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PARALLEL GAUSSIAN ELIMINATION OF SYMMETRIC POSITIVE DEFINITE
BAND MATRICES FOR SHARED-MEMORY MULTICORE ARCHITECTURES

Sirine Marrakchi∗ and Mohamed Jemni

Abstract. This study presents a new parallel Gaussian elimination approach for symmetric positive
definite band systems. For each task, the appropriate start time and adequate processor are determined.
Unnecessary dependencies between tasks are eliminated. Simultaneously, all processors perform their
associated tasks with precedence constraints under consideration. Our main goal is to obtain a high
degree of parallelism by balancing the load of processors and reducing the total idle and parallel execu-
tion times. The theoretical lower bounds for parallel execution time and number of processors required
to execute the precedence graph at an optimal time are also computed. The validity of our investiga-
tion is confirmed by carrying out several experiments on a shared-memory multicore architecture using
OpenMP. Practical results prove the efficiency of the proposed method.
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1. Introduction

Solving sparse triangular linear systems is a crucial building block in numerous numerical linear algebra
methods [21, 22] which they can be classified as either direct or iterative. Direct methods generate a result in
a finite number of steps, whereas iterative methods yield a set of consecutive approximations that converge to
the precise result [24].

This paper focuses on a classical direct method named Gaussian elimination (GE). The core of the GE algo-
rithm consists to produce an upper triangular system equivalent to the initial one after successive eliminations
of unknowns [4]. For large matrices, the execution time when performing the GE algorithm sequentially is high.
The concept of parallelism should be employed to achieve good efficiency.

In the literature, many researchers proposed various parallel approaches for GE using non-singular square
dense matrices for various models of computations [2, 20, 23, 27, 29]. McGinn and Shaw [23] developed a par-
allel algorithm for GE without pivoting using OpenMP, as well as a distributed implementation using MPI.
Bampis et al. [2] proposed a scheduling algorithm that consists to reduce the overhead by splitting the tasks
of GE with a smaller granularity in order to keep longer a full efficiency. The obtained result is improved by
Saad [29]. Parallel approaches of GE algorithm with partial pivoting have been discussed in [20, 27] on MIMD
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computers. However, to the authors’ best knowledge, few available publications have studied the parallelization
of GE method for band matrices. Milovanović et al. [25] determined an optimal number of processors according
to the number of diagonals in the matrix and they proposed a task scheduling algorithm for parallel GE with
partial pivoting of band matrices. Chishti et al. [8] proposed a parallel GE algorithm for symmetric positive def-
inite (SPD) band matrices. Processors execute sequences of tasks in parallel. After achieving the diagonal task,
a processor should immediately broadcast the result to all other processors.

For general matrices, the pivoting strategy is required to ensure numerical stability [30]. It consists, on one
hand, to switch the order of the equations for reducing round-off errors and on the other hand to prevent diagonal
elements from becoming zero by making each diagonal element larger than any other entries belong on the same
column of the given matrix. Unlike general matrices, GE applied to an SPD matrix is numerically stable, and
pivoting is not needed [12]. In this paper, we are interested in band structure which is a special case of sparse
matrices whose nonzero entries are all closely near the main diagonal. Calculations involving SPD band matrices
commonly arise in the numerical treatment of many models encountered in various scientific and engineering
applications [18,35] such as the discretization of partial differential equations [14]. The symmetry property can
advantageously be exploited for saving both the memory storage and the computing time requirements.

In this study, a new approach that improves the GE without pivoting using SPD band matrices is developed.
For each task in the precedence graph, the suitable start time and an available processor are determined. Depen-
dencies between tasks unused in the parallel processing stage are removed. All processors then perform their asso-
ciated tasks simultaneously, considering the remaining dependencies. By doing so, our approach aims to attain
remarkable performance advancement by balancing the load of processors, minimizing the total idle time and par-
allel runtime. Theoretically, the lower bounds for parallel execution time and the number of processors required to
perform the precedence graph within the shortest possible parallel execution time are computed. The evaluation
and the validation of our contribution were carried out by a series of experiments performed on a shared-memory
multicore machine using the OpenMP interface. Thus, the efficiency of the proposed approach is verified by com-
paring the results with those obtained from the determined theoretical formulas and row block method.

The paper is organized as follows: Section 2 introduces the GE sequential algorithm and defines essential
concepts. In Section 3, we determine the theoretical lower bounds for parallel execution time and the number of
processors. Section 4 describes our practical investigation in details. Section 5 presents, analyses and discusses
the experimental results. Section 6 offers concluding remarks and potential future extensions of this work.

2. Preliminaries

Let M = (mi,j) where 1 ≤ i, j ≤ n be a real non-singular SPD band matrix if the non-negative integers r
and s exist with the properties [1, 13]:

• mi,j = 0 if j − i > r and i− j > s (band structure). The integers r and s represent the number of diagonals
above and below the main diagonal, respectively. The bandwidth L of the matrix M is equal to r + s + 1
diagonals and the total number of non-zero elements for general band matrix nzGeneral Band M can be computed
by the following equation:

nzGeneral Band M =

(
n−r∑
i=1

r +
n−1∑

i=n−r+1

(n− i)︸ ︷︷ ︸
Strictly upper part of M

)
+

(
n−s∑
j=1

s+
n−1∑

j=n−s+1

(n− j)︸ ︷︷ ︸
Strictly lower part of M

)
+ n︸︷︷︸

Main diagonal

=
2nr − r2 − r + 2ns− s2 − s+ 2n

2

=
2n(r + s+ 1)−

(
(r + s+ 1)2 − (r + s+ 1)− 2rs

)
2

=
L(2n− L+ 1)

2
+ rs. (1)
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Figure 1. An illustrative example of symmetric band matrix stored in (a) 2-D array and
(b) BND format.

