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MINIMUM STATUS OF TREES WITH GIVEN PARAMETERS

Zhene Peng and Bo Zhou∗

Abstract. The status of a vertex v in a connected graph G is defined as the sum of the distances
from v to all other vertices in G. The minimum status of G is the minimum of status of all vertices
of G. We give the smallest and largest values for the minimum status of a tree with fixed parameters
such as the diameter, the number of pendant vertices, the number of odd vertices, and the number of
vertices of degree two, and characterize the unique extremal trees.
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1. Introduction

We consider simple and undirected graphs. Let G be a connected graph of order n with vertex set V (G). The
distance between vertices u and v in G, denoted by dG(u, v), is the length of a shortest path connecting u and
v in G. The status of a vertex u in G is defined as [9, 15]

sG(u) =
∑

v∈V (G)

dG(u, v).

The minimum status of G, denoted by s(G), is defined as [9, 24,27]

s(G) = min{sG(u) : u ∈ V (G)}.

In the literature, the status of a vertex is also known as the distance [12,26], the transmission [21,25,29,30], or
the total distance [6] of a vertex, and if n ≥ 2, the normalized status 1

n−1sG(u) of vertex u in G is called the
average distance from vertex u to all other vertices of G, see [2]. The status or normalized status of a vertex
may be used to measure its closeness centrality in the network [13,14]. The minimum status of a graph G is also
studied through the proximity of G, defined as 1

n−1s(G), see, e.g., [1–5]. Recall that the mean vertex derivation
of G, defined as 1

ns(G), was also studied in [31].
Aouchiche and Hansen [2] gave sharp lower and upper bounds for the minimum status of a graph as a function

of its order, and characterized the extremal graphs, and they also gave a sharp lower bound for the minimum
status of a graph with fixed order and diameter. A trivial lower bound for the minimum status of a connected
graph of order n is n− 1, which is achieved if and only if there is a vertex of degree n− 1. Let G be a connected
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graph of order n. They showed that s(G) ≤ bn2

4 c with equality if and only if G is either the cycle Cn or the
path Pn. If G is a tree, then this result has also been given in [31]. Aouchiche and Hansen [1] gave Nordhaus-
Gaddum-type inequalities for the minimum status of a graph, i.e., lower and upper bounds for s(G) + s(G) and
s(G)s(G) in terms of the order of G with both G and G being connected, where G is the complement of G.
Lin et al. [24] established sharp lower and upper bounds for the minimum status of a graph with maximum
degree, and they characterized extremal graphs for the lower bound and gave a necessary condition for graphs
attaining the upper bound. Rissner and Burkard [27] gave alternate and simple proofs for the results in [24],
and showed that the minimum status and the radius achieve their minimum (maximum, respectively) values
at the same type of trees when order and maximum degree are given. Liang et al. [22] gave sharp lower and
upper bounds for the minimum status of a tree with fixed matching number (domination, respectively), and
characterize the extremal trees. Related work may be found in [2, 3, 10,28].

A vertex in a graph is a pendant vertex if its degree is one, and a vertex in a graph is an odd (even,
respectively) vertex if its degree is odd (even, respectively). By Handshaking Theorem, a graph possesses an
even number of odd vertices. A vertex is an internal vertex if its degree is at least two. A tree whose internal
vertices all have degree at least three is called a series-reduced tree or a homeomorphically irreducible tree
[7, 16,17]. That is, a series-reduced tree has no vertices of degree two.

Following the above work, in this paper, we give sharp lower and upper bounds for the minimum status of
trees using parameters, including the diameter, the number of pendant vertices, the number of odd vertices,
and the number of vertices of degree two, and we also characterize all extremal cases. In some cases, the bounds
may be extended to connected graphs.

2. Preliminaries

For a proper subset U of vertices of a graph G, G − U denotes the subgraph of G obtained by deleting
the vertices from U (and the incident edges), and in particular, we write G − v for G − {v} if U = {v}. For
a subset E1 of edges of G, G− E1 denotes the subgraph obtained from G by deleting all the edges in E1, and
in particular, we write G− uv for G− {uv} if E1 = {uv}. For a subset E2 of unordered vertex pairs of distinct
vertices of G, if each element of E2 is not an edge of G, then G + E2 denotes the graph obtained from G by
adding all elements of E2 as edges, and in particular, we write G+ uv for G+ {uv} if E2 = {uv}.

For a vertex v in a graph G, NG(v) denotes the set of vertices adjacent to v (i.e., neighbors of v) in G, and
the degree of v, denoted by δG(v), is equal to |NG(v)|. For k ≥ 1, we say a path P = v0 . . . vk in a graph G
is a pendant path (of length k) at v0 if δG(v0) > 2, δG(vk) = 1, and if k ≥ 2, δG(v1) = · · · = δG(vk−1) = 2.
A pendant path of length one is also known as a pendant edge.

If P is a pendant path of length ` at vertex v in a graph G, then G is said to be obtained from G−(V (P )\{v})
by attaching a pendant path of length ` at v. Particularly, if ` = 1, say P = vw, then we also say that G is
obtained from G− w by attaching a pendant edge at v (or a pendant vertex to v).

A caterpillar is a tree with a path such that each vertex of the tree either lies on this path or is adjacent to
a vertex in this path. Note that Sn and Pn are caterpillars.

A quasi-pendant vertex is a vertex that is adjacent to a pendant vertex.
The median of a connected graph G is the set of vertices of G with minimum status. The median of a tree

consists of either one vertex or two adjacent vertices [12,18,31].

Lemma 2.1 ([19, 20, 31]). Let T be a nontrivial tree of order n. Then a vertex x is in the median of T if and
only if |V (C)| ≤ n

2 for every component C of T − x.

It follows from Lemma 2.1 that any pendant vertex in a tree with at least 3 vertices can not be in the median
of this tree.

For a graph G with an cut edge uv, let Guv = G− {vw : w ∈ NG(v) \ {u}}+ {uw : w ∈ NG(v) \ {u}}.

Lemma 2.2 ([22]). Let G be a connected graph and uv be a cut edge of G. If uv is not a pendant edge of G,
then s(G) > s(Guv).
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Lemma 2.3 ([22]). Let T be a tree with u ∈ V (T ) and NT (u) = {u1, . . . , uk}, where k ≥ 3. For 1 ≤ i ≤ k, let
Ti be the component of T − u containing ui. For w ∈ V (T2), let T ′ = T − {uui : 3 ≤ i ≤ t}+ {wui : 3 ≤ i ≤ t},
where 3 ≤ t ≤ k. If |V (T1)| ≥ |V (T2)|, then s(T ′) > s(T ).

For integers n, r and t with r ≥ t ≥ 0 and r + t + 2 ≤ n, we denote by Dn(r, t) the caterpillar formed by
attaching r pendant edges to one terminal vertex and t pendant edges to the other terminal vertex of a path
Pn−r−t. If r + t = n− 1, then Dn(r, t) is just the star Sn. Note that Dn(1, 1) ∼= Pn

∼= Dn(1, 0).

Lemma 2.4 ([22]). If r + t+ 2 ≤ n and r ≥ t ≥ 2, then s(Dn(r, t)) > s(Dn(r + 1, t− 1)).

Lemma 2.5. If 2 ≤ a ≤ n− 1, then s(Dn(da
2 e, b

a
2 c)) = bn2−a2+2a

4 c.
Proof. It is evident for a = 2, n− 1. Suppose that 3 ≤ a ≤ n− 2.

Note that the diameter of Dn(da
2 e, b

a
2 c) is n − a + 1. By Lemma 2.1, the vertex of distance bn−a+1

2 c from
pendant vertex adjacent to a vertex of degree da

2 e+ 1 is in the median of Dn(da
2 e, b

a
2 c). Thus, if n− a is odd,

then

s
(
Dn

(⌈a
2

⌉
,
⌊a

2

⌋))
= 2

n−a+1
2 −1∑
j=1

j +
⌈a

2

⌉
· n− a+ 1

2
+
⌊a

2

⌋
· n− a+ 1

2

=
n2 − a2 + 2a− 1

4
,

and if n− a is even, then

s
(
Dn

(⌈a
2

⌉
,
⌊a

2

⌋))
=

n−a
2 −1∑
j=1

j +

n−a
2∑

j=1

j +
⌈a

2

⌉
· n− a

2
+
⌊a

2

⌋
·
(
n− a

2
+ 1
)

=
(
n− a

2

)2

+
a(n− a)

2
+
⌈a

2

⌉
·

Thus

s
(
Dn

(⌈a
2

⌉
,
⌊a

2

⌋))
=


n2−a2+2a−1

4 if n− a is odd
n2−a2+2a

4 if n− a is even and a is even
n2−a2+2a−2

4 if n− a is even and a is odd

=
⌊
n2 − a2 + 2a

4

⌋
,

as desired. �

For a nontrivial tree T with u ∈ V (T ) and integers p, q ≥ 1, let Tu;p,q be the tree obtained by attaching two
pendant paths, one of length p and one of length q, at u.

Lemma 2.6. Let T be a nontrivial tree with u ∈ V (T ). If p ≥ q + 2 and q ≥ 1, then s(Tu;p,q) > s(Tu;p−1,q+1).

Proof. Let H = Tu;p,q. Let P = v0 . . . vp and Q = w0 . . . wq be the two pendant paths at u (= v0 = w0) in H.
Let H ′ = H − vp−1vp + wqvp. Let x be a vertex in the median of H. As p > q, it follows from Lemma 2.1 that
x 6∈ V (Q) \ {u}.
Case 1. x ∈ V (T ).

