(u) = {ug,...,ua}. For 1 <i < A let T; be the component of T' — u containing u;. Suppose without loss
of generality |V (T1)| > |[V(To)|. Let T/ = T — {uw; : 4 < i < A} + {wu; : 4 < i < A}, where w is a pendant
vertex of T in V(T3). As op/(u) = 3, dp(w) = A —2 > 3 and 07/ (v) = dp(v) for v € V(T') \ {u, w}, we have
T" € H(n,t). By Lemma 2.3, s(T") > s(T'), a contradiction. Therefore A < 4.

Suppose that T' is not a caterpillar. Then for some vertex u of T', T'— u has three nontrivial components.
Note that dr(u) = 3,4 as A < 4.

Case 1. p(u) = 3.

Let Np(u) = {u1,us,us}. Let T; be the component of T — w containing u; for i = 1,2,3. Assume that
[V(Th)| > |V (T2)| > |V(T5)]. Suppose first that T" has a vertex w of degree two in V/(T). Let T/ = T —uug+wug.
As 07/ (u) = 2, op(w) = 3 and I/ (2) = p(z) for z € V(T) \ {u, w}, we have T” € H(n,t). By Lemma 2.3,
s(T") > s(T), a contradiction. Therefore, T has no vertex of degree two in V(T5). Let w1 be a pendant vertex of
T in V(T3) such that dr(u, w;) = max{dr(u,s) : s € V(Tz)}. Let 7" = T — {uug, wiwa } + {uvwy, waus}, where
wy is the neighbor of w;. Note that T" € H(n,t).

Let x be a vertex in the median of T. As |V(T1)| > |V (T2)| > |V (T5)], we have z € V(T1)U{u} by Lemma 2.1.

Case 1.1. z € V(T1).

By Lemma 2.1, x is also in the median of T’. As we go from T to T”, the distance between x and a vertex
of V(T5) is increased by dr(u,ws), the distance between x and w; is decreased by dr(u,ws), and the distance
between x and any other vertex remains unchanged. Thus

s(T") — s(T) = sp:(z) — sr(x)
= dr(u, w2)|V(T3)[ — dr(u, w2)
= dr(u, wp)(|V(T3)] — 1) > 0,

implying that s(7") > s(T), a contradiction.

Case 1.2. z =u

Let 2’ be a vertex in the median of 7/. By Lemma 2.1, 2’ lies on the path connecting u and ws in T”. Note
that dp/ (2, s) — dr(z,s) = dr(u,2’) for s € V(Th), dp (2, s) — dr(z,8) > —dr(u,a’) for s € V(Ta) \ {w1},
dr (2, s) — dp(z,8) = dr(we,2’) for s € V(T3), and dp (2',w1) — dp(z, w1) = —dr(wa, z’). Thus

a contradiction.
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Case 2. op(u) = 4.

Let Nr(u) = {u1,us,us,us}. Let T; be the component of T'— u containing u; for ¢ = 1,...,4. Assume that
Ty, Tz and T3 are nontrivial, and |V (T1)| > |V (T%2)|. Suppose that T" has a vertex, say w, of degree two in V (T3).
Let T = T — {uus, uug } + {wus, wuy }. As é7(u) = 2, ép(w) = 4 and o7/ (v) = dr(v) for any v € V(T)\ {u, w},
we have T € H(n,t). By Lemma 2.3, s(T") > s(T), a contradiction. Thus, T has no vertex of degree two in
V(T3). Then there is a vertex z € V(T3) such that ér(z) = 3,4. Let T/ = T — uus + zus. Then 77 € H(n,t). By
Lemma 2.3, s(T") > s(T'), a contradiction.

By combining Cases 1 and 2, we conclude that T is a caterpillar.

Suppose that there are three vertices, say vy, v, and vz in T with degree four. As T is a caterpillar, vy, vg
and v lie on a diametral path of T, and so one of them, say vz, lies on the path P connecting the other two
vertices vy and vy. Let T; be the component of T — v containing v; for ¢ = 1, 2. Assume that |V (T1)| > |V (T2)|.
Let z be a neighbor of v outside the path P in T. Let 7" =T — v3z + vaz. Then T € H(n,t). By Lemma 2.3,
s(T") > s(T'), a contradiction. Therefore, there are at most two vertices of degree four in 7' O