• mj,i = mi,j ∀ i, j, i.e., M is equal to its transpose MT (symmetry property). In this case, we have r = s and
mi,j = 0 if |i−j| > r. Thus, the bandwidth L of the matrix M and the total number of non-zero elements for
symmetric band matrix become equal to 2r+ 1 and L(2n−L+1)

2 + r2, respectively. In practice, the symmetry
characteristic is beneficial in saving memory space and shortening computing time. For this matrix type,
only the lower or the upper triangular part needs to be maintained. The bandwidth L is thereby reduced to
r + 1. Equation (2) expresses the number of non-zero entries nzSymmetric Band M according to L.

nzSymmetric Band M =
n−L+1∑
i=1

L+
n∑

i=n−L+2

(n− i+ 1) =
L(2n− L+ 1)

2
· (2)

• The following statements are equivalent to ascertain that M is positive definite [9, 17,32]:
• zTMz > 0 for any non-zero real vector z of order n where zT denotes the transpose of z.
• The determinants of the leading principal sub-matrices Mq are positive (det(Mq) > 0 where 1 ≤ q ≤ n).
• All eigenvalues of M are positive.
• All pivots of M in the GE without pivoting are positive.

In this paper, the banded Linpack (BND) format is used to save only diagonals constituting the upper
triangular part of the matrix M in a rectangular array B column by column. The bandwidth L represents the
minimum number of columns needed in B [28]. Figure 1 illustrates an example of symmetric band matrix where
n = 12 and L = 8 stored in (a) 2-D array and (b) BND format.

The sequential algorithm of GE method without pivoting is presented in Figure 2 where the SPD band matrix
is stored in a© 2-D array and b© BND format. The value of element mi,j after achieving the iteration k is
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Figure 2. GE serial algorithm without pivoting for SPD band matrix stored in a© 2-D array
and b© BND format.

Table 1. Task decomposition of the GE algorithm for SPD band matrix.

Task Tk,k Task Tk,i

Role is the update of matrix
row k during iteration k

is the update of matrix row i during iteration k

a© m′i,k ←
m

(k−1)
k,i

m
(k−1)
k,k

m
(k)
i,j ← m

(k−1)
i,j −m′i,k ×m

(k−1)
k,j

k + 1 ≤ i ≤ ub i ≤ j ≤ ub

b© b′k,i−k+1 ←
b
(k−1)
k,i−k+1

b
(k−1)
k,1

b
(k)
i,j−i+1 ← b

(k−1)
i,j−i+1 − b

′
k,i−k+1 × b

(k−1)
k,j−k+1

k + 1 ≤ i ≤ ub i ≤ j ≤ ub

designated by m
(k)
i,j where 1 ≤ k ≤ n − 1 and m

(0)
i,j refer to the initial value of mi,j . The multipliers computed

in a© and b© are saved in a lower triangular matrix M ′ and in a band matrix B′, respectively [3, 5].

By assuming Tu,v represents a task, v is the matrix row which will be updated and u is the algorithm
iteration during which the task will be executed where u = k and v = k or v = i. For simplicity, let define
ub = min(k + L− 1, n) where L > 2. The task decomposition of GE algorithm is detailed in Table 1.
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Figure 3. Precedence graph for n = 12 and L = 8.

Two types of constraints are distinguished: Tk,k � Tk,i and Tk,i � Tk+1,i where 1 ≤ k ≤ n−1, k+1 ≤ i ≤ ub.
Tu′,v′ � Tu,v indicates that the task Tu′,v′ is a predecessor of Tu,v, and Tu,v must wait for Tu′,v′ to finish its
execution before starting its own. The precedence graph is directly built from these constraints and is composed
of two sets named nodes and edges, representing the tasks and dependencies, respectively. It is referred to as
directed acyclic graph [7, 11,33]. Figure 3 outlines the precedence graph for n = 12 and L = 8.

Each task has a weight W indicating the number of time steps needed for its execution. One-time step consists
of one multiplication and one subtraction or one division. The cost of Tk,k and Tk,i is calculated by equations
(3) and (4), respectively.

W (Tk,k) =

{
L− 1 if 1 ≤ k ≤ n− L+ 1
n− k if n− L+ 2 ≤ k ≤ n− 1

(3)

W (Tk,i) =

{
L− i+ k if 1 ≤ k ≤ n− L+ 1, k + 1 ≤ i ≤ k + L− 1
n− i+ 1 if n− L+ 2 ≤ k ≤ n− 1, k + 1 ≤ i ≤ n.

(4)
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The total number of tasks can be computed by equation (5).

Ntasks = (n− 1)︸ ︷︷ ︸
Number of diagonal tasks

+
n−L+1∑
k=1

(L− 1) +
n−1∑

k=n−L+2

(n− k)︸ ︷︷ ︸
Number of non-diagonal tasks

=
L(2n− L+ 1)

2
− 1. (5)

A diagonal task Tk,k has L− 1 successors if 1 ≤ k ≤ n−L+ 1 and n− k successors if n−L+ 2 ≤ k ≤ n− 1.
Each non-diagonal task Tk,i has one successor where 1 ≤ k ≤ n − 2 and k + 1 ≤ i ≤ ub. The final task Tn−1,n

has no successor. Thus, the total number of edges (i.e., dependencies) can be determined by equation (6).