By Lemma 2.1, x is also in the median of H ′. As we go from H to H ′, the distance between x and vp is
decreased by p−(q+1) (which is at least 1) and the distance between x and any other vertex remains unchanged.
Therefore

s(H ′)− s(H) = sH′(x)− sH(x) ≤ −1 < 0,

implying that s(H) > s(H ′).
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Figure 1. The tree T (r, t).

Case 2. x ∈ V (P ) \ {u}.
Assume that x = vi, and if two vertices in V (P ) \ {u} are in the median of H, we choose vi with smaller

index i. As δH(x) = 2, there are exactly two components in H − x. Let n be the order of H. By Lemma 2.1, we
have dH(x, vp) = bn

2 c, i.e., p− i = bn
2 c. By Lemma 2.1, vi−1 is in the median of H ′. Note that dH′(vi−1, vp)−

dH(vi, vp) = i+ q−
⌊

n
2

⌋
, dH′(vi−1, z)−dH(vi, z) = 1 for z ∈ {vi+1, . . . , vp−1}, and dH′(vi−1, z)−dH(vi, z) = −1

for z ∈ V (H) \ {vi−1, . . . , vp}. Thus, we have

s(H ′)− s(H) = sH′(vi−1)− sH(vi)

=
∑

z∈V (H′)

dH′(vi−1, z)−
∑

z∈V (H)

dH(vi, z)

=
(
i+ q −

⌊n
2

⌋)
+ 1 · (p− 1− i)− 1 · (n− p− 2 + i)

= p+ q − n+ 1 < 0,

implying that s(H) > s(H ′). �

Let r and t be positive integers. For a nontrivial tree T and a caterpillar C of degrees one or three with
a diametral path u1 . . . ur+t+1, where vi is the unique neighbor of ui outside path u1 . . . ur+t+1 for each
2 ≤ i ≤ r + t, let T (r, t) be the tree of order 2(r + t) − 1 + |V (T )| consisting of T and C such that they
share a unique common vertex vr+1, see Figure 1. Note that T (r, t)− (V (T ) \ {vr+1}) is a caterpillar of degrees
one or three with diametral path u1 . . . ur+t+1, where vi is the unique neighbor of ui outside path u1 . . . ur+t+1

for each 2 ≤ i ≤ r + t.

Lemma 2.7. Let T be a nontrivial tree. If r ≥ t ≥ 2, then

s(T (r + 1, t− 1)) > s(T (r, t)).

Proof. Let H = T (r, t). Let T1 and T2 be the components of G− ur+1 containing u1 and ur+t+1, respectively.
Let

H ′ = H − {ur+1vr+1, ur+2vr+2}+ {ur+1vr+2, ur+2vr+1}.
Then H ′ ∼= T (r + 1, t− 1). As |V (T2)| = 2t− 1 ≤ 2r − 1 = |V (T1)|, we have x /∈ V (T2) by Lemma 2.1.

Case 1. x ∈ V (T ).
By Lemma 2.1, x is also in the median of H ′. Note that dH′(x, z) − dH(x, z) = 1 for z ∈ V (T1) ∪ {ur+1},

dH′(x, z) − dH(x, z) = −1 for z ∈ V (T2) \ {vr+2}, and the distance between x and a vertex of V (T ) ∪ {vr+2}
remains unchanged. Thus

s(H ′)− s(H) = sH′(x)− sH(x)
= 1 · (|V (T1)|+ 1)− 1 · (|V (T2)| − 1)
= |V (T1)| − |V (T2)|+ 2 > 0,

implying that s(H ′) > s(H).
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Case 2. x ∈ V (T1), or x = ur+1 and |V (T1)| = bn
2 c, b

n
2 c − 1.

By Lemma 2.1, x is also in the median of H ′. As we go from H to H ′, the distance between x and a vertex
of V (T ) is increased by 1, the distance between x and vr+2 is decreased by 1, and the distance between x and
any other vertex remains unchanged. Thus s(H ′)− s(H) = |V (T )| − 1 > 0, i.e., s(H ′) > s(H).

Case 3. x = ur+1 and |V (T1)| ≤ bn
2 c − 2.

By Lemma 2.1, ur+2 is a vertex in the median of H ′. Note that dH′(ur+2, z) − dH(ur+1, z) = 1 for z ∈
V (T1), dH′(ur+2, z) − dH(ur+1, z) = −1 for z ∈ V (T2) \ {ur+2, vr+2}, and dH′(ur+2, z) = dH(ur+1, z) for
z ∈ V (T ) ∪ {vr+2}. Thus

s(H ′)− s(H) = sH′(ur+2)− sH(ur+1) = |V (T1)| − (|V (T2)| − 2) > 0,

implying that s(H ′) > s(H). �

Lemma 2.8. Let T be a caterpillar with the largest minimum status in the class of caterpillars of order n with
t ≥ 1 vertices of degree two and maximum degree three, or in the class of caterpillars of order n with t ≥ 1
vertices of degree two and one or two vertices of maximum degree four, where each vertex of degree four has
three pendant neighbors. Let U be the set of vertices of degree two in T . Then U induces a path in T .

Proof. Suppose that U does not induce a path in T . Let P = u0 . . . ud be a diametral path of T . Then there
are three vertices ui, uj , u` with 1 ≤ i < j < ` ≤ d − 1 with δT (uj) = 3 and ui, u` ∈ U . Let T1 and T2 be
the nontrivial components of T − uj containing ui and u`, respectively. Let vj be the pendant neighbor of uj .
Assume that |V (T1)| ≥ |V (T2)|. Let T ′ = T − ujvj + u`vj . By Lemma 2.3, s(T ′) > s(T ), a contradiction. �

For a, b ≥ 0 with 2(a+ b+ 1) ≤ n, let Cn(a, b) be the tree obtained from the path Pn−a−b with consecutive
vertices u1, . . . , un−a−b by attaching a pendant vertex vi to ui for each i with 2 ≤ i ≤ a + 1 and each i with
n− a− 2b ≤ i ≤ n− a− b− 1. In particular Cn(0, 0) is just the path Pn.

Lemma 2.9. If b ≥ 0, a ≥ b+ 2, and 2(a+ b) + 2 < n, then

s(Cn(a− 1, b+ 1)) > s(Cn(a, b)).

Proof. Let T = Cn(a, b). Let T ′ = T − ua+1va+1 + un−a−2b−1va+1. Then T ′ ∼= Cn(a− 1, b+ 1).

Case 1. 2a ≥
⌈

n
2

⌉
.

Note that T −udn−1
4 e+1 contains exactly two nontrivial components of orders 2dn−1

4 e−1 and n−1−2dn−1
4 e,

respectively. By Lemma 2.1, udn−1
4 e+1 is in the median of T and T ′. As we go from T to T ′, the distance between

udn−1
4 e+1 and va+1 is increased by n − a − 2b − 1 −

(⌈
n−1

4

⌉
+ 1
)
−
(
a+ 1− (

⌈
n−1

4

⌉
+ 1)

)
(which is equal to

n− 2(a+ b)− 2, larger than 0), and the distance between udn+1
4 e+1 and any other vertex remains unchanged.

Thus s(T ′) > s(T ), as desired.

Case 2. 2a <
⌈

n
2

⌉
.

Let x = udn
2 e−a and x′ = udn

2 e−a+1. By Lemma 2.1, x is in the median of T and x′ is in the median of T ′.
Let T1 be the component of T −x containing u1, and T2 the component of T −x′ containing un−a−b. Note that

dT ′(x′, z)− dT (x, z) =

{
1 if z ∈ V (T1) \ {va+1}
−1 if z ∈ V (T2)

and

dT ′(x′, va+1)− dT (x, va+1) = n− a− 2b− 1−
(⌈n

2

⌉
− a+ 1

)
−
(⌈n

2

⌉
− a− (a+ 1)

)
= n− 2

⌈n
2

⌉
+ 2(a− b)− 1 ≥ 2.
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If 2a+ 1 =
⌈

n
2

⌉
, then x = ua+1, va+1 6∈ V (T1), and thus

s(T ′)− s(T ) = sT ′(x′)− sT (x)
= |V (T1)| − |V (T2)|+ dT ′(x′, va+1)− dT (x, va+1)

≥
(⌈n

2

⌉
− 2
)
−
(⌊n

2

⌋
− 1
)

+ 2 > 0,

and otherwise, we have

s(T ′)− s(T ) = sT ′(x′)− sT (x)
= |V (T1)| − 1− |V (T2)|+ dT ′(x′, va+1)− dT (x, va+1)

≥
(⌈n

2

⌉
− 1
)
− 1−

(⌊n
2

⌋
− 1
)

+ 2 > 0.

It follows that s(T ′) > s(T ), as desired. �

3. Minimum status and diameter

In this section, we give sharp lower and upper bounds for the minimum status of a tree with fixed diameter,
and characterize the unique trees achieving these bounds.

Let Fn,d be the caterpillar obtained by attaching n−d−1 pendant vertices to vd d
2 e

of the path Pd+1 = v0 . . . vd,
where 2 ≤ d ≤ n− 1. Define Fn,n−1 = Pn. Particularly, Fn,2 = Sn and Fn,3 = Dn(n− 3, 1). The lower bound in
the following theorem has been obtained in [2] for a connected graph of order n and diameter d. However, we
include a proof here for completeness.

