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ALGORITHMS FOR FOUR-MACHINE FLOWSHOP SCHEDULING PROBLEM
WITH UNCERTAIN PROCESSING TIMES TO MINIMIZE MAKESPAN

Muberra Allahverdi1,∗ and Ali Allahverdi2

Abstract. We consider the four-machine flowshop scheduling problem to minimize makespan where
processing times are uncertain. The processing times are within some intervals, where the only avail-
able information is the lower and upper bounds of job processing times. Some dominance relations are
developed, and twelve algorithms are proposed. The proposed algorithms first convert the four-machine
problem into two stages, then, use the well-known Johnson’s algorithm, known to yield the optimal
solution for the two-stage problem. The algorithms also use the developed dominance relations. The
proposed algorithms are extensively evaluated through randomly generated data for different numbers
of jobs and different gaps between the lower and upper bounds of processing times. Computational
experiments indicate that the proposed algorithms perform well. Moreover, the computational exper-
iments reveal that one of the proposed algorithms, Algorithm A7, performs significantly better than
the other eleven algorithms for all possible combinations of the number of jobs and the gaps between
the lower and upper bounds. More specifically, error percentages of the other eleven algorithms range
from 2.3 to 27.7 times that of Algorithm A7. The results have been confirmed by constructing 99%
confidence intervals and tests of hypotheses using a significance level of 0.01.
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1. Introduction

Fuchigami and Rangel [13] provide a recent survey of practical research and case studies in production
scheduling. They consider research papers addressing different industries including food, electronics, furniture,
pharmaceuticals, and chemistry. They highlight that more than two thirds of the considered real life case studies
were in the flowshop scheduling area including four-machine flowshop, which includes the focus of this paper,
namely four machines flowshop. For example, Stefansson [21] study a real-world scheduling problem from a
pharmaceutical company where the objective is to minimize total weighted tardiness. The scheduling problem
consists of four production stages (machines) where each of the four operations of granulation, compression,
coating, and packing is performed sequentially.
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The objective to minimize is makespan in this paper. Minimizing makespan is the main objective considered
by companies. It considerably increases the revenue by decreasing the number of late deliveries and reducing
inventories. Furthermore, a shorter makespan decreases production costs.

In most of the scheduling literature, it is assumed that processing times are deterministic, Seidgar et al. [19]
and Keshavarz and Salmasi [16]. Nevertheless, Gonzalez-Neira et al. [15] and Wang and Choi [23] point out that
real world manufacturing systems are often subject to a wide range of uncertainties. Hence, it is not realistic to
assume deterministic processing times for some real-life manufacturing systems since there are several reasons
causing uncertainty in processing times. Examples include untested processing technology, the condition of
tools, machine operator fatigue, condition of auxiliary devices for holding the job at the appropriate position,
and disruptions in manufacturing systems, e.g., Tayanithi et al. [22]. Furthermore, the originally estimated
time may not be precise as there may be absent workers, late materials, and so on. Thus, uncertainty should
be incorporated into the planning phase and production control must consider these in advance to avoid any
possible inconvenience. Also, past data may not be available for new jobs, hence making it difficult to predict
their exact duration.

For some manufacturing systems, processing times may be uncertain as a result of changes in the dynamic
scheduling environments. In such a manufacturing system, processing times may be assumed to be random
variables with a specific probability distribution. Such an assumption may not be valid for some cases. For
example, we may not have enough prior information to describe the probability distribution. Kouvelis and Yu
[17] state that distributional assumption is unsuitable for some manufacturing systems where factors such as tool
conditions and worker skill levels control the uncertainty of processing times. For instance, the tool condition
might affect the processing times of the jobs. In general, obtaining upper and lower bounds on processing times
are easier, even in cases where the probability distribution may not be known beforehand.

In an uncertain model, the lower and upper bounds of processing times may be close to each other if we
have some perturbations for some jobs. However, we can set the lower and upper bounds far from each other
for some other jobs for which no perturbations of processing times are available. Yet for some other jobs when
processing times are known, the lower and upper bounds can be set to the same value.

The processing times are random variables with unidentified probability distributions. Let tj,k denote process-
ing time of job j (j ∈ J = {1, 2, . . . , n}) on machine k (k ∈ K = {1, 2, . . . ,m}) The lower bound Ltj,k ≥ 0 and
the upper bound Utj,k ≥ Ltj,k of tj,k is the only known information. Therefore, tj,k satisfies Ltj,k ≤ tj,k ≤ Utj,k.

Allahverdi and Sotskov [7] provide some dominance relations while Allahverdi and Aydilek [5] provide several
polynomial time algorithms for the problem of F2|Ltj,k ≤ tj,k ≤ Utj,k|Cmax. They show that one of their
proposed algorithms yields a solution that is close to the optimal solution. On the other hand, Allahverdi
and Aydilek [6] propose fourteen heuristics for the F2|Ltj,k ≤ tj,k ≤ Utj,k|Lmax problem and experimentally
demonstrate that one of their proposed heuristics performs best. Moreover, Sotskov et al. [20] provide some
dominance relations while Aydilek and Allahverdi [8] present eleven heuristics, utilizing the lower and upper
bounds on job processing times, for the F2|Ltj,k ≤ tj,k ≤ Utj,k|

∑
Ci problem. Through the computational

experiments, they show that one of their heuristics performs best for different distributions of processing times.
Sotskov et al. [20] also provide some dominance relations for the F3|Ltj,k ≤ tj,k ≤ Utj,k|

∑
Ci problem.

When job processing times are uncertain within lower and upper bounds, some other scheduling problems
have been addressed in the literature for other scheduling environments, e.g., Aydilek et al. [9–11], Allahverdi
and Allahverdi [3, 4].

In this paper, the problem of F4|prmu, Ltj,k ≤ tj,k ≤ Utj,k|Cmax is addressed for the first time. Dominance
relations are established, and twelve algorithms are proposed, and the algorithms are compared with each other.
Problem formulation and dominance relations are described in the following section. The algorithms are defined
in the next section and computational experiments are provided in Section 4. Lastly, concluding remarks are
provided the last section.
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2. Problem formulation and dominance relations

We consider a four-machine flowshop scheduling problem where there are four machines numbered from 1 to
4. There are n jobs available for scheduling. Each job has to be processed first by machine 1, then by machine
2, next by machine 3, and finally by machine 4. Therefore, a job can start its process on machine k only after
its processing is finished on machine k−1. We consider permutation flowshop where the processing order of the
jobs on all the machines is the same. The objective is to minimize makespan, completion time of the last job in
the set of n jobs.

Let ti,k denote the processing time of job i on machine k and t[j,k] denote the processing time of the job
in position j on machine k. Let TP[j,k] represent the total processing time of jobs in positions 1, 2, . . . , j on
machine k, i.e., TP[j,k] = t[1,k] + . . .+ t[j,k]. Also let ∆[j,k] be the total idle time on the kth machine up to the
completion time of the job in position j. It should be noted that there will be no idle time on the first machine,
and hence, ∆[j,1] = 0 for j = 1, . . . , n.