Nedges =
n−L+1∑
k=1

(L− 1) +
n−1∑

k=n−L+2

(n− k) +
n−L+1∑
k=1

(
k+L−1∑
i=k+1

1

)
+

n−2∑
k=n−L+2

(
n∑

i=k+1

1

)

= 2×

(
n−L+1∑
k=1

L− 1

)
+ 2×

(
n−1∑

k=n−L+2

n− k

)
− 1

= (L− 1)(2n− L)− 1. (6)

The sequential execution time t1 given by equation (7) represents the total cost of tasks.

t1 =
L(L+ 1)(3n− 2L+ 2)

6
− n. (7)

The critical path (CP) is the longest directed path from the entry task with no incoming edge to the final task
with no outgoing edge [16,34]. It is composed of the tasks:

T1,1, T1,2, . . . , Tk,k, Tk,k+1, . . . , Tn−1,n−1, Tn−1,n.

The length of CP can be computed by equation (8). It is equal to the lower bound for parallel execution time
topt(n,L).

topt(n,L) =
n−L+1∑
k=1

(
L− 1︸ ︷︷ ︸
W (Tk,k)

+L− (k + 1) + k︸ ︷︷ ︸
W (Tk,k+1)

)
+

n−1∑
k=n−L+2

(
n− k︸ ︷︷ ︸
W (Tk,k)

+n− (k + 1) + 1︸ ︷︷ ︸
W (Tk,k+1)

)

= 2
n−L+1∑
k=1

(L− 1) + 2
n−1∑

k=n−L+2

(n− k)

= (L− 1)(2n− L). (8)

3. Proposed theoretical formulas

In this section, we determine the theoretical lower bounds for parallel execution time topt,p(n,L) using p
processors where 2 ≤ p < popt(n,L), and number of processors popt(n,L) executing the precedence graph in
optimal time topt(n,L).

3.1. Determination of the lower bound for parallel execution time

The precedence graph is split into three parts as shown in Figure 4. In the next, we present the signification
of each part.
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Figure 4. Overview of precedence graph decomposition.

• T1,1 is an entry task.
• PartA contains the following tasks:{

Tk,n−p+j , n− p− j + 1 ≤ k ≤ n− p+ j − 1 and 1 ≤ j ≤ p
Tn−p+j,n−p+j , 1 ≤ j ≤ p− 1.

• PartB includes all tasks except those from PartA and task T1,1.

The cost time of T1,1, PartA and PartB are given respectively by equations (9), (10) and (11).

W (T1,1) = L− 1 (9)

W (PartA) =
p∑
j=1

(
n−p+j−1∑
k=n−p−j+1

W (Tk,n−p+j)

)
+
p−1∑
j=1

W (Tn−p+j,n−p+j)

=
p∑
j=1

(
n−p+j−1∑
k=n−p−j+1

(
n− (n− p+ j) + 1

))
+
p−1∑
j=1

(
n− (n− p+ j)

)

=
p∑
j=1

(2j − 1)(p− j + 1) +
p−1∑
j=1

(p− j)

=
p3 + 3p2 − p

3
(10)

W (PartB) = t1 −W (T1,1)−W (PartA). (11)

The minimum time required to execute PartA using p processors is equal to

tPartA =
n−1∑

k=n−p

W (Tk,k+1) +
n−1∑

k=n−p+1

W (Tk,k)

=
n−1∑

k=n−p

(n− (k + 1) + 1) +
n−1∑

k=n−p+1

(n− k)
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=
n−1∑

k=n−p

(n− k) +
n−1∑

k=n−p+1

(n− k)

= p+ 2
n−1∑

k=n−p+1

(n− k)

= p2. (12)

By assuming that all processors are active after executing T1,1 until the moment tn−p,n−p+1 (i.e., the time
when execution of the task Tn−p,n−p+1 begins). Thus, the following equation is obtained:

p∑
j=1

(
tn−p−j+1,n−p+j −W (T1,1)

)
= W (PartB). (13)

Equation (14) can be written as follows:

tn−p,n−p+1 +
p−1∑
j=1

(
tn−p−j,n−p+j+1

)
= W (PartB) + p×W (T1,1). (14)

The cost difference between the two tasks Tk,n−p+j and Tk−1,n−p+j+1 is equal to one where 1 ≤ j ≤ p − 1
and n− p− j + 1 ≤ k ≤ n− p+ j − 1. Thus, the time difference between tn−p−j,n−p+j+1 and tn−p−j+1,n−p+j
can be computed by equation (15).

tn−p−j,n−p+j+1 − tn−p−j+1,n−p+j =
n−p+j−1∑
k=n−p−j+1

(
W (Tk,n−p+j)−W (Tk−1,n−p+j+1)

)
= 2j − 1. (15)

Thereby, the time difference between tn−p−j,n−p+j+1 where 1 ≤ j ≤ p− 1 and tn−p,n−p+1 is equal to

tn−p−j,n−p+j+1 = tn−p,n−p+1 +
j∑

β=1

(2β − 1)

= tn−p,n−p+1 + j2. (16)

Replacing the obtained expression in equation (14), we have:

p× tn−p,n−p+1 +
p−1∑
j=1

j2 = W (PartB) + p×W (T1,1). (17)

The equation that determines the time tn−p,n−p+1 is defined as:

tn−p,n−p+1 =


t1 + (p− 1)×W (T1,1)−W (PartA)−

p−1∑
j=1

j2

p


=
⌈

3nL2 + 3nL− 6n− 2L3 − 4L+ 6− 4p3 − 3p2 − 5p
6p

⌉
+ L. (18)
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The lower bound for parallel execution time topt,p(n,L) is equal to the sum of tn−p,n−p+1 and tPartA .