Theorem 3.1. Suppose that T is a tree of order n ≥ 4 with diameter d, where 2 ≤ d ≤ n− 1. Then

s(T ) ≥ n− 1− d+
⌊

(d+ 1)2

4

⌋
with equality if and only if T ∼= Fn,d.

Proof. Let x be a vertex in the median of T and P a diametral path of T . Then

s(T ) =
∑

v∈V (P )

dT (x, v) +
∑

v∈V (T )\V (P )

dT (x, v)

≥ s(P ) +
∑

v∈V (T )\V (P )

1

= n− 1− d+
⌊

(d+ 1)2

4

⌋
with equality if and only if x is in the median of P and all vertices outside P are adjacent to x, i.e.,
T ∼= Fn,d. �

Corollary 3.2. Suppose that T is a tree of order n, and T � Sn. Then s(T ) ≥ n with equality if and only if
T ∼=Dn(n−3, 1). Moreover, if T �Dn(n−3, 1), then s(T )≥n+1 with equality if and only if T ∼=Fn,4, Dn(n−4, 2).

Proof. Let d be the diameter of T . Let f(d) = n − 1 − d +
⌊

(d+1)2

4

⌋
for 2 ≤ d ≤ n − 1. It is easy to see that

f(d + 1) > f(d) for 2 ≤ d ≤ n − 2. As T � Sn, we have d ≥ 3. If d ≥ 4, then by Theorem 3.1, we have
s(T ) ≥ f(d) ≥ f(4) = n+ 1 with equalities if and only if T ∼= Fn,4. If d = 3, then T ∼= Dn(r, n− 2− r) for some
r with n−2

2 ≤ r ≤ n− 3, and in this case, s(T ) = 2n− 3− r, which is n if r = n− 3, n+ 1 if r = n− 4 and at
least n+ 2 if r ≤ n− 5. �
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Theorem 3.3. Suppose that T is a tree of order n ≥ 4 with diameter d, where 2 ≤ d ≤ n− 1. Then

s(T ) ≤
⌊
d(2n− d) + 1

4

⌋
with equality if and only if T ∼= Dn(dn−d+1

2 e, bn−d+1
2 c).

Proof. By Lemma 2.5, we have s(Dn(dn−d+1
2 e, bn−d+1

2 c)) = bd(2n−d)+1
4 c.

Let T be a tree of order n with diameter d such that its minimum status is as large as possible. By the value
of s(Dn(dn−d+1

2 e, bn−d+1
2 c)), we only need to show that T ∼= Dn(dn−d+1

2 e, bn−d+1
2 c).

It is trivial if d = 2, n− 1.
Suppose that 3 ≤ d ≤ n− 2. Let α be the number of quasi-pendant vertices in T . Then there are at least two

pendant vertices with different neighbors, i.e., α ≥ 2.
We claim that α = 2. Otherwise, α ≥ 3. Let P = v0 . . . vd be a diametral path of T . As v0 and vd are pendant

vertices, v1 and vd−1 are quasi-pendant vertices in T . Since α ≥ 3, δT (vi) ≥ 3 for some i with 2 ≤ i ≤ d− 2. For
z ∈ NT (vi), let Tz be the component of T−vi containing z. Let w be a neighbor of vi outside P such that the order
of Tw is maximum among the components of T −vi except Tvi−1 and Tvi+1 . Let ρ = max{dT (vi, x) : x ∈ V (Tw)}.
As d = dT (v0, vd) = dT (vi, v0) + dT (vi, vd), we have ρ ≤ dT (vi, v0) = i and ρ ≤ dT (vi, vd) = d− i. Assume that
|V (Tvi−1)| ≥ |V (Tvi+1)|. Suppose that ρ < d− i. Let T ′ = T − viw + vi+1w. Then P is still a diametral path of
T ′, i.e., T ′ is a tree of order n with diameter d. By Lemma 2.3, s(T ′) > s(T ), a contradiction. Thus ρ = d− i.

Let x be a vertex in the median of T .
Suppose that |V (Tvi−1)| ≥ n

2 . Let T ′ be the tree obtained from T −viw by deleting all edges in Tw and adding
all edges in {vd−1z : z ∈ V (Tw)}. By Lemma 2.1, x may be chosen in V (Tvi−1), and x is also in the median
of T ′. As we go from T to T ′, the distance between x and any vertex different from w is increased or remains
unchanged. Thus s(T ′)−s(T ) = sT ′(x)−sT (x) ≥ dT ′(x,w)−dT (x,w) = d−i−1 > 0, implying that s(T ′) > s(T ),
a contradiction. It follows that |V (Tvi−1)| < n

2 . Similarly, if |V (Tw)| ≥ n
2 , then, as above, we may form a tree

T ′ from T − vivi+1 by deleting all edges in Tvi+1 and adding all edges in {v1z : z ∈ V (Tvi+1)}, and x ∈ V (Tw)
is in the median of T and T ′, such that s(T ′)− s(T ) ≥ dT ′(x, vi+1)− dT (x, vi+1) = i− 1 > 0, a contradiction.
So |V (Tw)| < n

2 . By Lemma 2.1, x = vi.
Let a = |V (Tvi−1)| and c = |V (Tw)|. Let V0 = V (Tw) if a+c ≤ bn

2 c and let V0 be a subset of V (Tw) consisting
of bn

2 c − a vertices otherwise. Let T ′′ be the tree obtained from T − viw by deleting all the edges in Tw and
adding all edges in {v1z : z ∈ V0}∪{vd−1z : z ∈ V (Tw)\V0}. Then vi is also in the median of T ′′ by Lemma 2.1.
This is true for a+ c > bn

2 c because from a+ c+ |V (Tvi+1)| ≤ n− 1 we have |V (Tvi+1)|+ a+ c− bn
2 c ≤

n
2 .

As we go from T to T ′′, the distance between vi and any vertex different from w is increased or remains
unchanged. Thus s(T ′′)− s(T ) = sT ′′(vi)− sT (vi) ≥ dT ′′(vi, w)− dT (vi, w) = min{i, d− i} − 1 = d− i− 1 > 0,
implying that s(T ′′) > s(T ), a contradiction. Now we have proved that α = 2. That is, T = Dn(p, q) for some
p, q with p+ q = n− d+ 1. By Lemma 2.4, we have T ∼= Dn(dn−d+1

2 e, bn−d+1
2 c). �

For 3 ≤ d ≤ n − 1, let F = Dn(dn−d+1
2 e, bn−d+1

2 c) and h(n, d) = s(F ). Let xy be the edge of F with
δF (x) ≥ 2 and δF (y) = 1 + bn−d+1

2 c. Then Fxy
∼= Dn(dn−(d−1)+1

2 e, bn−(d−1)+1
2 c). By Lemma 2.2, we have

h(n, d) > h(n, d− 1).
Let Pn,i be the tree obtained from the path Pn−1 = v1 . . . vn−1 by attaching a pendant edge at vertex vi,

where 2 ≤ i ≤ bn
2 c. Note that Pn,2

∼= Dn(2, 1).

Corollary 3.4. Suppose that T is a tree of order n, and T � Pn. Then s(T ) ≤ bn2−3
4 c with equality if and only

if T ∼= Dn(2, 1). Moreover, if T � Dn(2, 1), then s(T ) ≤ bn2−8
4 c with equality if and only if T ∼= Dn(2, 2), Pn,3.

Proof. Let d be the diameter of T . Then d ≤ n − 2. If d ≤ n − 3, then by Theorem 3.3, s(T ) ≤ h(n, d) ≤
h(n, n− 3) = bn2−8

4 c with equalities if and only if T ∼= Dn(2, 2). If d = n− 2, then T ∼= Pn,i with 2 ≤ i ≤ bn
2 c,

and s(T ) is equal to bn2−3
4 c if i = 2, bn2−8

4 c if i = 3, and is at most bn2−8
4 c − 1 if i ≥ 4. �
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Note that, if u and v are two nonadjacent vertices in a connected graph G, then s(G) ≥ s(G+ uv).
Suppose that G is a unicyclic graph of order n ≥ 4 with diameter d, where 2 ≤ d ≤ n− 2. By Theorem 3.3,

s(G) ≤
⌊
d(2n− d) + 1

4

⌋
with equality if and only if G is isomorphic to a graph with diameter d obtained from Dn(dn−d+1

2 e, bn−d+1
2 c)

by adding an edge between two pendant vertices.
The eccentricity eG(u) of vertex u in a connected graph G is its distance to a farthest vertex. If u is a vertex

such that dG(u, v) = eG(v), then u is called an eccentric vertex of v. Recall that the radius of G is defined to
be the minimum eccentricities of all vertices of G. Let diam(G) and r(G) be the diameter and radius of G,
respectively. A vertex v is central if eG(v) = r(G). Buckley and Lewinter [8] characterized graphs that have
diameter-preserving spanning trees. They showed that a connected graph G has a diameter-preserving spanning
tree if either

(1) diam(G) = 2r(G), or
(2) diam(G) = 2r(G) and G contains a pair of adjacent central vertices x and y that have no common eccentric

vertex.

Let G be a connected graph with diameter-preserving spanning trees, and let d be the diameter of G, where
2 ≤ d ≤ n − 1. Then s(G) ≤ s(T ) for a spanning tree T of diameter d of G. Thus, by Theorem 3.3, we have
s(G) ≤ s(T ) ≤ bd(2n−d)+1

4 c with equality if G ∼= Dn(dn−d+1
2 e, bn−d+1

2 c).