Let φ[j,2] = TP[j,1] − TP[j−1,2] where TP[0,2] = 0. Then, the total idle time until the job in position j is
completed on the second machine is given by Allahverdi [1],

∆[j,2] = max
{
φ[1,2], φ[2,2], . . . , φ[j,2]

}
. (2.1)

Let φ[j,3] = ∆[j,2] + TP[j,2] − TP[j−1,3] where P[0,3] = 0. It is known that [2]

∆[j,3] = max
{
φ[1,3], φ[2,3], . . . , φ[j,3]

}
. (2.2)

Let φ[1,4] = ∆[j,3] + TP[j,3] − TP[j−1,4] where P[0,4] = 0 , it can be shown that

∆[j,4] = max
{
φ[1,4], φ[2,4], . . . , φ[j,4]

}
. (2.3)

Therefore, C[j,k] = TP[j,k] + ∆[j,k] for j = 1, 2, . . . , n and k = 1, 2, 3, 4 where C[j,k] denotes the completion time
of the job in position j on machine k. Hence, the makespan (Cmax) for a four-machine flowshop is given by

Cmax = TP[n,4] + ∆[n,4]. (2.4)

Since the value of the term TP[n,4] is constant regardless of the sequence, minimizing Cmax is equivalent to
minimizing ∆[n,4].

Consider a job sequence π1 such that job h is in arbitrary position α and job g is in position α + 1 in
sequence π1. Let sequence π2 be derived from sequence π1 by only interchanging jobs h and g. Let σ1 denote the
subsequence containing the jobs in positions 1, 2, . . . , α− 1, and σ2 denote the subsequence containing the jobs
in positions α+ 2, . . . , n where n denotes the number of jobs. Therefore, sequences π1 and π2 can be written as
π1 = {σ1, h, g, σ2} and π2 = {σ1, g, h, σ2}.
Theorem 2.1. If one of the following seven conditions (C1-1 to C1-7) hold,

C1-1: Utg,1 ≤ Lth,1 and Uth,2 ≤ Ltg,2,
C1-2: Utg,2 ≤ Lth,1 and Uth,2 ≤ Ltg,2,
C1-3: Utg,1 ≤ Lth,1 and Utg,1 ≤ Ltg,2,
C1-4: Uth,2 ≤ Lth,1 and Uth,2 ≤ Ltg,2,
C1-5: Utg,2 ≤ Lth,1 and Utg,1 ≤ Ltg,2,
C1-6: Uth,1 ≤ Ltg,2 and Utg,1 ≤ Lth,1,
C1-7: Uth,1 ≤ Ltg,2 and Uth,2 ≤ Lth,1,

then,

max{φ[α,2] (π2) , φ[α+1,2] (π2)} ≤ max{φ[α,2] (π1) , φ[α+1,2] (π1)}.

In other words, the contribution to the idle time on the second machine from jobs in positions α and α + 1 in
the sequence π2 is less than or equal to that of the jobs in positions α and α+ 1 in the sequence π1.
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Proof. The proof is given in the Appendix A. �

Theorem 2.2. If one of the following six conditions (C2-1 to C2-6) hold,

C2-1: Utg,1 ≤ Lth,1 and Uth,2 ≤ Ltg,2 and Utg,3 ≤ Lth,2 and Uth,3 ≤ Ltg,3,
C2-2: Utg,1 ≤ Lth,1 and Utg,1 ≤ Ltg,2 and Utg,2 ≤ Lth,2 and Utg,2 ≤ Ltg,3,
C2-3: Utg,1 ≤ Lth,1 and Uth,2 ≤ Ltg,2 and Uth,3 ≤ Lth,2 and Uth,3 ≤ Ltg,3,
C2-4: Utg,1 ≤ Lth,1 and Utg,1 ≤ Ltg,2 and Utg,2 ≤ Ltg,3 and Utg,3 ≤ Lth,2,
C2-5: Utg,1 ≤ Lth,1 and Uth,1 ≤ Ltg,2 and Utg,2 ≤ Lth,2 and Uth,2 ≤ Ltg,3,
C2-6: Utg,1 ≤ Lth,1 and Uth,1 ≤ Ltg,2 and Uth,2 ≤ Ltg,3 and Uth,3 ≤ Lth,2,

then,

max{φ[α,3] (π2) , φ[α+1,3] (π2)} ≤ max{φ[α,3] (π1) , φ[α+1,3] (π1)}.

In other words, contribution to the idle time on the third machine from jobs in positions α and α + 1 in the
sequence π2 is less than or equal to that of the jobs in positions α and α+ 1 in the sequence π1.

Proof. The proof is provided in the Appendix A. �

Theorem 2.3. If one of the following seven conditions (C3-1 to C3-7) hold,

C3-1: Utg,r ≤ Lth,r for r = 1, 2, 3 and Uth,1 ≤ Ltg,2 and Uth,2 ≤ Ltg,3 and Uth,4 ≤ Ltg,4,
C3-2: Uth,1 ≤ Ltg,2 and Uth,2 ≤ Ltg,3 and Uth,4 ≤ Ltg,4 and Utg,4 ≤ Lth,3,
C3-3: Utg,r ≤ Lth,r for r = 1, 2, 3 and Utg,r ≤ Ltg,r+1 for r = 1, 2, 3,
C3-4: Utg,r ≤ Lth,r for r = 1, 2 and Uth,1 ≤ Ltg,2 and Uth,2 ≤ Ltg,3 and Uth,4 ≤ Ltg,4 and Uth,4 ≤ Lth,3,
C3-5: Utg,1 ≤ Lth,1 and Uth,1 ≤ Ltg,2 and Utg,2 ≤ Lth,2 and Uth,2 ≤ Ltg,3 and Utg,3 ≤ Ltg,4, and Utg,4 ≤ Lth,3,
C3-6: Utg,r ≤ Lth,r for r = 1, 2, 3 and Uth,r ≤ Ltg,r+1 for r = 1, 2, 3,
C3-7: Uth,r ≤ Ltg,r+1 for r = 1, 2, 3, and Utg,r ≤ Lth,r for r = 1, 2 and Uth,4 ≤ Lth,3,

then,

max{φ[α,4] (π2) , φ[α+1,4] (π2)} ≤ max{φ[α,4] (π1) , φ[α+1,4] (π1)}.

which means that the contribution to the idle time on the fourth machine from jobs in positions α and α+ 1 in
the sequence π2 is less than or equal to that of the jobs in positions α and α+ 1 in the sequence π1.

Proof. The proof is given in the Appendix A. �

Lemma 2.4. For r = 1, 2, . . . , α− 1,

φ[r,2] (π2) = φ[r,2] (π1) ,
φ[r,3] (π2) = φ[r,3] (π1) ,
φ[r,4] (π2) = φ[r,4] (π1) .

Proof. It follows from the fact that both sequences π1 and π2 have the same jobs in position 1, 2, . . . , α− 1. �

Lemma 2.5. φ[r,2] (π2) = φ[r,2] (π1) for r = α+ 2, . . . , n.

Proof. The proof is provided in the Appendix A. �
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Lemma 2.6. φ[r,3] (π2) ≤ φ[r,3] (π1) for r = α+ 2, . . . , n if

max{φ[α,2] (π2) , φ[α+1,2] (π2)} ≤ max{φ[α,2] (π1) , φ[α+1,2] (π1)}.

Proof. The proof is given in the Appendix A. �

Lemma 2.7. φ[r,4] (π2) ≤ φ[r,4] (π1) for r = α+ 2, . . . , n if

max{φ[α,3] (π2) , φ[α+1,3] (π2)} ≤ max{φ[α,3] (π1) , φ[α+1,3] (π1)}.