Lemma 6.3. Let T € H(n,t) such that s(T) is mazimum, where 0 <t < n—4. Let k; be the number of vertices
of degree i in T, where 1 <i < 4. Then

ko = n—t+3
1= 72
ks ="==2 ifn—tis odd,
kys=1
and
kl _ n7§+2 kl — n7§+4

kg =2=1=2  or {ky=2=t=8  ifn—tiseven.
k4 = O k'4 — 2

Proof. Trivially, ks = t. By Lemma 6.1, the maximum degree of T' is at most 4 and ks < 2. Now the result
follows from the facts that k1 + ko + ks + k4 = n and ky + 2kg + 3k3 + 4ks = 2(n — 1). O

Lemma 6.4. Let T € H(n,t) such that s(T) is mazimum, where 0 <t <n —4. Ifu € V(T) with ér(u) = 4,
then T — u has at most one nontrivial component.

Proof. From Lemma 6.1, T is a caterpillar with at most two vertices of degree four. Let Nr(u) = {uq, ua, us, uq}.
Suppose that T — u has two nontrivial components, say T; and Ts, with u; € V(T;) for ¢ = 1,2. Assume that
[V (T1)| > |V (To)|. If T has a vertex w of degree two in V(T%), then by setting 77 = T — {uug, uus } + {wusz, wug },
we have T' € H(n, t), and by Lemma 2.3, s(T") > s(T), which is a contradiction. Thus T" has no vertex of degree
two in V(T2). Then ér(w) = 3,4 for some w € V(Ts). Let T" = T —uuz+wus. Then T” € H(n, t). By Lemma 2.3,
s(T") > s(T), a contradiction. O

For nonnegative integers a,b and positive integer n with 2(a +b) + 5 < n, let R, (a,b) be the tree of order n
obtained from a path u;...u,_,—p by attaching pendant vertex v; to us, and then attaching pendant vertex
v; to u; for each 2 <i <a+2 and each ¢ with n —a —2b—2 < ¢ <n—a—b— 3. The structure of R,(a,b) is
shown in Figure 2.

Lemma 6.5. For a > max{b, 1} and 2(a + b) + 5 < n, we have
$(Rp(a—1,b+1)) > s(Ry(a,b)).

Proof. Let R, = R,(a,b). Let R, = R, — Ug4+2Va+2 + Up—q—2b—3Uat2. Then R, =2 R, (a —1,b+ 1).



MINIMUM STATUS OF TREES WITH GIVEN PARAMETERS S779

) 2 V3 Va2 Vi-a-2b-2  Vn-a-b-4 Vypgp-3

u, u; us Uy Up-a-2b-2 Un-a-b-4 Up-q-p-3 Up-a-b-2

FIGURE 2. The tree R,(a,b).

Case 1. 2a + 3 > [g}

Let z = Ural- By Lemma 2.1, z is in the medians of R, and R),. As we go from R, to R), the distance
between x and v,y is increased by n —a —2b— 3 — [2] — (a + 2 — [%]) (which equals n — 2a — 2b — 5 > 0),
and the distance between z and any other vertex remains unchanged. Thus s(R},) > s(R,,).

Case 2. 2a+ 3 < [g}

Let x = U] a2 and 2’ = U] —a-1- By Lemma 2.1, x is in the median of R, and z’ is in the median of

R!,. Let T} be the component of R, — z containing u;, and T5 the component of R,, — 2’ containing u,_q—p—2.
Note that dp, (2, 2) — dr, (z,2) = 1 for z € V(T1) \ {vat2}, dr; (2, 2) — dg, (x,2) = —1 for z € V(T3), and

dR;m(xl,UaJ,_Q)7an(x,’Ua+2) =n—a—2b—3— ([gw fafl) — ([g—‘ fanf(aqLQ))

=n-2 {g—‘ +2(a—b) + 2.
If « is of degree two in R,,, then

s(R,) — s(Rn) = sg, (') — sg, (x)
= V()| = 1= [V(T2)| + dr; (¢, Vay2) — dr,, (T, Vay2)

- ([51-9-1-(]-1) +n-25] r20-n +2

=2(a—b)+1>0.
If x is of degree three in R,,, then = ug42, vare ¢ V(T1), and thus

s(Ry,) — s(Ry) = sry (2') — sg, (2)
= |V(T)| — |V(T2)| + dr, (z', vat2) — dr,, (%, Vat2)

- (310 (3] +n-2[3] 20+

=2(a—b)+1>0
It follows that s(R.) > s(Ry). O
Lemma 6.6. Forb>a+3 and 2(a+b) +5 < n, we have
$(Rp(a+1,b—1)) > s(Ry(a,b)).