4. Minimum status and number of pendant vertices

In this section, we give sharp lower and upper bounds for the minimum status of a tree with fixed number of
pendant vertices, and characterize the unique trees achieving these bounds.

For 2 ≤ p ≤ n−1, let P(n, p) be the set of trees of order n with p pendant vertices. Particularly, P(n, 2) = {Pn}
and P(n, n− 1) = {Sn}.

For 3 ≤ p ≤ n − 1, let Sn,p be the tree with p pendant paths of almost equal lengths (i.e., n − 1 − pbn−1
p c

pendant paths of length bn−1
p c + 1 and p + pbn−1

p c − (n − 1) pendant paths of length bn−1
p c) at a common

vertex. Particularly, Sn,n−1 = Sn. Let Sn,2 = Pn.

Theorem 4.1. Suppose that T ∈ P(n, p), where 2 ≤ p ≤ n− 1. Then

s(T ) ≥ n− 1−
pbn−1

p c
2 − (2n− p− 2)bn−1

p c
2

with equality if and only if T ∼= Sn,p.

Proof. It is trivial for p = 2, n− 1. Suppose that 3 ≤ p ≤ n− 2.
Let x be the vertex in Sn,p of degree p. By Lemma 2.1, x is in the median of Sn,p. By direct calculation,

we have

s(Sn,p) = p

bn−1
p c∑

j=1

j +
(
n− 1− p

⌊
n− 1
p

⌋)(⌊
n− 1
p

⌋
+ 1
)

= p ·
(1 + bn−1

p c)b
n−1

p c
2

+ (n− 1− p)
⌊
n− 1
p

⌋
− p

⌊
n− 1
p

⌋2

+ n− 1

= n− 1−
pbn−1

p c
2 − (2n− p− 2)bn−1

p c
2

·
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Let T be a tree in P(n, p) such that its minimum status is as small as possible. By the value of s(Sn,p),
it suffices to show that T ∼= Sn,p.

Suppose that there are at least two vertices with degree at least three in T . Then we may choose two vertices,
say w1 and w2, in T with degree at least three, such that dT (w1, w2) is as small as possible. Let P = v0 . . . v`

be the unique path connecting w1 and w2, where v0 = w1 and v` = w2. If the length of P is at least two, then
any internal vertex of P has degree two in T . Let Tw1 be the component of T − v1 containing w1 and Tw2 the
component of T − v`−1 containing w2.

Let NT (w1)\{v1} = {u1, . . . , us}. For i = 1, . . . , s, let Tui
be the component of T −w1 containing ui. Assume

that |V (Tu1)| ≤ · · · ≤ |V (Tus
)|. Denote a =

∑s
i=2 |V (Tui

)|.
Assume that |V (Tw1)| ≤ |V (Tw2)|. Let T ′ = T − {w1ui : i = 2, . . . , s} + {w2ui : i = 2, . . . , s}. Note that

the pendant vertices of T ′ are just pendant vertices of T , i.e., T ′ ∈ P(n, p). Let x be a vertex in the median of
T . Then x ∈ V (Tw2) ∪

{
vb `

2 c
, . . . , v`−1

}
, which follows from Lemma 2.1 and the fact that |V (Tw2)| + d `

2e ≥
n
2

if ` ≥ 2, and follows from Lemma 2.1 if ` = 1.
Suppose that x ∈ V (Tw2). By Lemma 2.1, x is also in the median of T ′. As we go from T to T ′, the distance

between x and a vertex of ∪s
i=2V (Tui

) is decreased by dT (w1, w2), and the distance between x and any other
vertex remains unchanged. Thus

s(T ′)− s(T ) = sT ′(x)− sT (x) = −dT (w1, w2) · a < 0,

implying that s(T ′) < s(T ), a contradiction. It follows that x = vi for some i with b `
2c ≤ i ≤ `− 1.

Note that s ≥ 2 and |V (Tw1)| = 1 +
∑s

j=1 |V (Tuj
)| ≥ |V (Tu1)|+ s. Thus, we have |V (Tu1)| ≤ |V (Tw2)| − 2,

implying that |V (Tu1)| − |V (Tw2)|+ 1 < 0.
Suppose that a ≤ ` − i − 1, i.e., i + a ≤ ` − 1. Then ` ≥ 2. By Lemma 2.1, vi+a is in the median of T ′.

Note that

dT ′(vi+a, z)− dT (vi, z) =


a if z ∈ {v0, . . . , vi−1} ∪ V (Tu1)
−a if z ∈ V (Tw2) ∪ {vi+a+1, . . . , v`−1}
`− 2i− a if z ∈ V (Tu2) ∪ . . . ∪ V (Tus)

and
i+a−1∑
j=i+1

dT ′(vi+a, vj) =
i+a−1∑
j=i+1

dT (vi, vj).

Thus

s(T ′)− s(T ) = sT ′(vi+a)− sT (vi)
= a(i+ |V (Tu1)|)− a(|V (Tw2)|+ `− i− a− 1) + (`− 2i− a)a
= a(i+ |V (Tu1)| − |V (Tw2)| − `+ i+ a+ 1 + `− 2i− a)
= a(|V (Tu1)| − |V (Tw2)|+ 1) < 0,

implying that s(T ′) < s(T ), a contradiction. It follows that a ≥ `− i, where ` ≥ 1. Then w2 is in the median of
T ′ by Lemma 2.1. Note that

dT ′(w2, z)− dT (vi, z) =


`− i if z ∈ {v0, . . . , vi−1} ∪ V (Tu1)
−(`− i) if z ∈ V (Tw2) \ {w2}
−i if z ∈ V (Tu2) ∪ . . . ∪ V (Tus

)

and
`−1∑

j=i+1

dT ′(w2, vj) =
`−1∑

j=i+1

dT (vi, vj).
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Thus

s(T ′)− s(T ) = sT ′(w2)− sT (vi)
= (`− i)(i+ |V (Tu1)|)− (`− i)(|V (Tw2)| − 1)− ai
≤ (`− i)(i+ |V (Tu1)| − |V (Tw2)|+ 1− i)
= (`− i)(|V (Tu1)| − |V (Tw2)|+ 1) < 0,

implying that s(T ′) < s(T ), also a contradiction. Therefore, there is exactly one vertex with degree at least
three in T . As T ∈ P(n, p), T consists of p pendant paths at a common vertex. Now by Lemma 2.6, we have
T ∼= Sn,p. �

Corollary 4.2. If 2 ≤ p ≤ n− 2, then s(Sn,p) > s(Sn,p+1).

Proof. Let x be the vertex of degree p in Sn,p and xy be an edge of a longest pendant path in Sn,p, where if
p = 2, x is any vertex of degree two and xy is in the longer sub-path with a terminal vertex x. By Lemma 2.2,
s(Sn,p) > s

(
(Sn,p)xy

)
. Note that (Sn,p)xy ∈ P(n, p + 1). By Theorem 4.1, s

(
(Sn,p)xy

)
≥ s(Sn,p+1). It follows

that s(Sn,p) > s(Sn,p+1). �

Theorem 4.3. Suppose that T ∈ P(n, p), where 2 ≤ p ≤ n− 1. Then

s(T ) ≤
⌊
n2 − p2 + 2p

4

⌋
with equality if and only if T ∼= Dn(dp

2e, b
p
2c).

Proof. By Lemma 2.5, we have s(Dn(dp
2e, b

p
2c)) = bn2−p2+2p

4 c.
Let T be a tree in P(n, p) such that its minimum status is as large as possible. From the value of the status of

Dn(dp
2e, b

p
2c), it suffices to show that T ∼= Dn(dp

2e, b
p
2c). It is trivial for p = 2, n−1. Suppose that 3 ≤ p ≤ n−2.

Let α be the number of quasi-pendant vertices in T . Since the diameter of T is at least three, we have α ≥ 2.
Suppose that α ≥ 3. Then there are at least three components, say Tv, Tw and Tz, in T − u for some vertex u,
and at least two of them are not nontrivial, where v, w, z ∈ NT (u). Assume that |V (Tv)| ≥ |V (Tw)| ≥ |V (Tz)|.
Then Tv and Tw are nontrivial. Let u1 be a quasi-pendant vertex of Tw. Then T ′ = T − uz + u1z is a tree in
P(n, p). By Lemma 2.3, s(T ′) > s(T ), a contradiction. Therefore, we have α = 2. That is, T ∼= Dn(`1, `2), where
`1 ≥ `2 ≥ 1 and `1 + `2 = p. By Lemma 2.4, we have T ∼= Dn(dp

2e, b
p
2c). �

We note that Theorem 4.3 follows also from Theorem 3.3. Suppose that T ∈ P(n, p), where 2 ≤ p ≤
n − 1. Let d be the diameter of T . As a diametral path contains exactly two pendant vertices, we have d ≤
n − p + 1. By Theorem 3.3, s(T ) ≤ h(n, d) ≤ h(n, n − p + 1) = bn2−p2+2p

4 c with equalities if and only if
T ∼= Dn(dn−d+1

2 e, bn−d+1
2 c) with d = n− p+ 1, i.e., T ∼= Dn(dp

2e, b
p
2c).