topt,p(n,L) = tn−p,n−p+1 + tPartA . (19)

Therefore, the final equation of topt,p(n,L) is obtained.

topt,p(n,L) =
⌈

3nL2 + 3nL− 6n− 2L3 − 4L+ 6− 4p3 − 3p2 − 5p
6p

⌉
+ L+ p2. (20)

Theorem 3.1. With p processors (2 ≤ p ≤ L− 1), the lower bound for parallel execution time is expressed as:

topt,p(n,L) =

{⌈
2p3−3p2+p(6L−5)+3n(L2+L−2)−2L3−4L+6

6p

⌉
, 2 ≤ p < popt

topt(n,L) = (L− 1)(2n− L), popt ≤ p ≤ L− 1.
(21)

3.2. Determination of the lower bound for number of processors

Considering the function Fn,L(x) which correspond to equation (20).

Fn,L(x) =
2x3 − 3x2 + x(6L− 5) + 3nL2 + 3nL− 6n− 2L3 − 4L+ 6

6x
· (22)

The theoretical lower bound for number of processors popt(n,L) required to perform the precedence graph
in time topt(n,L) = (L− 1)(2n− L) represents the smallest positive integer verifying Fn,L(x)− topt(n,L) ≤ 0.
Let firstly determine the boundaries of popt(n,L). The minimum bound bmin is equal to the upper integer part
of t1

topt(n,L) . It is expressed as:

bmin =
⌈
L(L+ 1)(3n− 2L+ 2)− 6n

6(L− 1)(2n− L)

⌉
· (23)

The maximum bound bmax is equal to

bmax = max
2≤k≤n−1




min(k+L−2,n)∑
i=k+1

W (Tk−1,i)

W (Tk−1,k) +W (Tk,k)



+ 1. (24)

Three cases are distinguished and defined in equation (25).

⌈
(L−2)(L−1)

4L−4

⌉
+ 1, 2 ≤ k ≤ n− L+ 1

⌈
(L−2)(L−1)

4L−6

⌉
+ 1, k = n− L+ 2

⌈
(n−k)(n−k+1)
2(2n−2k+1)

⌉
+ 1, n− L+ 3 ≤ k ≤ n− 1.

(25)

To determine the maximum bound bmax, the three cases are compared.

• Having 4L− 4 > 4L− 6 thereby 1
4L−4 <

1
4L−6 and finally we obtain

⌈
(L−2)(L−1)

4L−4

⌉
+ 1 ≥

⌈
(L−2)(L−1)

4L−6

⌉
+ 1.

• If k = n − L + 3, so the maximum number of active processors is equal to
⌈

(L−2)(L−1)
4L−10

⌉
+ 1. Having

4L− 4 > 4L− 10 thereby 1
4L−4 <

1
4L−10 and finally we obtain

⌈
(L−2)(L−1)

4L−4

⌉
+ 1 ≥

⌈
(L−2)(L−1)

4L−10

⌉
+ 1.
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• If k = n−1, so the maximum number of active processors is equal to 2. We have
⌈

(L−2)(L−1)
4L−4

⌉
+1 =

⌈
L−2

4

⌉
+1

and L > 2 so
⌈

(L−2)(L−1)
4L−4

⌉
+ 1 ≥ 2.

As is clear from the comparisons that the maximum bound bmax is equal to

bmax =
⌈
L− 2

4

⌉
+ 1. (26)

Therefore, popt(n,L) = dxe, where x represents the solution of equation (27) verifying that bmin ≤ dxe ≤ bmax.

Fn,L(x)− topt(n,L) = 0. (27)

Replacing each term by the corresponding expression, we obtain:

2x3 − 3x2 + x(12n+ 6L2 − 12nL− 5) + 3nL2 + 3nL− 6n− 2L3 − 4L+ 6
6x

= 0. (28)

To compute the solution of equation (28), the trigonometric method of the cubic equation presented in [10] is
used.

Theorem 3.2. The theoretical lower bound for the number of processors popt(n,L) required to execute the task
graph in minimum time topt(n,L) = (L− 1)(2n− L) is expressed as:

popt(n,L) =

⌈
2

√
2nL− L2 − 2n+

13
12

cos
(
θ +

4π
3

)
+

1
2

⌉
(29)

where
θ =

1
3

arccos(α) (30)

and

α =
−3nL2 − 3L2 + 2L3 + 3nL+ 4L− 3

4
(
2nL− L2 − 2n+ 13

12

) 3
2

· (31)

Proof. Multiplying equation (28) by 6x, we obtain:

2x3 − 3x2 + x(12n+ 6L2 − 12nL− 5) + 3nL2 + 3nL− 6n− 2L3 − 4L+ 6 = 0.

By dividing the previous equation with 2 and performing the variable change x = y + 1
2 in order to obtain

a cubic equation that has no term in y2.

y3 −
(

6nL− 3L2 − 6n+
13
4

)
y +

3nL2 + 3L2 − 2L3 − 3nL− 4L+ 3
2

= 0.

Consider the substitution y = 2
√

2nL− L2 − 2n+ 13
12 cos θ and the expression 4 cos3 θ − 3 cos θ = cos(3θ), the

equation become:

2
(

2nL− L2 − 2n+
13
12

) 3
2

cos(3θ) +
3nL2 + 3L2 − 2L3 − 3nL− 4L+ 3

2
= 0.