Proof. The proof is provided in the Appendix A. �

Theorem 2.8. If any of the following conditions (C4-1 to C4-5) hold,

C4-1: Utg,r ≤ Lth,r for r = 1, 2, 3 and Uth,1 ≤ Ltg,2 and Uth,2 ≤ Ltg,3 and Uth,4 ≤ Ltg,4,
C4-2: Utg,r ≤ Lth,r for r = 1, 2, 3 and Utg,r ≤ Ltg,r+1 for r = 1, 2, 3,
C4-3: Utg,r ≤ Lth,r for r = 1, 2 and Uth,1 ≤ Ltg,2 and Uth,2 ≤ Ltg,3 and Uth,4 ≤ Ltg,4 and Uth,4 ≤ Lth,3,
C4-4: Utg,r ≤ Lth,r for r = 1, 2, 3 and Uth,r ≤ Ltg,r+1 for r = 1, 2, 3,
C4-5: Uth,r ≤ Ltg,r+1 for r = 1, 2, 3, and Utg,r ≤ Lth,r for r = 1, 2 and Uth,4 ≤ Lth,3,

then, Cmax(π2) ≤ Cmax(π1). Therefore, job g should precede job h whenever they are adjacent in order to
minimize makespan.

Proof. The proof is given in the Appendix A. �

3. Proposed algorithms

It is known that the addressed problem is NP-hard since even when Uti,k = Lti,k for all i = 1, 2, . . . , n and
all machines k, the problem is NP-hard for k = 3 [14, 18]. In general, Uti,k 6= Lti,k for at least some jobs.
Furthermore, the precise realization of the processing time tj,k is not known until job j finishes its processing
on machine k. On the other hand, a decision on the position of job j in a sequence on machine k has to be made
before the exact realization of tj,k. This implies that a decision on position of job j on machine k in a sequence
has to be made only based on the available information, which is Uti,k and Lti,k.

It should be noted that advanced algorithms such as meta-heuristics cannot be used since processing times
(tj,k′s) are not known, Allahverdi and Aydilek [5]. Therefore, the proposed algorithms should utilize Uti,k and
Lti,k instead of tj,k.

Johnson’s algorithm finds the optimal solution for the two-machine flowshop scheduling problem for mini-
mizing makespan when Uti,k = Lti,k for all i and k. Therefore, we propose an algorithm which is based on
Johnson’s algorithm by reducing the four-machine problem to two stages and by utilizing Uti,k and Lti,k. De-
pending on the weights assigned to the machines, the algorithm results in different algorithms. Below are steps
of the algorithms.

Statements of algorithms

Given n, and the values Lti,k and Uti,k for i = 1, . . . , n and k = 1, . . . , 4.
Choose λ1, λ2, λ3, λ4 (see Tab. 1)

For algorithm A1, . . . , A9 or M23
Let ai = λ1((Lti,1 + Uti,1)/2) + λ2((Lti,2 + Uti,2)/2) for i = 1, . . . , n
Let bi = λ3((Lti,3 + Uti,3)/2) + λ4((Lti,4 + Uti,4)/2) for i = 1, . . . , n

For algorithm M12
Let ai = (Lti,1 + Uti,1)/2 for i = 1, . . . , n
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Table 1. Description of algorithms A1, . . . , A9 and M23.

Algorithm λ1 λ2 λ3 λ4

A1 0.25 0.75 0.25 0.75
A2 0.25 0.75 0.50 0.50
A3 0.25 0.75 0.75 0.25
A4 0.50 0.50 0.25 0.75
A5 0.50 0.50 0.50 0.50
A6 0.50 0.50 0.75 0.25
A7 0.75 0.25 0.25 0.75
A8 0.75 0.25 0.50 0.50
A9 0.75 0.25 0.75 0.25
M23 0.00 1.00 1.00 0.00

Let bi = (Lti,2 + Uti,2)/2 for i = 1, . . . , n
For algorithm M34

Let ai = (Lti,3 + Uti,3)/2 for i = 1, . . . , n
Let bi = (Lti,4 + Uti,4)/2 for i = 1, . . . , n

End For
Let π1 = {1, 2, . . . , n} and πs = φ
Let d1 = 1, and d2 = d3 = 0

While d3 < n,
Let am = min{ar} and bm = min{br} where r ∈ π

If am ≤ bm, place that job in position d1 of πs and let d1 = d1 + 1
Else place that job in position n− d2 of πs and let d2 = d2 + 1

Remove that job from the sequence π
Set d3 = d3 + 1

End While
Assign the last job in π to the only remaining position of πs

Set p = 1
While p < n,

Set th,k = t[p,k](πs) for k = 1, . . . , 4 and tg,k = t[p+1,k](πs) for k = 1, . . . , 4
If th,k and tg,k satisfy any of the conditions C4-1 to C4-5 of Theorem 2.8, swap the jobs

in positions p and p+ 1 of the sequence πs
Else Set p = p+ 1

End While

The sequence πs is the solution of the algorithm.
For a given problem the only known information is the number of jobs (n), and the lower and upper bounds of

processing times, i.e., Lti,k and Uti,k for i = 1, . . . , n and k = 1, . . . , 4. The algorithms A1–A9 and M23 have four
parameters of λ1, λ2, λ3, λ4 where λk denotes the weight given to the lower and upper bounds on processing times
on the kth machine. We consider different values for λk parameters, which result in 10 algorithms (A1−A9,
and M23) defined in Table 1. Please note that the other two algorithms of M12 and M34 do not have the
λk parameters, and hence are not included in the table. It should be noted that different combinations for
λk parameters have been investigated for different problems and it was observed that those results are not
significantly different than the results with the combinations of the parameters given in Table 1.

The idea beyond algorithm M12 is to minimize the total idle time on the second machine by applying the
Johnson’s algorithm where weighted average of processing times of lower and upper bounds is used. Similarly,
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the objectives for algorithm M23 and M34 are to minimize total idle time on the third machine and on the
fourth machine, respectively.

4. Algorithm evaluations

The proposed twelve algorithms of A1−A9, M12,M23, and M34, are evaluated utilizing randomly generated
data. Uti,k is generated from U(D+ 1, 100), which is commonly used in the scheduling literature for generating
processing times. Lti,k is also generated from a uniform distribution between 1 and Uti,k−D, i.e., U(1, Uti,k−D),
where D is set at four values of 10, 20, 30, and 40. D denotes the gap between the upper and lower bounds.
This is how Aydilek et al. [11] also generated data for their scheduling problem with bounded processing times.
After Lti,k and Uti,k are generated, instances of processing times are generated from different distributions.

Even though the distribution of processing times is not known, instances of processing times have to be
generated for computational purposes and it would not be appropriate to only generate instances between the
lower and upper bounds following the uniform distribution between the lower and upper bounds. Therefore, we
also consider positive linear, negative linear, and normal distributions for generating processing times between
Lti,k and Uti,k. Normal and uniform distributions are examples of symmetric distributions while positive and
negative linear distributions are examples of extreme distributions. Therefore, the considered distributions are
representatives of many distributions [11].

We now explain the four distributions for generating processing times. Essentially, ti,k is generated from
U(Lti,k, Uti,k) for the uniform distribution. On the other hand, for the normal distribution, the mean µ
is set to (Lti,k + Uti,k)/2 and the standard deviation µ is set to (Uti,k − Lti,k)/6. Notice that with a
small probability the generated value of ti,k will be outside Lti,k and Uti,k. If this happens, we regener-
ate ti,k so that this value will fall between Lti,k and Uti,k. In other words, the normal distributions for
generating ti,k is truncated. For negative linear and positive linear distributions, the probability density
functions are fn (ti,k) = 2 (Uti,k − ti,k) /x (Uti,k − Lti,k)2 and fp (ti,k) = 2 (ti,k − Lti,k) /x (Uti,k − Lti,k)2 for
ti,k ∈ (Lti,k, Uti,k), respectively. Figure 1 shows all the four distributions for generating processing times between
the lower and upper bounds.