5. Minimum status and number of odd vertices

In this section, we give sharp lower and upper bounds for the minimum status of a tree with fixed number of
odd vertices, and characterize the unique trees achieving these bounds.

For integers n and k with 1 ≤ k ≤ bn
2 c, let O(n, k) be the set of trees of order n with 2k odd vertices [23].

Theorem 5.1. Suppose that T ∈ O(n, k), where 1 ≤ k ≤ bn
2 c. Then

s(T ) ≥ n− 1− k
⌊
n− 1

2k

⌋2

+ (n− k − 1)
⌊
n− 1

2k

⌋
with equality if and only if T ∼= Sn,2k, where if k = n

2 , then Sn,n = Sn.
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Proof. The case k = 1 is trivial as in this case, T ∼= Pn
∼= Sn,2. The case k = bn

2 c is also trivial as Sn
∼= Sn,2bn

2 c
is the unique tree of order n with smallest minimum status n− 1.

Suppose that 2 ≤ k < bn
2 c, i.e., 4 ≤ 2k ≤ n− 2. Let p be the number of pendant vertices of T . Then p ≤ 2k.

By Theorem 4.1 and Corollary 4.2, we have

s(T ) ≥ s(Sn,p) ≥ s(Sn,2k) = n− 1− k
⌊
n− 1

2k

⌋2

+ (n− k − 1)
⌊
n− 1

2k

⌋
with equalities if and only if T ∼= Sn,p and p = 2k, i.e., T ∼= Sn,2k. �

Theorem 5.2. Suppose that T ∈ O(n, k), where 1 ≤ k ≤ bn
2 c. Then

s(T ) ≤


⌊

(n+1−k)2

4

⌋
+
⌊

2nk−3k2+6k−2n
4

⌋
if k is odd⌊

(n+1−k)2

4

⌋
+
⌊

2nk−3k2+6k−2n
4

⌋
− 1 if k is even

with equality if and only if T ∼= Cn(dk−1
2 e, b

k−1
2 c).

Proof. Let a = dk−1
2 e, b = bk−1

2 c and c = dn+1−k
2 e. Then a + b = k − 1 and a = b, b + 1. Let

H = Cn(a, b), whose vertices are labelled as before. Let x = vc. Then x is in the median of H by Lemma 2.1.
Let U = {ui : i = 1, . . . , n+1−k} and W = {vi : i = 2, . . . , a+1, n+1−k− b, . . . , n−k}. By direct calculation,
we have ∑

u∈U

d(x, u) = s(Pn+1−k) =
⌊

(n+ 1− k)2

4

⌋
and

∑
u∈W

d(x, u) =
a∑

i=1

(c− 1− a+ i) +
b∑

i=1

(n+ 1− k − b− c+ i)

= a(c− 1− a) +
a(a+ 1)

2
+ (n+ 1− k − b− c)b+

b(b+ 1)
2

=

{
a(n− k − 2a) + a(a+ 1) if a = b

(a− 1)(n+ 1− k − 2a) + c− 1− a− a2 if a = b+ 1

=

{
(k−1)(2n−3k+3)

4 if k is odd,
(k−2)(2n+2−3k)

4 + dn+1−k
2 e − 1 if k is even.

Thus

s(H) =
∑
u∈U

d(x, u) +
∑
u∈W

d(x, u)

=


⌊

(n+1−k)2

4

⌋
+
⌊

2nk−3k2+6k−2n
4

⌋
if k is odd,⌊

(n+1−k)2

4

⌋
+
⌊

2nk−3k2+6k−2n
4

⌋
− 1 if k is even.

Let T be a tree in O(n, k) such that its minimum status is as large as possible. By the value of
s(Cn(dk−1

2 e, b
k−1

2 c)), it suffices to show that T ∼= Cn(dk−1
2 e, b

k−1
2 c).

If k = 1, then it is obvious that T ∼= Pn
∼= Cn(0, 0).

Suppose that k ≥ 2. We claim that the maximum odd degree of T is 3. Otherwise, δT (u) = 2t + 1 from
some u ∈ V (T ) and t ≥ 2. Let NT (u) = {u1, . . . , u2t+1}. Let Ti be the component of T − u containing ui,
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where 1 ≤ i ≤ 2t + 1. Assume that |V (T1)| ≥ |V (T2)|. Let z be a pendant vertex of T in V (T2), and let
T ′ = T − {uui : 3 ≤ i ≤ 2t} + {zui : 3 ≤ i ≤ 2t}. Note that the degrees of u and z are still odd in T ′.
Then T ′ ∈ O(n, k). By Lemma 2.3, s(T ′) > s(T ), a contradiction. Thus, the maximum odd degree of T is 3, as
claimed.

If k = n
2 , then by Lemma 2.7, T ∼= Cn

(
dk−1

2 e, b
k−1

2 c
)
.

Suppose that k < n
2 . Then there is at least one even vertex in T . We claim that all even vertices have degree

two. Otherwise, δT (w) = 2t for some w ∈ V (T ), where t ≥ 2. Let NT (w) = {w1, . . . , w2t}. Let Ti be the
component of T −w containing wi, where 1 ≤ i ≤ 2t. Assume that |V (T1)| ≥ |V (T2)|. Let z be a pendant vertex
of T in V (T2), and let T ′′ = T −ww3 +zw3. Note that, in T ′′, the degree of w is odd and the degree of z is even.
Then T ′′ ∈ O(n, k). By Lemma 2.3, s(T ′′) > s(T ), a contradiction. Thus, all even vertices of T have degree two.

Now, we claim T is a caterpillar. Otherwise, as the maximum degree of T is three, there is a vertex u of
degree three in T such that u still has degree three in the tree obtained from T by deleting all pendant vertices.
Let NT (u) = {u1, u2, u3}. Then δT (ui) ≥ 2 for i = 1, 2, 3. Let Ti be the component of T − u containing ui,
where i = 1, 2, 3. Let U be the set of vertices of degree two in T . Suppose that U 6⊆ V (Ti) for any i = 1, 2, 3,
say v1 ∈ V (T1) and v2 ∈ V (T2) for v1, v2 ∈ U . Assume that |V (T1)| ≥ |V (T2)|. Let T ∗ = T − uu3 + v2u3.
As δT∗(u) = 2 and δT∗(v2) = 3, we have T ∗ ∈ O(n, k). By Lemma 2.3, s(T ∗) > s(T ), a contradiction. Therefore,
U ⊆ V (Ti) for some i = 1, 2, 3, say U ⊆ V (T1). Suppose that V (T2) (V (T3), respectively) contains r (t,
respectively) vertices of degree three of T . Then T ∼= T1(r + 1, t + 1) ∈ O(n, k), where r, t ≥ 1. Assume that
r ≥ t. Note that T1(r + 2, t) ∈ O(n, k). By Lemma 2.7, s(T1(r + 2, t)) > s(T ), a contradiction. Thus, T is
a caterpillar, as claimed. By Lemma 2.8, the set of all n − 2k vertices of degree two induces a path, and thus
T ∼= Cn(a, b) for some a and b with a+ b = k − 1. By Lemma 2.9, we have T ∼= Cn(dk−1

2 e, b
k−1

2 c). �

A vertex in a graph is called a branching vertex if its degree is at least three. Let T be a tree of order n with
k branching vertices. Let p be the number of pendant vertices in T . Then p+ 2(n− p− k) + 3k ≤ 2(n− 1), i.e.,
p ≥ k + 2. This implies that 2k + 2 ≤ k + p ≤ n, and thus, k ≤ n

2 − 1.

Corollary 5.3. Suppose that T is a tree of order n with k branching vertices, and 0 ≤ k ≤ n
2 − 1. Then

s(T ) ≤ s(Cn(dk
2 e, b

k
2 c)) with equality if and only if T ∼= Cn(dk

2 e, b
k
2 c).

Proof. If k = 0, then the result follows from the known fact that Pn is the unique tree of order n whose minimum
status is maximum [2].

Suppose that k ≥ 1. Let T be a tree of order n with k branching vertices such that its minimum status is as
large as possible.

Let ∆ be the maximum degree of T . Suppose that ∆ ≥ 4. Let u ∈ V (T ) and NT (u) = {u1, . . . , u∆}. Let Ti

be the component of T −u containing ui, where 1 ≤ i ≤ ∆. Assume that |V (T1)| ≥ |V (T2)|. Let w be a pendant
vertex of T in V (T2), and let T ′ = T − uu3 + wu3. Then T ′ is a tree of order n with k branching vertices. By
Lemma 2.3, s(T ′) > s(T ), a contradiction. Hence ∆ = 3. Let p be the number of pendant vertices in T . As
p+ 2(n− k − p) + 3k = 2(n− 1), we have p = k + 2, and thus T is a tree of order n with 2k + 2 odd vertices.
By Theorem 5.2, we have T ∼= Cn(dk

2 e, b
k
2 c). �

6. Minimum status and number of vertices of degree two

For integers n and t with 0 ≤ t ≤ n − 2, let H(n, t) be the set of trees of order n with t vertices of degree
two. Note that H(n, n− 2) = {Pn}, H(n, n− 3) = ∅, and H(n, 0) is the class of series-reduced trees of order n.
So we only consider trees in H(n, t) with 0 ≤ t ≤ n− 4.