Thus, cos(3θ) = α where α is defined in equation (31). The solution x of equation (28) is equal to

x = 2

√
2nL− L2 − 2n+

13
12

cos
(
θ +

4π
3

)
+

1
2

where θ is given in equation (30).
The lower bound for the number of processors popt(n,L) = dxe. �
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Figure 5. Determination of the lower bound for number of processors.

Table 2. Values of Popt(n,L) for some examples of SPD band matrices.

n L popt(n,L) n L popt(n,L)

1000

200

49

1024

64 17
2000 50 128 32
3000 50 256 62
4000 51 384 90
5000 51 512 116
6000 51 640 138

To verify the correctness of the Theorem 3.2, we develop an algorithm that consists to determine the lower
bound for the number of processors (see Fig. 5). At the beginning, p is initialized to bmin =

⌈
t1

topt(n,L)

⌉
. Subse-

quently, the two values indicated in equations (32) and (33) are compared.
W (partB)−

p−1∑
j=1

j2

p

 =
⌈

3nL2 − 2L3 + 3nL− 4L− 6n+ 6− 4p3 − 3p2 + p

6p

⌉
(32)

topt(n,L)− tPartA −W (T1,1) = (L− 1)(2n− L− 1)− p2. (33)

The theoretical value of popt(n,L) is validated experimentally by the algorithm shown in Figure 5. Table 2
gives some examples.

4. Practical proposed approach

This section describes our approach called parallel Gaussian elimination for symmetric positive definite band
systems (PGE-SPDB). Firstly for each task, the earliest start time (EST)1 and the latest start time (LST)2

1The EST of a task represents the earliest time at which it can begin if all its predecessors start as early as possible and are
finished within their estimated times [31].

2The LST of a task represents the latest time at which it can begin without delaying the completion time for executing the
precedence graph [31].
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Table 3. Determination of the earliest start time (EST) for tasks.

Task type Condition Earliest start time of the task

Diagonal task
Entry task EST(T1,1) = 0
2 ≤ k ≤ n− 1 EST(Tk,k) = EST(Tk−1,k) +W (Tk−1,k)

Non-diagonal
task

With one
predecessor

k = 1

EST(Tk,i) = EST(Tk,k) +W (Tk,k)

and
2 ≤ i ≤ L
2 ≤ k ≤ n− L+ 1
and
i = k + L− 1

With two
predecessors

2 ≤ k ≤ n− 1 EST(Tk,i) = max(value 1, value 2)
and value 1 = EST(Tk,k) +W (Tk,k)
k+1 ≤ i ≤ min(k+L−2, n) value 2 = EST(Tk−1,i) +W (Tk−1,i)

Table 4. Determination of the latest start time (LST) for tasks.

Task type Condition Latest start time of the task

Diagonal task 1 ≤ k ≤ n− 1 LST(Tk,k) = LST(Tk,k+1)−W (Tk,k)

Non-diagonal
task

Final task LST(Tn−1,n) = topt(n,L)−W (Tn−1,n)
1 ≤ k ≤ n− 2

LST(Tk,i) = LST(Tk+1,i)−W (Tk,i)and
k + 1 ≤ i ≤ ub

obtained respectively from all its immediate predecessors and successors are computed. Formulas that consist
to determine the EST and the LST for band structure are defined in Tables 3 and 4, respectively.

Secondly, tasks are arranged in ascending order of their LST. A variable begin is associated for each task
Tu,v and initialized from their predecessors pred(s). Let ts(Tu,v) denote an array that contains the start times
of tasks. Four cases are distinguished and expressed by equation (34).

begin =


0 for T1,1

ts(Tk−1,k) +W (Tk−1,k) for Tk,k, 2 ≤ k ≤ n− 1
ts(Tk,k) +W (Tk,k) for Tk,i has 1 pred
max{ts(Tk,k) +W (Tk,k), ts(Tk−1,i) +W (Tk−1,i)} for Tk,i has 2 preds

. (34)

After calculating the variable begin for the current task by applying the corresponding case in equation (34),
a verifying step is needed to check the existence or the unavailability of a free slot time from begin to the instant
begin + W (Tu,v) − 1. If the slot time is unsaturated then the task Tu,v can start its execution at the instant
begin. Otherwise, the variable begin is incremented by one. Step 2 is repeated until a free slot time is found for
the current task. The algorithm that determines the adequate start time is depicted in Figure 6.

Then, the task list is sorted in ascending order of start time values. An available processor is assigned for
each task using the algorithm shown in Figure 7 and saved in the array Pr(Tu,v). This phase consists to verify if
an available processor exists from ts(Tu,v) to ts(Tu,v) +W (Tu,v)− 1. Firstly, the processor index j is initialized
to one. If the current processor is not occupied thereby the task is assigned to it. Otherwise, the variable j is
incremented by one. Step 1 is repeated until an available processor is found for the current task.
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Figure 6. Determination phase of start times for all tasks.

Figure 7. Determination phase of processors for all tasks.
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Table 5. List of start times and processors numbers for tasks where n = 12, L = 8 and p = 3.