We compare the performance of the algorithms by using two measures of performance; average error per-
centage (Error) and standard deviation (Std). The error percentage of Algorithm X is computed as 100∗
(Cmax(Algorithm X)-minimum makespan of all the algorithms)/minimum of makespan of all the algorithms.
This error is in fact a relative error since the solutions of the algorithms are compared with each other rather
than compared with the optimal solution, which is unknown.

We consider five different values for n, which are 100, 200, 300, 400, and 500. Moreover, we consider four
values of 10, 20, 30, and 40 for D and four distributions (positive linear, negative linear, uniform, and normal).
This results in 80 (5∗ 4∗ 4) combinations. For each combination, 1000 replications were generated. This results
in a total of 80 000 problems generated.

A random sequence was initially included in the evaluations in addition to the considered algorithms. The
computational experiments indicated that the error of the random sequence was about ten times that of the
worst performing algorithms. This shows that even the worst algorithm performs well. Therefore, the random
sequence was excluded from computations and the algorithms A1−A9, M12,M23,M34 were compared with
each other for the rest of the analysis.

The computational results are given in Tables 3–6 for the uniform distribution, normal distribution, positive
linear distribution, and negative linear distribution, respectively. The first column in the tables denotes the
algorithm, the second column shows D (the gap between the lower and upper bounds of processing times),
the next five columns denote the average error percentages of the algorithms for n = 100, 200, 300, 400, 500,
respectively, and the final column indicates the average error percentage over n. The last row in the tables
illustrates the average error percentage over D.

The results in Tables 3–6 are summarized in Figure 2 where the average error percentages of all the algo-
rithms over n and D values are illustrated with respect to the considered four distributions for generating the
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a)

b)

c)

d)

Uti,kLti,k

f(x)

Lti Uti

f(x)

Uti,kLti,k

f(x)

UtLti

f(x)

Figure 1. The four distributions used for generating ti,k between Lti,k and Uti,k. (a) Uniform,
(b) Normal, (c) Positive linear, and (d) Negative linear.
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Table 2. Confidence intervals.

Algorithm Avg. error 95% Confidence interval on the
Avg. error

99% Confidence interval on the
Avg. error

A1 5.74 (5.48–5.99) (5.39–6.07)
A2 6.08 (5.80–6.35) (5.72–6.44)
A3 7.74 (7.41–8.06) (7.31–8.17)
A4 1.15 (1.12–1.19) (1.11–1.21)
A5 1.71 (1.65–1.77) (1.64–1.79)
A6 6.08 (5.81–6.34) (5.72–6.44)
A7 0.50 (0.48–0.52) (0.47–0.53)
A8 1.17 (1.12–1.20) (1.11–1.22)
A9 5.73 (5.48–5.98) (5.40–6.06)
M12 12.78 (12.21–13.33) (12.04–13.51)
M23 13.87 (13.24–14.49) (13.04–14.70)
M34 3.54 (3.41–3.65) (3.38–3.69)

processing times between the lower and upper bounds. Figure 3 shows the average standard deviations of the
error percentages of the algorithms, again over n and D values, for the four distributions. The average error per-
centages and average standard deviations are proportional as can be seen from Figures 2 and 3. In other words,
in general, the algorithms with large error percentages have large standard deviations while those algorithms
with small error percentages have small standard deviations. This is due to the large number of replications
(1000). As can be seen from Figures 2 and 3, the algorithms A4, A5, A7, and A8 perform better than the rest of
the algorithms. Figures 4 and 5 compare the average error percentages and standard deviations only for these
four algorithms, respectively.

The average error percentages of the all algorithms, over n and the four distributions, are summarized in
Figure 6 with respect to D. As can be seen from the figure, the performance of the well performing four
algorithms (A4, A5, A7, and A8) do not seem to depend on the D value. In other words, these four algorithms
perform well regardless of the gap between the lower and upper bounds of the processing times.

Figure 7 illustrates the average error percentages of the algorithms, over D and the four distributions, with
respect to the number of jobs, n. The performance of all the algorithms do not seem to depend on the number
of jobs.

The effect of Theorem 2.8 in Step 17 of the algorithms was also investigated. It was observed that the
improvement on the objective value, on the average, was less than 10%.

The overall average errors of all the algorithms along with 95% and 99% confidence intervals are given in
Table 2.

Table 2 confirms that the best performing algorithms are A4, A5, A7, and A8 among the considered twelve
algorithms. It should be noted that algorithms A1–A9 take into account the processing times of the jobs on
all the four machines while M12,M23, and M34 only take into account the processing times of the jobs on
only two machines. Perhaps that is the reason why algorithms A1–A9 perform better than the rest. However,
in general, it is interesting to observe that the algorithm M34 performs better than algorithms A1, A2, A3, A6,
and A9. The reason could be that the objective in M34 is to minimize the total idle time on the fourth machine
which indirectly minimizes makespan. The good performance of algorithms A4, A5, A7, and A8 indicates that
giving more weight to the processing times of jobs on machine one than on those on machine two along with
giving more weights to processing times of jobs on machine four (last machine) than those on machine three
yield better results.

As can be seen from Table 2, the algorithm A7 is the best among the well performing four algorithms
A4, A5, A7, and A8. This is confirmed by conducting the following test of hypotheses.
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Table 3. Results for uniform distribution.

n
Algorithm D 100 200 300 400 500 Avg.

A1 10 7.39 7.22 7.31 7.14 7.22 7.25
A2 7.79 7.71 7.79 7.65 7.64 7.72
A3 9.52 9.48 9.83 9.61 9.51 9.59
A4 1.44 1.30 1.34 1.32 1.36 1.35
A5 2.06 1.98 2.13 2.03 2.06 2.05
A6 7.45 7.43 7.76 7.52 7.57 7.54
A7 0.52 0.56 0.51 0.53 0.46 0.51
A8 1.34 1.39 1.37 1.43 1.32 1.37
A9 7.07 6.94 7.32 6.98 7.16 7.09
M12 15.98 16.02 15.99 15.89 16.07 15.99
M23 16.97 17.26 17.56 17.14 17.37 17.26
M34 4.28 4.31 4.21 4.21 4.28 4.26
A1 20 6.14 5.97 6.07 6.06 6.03 6.06
A2 6.54 6.42 6.44 6.52 6.39 6.46
A3 8.44 8.30 8.34 8.31 8.27 8.33
A4 1.25 1.29 1.23 1.19 1.20 1.23
A5 1.94 1.83 1.77 1.86 1.84 1.85
A6 6.59 6.48 6.60 6.50 6.44 6.52
A7 0.51 0.52 0.51 0.52 0.51 0.51
A8 1.28 1.27 1.20 1.28 1.22 1.25
A9 6.17 6.08 6.16 6.15 5.98 6.11
M12 13.81 13.75 13.51 13.57 13.49 13.63
M23 14.92 14.96 14.76 14.82 14.79 14.85
M34 3.81 3.70 3.79 3.73 3.80 3.76
A1 30 5.12 5.09 4.78 5.08 5.12 5.04
A2 5.45 5.33 5.11 5.28 5.33 5.30
A3 7.11 6.94 7.03 6.71 6.97 6.95
A4 1.18 1.25 1.11 1.18 1.15 1.17
A5 1.75 1.74 1.69 1.62 1.62 1.69
A6 5.40 5.32 5.66 5.28 5.39 5.41
A7 0.57 0.60 0.57 0.62 0.58 0.59
A8 1.25 1.20 1.22 1.19 1.15 1.20
A9 5.01 4.96 5.37 5.06 5.08 5.10
M12 11.66 11.34 11.13 11.45 11.54 11.42
M23 12.36 12.04 12.45 11.95 12.58 12.28
M34 3.39 3.25 3.49 3.42 3.36 3.38
A1 40 4.16 4.30 4.23 4.27 4.16 4.22
A2 4.39 4.56 4.43 4.53 4.40 4.46
A3 5.85 5.96 5.82 5.97 5.83 5.89
A4 1.20 1.17 1.20 1.17 1.22 1.19
A5 1.56 1.54 1.61 1.58 1.64 1.59
A6 4.35 4.42 4.36 4.39 4.40 4.38
A7 0.69 0.66 0.66 0.67 0.72 0.68
A8 1.23 1.18 1.16 1.21 1.26 1.21
A9 4.21 4.27 4.14 4.17 4.25 4.21
M12 9.37 9.56 9.38 9.41 9.24 9.39
M23 9.97 9.91 9.77 9.84 9.86 9.87
M34 3.12 3.10 3.00 2.98 3.26 3.09