Theorem 6.1. Suppose that T ∈ H(n, t), where 0 ≤ t ≤ n− 4. Then

s(T ) ≥ n− 1−
(n− t− 1)b n−1

n−t−1c
2 − (n+ t− 1)b n−1

n−t−1c
2

with equality if and only if T ∼= Sn,n−t−1.
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Proof. The case t = 0 is trivial as in this case Sn (∼= Sn,n−1) is the unique tree of order n with smallest minimum
status n− 1.

Suppose that t ≥ 1. Let p be the number of pendant vertices of T . As there is a vertex with degree at least 3,
we have p ≤ n− t− 1. By Theorem 4.1 and Corollary 4.2, we have

s(T ) ≥ s(Sn,p) ≥ s(Sn,n−t−1) = n− 1−
(n− t− 1)b n−1

n−t−1c
2 − (n+ t− 1)b n−1

n−t−1c
2

with equalities if and only if T ∼= Sn,p and p = n− t− 1, i.e., T ∼= Sn,n−t−1. �

Lemma 6.2. Let T be a tree in H(n, t) such that s(T ) is maximum, where 0 ≤ t ≤ n− 4. Then the maximum
degree of T is at most 4, T is caterpillar, and there are at most two vertices of degree four in T .

Proof. Let ∆ be the maximum degree of T . Suppose that ∆ ≥ 5. Let u ∈ V (T ) with δT (u) = ∆(T ) and let
NT (u) = {u1, . . . , u∆}. For 1 ≤ i ≤ ∆, let Ti be the component of T − u containing ui. Suppose without loss
of generality |V (T1)| ≥ |V (T2)|. Let T ′ = T − {uui : 4 ≤ i ≤ ∆} + {wui : 4 ≤ i ≤ ∆}, where w is a pendant
vertex of T in V (T2). As δT ′(u) = 3, δT ′(w) = ∆ − 2 ≥ 3 and δT ′(v) = δT (v) for v ∈ V (T ) \ {u,w}, we have
T ′ ∈ H(n, t). By Lemma 2.3, s(T ′) > s(T ), a contradiction. Therefore ∆ ≤ 4.

Suppose that T is not a caterpillar. Then for some vertex u of T , T − u has three nontrivial components.
Note that δT (u) = 3, 4 as ∆ ≤ 4.

Case 1. δT (u) = 3.
Let NT (u) = {u1, u2, u3}. Let Ti be the component of T − u containing ui for i = 1, 2, 3. Assume that

|V (T1)| ≥ |V (T2)| ≥ |V (T3)|. Suppose first that T has a vertex w of degree two in V (T2). Let T ′ = T−uu3+wu3.
As δT ′(u) = 2, δT ′(w) = 3 and δT ′(z) = δT (z) for z ∈ V (T ) \ {u,w}, we have T ′ ∈ H(n, t). By Lemma 2.3,
s(T ′) > s(T ), a contradiction. Therefore, T has no vertex of degree two in V (T2). Let w1 be a pendant vertex of
T in V (T2) such that dT (u,w1) = max{dT (u, s) : s ∈ V (T2)}. Let T ′ = T − {uu3, w1w2}+ {uw1, w2u3}, where
w2 is the neighbor of w1. Note that T ′ ∈ H(n, t).

Let x be a vertex in the median of T . As |V (T1)| ≥ |V (T2)| ≥ |V (T3)|, we have x ∈ V (T1)∪{u} by Lemma 2.1.

Case 1.1. x ∈ V (T1).
By Lemma 2.1, x is also in the median of T ′. As we go from T to T ′, the distance between x and a vertex

of V (T3) is increased by dT (u,w2), the distance between x and w1 is decreased by dT (u,w2), and the distance
between x and any other vertex remains unchanged. Thus

s(T ′)− s(T ) = sT ′(x)− sT (x)
= dT (u,w2)|V (T3)| − dT (u,w2)
= dT (u,w2)(|V (T3)| − 1) > 0,

implying that s(T ′) > s(T ), a contradiction.

Case 1.2. x = u
Let x′ be a vertex in the median of T ′. By Lemma 2.1, x′ lies on the path connecting u and w2 in T ′. Note

that dT ′(x′, s) − dT (x, s) = dT (u, x′) for s ∈ V (T1), dT ′(x′, s) − dT (x, s) ≥ −dT (u, x′) for s ∈ V (T2) \ {w1},
dT ′(x′, s)− dT (x, s) = dT (w2, x

′) for s ∈ V (T3), and dT ′(x′, w1)− dT (x,w1) = −dT (w2, x
′). Thus

s(T ′)− s(T ) = sT ′(x′)− sT (x)
≥ dT (u, x′)(|V (T1)| − |V (T2)|+ 1) + dT (x′, w2)(|V (T3)| − 1)
≥ dT (u, x′) + dT (x′, w2) > 0,

a contradiction.
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Case 2. δT (u) = 4.
Let NT (u) = {u1, u2, u3, u4}. Let Ti be the component of T − u containing ui for i = 1, . . . , 4. Assume that

T1, T2 and T3 are nontrivial, and |V (T1)| ≥ |V (T2)|. Suppose that T has a vertex, say w, of degree two in V (T2).
Let T ′ = T −{uu3, uu4}+{wu3, wu4}. As δT ′(u) = 2, δT ′(w) = 4 and δT ′(v) = δT (v) for any v ∈ V (T )\{u,w},
we have T ′ ∈ H(n, t). By Lemma 2.3, s(T ′) > s(T ), a contradiction. Thus, T has no vertex of degree two in
V (T2). Then there is a vertex z ∈ V (T2) such that δT (z) = 3, 4. Let T ′ = T − uu3 + zu3. Then T ′ ∈ H(n, t). By
Lemma 2.3, s(T ′) > s(T ), a contradiction.

By combining Cases 1 and 2, we conclude that T is a caterpillar.
Suppose that there are three vertices, say v1, v2, and v3 in T with degree four. As T is a caterpillar, v1, v2

and v3 lie on a diametral path of T , and so one of them, say v3, lies on the path P connecting the other two
vertices v1 and v2. Let Ti be the component of T − v3 containing vi for i = 1, 2. Assume that |V (T1)| ≥ |V (T2)|.
Let z be a neighbor of v3 outside the path P in T . Let T ′′ = T − v3z + v2z. Then T ′′ ∈ H(n, t). By Lemma 2.3,
s(T ′′) > s(T ), a contradiction. Therefore, there are at most two vertices of degree four in T . �

Lemma 6.3. Let T ∈ H(n, t) such that s(T ) is maximum, where 0 ≤ t ≤ n−4. Let ki be the number of vertices
of degree i in T , where 1 ≤ i ≤ 4. Then

k1 = n−t+3
2

k3 = n−t−5
2

k4 = 1
if n− t is odd,

and 
k1 = n−t+2

2

k3 = n−t−2
2

k4 = 0
or


k1 = n−t+4

2

k3 = n−t−8
2

k4 = 2
if n− t is even.

Proof. Trivially, k2 = t. By Lemma 6.1, the maximum degree of T is at most 4 and k4 ≤ 2. Now the result
follows from the facts that k1 + k2 + k3 + k4 = n and k1 + 2k2 + 3k3 + 4k4 = 2(n− 1). �

Lemma 6.4. Let T ∈ H(n, t) such that s(T ) is maximum, where 0 ≤ t ≤ n − 4. If u ∈ V (T ) with δT (u) = 4,
then T − u has at most one nontrivial component.

Proof. From Lemma 6.1, T is a caterpillar with at most two vertices of degree four. Let NT (u) = {u1, u2, u3, u4}.
Suppose that T − u has two nontrivial components, say T1 and T2, with ui ∈ V (Ti) for i = 1, 2. Assume that
|V (T1)| ≥ |V (T2)|. If T has a vertex w of degree two in V (T2), then by setting T ′ = T−{uu3, uu4}+{wu3, wu4},
we have T ′ ∈ H(n, t), and by Lemma 2.3, s(T ′) > s(T ), which is a contradiction. Thus T has no vertex of degree
two in V (T2). Then δT (w) = 3, 4 for some w ∈ V (T2). Let T ′ = T−uu3+wu3. Then T ′ ∈ H(n, t). By Lemma 2.3,
s(T ′) > s(T ), a contradiction. �

For nonnegative integers a, b and positive integer n with 2(a+ b) + 5 ≤ n, let Rn(a, b) be the tree of order n
obtained from a path u1 . . . un−a−b by attaching pendant vertex v1 to u2, and then attaching pendant vertex
vi to ui for each 2 ≤ i ≤ a+ 2 and each i with n− a− 2b− 2 ≤ i ≤ n− a− b− 3. The structure of Rn(a, b) is
shown in Figure 2.

Lemma 6.5. For a ≥ max{b, 1} and 2(a+ b) + 5 < n, we have

s(Rn(a− 1, b+ 1)) > s(Rn(a, b)).

Proof. Let Rn = Rn(a, b). Let R′n = Rn − ua+2va+2 + un−a−2b−3va+2. Then R′n
∼= Rn(a− 1, b+ 1).
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Figure 2. The tree Rn(a, b).

Case 1. 2a+ 3 ≥
⌈

n
2

⌉
.

Let x = udn
4 e. By Lemma 2.1, x is in the medians of Rn and R′n. As we go from Rn to R′n, the distance

between x and va+2 is increased by n − a − 2b − 3 −
⌈

n
4

⌉
− (a + 2 −

⌈
n
4

⌉
) (which equals n − 2a − 2b − 5 > 0),

and the distance between x and any other vertex remains unchanged. Thus s(R′n) > s(Rn).