Tu,v {ts, P r} Tu,v {ts, P r} Tu,v {ts, P r}

T1,1 {0, P1} T3,10 {44, P3} T6,12 {83, P2}
T1,2 {7, P1} T4,4 {42, P1} T7,7 {82, P1}
T1,3 {7, P2} T4,5 {49, P1} T7,8 {87, P1}
T1,4 {7, P3} T4,6 {49, P2} T7,9 {87, P2}
T1,5 {12, P3} T4,7 {49, P3} T7,10 {87, P3}
T1,6 {13, P2} T4,8 {54, P3} T7,11 {90, P3}
T1,7 {16, P2} T4,9 {55, P2} T7,12 {91, P2}
T1,8 {16, P3} T4,10 {58, P2} T8,8 {92, P1}
T2,2 {14, P1} T4,11 {58, P3} T8,9 {96, P1}
T2,3 {21, P1} T5,5 {56, P1} T8,10 {96, P2}
T2,4 {21, P2} T5,6 {63, P1} T8,11 {96, P3}
T2,5 {21, P3} T5,7 {63, P2} T8,12 {98, P3}
T2,6 {26, P3} T5,8 {63, P3} T9,9 {100, P1}
T2,7 {27, P2} T5,9 {68, P3} T9,10 {103, P1}
T2,8 {30, P2} T5,10 {69, P2} T9,11 {103, P2}
T2,9 {30, P3} T5,11 {72, P2} T9,12 {103, P3}
T3,3 {28, P1} T5,12 {72, P3} T10,10 {106, P1}
T3,4 {35, P1} T6,6 {70, P1} T10,11 {108, P1}
T3,5 {35, P2} T6,7 {76, P1} T10,12 {108, P2}
T3,6 {35, P3} T6,8 {76, P2} T11,11 {110, P1}
T3,7 {40, P3} T6,9 {76, P3} T11,12 {111, P1}
T3,8 {41, P2} T6,10 {80, P3}
T3,9 {44, P2} T6,11 {81, P2}

The schedule length is obtained from the finish time of the last task in the precedence graph.

tp = ts(Tn−1,n) +W (Tn−1,n) (35)

To better understand these algorithms, Table 5 contains the start times ts(Tu,v) and the processors numbers
Pr(Tu,v) corresponding to all tasks Tu,v of the precedence graph illustrated in Figure 3 using three processors
where 1 ≤ u ≤ n− 1 and u ≤ v ≤ min(k + L− 1, n). For n = 12, L = 8 and p = 3, the schedule length is equal
to t3 = 112.

To profit in execution time using p processors and obtain a high degree of parallelism, eliminating the useless
dependencies is required. A dependency constraint is unnecessary for tasks allocated to the same processor
because they will naturally perform in schedule order. In addition, tasks depend on the same diagonal task and
assigned to the identical processor do not need a precedence constraint only for the first task. For instance,
T2,2 � T2,5 means that the task T2,5 can start its execution only if T2,2 is realized. T2,2 � T2,6 and T2,2 � T2,9

are redundant because T2,6 and T2,9 are allocated to P3 (the same processor of T2,5).
Figures 8 and 9 present the algorithms for eliminating the dependencies Tk,k � Tk,i and Tk,i � Tk+1,i,

respectively. The dependency Tk,k � Tk,i is removed in two cases.

• If the tasks Tk,k and Tk,i are attributed to the same processor.
• If the task Tk,i is not the first task with row index k assigned to a processor.

If the tasks Tk,i and Tk+1,i are attributed to the same processor, then the dependency Tk,i � Tk+1,i is
removed.

Table 6 outlines all the dependencies corresponding to the precedence graph illustrated in Figure 3.
For n = 12, L = 8 and p = 3, each eliminated dependency is mentioned in the table by the letter E.
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Step 1: Verify that tasks and are 

assigned to the same processor or not
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Figure 8. Elimination of the unnecessary dependencies in the form Tk,k � Tk,i.

Step 1: Verify that tasks and are 

assigned to the same processor or not

YesNo

The dependency 

is preserved

Not assigned to the 

same processor

Assigned to the 

same processor

Step 2: Eliminate

Figure 9. Elimination of the unnecessary dependencies in the form Tk,i � Tk+1,i.

In this example, there are 111 dependencies inter-tasks. By applying algorithms illustrated in Figures 8 and 9
and using three processors, precisely 61 dependencies will be eliminated (i.e., approximately 54.95% of the total
number of edges). The corresponding Gantt chart is shown in Figure 10.

Simultaneously, all processors perform their associated tasks respecting the necessary dependencies. Let
Finish(Tu,v) represents the array that contains the tasks’ status (1 or 0 means respectively that Tu,v is carried
out or not yet executed). In addition, a task can start if their predecessors’ status is set to one. The parallel
processing phase is illustrated in Figure 11.

For the example illustrated in Figure 10, we have the following scenario: the processor P1 executes the task
T1,1 while P2 and P3 wait for the required data because tasks T1,3 and T1,4 depend to T1,1 (see Tab. 6). Once
the execution of task T1,1 is achieved which is indicated by Finish(T1,1) = 1, the processors P1, P2 and P3

perform respectively the tasks T1,2, T1,3 and T1,4. The processors continue to carry out the tasks assigned to
them taking into account the dependencies.
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Table 6. List of dependencies and their status.

Dependencies status Dependencies status Dependencies status

T1,1 → T1,2 E T3,6 → T4,6 T6,6 → T6,11 E
T1,1 → T1,3 T3,7 → T4,7 E T6,6 → T6,12 E
T1,1 → T1,4 T3,8 → T4,8 T6,7 → T7,7 E
T1,1 → T1,5 E T3,9 → T4,9 E T6,8 → T7,8