Avg. 5.49 5.46 5.48 5.44 5.46
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Table 4. Results for normal distribution.

n
Algorithm D 100 200 300 400 500 Avg.

A1 10 7.19 7.53 7.30 7.35 7.30 7.33
A2 7.65 7.88 7.74 7.77 7.79 7.77
A3 9.39 9.71 9.64 9.64 9.64 9.60
A4 1.23 1.27 1.20 1.28 1.24 1.24
A5 1.87 2.01 1.94 1.98 2.03 1.96
A6 7.65 7.86 7.76 7.89 7.79 7.79
A7 0.43 0.42 0.47 0.44 0.46 0.44
A8 1.17 1.21 1.26 1.27 1.24 1.23
A9 7.27 7.42 7.32 7.40 7.33 7.35
M12 15.80 16.22 16.05 15.96 16.21 16.05
M23 17.47 17.55 17.67 17.72 17.74 17.63
M34 3.99 4.20 4.00 4.10 4.20 4.10
A1 20 6.24 6.23 6.41 6.05 6.27 6.24
A2 6.63 6.57 6.73 6.47 6.72 6.62
A3 8.29 8.23 8.26 8.24 8.31 8.27
A4 1.13 1.08 1.09 1.13 1.06 1.10
A5 1.67 1.66 1.70 1.71 1.69 1.69
A6 6.65 6.56 6.47 6.63 6.74 6.61
A7 0.43 0.38 0.44 0.41 0.39 0.41
A8 1.01 1.04 1.03 1.12 1.07 1.05
A9 6.19 6.15 6.04 6.19 6.31 6.18
M12 13.83 13.87 13.84 13.66 13.73 13.79
M23 15.18 15.16 14.94 15.05 15.19 15.10
M34 3.60 3.56 3.61 3.50 3.56 3.57
A1 30 5.27 5.31 5.30 5.31 5.14 5.27
A2 5.67 5.68 5.59 5.68 5.50 5.62
A3 7.18 7.05 6.99 7.14 6.90 7.05
A4 0.98 1.01 0.99 0.99 0.95 0.98
A5 1.47 1.46 1.48 1.50 1.44 1.47
A6 5.82 5.61 5.54 5.61 5.57 5.63
A7 0.37 0.39 0.40 0.42 0.35 0.39
A8 1.02 0.98 1.01 1.01 0.94 0.99
A9 5.53 5.34 5.25 5.27 5.31 5.34
M12 11.78 11.78 11.77 11.65 11.53 11.70
M23 13.04 12.85 12.68 12.84 12.76 12.84
M34 3.22 3.12 3.19 3.12 3.00 3.13
A1 4.37 4.33 4.32 4.28 4.29 4.32
A2 40 4.57 4.57 4.57 4.59 4.58 4.57
A3 5.70 5.89 5.77 5.86 5.93 5.83
A4 0.94 0.89 0.88 0.89 0.89 0.90
A5 1.27 1.32 1.29 1.30 1.28 1.29
A6 4.36 4.54 4.52 4.56 4.55 4.51
A7 0.42 0.35 0.37 0.38 0.39 0.38
A8 0.83 0.83 0.84 0.87 0.87 0.85
A9 4.11 4.27 4.32 4.22 4.30 4.25
M12 9.61 9.73 9.75 9.68 9.52 9.66
M23 10.18 10.48 10.36 10.40 10.37 10.36
M34 2.67 2.71 2.75 2.66 2.70 2.70

Avg. 5.46 5.51 5.48 5.48 5.48
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Table 5. Results for positive linear distribution.

n
Algorithm D 100 200 300 400 500 Avg.

A1 10 7.29 7.01 6.97 7.04 7.22 7.11
A2 7.75 7.35 7.44 7.40 7.56 7.50
A3 9.38 9.09 9.20 9.23 9.23 9.23
A4 1.23 1.17 1.18 1.22 1.18 1.20
A5 1.85 1.77 1.78 1.88 1.84 1.82
A6 7.37 7.33 7.34 7.51 7.35 7.38
A7 0.41 0.43 0.42 0.44 0.45 0.43
A8 1.10 1.10 1.19 1.24 1.15 1.16
A9 6.87 6.88 6.92 7.00 7.03 6.94
M12 15.43 15.29 15.25 15.21 15.45 15.33
M23 16.66 16.73 16.69 16.65 16.69 16.68
M34 3.88 3.79 3.88 3.87 3.93 3.87
A1 20 6.02 5.88 5.96 6.10 5.80 5.95
A2 6.29 6.22 6.28 6.42 6.17 6.28
A3 7.71 7.81 7.82 7.95 7.82 7.82
A4 1.11 1.03 1.06 1.11 1.00 1.06
A5 1.59 1.59 1.61 1.68 1.66 1.63
A6 6.27 6.13 6.17 6.23 6.44 6.25
A7 0.41 0.43 0.41 0.44 0.41 0.42
A8 1.04 1.07 1.08 1.10 1.10 1.08
A9 5.96 5.76 5.90 5.88 6.02 5.91
M12 12.82 12.71 12.85 12.95 12.85 12.84
M23 13.91 13.87 13.92 14.09 14.06 13.97
M34 3.37 3.36 3.38 3.43 3.45 3.40
A1 30 4.70 4.77 4.74 4.76 4.78 4.75
A2 4.90 5.02 5.03 5.04 5.06 5.01
A3 6.46 6.39 6.43 6.46 6.44 6.44
A4 0.94 0.95 0.94 0.89 0.93 0.93
A5 1.39 1.41 1.42 1.40 1.38 1.40
A6 5.14 5.06 5.17 5.11 5.16 5.13
A7 0.43 0.42 0.40 0.40 0.42 0.41
A8 1.02 1.00 0.97 0.94 0.97 0.98
A9 4.95 4.89 4.85 4.79 4.90 4.88
M12 10.50 10.54 10.73 10.53 10.55 10.57
M23 11.60 11.34 11.52 11.43 11.58 11.50
M34 3.00 2.95 2.90 2.91 3.02 2.95
A1 40 4.02 3.93 3.77 3.99 4.00 3.94
A2 4.13 4.12 3.92 4.19 4.16 4.10
A3 5.37 5.37 5.34 5.45 5.26 5.36
A4 0.94 0.89 0.80 0.89 0.91 0.89
A5 1.27 1.29 1.20 1.26 1.26 1.26
A6 4.21 4.13 4.20 4.23 4.11 4.18
A7 0.44 0.46 0.38 0.40 0.43 0.43
A8 0.88 0.91 0.92 0.87 0.91 0.90
A9 3.95 3.93 3.97 4.07 3.92 3.97
M12 8.77 8.60 8.53 8.78 8.74 8.68
M23 9.26 9.27 9.35 9.43 9.18 9.30
M34 2.63 2.56 2.52 2.59 2.59 2.58

Avg. 5.14 5.08 5.10 5.14 5.14
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Table 6. Results for negative linear distribution.

n
Algorithm D 100 200 300 400 500 Avg.