Case 2. 2a+ 3 <
⌈

n
2

⌉
.

Let x = udn
2 e−a−2 and x′ = udn

2 e−a−1. By Lemma 2.1, x is in the median of Rn and x′ is in the median of
R′n. Let T1 be the component of Rn − x containing u1, and T2 the component of Rn − x′ containing un−a−b−2.
Note that dR′n

(x′, z)− dRn
(x, z) = 1 for z ∈ V (T1) \ {va+2}, dR′n

(x′, z)− dRn
(x, z) = −1 for z ∈ V (T2), and

dR′n
(x′, va+2)− dRn

(x, va+2) = n− a− 2b− 3−
(⌈n

2

⌉
− a− 1

)
−
(⌈n

2

⌉
− a− 2− (a+ 2)

)
= n− 2

⌈n
2

⌉
+ 2(a− b) + 2.

If x is of degree two in Rn, then

s(R′n)− s(Rn) = sR′n
(x′)− sRn

(x)
= |V (T1)| − 1− |V (T2)|+ dR′n

(x′, va+2)− dRn(x, va+2)

=
(⌈n

2

⌉
− 1
)
− 1−

(⌊n
2

⌋
− 1
)

+ n− 2
⌈n

2

⌉
+ 2(a− b) + 2

= 2(a− b) + 1 > 0.

If x is of degree three in Rn, then x = ua+2, va+2 /∈ V (T1), and thus

s(R′n)− s(Rn) = sR′n
(x′)− sRn(x)

= |V (T1)| − |V (T2)|+ dR′n
(x′, va+2)− dRn

(x, va+2)

=
(⌈n

2

⌉
− 1
)
−
(⌊n

2

⌋
− 2
)

+ n− 2
⌈n

2

⌉
+ 2(a− b) + 2

= 2(a− b) + 1 > 0.

It follows that s(R′n) > s(Rn). �

Lemma 6.6. For b ≥ a+ 3 and 2(a+ b) + 5 < n, we have

s(Rn(a+ 1, b− 1)) > s(Rn(a, b)).

Proof. Let Rn = Rn(a, b). Let R′n = Rn − un−a−2b−2vn−a−2b−2 + ua+3vn−a−2b−2. Then R′n ∼= Rn(a+ 1, b− 1).

Case 1. 2b ≥
⌈

n
2

⌉
.

Let x = un−a−b−2−dn−1
4 e. By Lemma 2.1, x is in the medians of Rn and R′n. As we go from Rn to R′n, the

distance between x and vn−a−2b−2 is increased by n−a−b−2−
⌈

n−1
4

⌉
−(a+3)−[n−a−b−2−

⌈
n−1

4

⌉
−(n−a−2b−2)]

(which equal to n − 2a − 2b − 5 > 0), and the distance between x and any other vertex remains unchanged.
Thus s(R′n) > s(Rn).
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Figure 3. The tree Hn(a, b).

Case 2. 2b <
⌈

n
2

⌉
.

Let x = udn
2 e−a−2 and x′ = udn

2 e−a−3. By Lemma 2.1, x is in the median of Rn, and x′ is in the median of R′n.
Let T1 and T2 be the components of Rn−x containing un−a−b−2 and Rn−x′ containing u1, respectively. As we
go from Rn to R′n, we have dR′n

(x′, z)− dRn
(x, z) = 1 for z ∈ V (T1) \ {vn−a−2b−2}, dR′n

(x′, z)− dRn
(x, z) = −1

for z ∈ V (T2), and

dR′n
(x′, vn−a−2b−2)− dRn(x, vn−a−2b−2) =

⌈n
2

⌉
− a− 3− (a+ 3)

−
(
n− a− 2b− 2−

(⌈n
2

⌉
− a− 2

))
= 2

⌈n
2

⌉
− n+ 2(b− a)− 6.

If x is of degree two in Rn, then

s(R′n)− s(Rn) = sR′n
(x′)− sRn

(x)
= |V (T1)| − 1− |V (T2)|+ dR′n

(x′, vn−a−2b−2)− dRn
(x, vn−a−2b−2)

=
⌊n

2

⌋
− 1−

(⌈n
2

⌉
− 2
)

+ 2
⌈n

2

⌉
− n+ 2(b− a)− 6

= 2(b− a)− 5 > 0.

If x is of degree three in Rn, then x = un−a−2b−2, vn−a−2b−2 /∈ V (T1), and thus

s(R′n)− s(Rn) = sR′n(x′)− sRn(x)
= |V (T1)| − |V (T2)|+ dR′n

(x′, vn−a−2b−2)− dRn
(x, vn−a−2b−2)

=
(⌊n

2

⌋
− 1
)
−
(⌈n

2

⌉
− 2
)

+ 2
⌈n

2

⌉
− n+ 2(b− a)− 6

= 2(b− a)− 5 > 0.

It follows that s(R′n) > s(Rn). �

For nonnegative integers a, b and positive integer n with 2(a+ b) + 8 ≤ n, let Hn(a, b) be the tree of order n
obtained from the path u1 . . . un−a−b−4 by attaching a pendant vertex to u2 and un−a−b−5 respectively, and then
attaching pendant vertex vi to ui for each i with 2 ≤ i ≤ a+ 2 and each i with n−a−2b−5 ≤ i ≤ n−a− b−5,
which is shown in Figure 3.

Lemma 6.7. Suppose that 2(a+ b) + 8 < n. If a− b ≥ 2, then

s(Hn(a− 1, b+ 1)) > s(Hn(a, b)).

Proof. Let T = Hn(a, b). Let T ′ = T − ua+2va+2 + un−a−2b−6va+2. Then T ′ ∼= Hn(a− 1, b+ 1).

Case 1. 2a+ 3 ≥
⌈

n
2

⌉
.
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Note that x = udn
4 e is in the median of T and T ′ by Lemma 2.1. As we go from T to T ′, the distance between

x and va+2 is increased by n− a− 2b− 6−
⌈

n
4

⌉
− (a+ 2−

⌈
n
4

⌉
) (which is equal to n− 2(a+ b)− 8 > 0), and

the distance between x and any other vertex remains unchanged. Thus s(T ′) > s(T ).

Case 2. 2a+ 3 <
⌈

n
2

⌉
.

Let x = udn
2 e−a−2 and x′ = udn

2 e−a−1. Then by Lemma 2.1, x is in the median of T , and x′ is in the median
of T ′. By considering whether va+2 is in V (T1) as in the proof Lemma 2.9, we have s(T ′) > s(T ). �

For simplicity, let Rn,t = Rn

(⌈
n−t−5

4

⌉
− 1,

⌊
n−t−5

4

⌋
+ 1
)

for n−t ≥ 5 and Cn,t = Cn

(⌈
n−t

4 −
1
2

⌉
,
⌊

n−t
4 −

1
2

⌋)
for n− t ≥ 4.

Theorem 6.8. Suppose that T ∈ H(n, t), where 0 ≤ t ≤ n− 4.

(i) If n− t = 5, then

s(T ) ≤
⌊
n2 − 12

4

⌋
with equality if and only if T ∼= Rn(0, 0). If n− t is odd and at least 7, then

s(T ) ≤
⌊

(n+ t+ 1)2

16

⌋
+
⌊
n2 + 2nt+ 6n− 3t2 − 10t

16

⌋
− 1

with equality if and only if T ∼= Rn,t.
(ii) If n− t is even, then

s(T ) ≤


⌊

(n+t+2)2

16

⌋
+
⌊

n2+2nt+4n−3t2−12t
16

⌋
if n− t ≡ 2 (mod 4)⌊

(n+t+2)2

16

⌋
+
⌊

n2+2nt+4n−3t2−12t
16

⌋
− 1 if n− t ≡ 0 (mod 4)

with equality if and only if T ∼= Cn,t.

Proof. Let T be a tree in H(n, t) such that s(T ) is maximum.

Case 1. n− t is odd.
By Lemmas 6.2–6.4, T is a caterpillar with exactly one vertex of maximum degree four, and the vertex of

degree four has at least three pendant neighbors. If n−t = 5, then T ∼= Rn(0, 0). Suppose that n−t ≥ 7. Then by
Lemma 2.8, T ∼= Rn(a, b) for some a and b. Since there are n−t−5

2 vertices of degree three, we have a+b = n−t−5
2 .

By Lemmas 6.5 and 6.6, we have T ∼= Rn

(⌈
a+b

2

⌉
− 1,

⌊
a+b

2

⌋
+ 1
)

= Rn

(⌈
n−t−5

4

⌉
− 1,

⌊
n−t−5

4

⌋
+ 1
)

= Rn,t.