Proof. Let R, = R,(a,b). Let R, = Ry, — Up—q—2b—2Un—a—2b—2 + Ua+3Vn—q—2o—2. Then R = R, (a+1,b—1).

Case 1. 2b > [%w
Let x = Up—q—p2—[n51]- By Lemma 2.1, z is in the medians of R, and R/,. As we go from R, to R}, the

n—1 n—1

distance between z and v, —q—25—2 is increased by n—a—b—2—[ 27| —(a+3)—[n—a—b—2—[ 271 | - (n—a—2b—2)]
(which equal to n — 2a — 2b — 5 > 0), and the distance between x and any other vertex remains unchanged.
Thus s(R],) > s(Ry,).
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Vaiz Vn-a-2b-5  Vya-b6
Uy Un-a-20-5  Un-a-b-6 Unabs Unabd

FIGURE 3. The tree H,(a,b).

Case 2. 2b < {%1
Let z = u(ﬂ] _a_o and = u[ﬂ —u_3- By Lemma 2.1, x is in the median of R,,, and 2’ is in the median of R,,.
2 2
Let T} and T be the components of R,, —z containing u,_,_,_2 and R,, —x’ containing u1, respectively. As we
go from R, to R, we have dr: (z',2) —dgr,(2,2) =1 for z € V(T1) \{vn—a—20-2}, dr; (¢',2) —dRr, (z,2) = —1
for z € V(T3), and

A (', vn-a-20-2) = di, (@, Vn—a-2-2) = | 5| —a =3 = (a+3)
- (r-a-m-a= (5] -e-2)

ﬂg]—n+mb—@—a

If x is of degree two in R,,, then

s(Ry,) — s(Rn) = s, () — sr, (2)
= |V(T1)| -1- IV(T2)| + dRil (Z‘/, Un—a—Qb—Q) - an (x7vn—a—2b—2)

— gJ _1_([3] _2)+2[g] —n+20b-a)—6
—2(b—a)—5>0.

If x is of degree three in R,,, then 2 = up_q—2p—2, Un—a—2v—2 ¢ V(T1), and thus

s(Ry) — s(Ry) = spy, (¢') — sg, (2)
= |V(T)| = [V(T2)| + dr; (2', vp—a—20-2) — dR, (T, Vn—a—2p—2)

(51-0)~([3] ) ef3] oo

=2(b—a)—5>0
It follows that s(R.) > s(R,). O

For nonnegative integers a, b and positive integer n with 2(a +b) + 8 < n, let H,(a,b) be the tree of order n
obtained from the path w; ... u,—4—p—4 by attaching a pendant vertex to us and w,,_,_p—5 respectively, and then
attaching pendant vertex v; to u; for each ¢ with 2 <i <a+2and eachi withn—a—20—5<i<n—a—0b-25,
which is shown in Figure 3.

Lemma 6.7. Suppose that 2(a +b) +8 <n. Ifa—b>2, then
s(Hyp(a—1,b4+1)) > s(Hp(a,b)).

Proof. Let T = Hp(a,b). Let T" =T — tg42Vat+2 + Un—a—26—6Vat2. Then T = H, (a — 1,b+ 1).
Case 1. 2a +3 > [g-‘
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Note that =z = Ula is in the median of T" and 7" by Lemma 2.1. As we go from T to T”, the distance between
4

@ and Vg2 is increased by n —a —2b— 6 — [2] — (a +2 — [%]) (which is equal to n — 2(a + b) — 8 > 0), and
the distance between = and any other vertex remains unchanged. Thus s(7") > s(T).

Case 2. 2a+3 < [gw

Let z = Ula] a2 and 2’ = Uls Then by Lemma 2.1, z is in the median of T, and 2’ is in the median
2 2

—a—1"

of T'. By considering whether v, is in V(T}) as in the proof Lemma 2.9, we have s(T") > s(T). O

For simplicity, let R, ; = Ry, ([2=4=5] — 1, [ 2==5 | 4+ 1) forn—t > 5 and Cyy = C,, ([252 — 4], [ 252 — &)
forn —t > 4.

Theorem 6.8. Suppose that T € H(n,t), where 0 <t <n —4.