A1 10 7.17 7.54 7.74 7.19 7.42 7.41
A2 7.67 8.09 8.26 7.71 7.95 7.94
A3 9.94 10.26 10.29 9.81 10.11 10.08
A4 1.36 1.41 1.49 1.38 1.45 1.42
A5 2.11 2.09 2.29 2.09 2.20 2.16
A6 7.97 8.06 8.02 7.67 7.81 7.90
A7 0.61 0.53 0.56 0.63 0.57 0.58
A8 1.53 1.42 1.51 1.39 1.38 1.44
A9 7.46 7.62 7.50 7.18 7.32 7.41
M12 16.41 16.86 17.26 16.64 16.64 16.76
M23 18.36 18.61 18.40 18.28 18.55 18.44
M34 4.40 4.46 4.55 4.45 4.57 4.49
A1 20 6.48 6.51 6.30 6.46 6.46 6.44
A2 6.99 6.93 6.77 6.88 6.88 6.89
A3 9.08 8.92 8.64 8.85 8.99 8.90
A4 1.34 1.29 1.30 1.29 1.32 1.31
A5 2.03 1.90 2.01 1.90 2.06 1.98
A6 7.04 6.88 6.85 6.87 7.19 6.97
A7 0.56 0.61 0.59 0.54 0.56 0.57
A8 1.40 1.34 1.40 1.25 1.40 1.36
A9 6.62 6.45 6.49 6.34 6.76 6.53
M12 15.06 14.83 14.70 14.63 14.76 14.80
M23 16.43 16.29 16.00 16.09 16.29 16.22
M34 4.18 4.00 3.92 4.09 4.24 4.09
A1 30 5.39 5.83 5.50 5.81 5.76 5.66
A2 5.79 6.15 5.87 6.08 5.97 5.97
A3 7.73 7.83 7.71 8.03 7.80 7.82
A4 1.27 1.32 1.22 1.32 1.25 1.28
A5 1.91 1.87 1.75 1.91 1.75 1.84
A6 6.11 5.93 5.86 6.17 5.90 5.99
A7 0.67 0.61 0.60 0.65 0.60 0.63
A8 1.39 1.30 1.25 1.40 1.24 1.32
A9 5.84 5.60 5.48 5.88 5.62 5.68
M12 12.77 13.08 12.91 12.95 12.86 12.91
M23 14.08 13.90 13.84 14.07 13.98 13.97
M34 3.67 3.84 3.80 3.85 3.76 3.78
A1 4.70 4.73 4.84 4.88 4.77 4.78
A2 40 4.98 4.96 5.16 5.16 5.05 5.06
A3 6.70 6.64 6.69 6.75 6.69 6.69
A4 1.30 1.27 1.32 1.30 1.28 1.29
A5 1.79 1.75 1.77 1.72 1.78 1.76
A6 5.11 5.11 4.96 5.03 5.15 5.07
A7 0.68 0.68 0.61 0.68 0.73 0.68
A8 1.29 1.26 1.23 1.25 1.30 1.27
A9 4.77 4.76 4.78 4.81 4.86 4.80
M12 10.74 10.85 10.98 11.04 10.82 10.89
M23 11.67 11.66 11.61 11.72 11.70 11.67
M34 3.32 3.34 3.48 3.55 3.62 3.46

Avg. 5.96 5.98 5.96 5.95 5.98
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Figure 2. Avg. error of all algorithms for different distributions.

Figure 3. Avg. Std. of all algorithms for different distributions.
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Figure 4. Avg. error of the four algorithms for different distributions.

Figure 5. Avg. Std. of the four algorithms for different distributions.
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Figure 6. Avg. error of all algorithms with respect to D.

Figure 7. Avg. error of all algorithms with respect to n.
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Figure 8. 50% Negative distribution and 50% Positive distribution.

The performance of A7 and A4 were statistically verified by using a two-sample t test. The following null
and alternative hypotheses testing were conducted for comparing the performance of A7 and A4 statistically.

H0 : µ (A7) = µ (A4)
H1 : µ (A7) < µ (A4)

where µ (Ah) denotes the overall average error of the algorithm Ah. The null hypothesis was rejected at a
significance level of α = 0.01. Similarly, the following hypothesis testing

H0 : µ (A7) = µ (A5)
H1 : µ (A7) < µ (A5)

and the hypothesis testing

H0 : µ (A7) = µ (A8)
H1 : µ (A7) < µ (A8)

were conducted for comparing the performance of algorithms A7 and A5, and A7 and A8, respectively. For both
cases, the null hypotheses were rejected at a significance level of α = 0.01.

The intuition behind why Algorithm A7 performs well can be described as following. Recall that Johnson’s
algorithm is designed for the two-stage (two-machine) flowshop, where the objective is to minimize the total idle
time on the (second) last machine by considering job processing times on both machines. For our four-machine
flowshop, the first stage consists of the first two machines while the second stage consists of the third and fourth
machines. However, in Algorithm A7, more weight is given to the first machine (in the first stage) while more
weight is given to the fourth machine (in the second stage). More specifically, in Algorithm A7, a 75% weight
is given to the processing times of the jobs on the first machine while a 25% weight is given to the processing
times of the jobs on the second machine. Moreover, a 25% weight is given to the processing times of the jobs
on the third machine while a 75% weight is given to the processing time of the jobs on the fourth machine.

As stated before, the above results were obtained by using only uniform, or positive linear, or negative linear,
or normal distributions for generating processing times between Lti,k and Uti,k. We also mixed the stated distri-
butions for generating processing times and we observed that the results in general were similar. For example,
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Figure 9. 80% Negative distribution and 20% positive distribution.
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Figure 10. 20% Negative distribution and 80% positive distribution.

Figure 8 summarizes the results for 50% from Negative Linear and 50% from Positive Linear distributions,
the results for 80% from Negative Linear and 20% from Positive Linear distributions are summarized Figure 9
while the results for 20% from Negative Linear and 80% from Positive Linear distributions are summarized in
Figure 10. As can be seen, the results summarized in Figures 8–10 are very similar to the results summarized
in Figure 7 for non-mixed distributions. The results in general were similar and hence, mixing the distributions
do not seem to change the results. We guess this is due to the fact that we conducted 1000 replications which
is very large, and hence, the results do not change.
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5. Concluding remarks

The four-machine flowshop scheduling problem is investigated in this paper with the objective of minimizing
makespan. The processing times are uncertain and only the lower and upper bounds of these times are known.
Some dominance relations are established, and twelve algorithms are proposed. The algorithms are based on the
well-known Johnson’s algorithm, which is known to yield the optimal solution for the two-machine case. They
are also based on the weights given to the lower and upper bounds of processing times on the four machines.

The proposed twelve algorithms are evaluated through computational experiments. The latter reveal that
one of the algorithms, Algorithm A7, is performing significantly better than the rest for different distributions
considered to generate the processing times of the jobs between the given lower and upper bounds. Specifically,
the error percentage of Algorithm A7 is from 3.6% to 43% of the error percentages of the other eleven considered
algorithms. Therefore, the error percentage of Algorithm A7 is about 43% of the error percentage of the next
best performing algorithm. These results are confirmed by using confidence intervals and test of hypothesis.
Therefore, Algorithm A7 is recommended for the considered problem.