By Lemma 2.1, ubn−2
2 c

is in the median of Rn(0, 0). Thus, if n is even, then s(Rn(0, 0)) =
∑n−4

2
j=1 j + n− 4 +∑n−2

2
j=1 j = n2−12

4 , and if n is odd, then s(Rn(0, 0)) =
∑n−5

2
j=1 j + n − 5 +

∑n−1
2

j=1 j = n2−13
4 . Thus s(Rn(0, 0)) =⌊

n2−12
4

⌋
. Suppose that n − t ≥ 7. Let a = dn−t−5

4 e − 1 and b = bn−t−5
4 c + 1. Then 2a + 2b + t + 5 = n and

b = a + 1, a + 2. Let c = dn−a−b−2
2 e. Then uc is in the median of Rn,t by Lemma 2.1. Let U = {ui : i =

1, . . . , n − a − b − 2} and W = {vi : i = 1, . . . , a + 2, n − a − 2b − 2, . . . , n − a − b − 3}. By direct calculation,
we have ∑

u∈U

d(uc, u) = s(Pn−a−b−2) =
⌊

(n− a− b− 2)2

4

⌋
=
⌊

(n+ t+ 1)2

16

⌋
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and

∑
u∈W

d(uc, u) =
a+2∑
i=1

(c− a− 2 + i)− 1 +
b∑

i=1

(n− a− 2b− 2− c+ i)

= (a+ 2)(c− a− 2) +
(a+ 2)(a+ 3)

2
− 1

+ (n− a− 2b− 2− c)b+
b(b+ 1)

2

=

{
na+ n− 3a2 − 7a+ c− 5 if b = a+ 1,
na+ 2n− 3a2 − 11a− 11 if b = a+ 2.

If b = a+ 1, then 4a+ 7 = n− t, n− t ≡ 3 (mod 4), and

c =

{
n+t+1

4 if n is odd,
n+t+3

4 if n is even.

If b = a+ 2, then 4a+ 9 = n− t and thus n− t ≡ 1 (mod 4). So we have

∑
u∈W

d(uc, u) =


n2−3t2+2nt+6n−10t−27

16 if n− t ≡ 3 (mod 4) and n is odd
n2−3t2+2nt+6n−10t−19

16 if n− t ≡ 3 (mod 4) and n is even
n2−3t2+2nt+6n−10t−23

16 if n− t ≡ 1 (mod 4)

=
⌊
n2 + 2nt+ 6n− 3t2 − 10t

16

⌋
− 1.

It follows that

s(Rn,t) =
∑
u∈U

d(uc, u) +
∑
u∈W

d(uc, u)

=
⌊

(n+ t+ 1)2

16

⌋
+
⌊
n2 + 2nt+ 6n− 3t2 − 10t

16

⌋
− 1.

Case 2. n− t is even.
By Lemmas 6.2–6.4, T is a caterpillar with maximum degree three or four, and if the maximum degree is

four, then there are exactly two such vertices, and each has exactly three pendant neighbors.
If the maximum degree of T is three, then by Lemma 2.8, T ∼= Cn(a, b) for some a and b with a+ b = n−t−2

2 .
By Lemma 2.9, we have T ∼= Cn

(⌈
n−t

4 −
1
2

⌉
,
⌊

n−t
4 −

1
2

⌋)
= Cn,t.

Suppose next that the maximum degree of T is four. By Lemma 2.8, we have T ∼= Hn(a, b) for some a and b
with a+ b = n−t−8

2 . By Lemma 6.7, we have T ∼= Hn

(⌈
n−t−8

4

⌉
,
⌊

n−t−8
4

⌋)
.

In the following we show that T ∼= Cn,t. Set H = Hn

(⌊
n−t−8

4

⌋
,
⌈

n−t−8
4

⌉)
. We need to show that

s(Cn,t) > s(H).
If n = 8, then t = 0, and by direct calculation, we have s(Cn,t) = 11 > 10 = s(H). Suppose that n > 8.

Note that H ∼= Hn

(⌈
n−t−8

4

⌉
,
⌊

n−t−8
4

⌋)
and the diameter of H is n+t

2 − 1. Let P = u1 . . . un+t
2

be the diametral
path of H. Let v1 be a pendant vertex adjacent to u2 and v2 a pendant vertex adjacent to un+t

2 −1 in Hn. Let
H ′ = H−u2v1−un+t

2 −1v2 +u1v1 +u1v2. Then H ′ ∼= Cn

(⌈
n−t

4 −
1
2

⌉
,
⌊

n−t
4 −

1
2

⌋)
= Cn,t. Let x = udn+t+1

4 e and
x′ = udn+t+1

4 e−1. By Lemma 2.1, x is in the median of H, and x′ is in the median of H ′. Let T1 be the component
of H − x′ containing u1 and T2 the component of H − x containing un+t

2
. Note that dH′(x′, w)− dH(x,w) = 1
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if δH(x) = 3 and w ∈ V (T2) ∪ {z} \ {v2} with z being the pendant vertex adjacent to x, or if δH(x) = 2 and
w ∈ V (T2) \ {v2},

dH′(x′, w)− dH(x,w) =

{
−1 if w ∈ V (T1) \ {v1}
0 if w = v1

and

dH′(x′, v2)− dH(x, v2) =
⌈
n+ t+ 1

4

⌉
− 1− 1−

(
n+ t

2
− 1−

⌈
n+ t+ 1

4

⌉)
= 2

⌈
n+ t+ 1

4

⌉
− n+ t

2
− 1.

If δH(x) = 3, then

s(H ′)− s(H) = sH′(x′)− sH(x)
= |V (T2)| − (|V (T1)| − 1) + dH′(x′, v2)− dH(x, v2),

and if δH(x) = 2, then

s(H ′)− s(H) = sH′(x′)− sH(x)
= (|V (T2)| − 1)− (|V (T1)| − 1) + dH′(x′, v2)− dH(x, v2).

Thus, in either case, we have

s(H ′)− s(H) =
(
n−

⌈
n+ t+ 1

4

⌉
− 2−

⌊
n− t− 8

4

⌋
− 1
)

−
(⌈

n+ t+ 1
4

⌉
+ 2 +

⌊
n− t− 8

4

⌋
− 2− 1

)
+ 2

⌈
n+ t+ 1

4

⌉
− n+ t

2
− 1

= n− 3− 2
⌊
n− t− 8

4

⌋
− n+ t

2
> 0,

implying that s(H ′) > s(H), i.e., s(Cn,t) > s(H), as desired.
Note that Cn,t has exactly n− t odd vertices. By Theorem 5.2 with 2k = n− t, we have

s(Cn,t) =


⌊

(n+t+2)2

16

⌋
+
⌊

n2+2nt+4n−3t2−12t
16

⌋
if n− t ≡ 2 (mod 4),⌊

(n+t+2)2

16

⌋
+
⌊

n2+2nt+4n−3t2−12t
16

⌋
− 1 if n− t ≡ 0 (mod 4).

This completes the proof. �

As an immediate consequence of Theorem 6.8, we have the following result on the minimum status of series-
reduced trees.

Corollary 6.9. Among all series-reduced trees on n ≥ 5 vertices, Rn,0 for odd n and Cn,0 for even n are the
unique ones with largest minimum status.
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7. Concluding remarks

In this paper, we determine the smallest and largest values for the minimum status of trees with given
parameters such as the diameter, the number of pendant vertices, the number of odd vertices, and the number
of vertices of degree two, and we characterize those trees which realize the minima and maxima, respectively.
Recall that n− 1 ≤ s(T ) ≤ bn2

4 c for a tree T of order n. The following theorem shows that every integer from
n− 1 to bn2

4 c is the minimum status of some tree of order n.

Theorem 7.1. For a fixed positive integer n and any integer k with n− 1 ≤ k ≤ bn2

4 c, there is a tree of order
n such that s(T ) = k.

Proof. It is trivial for n ≤ 3. Suppose that n ≥ 4. Recall that s(Pn) = bn2

4 c. Let x be a vertex in the median
of Pn. Consider a nontrivial component T1 of Pn−x. The set V (T1)∪{x} induces a path x0 . . . xp with x0 = x.

Let T p+1,0 = Pn. For ` = 2, . . . , p and i = 0, . . . , `− 2, let

T `,`−2 = T `+1,0 − x`−1x` + x`−2x`

and
T `,i = T `,i+1 − xi+1x` + xix` for i = 0, . . . , `− 3.

The steps of the transformation from T `+1,0 into T `,0 is displayed as follows: T `+1,0 → T `,`−2 → · · · → T `,0.
Thus the steps of the transformation from Pn to T 2,0 is displayed as follows: Pn → T p,p−2 → · · · → T p,1 →
T p,0 → T p−1,p−3 → T p−1,0 → · · · → T 3,0 → T 2,0. By Lemma 2.1, x is in the median of T `,i for all i and `
with 0 ≤ i ≤ ` − 2 and 2 ≤ ` ≤ p, and thus the minimum status is decreased by 1 at each step of the above
transformation. If n ≥ 5, then we repeat above process for the unique pendant path with length at least 2 in
the tree T 2,0, and as above, at each step, the minimum status is decreased by 1. Finally, we obtain the star
with minimum status n− 1. �

Acknowledgements. The authors would like to thank the references for their kind and helpful comments and suggestions.
This work was supported by the National Natural Science Foundation of China (No. 11671156).

References

[1] M. Aouchiche and P. Hansen, Nordhaus-Gaddum relations for proximity and remoteness in graphs. Comput. Math. Appl. 59
(2010) 2827–2835.

[2] M. Aouchiche and P. Hansen, Proximity and remoteness in graphs: results and conjectures. Networks 58 (2011) 95–102.

[3] M. Aouchiche and P. Hansen, Proximity, remoteness and distance eigenvalues of a graph. Discrete Appl. Math. 213 (2016)
17–25.

[4] M. Aouchiche and P. Hansen, Proximity, remoteness and girth in graphs. Discrete Appl. Math. 222 (2017) 31–39.

[5] M. Aouchiche, G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs. 20. Automated comparison of
graph invariants. MATCH Commun. Math. Comput. Chem. 58 (2007) 365–384.
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