(i) If n—t =25, then

oT) < VQZIQJ

with equality if and only if T = R, (0,0). If n —t is odd and at least 7, then

t+1)2 2 4 2nt 4+ 6n — 3t2 — 10t
R e e

with equality if and only if T = Ry, ;.
(ii) If n —t is even, then

{(nﬁ;z)w I [n2+2nt+4¥é—3t2—12tJ ifn—t=2 (mod 4)

s(T) <

VTH_I;Q)QJ + ["ZH”H%*&Q*MJ —1 ifn—t=0(mod 4)

with equality if and only if T = C,, 4.

Proof. Let T be a tree in H(n, t) such that s(7") is maximum.

Case 1. n —t is odd.

By Lemmas 6.2—6.4, T is a caterpillar with exactly one vertex of maximum degree four, and the vertex of
degree four has at least three pendant neighbors. If n—¢ = 5, then T' = R,,(0, 0). Suppose that n—t > 7. Then by
Lemma 2.8, T = R,,(a, b) for some a and b. Since there are “=!=2 vertices of degree three, we have a+b = 2==5.
By Lemmas 6.5 and 6.6, we have T'=2 R,, ([‘%‘b] -1, VT—H)J + 1) =R, ({%] -1, L%J + 1) =R,

n—4
By Lemma 2.1, uu_z is in the median of R,,(0,0). Thus, if n is even, then s(R,(0,0)) = 3,2, j+n—4+

n—2

n—->5 n—1
S, 2 J = 522, and if n s odd, then s(R,(0,0)) = 32,2 j+n—5+ 3,7 j = “512. Thus s(R,(0,0)) =

Jj=

{"2212] Suppose that n —¢ > 7. Let a = [2=2=2] — 1 and b = [%==2| + 1. Then 2a + 2b+ ¢t +5 = n and

b=a+1,a+2 Let ¢c = f%_b_ﬂ Then wu, is in the median of R, ; by Lemma 2.1. Let U = {u; : i =
l,....,n—a—-b—=2tand W={v;:i=1,...,a+2,n—a—2b—2,...,n —a — b— 3}. By direct calculation,

we have
{(n—a—b—?)QJ _ {(n+t+1)2J

Z d(te, u) = s(Pr—g—p—2) = 1 16

uelU
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and
a+2 b
Zd(uc,u):Z(C—a—2+z’)—1+Z(n—a—2b—2—c+i)
ueW i=1 i=1
:(a+2)(c—a—2)+W—l

b(b+ 1)
2

+(n—a—20—2—-c)b+

_ na+n—3a2—-7a+c—5 ifb=a+1,
)na+2n—3a>—1la—11 ifb=a+2.

Ifb=a+1,thenda+7=n—t n—t=3 (mod 4), and

{”*ﬁ“ if n is odd,
C =

%”3 if n is even.

If b=a+2, then 4a+9 =n —t and thus n —¢t = 1 (mod 4). So we have

”2*3#*2”%6"’10“27 if n —¢ =3 (mod 4) and n is odd
Z d(tue,u) = "2*3t2+2"t1g6"’10t*19 if n —¢ =3 (mod 4) and n is even

2 42 2 3 .
wew n?—3t +2ni§6n710t725 if n—t=1 (mod 4)

B {n2 + 2nt + 6n — 3t2 — 10tJ )

16

It follows that

$(Rnyt) = Z d(ue,u) + Z d(ue,u)

uelU ueW
| (n4+t+1)? N n? + 2nt + 6n — 3t2 — 10t .
B 16 16 '

Case 2. n —t is even.
By Lemmas 6.2-6.4, T is a caterpillar with maximum degree three or four, and if the maximum degree is
four, then there are exactly two such vertices, and each has exactly three pendant neighbors.

If the maximum degree of T is three, then by Lemma 2.8, T = Cy,(a, b) for some a and b with a + b = 2=1=2.
By Lemma 2.9, we have T = (), ((”T_t — %W , L”T_t — %J) =Ch .

Suppose next that the maximum degree of T is four. By Lemma 2.8, we have T = H,,(a,b) for some a and b
with a + b = ”’TH. By Lemma, 6.7, we have T' = H,, (["*t*ﬂ , LL‘FSJ)

1 1
In the following we show that T = C,;. Set H = H, ({"‘i_ J,{"‘i_s]). We need to show that

s(Cp 1) > s(H).
If n = 8, then ¢ = 0, and by direct calculation, we have s(Cp ) = 11 > 10 = s(H). Suppose that n > 8.