T1,1 → T1,6 E T3,10 → T4,10 T6,9 → T7,9

T1,1 → T1,7 E T4,4 → T4,5 E T6,10 → T7,10 E
T1,1 → T1,8 E T4,4 → T4,6 T6,11 → T7,11

T1,2 → T2,2 E T4,4 → T4,7 T6,12 → T7,12 E
T1,3 → T2,3 T4,4 → T4,8 E T7,7 → T7,8 E
T1,4 → T2,4 T4,4 → T4,9 E T7,7 → T7,9

T1,5 → T2,5 E T4,4 → T4,10 E T7,7 → T7,10

T1,6 → T2,6 T4,4 → T4,11 E T7,7 → T7,11 E
T1,7 → T2,7 E T4,5 → T5,5 E T7,7 → T7,12 E
T1,8 → T2,8 T4,6 → T5,6 T7,8 → T8,8 E
T2,2 → T2,3 E T4,7 → T5,7 T7,9 → T8,9

T2,2 → T2,4 T4,8 → T5,8 E T7,10 → T8,10

T2,2 → T2,5 T4,9 → T5,9 T7,11 → T8,11 E
T2,2 → T2,6 E T4,10 → T5,10 E T7,12 → T8,12

T2,2 → T2,7 E T4,11 → T5,11 T8,8 → T8,9 E
T2,2 → T2,8 E T5,5 → T5,6 E T8,8 → T8,10

T2,2 → T2,9 E T5,5 → T5,7 T8,8 → T8,11

T2,3 → T3,3 E T5,5 → T5,8 T8,8 → T8,12 E
T2,4 → T3,4 T5,5 → T5,9 E T8,9 → T9,9 E
T2,5 → T3,5 T5,5 → T5,10 E T8,10 → T9,10

T2,6 → T3,6 E T5,5 → T5,11 E T8,11 → T9,11

T2,7 → T3,7 T5,5 → T5,12 E T8,12 → T9,12 E
T2,8 → T3,8 E T5,6 → T6,6 E T9,9 → T9,10 E
T2,9 → T3,9 T5,7 → T6,7 T9,9 → T9,11

T3,3 → T3,4 E T5,8 → T6,8 T9,9 → T9,12

T3,3 → T3,5 T5,9 → T6,9 E T9,10 → T10,10 E
T3,3 → T3,6 T5,10 → T6,10 T9,11 → T10,11

T3,3 → T3,7 E T5,11 → T6,11 E T9,12 → T10,12

T3,3 → T3,8 E T5,12 → T6,12 T10,10 → T10,11 E
T3,3 → T3,9 E T6,6 → T6,7 E T10,10 → T10,12

T3,3 → T3,10 E T6,6 → T6,8 T10,11 → T11,11 E
T3,4 → T4,4 E T6,6 → T6,9 T10,12 → T11,12

T3,5 → T4,5 T6,6 → T6,10 E T11,11 → T11,12 E

5. Experimental results and discussion

In order to evaluate and validate the effectiveness of the proposed approach, the performances of PGE-SPDB
and those of determined theoretical formulas and row block method are compared.

5.1. Setup

The experiments are performed on a multicore processor composed of 8 cores Intel Xeon E5-2660 running at
2.2 GHz which is reserved in the platform Grid’50003 [15] and belongs to the cluster Econome in the Nantes site.

3Grid’5000 is a large-scale testbed for experimentations with a focus on high-performance parallel computing (https://www.
grid5000.fr).

https://www.grid5000.fr
https://www.grid5000.fr
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Figure 10. Gantt chart of the precedence graph illustrated in Figure 3 using three processors.

Actually, clusters of multicore nodes based on different architectures have become the most used option for new
High-Performance Computing systems due to their performance/cost ratio and scalability. All programs were
implemented in C programming language using OpenMP4 interface for the parallel regions. A set of randomly
generated SPD band matrices listed in Table 7 are used by varying the bandwidth L and the matrix size n. For
all matrices, number of tasks Ntasks, number of dependencies Nedges, sequential runtime t1 and optimal time
topt(n,L) are calculated using the equations (5), (6), (7) and (8), respectively.

4The Open Multi-Processing (OpenMP) represents an Application Programming Interface (API) which aims to enable portable
shared memory parallel programming [6].
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Figure 11. Parallel processing phase.

Table 7. Properties of test matrices.

n L Ntasks Nedges t1 topt(n,L)

1000
200 180 099 358 199 17 432 400 358 200
400 320 199 638 399 58 865 800 638 400
600 420 299 838 599 108 299 200 838 600

1500
250

343 874 684 749 41 852 750 684 750
2500 593 874 1 182 749 73 226 750 1 182 750
3500 843 874 1 680 749 104 600 750 1 680 750

Table 8. Results of tested matrices using the theoretical formulas.

n L topt,2 topt,4 topt,8 popt

1000
200 8 716 300 4 358 253 2 179 242 49
400 29 433 100 14 716 753 7 358 592 93
600 54 149 900 27 075 253 13 537 942 131

1500
250

20 926 500 10 463 378 5 231 830 62
2500 36 613 500 18 306 878 9 153 580 62
3500 52 300 500 26 150 378 13 075 330 63

5.2. Comparison with theoretical formulas

Table 8 gives the theoretical lower bound for parallel execution time topt,p(n,L) where p = {2, 4, 8} and num-
ber of processors popt(n,L) which are calculated using the equations (20) and (29), respectively. The PGE-SPDB
schedule length tp where p = {2, 4, 8, popt} is computed by the algorithm shown in Figure 6 and equation (35).
Given pPGE−SPDB processors, the schedule length tp attains the optimal time topt(n,L). These data are presented
in Table 9.
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Table 9. Results of tested matrices using the PGE-SPDB approach.

n L t2 t4 t8 tpopt pPGE−SPDB

1000
200 8 716 300 4 358 253 2 179 242 358 231 50
400 29 433 100 14 716 753 7 358 592 639 389 94
600 54 149 900 27 075 253 13 537 942 840 814 132