It is assumed in this paper that setup times are included in processing times. This assumption is valid for
most of manufacturing environments. However, this assumption may not be valid for some other manufacturing
environments, Therefore, an extension of the research conducted in this paper is to address the four-machine
flowshop scheduling problem with uncertain processing times (within some intervals) to minimize makespan for
the environments where setup times are treated as separate from processing times.

Appendix A.

Proof of Theorem 2.1. Let φ[α,2] (πr) denote φ[α,2] for the sequence πr, r = 1, 2. It follows from the definition
of φ[j,2] that for j = α and α+ 1,

φ[α,2] (π1) = TP[α−1,1] (π1) + th,1 − TP[α−1,2] (π1) . (A.1)
φ[α,2] (π2) = TP[α−1,1] (π2) + tg,1 − TP[α−1,2] (π2) . (A.2)

φ[α+1,2] (π1) = TP[α−1,1] (π1) + th,1 + tg,1 − TP[α−1,2] (π1)− th,2. (A.3)
φ[α+1,2] (π2) = TP[α−1,1] (π2) + tg,1 + th,1 − TP[α−1,2] (π2)− tg,2. (A.4)

It should be noted that th,1, th,2, tg,1, and tg,2 satisfy the following inequalities,

Lth,1 ≤ th,1 ≤ Uth,1 (A.5)
Ltg,1 ≤ tg,1 ≤ Utg,1 (A.6)
Lth,2 ≤ th,2 ≤ Uth,2 (A.7)
Ltg,2 ≤ tg,2 ≤ Utg,2 (A.8)

It should be also noted that

TP[α−1,1] (π1) = TP[α−1,1] (π2) and TP[α−1,2] (π1) = TP[α−1,2] (π2) (A.9)

since both sequences π1 and π2 have the same jobs in positions 1, . . . , α− 1.
It follows from equations (A.1) to (A.9) and C1-1 of the theorem that

φ[α,2] (π2) ≤ φ[α,2] (π1) and φ[α+1,2] (π2) ≤ φ[α+1,2] (π1) . (A.10)

By C1-2 of theorem and equations (A.2)–(A.9), we have

φ[α,2] (π2) ≤ φ[α+1,2] (π2) and φ[α+1,2] (π2) ≤ φ[α+1,2] (π1) . (A.11)
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By C1-3 of the theorem and equations (A.1), (A.2), (A.4)–(A.6), (A.8) and (A.9) we obtain

φ[α,2] (π2) ≤ φ[α,2] (π1) and φ[α+1,2] (π2) ≤ φ[α,2] (π1) . (A.12)

By C1-4 of the theorem and equations (A.2)–(A.5) and (A.7)–(A.9),

φ[α,2] (π2) ≤ φ[α+1,2] (π1) and φ[α+1,2] (π2) ≤ φ[α+1,2] (π1) . (A.13)

By equations (A.1), (A.2), (A.4)–(A.6), (A.8), (A.9) and C1-5 of the theorem,

φ[α,2] (π2) ≤ φ[α+1,2] (π2) and φ[α+1,2] (π2) ≤ φ[α,2] (π1) . (A.14)

By equations (A.1), (A.2), (A.4)–(A.6), (A.8), (A.9) and C1-6 of the theorem,

φ[α+1,2] (π2) ≤ φ[α,2] (π2) and φ[α,2] (π2) ≤ φ[α,2] (π1) . (A.15)

Finally, by equations (A.2)–(A.5), (A.7)–(A.9) and C1-7 of the theorem, we have

φ[α+1,2] (π2) ≤ φ[α,2] (π2) and φ[α,2] (π2) ≤ φ[α+1,2] (π1) . (A.16)

If any of the Inequalities of (A.10)–(A.16) hold, then,

max{φ[α,2] (π2) , φ[α+1,2] (π2)} ≤ max{φ[α,2] (π1) , φ[α+1,2] (π1)}.

�

Proof of Theorem 2.2. Let ∆[α,2] (πr) denote ∆[α,2] for the sequence πr, r = 1, 2. It follows from the definition
of φ[j,3] that for j = α and α+ 1,

φ[α,3] (π1) = max
{

∆[α−1,2] (π1) , φ[α,2] (π1)
}

+ TP[α−1,2] (π1) + th,2 − TP[α−1,3] (π1) . (A.17)
φ[α,3] (π2) = max

{
∆[α−1,2] (π2) , φ[α,2] (π2)

}
+ TP[α−1,2] (π2) + tg,2 − TP[α−1,3] (π2) . (A.18)

φ[α+1,3] (π1) = max
{

∆[α−1,2] (π1) , φ[α,2] (π1) , φ[α+1,2] (π1)
}

+ TP[α−1,2] (π1) + th,2 + tg,2

− TP[α−1,3] (π1)− th,3. (A.19)
φ[α+1,3] (π2) = max

{
∆[α−1,2] (π2) , φ[α,2] (π2) , φ[α+1,2] (π2)

}
+ TP[α−1,2] (π2) + tg,2 + th,2

− TP[α−1,3] (π2)− tg,3. (A.20)

It should be noted that

TP[α−1,3] (π1) = TP[α−1,3] (π2) and ∆[α−1,2] (π1) = ∆[α−1,2] (π2) (A.21)

since both sequences π1 and π2 have the same jobs in positions 1, . . . , α − 1. It should be also noted that tg,3,
and th,3 satisfy the following inequalities,

Lth,3 ≤ th,3 ≤ Uth,3 (A.22)
Ltg,3 ≤ tg,3 ≤ Utg,3 (A.23)

It follows by C2-1 of the theorem and equations (A.7), (A.9), (A.10) and (A.18)–(A.23) that

φ[α,3] (π2) ≤ φ[α+1,3] (π2) and φ[α+1,3] (π2) ≤ φ[α+1,3] (π1) . (A.24)

By C2-2 of the theorem and equations (A.7)–(A.9), (A.12), (A.17), (A.18), (A.20), (A.21) and (A.23),

φ[α,3] (π2) ≤ φ[α,3] (π1) and φ[α+1,3] (π2) ≤ φ[α,3] (π1) . (A.25)



ALGORITHMS FOR FOUR-MACHINE FLOWSHOP SCHEDULING PROBLEM 549

By C2-3 of the theorem and equations (A.7), (A.9), (A.10) and (A.18)–(A.23),

φ[α,3] (π2) ≤ φ[α+1,3] (π1) and φ[α+1,3] (π2) ≤ φ[α+1,3] (π1) . (A.26)

By equations (A.7)–(A.9), (A.14), (A.17), (A.18), (A.20), (A.21), (A.23) and C2-4 of the theorem,

φ[α,3] (π2) ≤ φ[α+1,3] (π2) and φ[α+1,3] (π2) ≤ φ[α,3] (π1) . (A.27)

By equations (A.7)–(A.9), (A.15), (A.17), (A.18), (A.20), (A.21), (A.23) and C2-5 of the theorem,

φ[α+1,3] (π2) ≤ φ[α,3] (π2) and φ[α,3] (π2) ≤ φ[α,3] (π1) . (A.28)

Lastly, from equations (A.1), (A.2), (A.4), (A.7), (A.9), (A.18)–(A.23) and C2-6 of the theorem, it follows
that

φ[α+1,3] (π2) ≤ φ[α,3] (π2) and φ[α,3] (π2) ≤ φ[α+1,3] (π1) . (A.29)

If any of the Inequalities (A.24)–(A.29) hold, then,

max{φ[α,3] (π2) , φ[α+1,3] (π2)} ≤ max{φ[α,3] (π1) , φ[α+1,3] (π1)}.