Note that H = H,, ({"‘i_s] , L"‘TH;J) and the diameter of H is "T'H —1.Let P =wu...untt be the diametral

2
path of H. Let v; be a pendant vertex adjacent to us and vs a pendant vertex adjacent to Unge g in H,. Let

H' = H —uyv; —Unge_y 02 +urv1 +Urvs. Then H' = C,, ((”T_t — %] , L”Zt - %J) =Cpy. Let z = U[ e ] and

i Untre1] g By Lemma 2.1, z is in the median of H, and z’ is in the median of H'. Let T} be the component
4

of H — 2’ containing u; and T, the component of H — z containing Unge. Note that dgy/(2',w) — dg(z,w) =1
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if 0g(z) =3 and w € V(T2) U{z} \ {v2} with z being the pendant vertex adjacent to z, or if 0y (z) = 2 and
w e V(Te)\ {va},

-1 fweV(T)\{n}

0 if w=wv;

d (2, w) — dy(z,w) = {

and
t+1 t t+1
dp (2, v2) — dpr(, v2) = ntt+vll o _(rtt_,_|nttrl
4 2 4
_ 9 n+t+1 _n—|—t_
B 4 2

1.

If 0 (x) = 3, then

s(H') — s(H) = sy (2') — s (x)
= V(T2)| = (IV(T)| = 1) + d (', v2) — du (, 02),

and if g (z) = 2, then

s(H') = s(H) = sp(2') — su(x)
= (V(T2)l = 1) = (IV(T)| = 1) + du (2, v2) = di (, v2).

Thus, in either case, we have

O e R )

([t )

n+t+1 n+t
2 - -1
e
7n73727wﬁ78 7n+t>0
o 4 2 ’

implying that s(H') > s(H), i.e., s(Cp ) > s(H), as desired.
Note that (), ; has exactly n —t odd vertices. By Theorem 5.2 with 2k = n — ¢, we have

n 2)? n?42n n—3t2— : _
{( +Ig ) J + { Hanttdn ot 12tJ ifn—¢t=2 (mod 4),
$(Cn) = (n+t+2)? 24 ont+d 2_12
L 15 J + {""'"H‘l’é_?’t = tJ —1 ifn—¢t=0 (mod 4).
This completes the proof. (I

As an immediate consequence of Theorem 6.8, we have the following result on the minimum status of series-
reduced trees.

Corollary 6.9. Among all series-reduced trees on n > 5 vertices, R, ¢ for odd n and C, o for even n are the
unique ones with largest minimum status.
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7. CONCLUDING REMARKS

In this paper, we determine the smallest and largest values for the minimum status of trees with given
parameters such as the diameter, the number of pendant vertices, the number of odd vertices, and the number
of vertices of degree two, and we characterize those trees which realize the minima and maxima, respectively.
Recall that n — 1 < s(T) < L”{J for a tree T of order n. The following theorem shows that every integer from

n—1to L”;J is the minimum status of some tree of order n.

Theorem 7.1. For a fized positive integer n and any integer k with n —1 < k < \_"TZJ, there is a tree of order
n such that s(T) = k.

Proof. Tt is trivial for n < 3. Suppose that n > 4. Recall that s(P,) = L%Qj Let = be a vertex in the median
of P,. Consider a nontrivial component 77 of P,, — . The set V(11) U{x} induces a path zg ...z, with o = z.
Let 7Pt10 =P, For¢=2,...,pand i =0,...,0— 2, let

TZ’872 — Terl,O — Tp_1Tp + Tp_oXy

and
T =T — gy wy + iy for i = 0,..., 0 — 3.

The steps of the transformation from T¢t%0 into 749 is displayed as follows: T¢+10 — T6=2 5 ... 760,
Thus the steps of the transformation from P, to T?° is displayed as follows: P, — TPP~2 — ... — TPl
TP0 — rp=lp=3 _, r=10 _, ... 730 _, 720 By Lemma 2.1, z is in the median of 7" for all i and ¢
with 0 < ¢ < /¢ —2and 2 < /¢ < p, and thus the minimum status is decreased by 1 at each step of the above
transformation. If n > 5, then we repeat above process for the unique pendant path with length at least 2 in
the tree T2, and as above, at each step, the minimum status is decreased by 1. Finally, we obtain the star
with minimum status n — 1. O
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