1500
250

20 926 500 10 463 378 5 231 830 684 750 62
2500 36 613 500 18 306 878 9 153 580 1 186 361 63
3500 52 300 500 26 150 378 13 075 330 1 680 750 63

Table 10. Comparison between experimental and theoretical results.

n L δt(tpopt , topt) np n L δt(tpopt , topt) np

1000
200 31 1 1500

250
0 0

400 989 1 2500 3611 1
600 2214 1 2500 0 0

Tables 7–9 indicate that t1, topt,p(n,L), topt(n,L) and tp increase as the bandwidth or the matrix size
increases. This result can be justified by the rise in the number of tasks and dependencies. Let δt(ta, tb) symbolize
the time difference between the experimental and theoretical execution times noted respectively ta and tb where
ta ≥ tb. It is expressed by

δt(ta, tb) =

{
δt
(
tp(n,L), topt,p(n,L)

)
≥ 0 if p < popt(n,L)

δt
(
tp(n,L), topt(n,L)

)
≥ 0 if p = popt(n,L)

(36)

δt(ta, tb) varies according to the matrix size n, the bandwidth L and the number of processors p. Two cases are
distinguished:

• δt(ta, tb) = 0 imply that the experimental and theoretical execution times are equal.
• δt(ta, tb) > 0 signify that it exists a small difference between the values of ta and tb. This phase shift occurs

because the tasks do not have the same cost.

Let the variable np denote the difference between the two numbers pPGE−SPDB(n,L) and popt(n,L) where
pPGE−SPDB(n,L) ≥ popt(n,L).

• If np = 0, then popt processors are sufficient to schedule the PGE-SPDB approach in optimal time topt(n,L).
• Otherwise, more processors’ number is needed and equal to np.

The difference between times δt(t2, topt,2), δt(t4, topt,4), and δt(t8, topt,8) for the given matrices are equal to zero.
The values of δt(tpopt , topt) and np are summarized in Table 10.

The numerical results show that the PGE-SPDB method is effective because the experimental values are
close to the theoretical ones.

5.3. Comparison with row block method

This section presents and discusses the experimental results obtained by the methods PGE-SPDB and row
block.
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Figure 12. Row block method for SPD band matrices.

5.3.1. Row block method

McGinn and Shaw [23] developed for dense matrices a parallel algorithm for GE in a shared memory envi-
ronment using OpenMP with different scheduling strategies specified by the schedule clause. Using the static
scheme without a specified chunk size implies that OpenMP splits iterations into p blocks and statically assigned
to cores in a block-wise distribution. Refer to [23], Figure 12 outlines the parallel algorithm applied for SPD
band matrices using BND format. This algorithm uses the row block data distribution.

5.3.2. Results and analysis

To compare the performance of the proposed approach (PGE-SPDB) with the row block method, the efficiency
metric Ep is calculated. It is defined as:

Ep =
tseq

tpar × p
(37)

where tpar represents the parallel runtime running on p cores and tseq the sequential execution time measured
by a single core [19,26]. The efficiencies measurements are summarized in Figures 13 and 14.

From the resulting histograms, it can be seen that:

(i) The developed approach (PGE-SPDB) is a significant improvement of parallel GE compared to the row
block method as it can effectively reduce the parallel execution time for all matrices.

(ii) The PGE-SPDB efficiency increases slightly as the bandwidth increases for fixed matrix size n and
a number of cores p (see Fig. 13).
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Figure 13. Efficiencies measurements for fixed matrix size n = 1000. (a) PGE-SPDB and (b)
Row block.
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Figure 14. Efficiencies measurements for fixed bandwidth L = 250. (a) PGE-SPDB and (b)
Row block.

(iii) A slight variation is noted in PGE-SPDB efficiency by varying the matrix size for fixed bandwidth L and
a number of cores p (see Fig. 14).

(iv) The efficiency decreases with each additional core. This is related to the growth of the total idle time of
cores.

(v) In PGE-SPDB method, all cores treated simultaneously their associated tasks. A task starts execution if
its predecessors have been performed. However, in row block method, all cores must synchronize after each
iteration k where 1 ≤ k ≤ n− 1.

(vi) In PGE-SPDB approach, there is a load balancing between cores. Whereas in row block method, the
partition of the tasks according to their weight among cores is not equal.

(vii) The overhead of synchronization and the no balancing into weight of tasks between cores lead to an increase
of total idle time. Therefore the row block method’s efficiency becomes relatively low.

The numerical experiments performed on a multicore processor proved the efficiency of our investigation. The
high parallelism degree and the shortest schedule length were obtained by PGE-SPDB are due to:

• Balancing the load among cores.
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• Assigning for each task the adequate start time and processor yielding to minimize parallel execution time
and increase the activity time of cores thereby reduce their idle time.

• Eliminating the useless dependencies leads to a decrease in the waiting time and speed up the execution of
the precedence graph.

6. Conclusion

In this study, a new approach of parallel GE for SPD band matrices is developed. Summing up the results,
it can be concluded that the PGE-SPDB approach can achieve a higher degree of parallelism by reducing
the overall idle and parallel execution times and balancing the load between processors. This can be done by
appropriately determining the start time and available processor to each task and eliminating the unnecessary
dependencies inter-tasks. In addition, we have calculated the lower bound of parallel execution time and number
of processors. The experimental results acquired from the PGE-SPDB approach are fitted to theoretical values.
It is obvious that several other questions remain to be addressed. In our future research, we intend to imple-
ment the proposed method using different matrix structures and other parallel architectures such as Graphics
Processing Unit (GPU) accelerated multicore systems.
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