�

Proof of Theorem 2.3. It follows from the definition of φ[j,4] that for j = α and α+ 1

φ[α,4] (π1) = max
{

∆[α−1,3] (π1) , φ[α,3] (π1)
}

+ TP[α−1,3] (π1) + th,3 − TP[α−1,4] (π1) . (A.30)
φ[α,4] (π2) = max

{
∆[α−1,3] (π2) , φ[α,3] (π2)

}
+ TP[α−1,3] (π2) + tg,3 − TP[α−1,4] (π2) . (A.31)

φ[α+1,4] (π1) = max
{

∆[α−1,3] (π1) , φ[α,3] (π1) , φ[α+1,3] (π1)
}

+ TP[α−1,3] (π1) + th,3 + tg,3

− TP[α−1,4] (π1)− th,4. (A.32)
φ[α+1,4] (π2) = max

{
∆[α−1,3] (π2) , φ[α,3] (π2) , φ[α+1,3] (π2)

}
+ TP[α−1,3] (π2) + tg,3 + th,3

− TP[α−1,4] (π2)− tg,4. (A.33)

It should be noted that

TP[α−1,4] (π1) = TP[α−1,4] (π2) and Φ[α−1,3] (π1) = Φ[α−1,3] (π2) (A.34)

since both sequences π1 and π2 have the same jobs in positions 1, . . . , α − 1. It should be also noted that tg,3,
and th,3 satisfy the following inequalities,

Lth,4 ≤ th,4 ≤ Uth,4 (A.35)
Ltg,4 ≤ tg,4 ≤ Utg,4 (A.36)

Notice that if C3-1 of the Theorem holds, then, φ[α,3] (π2) ≤ φ[α,3] (π1) and φ[α,2] (π2) ≤ φ[α,2] (π1) and
φ[α+1,3] (π2) ≤ φ[α,3] (π2) and φ[α+1,2] (π2) ≤ φ[α,2] (π2). Therefore, it follows from equations (A.5)–(A.8),
(A.21)–(A.23), (A.30)–(A.36) and C3-1 of the theorem that

φ[α,4] (π2) ≤ φ[α,4] (π1) and φ[α+1,4] (π2) ≤ φ[α+1,4] (π1) . (A.37)

If C3-2 of the theorem holds, then, φ[α+1,3] (π2) ≤ φ[α,3] (π2) and φ[α+1,2] (π2) ≤ φ[α,2] (π2). Thus, we have
from C3-2 of the theorem and equations (A.5)–(A.8), (A.21)–(A.23) and (A.31)–(A.36) that

φ[α,4] (π2) ≤ φ[α+1,4] (π2) andφ[α+1,4] (π2) ≤ φ[α+1,4] (π1) . (A.38)
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When C3-3 of the Theorem holds, φ[α,3] (π2) ≤ φ[α,3] (π1) and φ[α,2] (π2) ≤ φ[α,2] (π1) , and furthermore,
φ[α+1,3] (π2) ≤ φ[α,3] (π1) and φ[α+1,2] (π2) ≤ φ[α,2] (π1). By, from C3-3 of the theorem and equations (A.5)–
(A.8), (A.21)–(A.23), (A.30), (A.31) and (A.33)–(A.36),

φ[α,4] (π2) ≤ φ[α,4] (π1) and φ[α+1,4] (π2) ≤ φ[α,4] (π1) . (A.39)

On the other hand, given that C3-4 of the Theorem holds, φ[α,3] (π2) ≤ φ[α,3] (π1) and φ[α,2] (π2) ≤ φ[α,2] (π1),
and φ[α+1,3] (π2) ≤ φ[α,3] (π2) and φ[α+1,2] (π2) ≤ φ[α,2] (π2). Hence, by follows by C3-4 of the theorem and
equations (A.5)–(A.8), (A.21)–(A.23) and (A.31)–(A.36),

φ[α,4] (π2) ≤ φ[α+1,4] (π1) and φ[α+1,4] (π2) ≤ φ[α+1,4] (π1) . (A.40)

By C3-5 of the Theorem, φ[α,3] (π2) ≤ φ[α,3] (π1) and φ[α,2] (π2) ≤ φ[α,2] (π1), and φ[α+1,3] (π2) ≤ φ[α,3] (π2)
and φ[α+1,2] (π2) ≤ φ[α,2] (π2). Thus, it follows from equations (A.5)–(A.8), (A.21)–(A.23), (A.30), (A.31),
(A.33)–(A.36) and C3-5 of the theorem that

φ[α,4] (π2) ≤ φ[α+1,4] (π2) and φ[α+1,4] (π2) ≤ φ[α,4] (π1) . (A.41)

By C3-6 of the theorem, φ[α,3] (π2) ≤ φ[α,3] (π1) and φ[α,2] (π2) ≤ φ[α,2] (π1), and φ[α+1,3] (π2) ≤ φ[α,3] (π2)
and φ[α+1,2] (π2) ≤ φ[α,2] (π2). Thus, it follows from equations (A.5)–(A.8), (A.21)–(A.23), (A.30), (A.31),
(A.33)–(A.36) and C3-6 of the theorem that

φ[α+1,4] (π2) ≤ φ[α,4] (π2) and φ[α,4] (π2) ≤ φ[α,4] (π1) . (A.42)

Finally, by C3-7 of the theorem φ[α,3] (π2) ≤ φ[α,3] (π1) and φ[α,2] (π2) ≤
φ[α,2] (π1) , and φ[α+1,3] (π2) ≤ φ[α,3] (π2) and φ[α+1,2] (π2) ≤ φ[α,2] (π2). Hence, by equations (A.5)–
(A.8), (A.21)–(A.23), (A.31)–(A.36) and C3-7 of the theorem,

φ[α+1,4] (π2) ≤ φ[α,4] (π2) and φ[α,4] (π2) ≤ φ[α+1,4] (π1) . (A.43)

If any of the Inequalities of (A.37)–(A.43) hold, then,

max{φ[α,4] (π2) , φ[α+1,4] (π2)} ≤ max{φ[α,4] (π1) , φ[α+1,4] (π1)}.

�

Proof of Lemma 2.5. From the definition, for r = α+ 2, . . . , n,

φ[r,2] (π1) = TP[α−1,1] (π1) + th,1 + tg,1 +
r∑

p=α+2

t[r,1] (π1)

− TP[α−1,2] (π1)− th,2 − tg,2 −
r−1∑

p=α+2

t[r,2] (π1) , (A.44)

φ[α+1,2] (π2) = TP[α−1,1] (π2) + tg,1 + th,1 +
r∑

p=α+2

t[r,1] (π2)

− TP[α−1,2] (π2)− tg,2 − th,2 −
r−1∑

p=α+2

t[r,2] (π2) , (A.45)

where
∑α+1
p=α+2 t[r,2] (π1) =

∑α+1
p=α+2 t[r,2] (π2) = 0. It should be noted that both sequences π1 and π2 have the

same jobs in positions r = α+ 2, . . . , n, therefore,

r∑
p=α+2

t[r,1] (π1) =
r∑

p=α+2

t[r,1] (π2) and
r−1∑

p=α+2

t[r,2] (π1) =
r−1∑

p=α+2

t[r,2] (π2) . (A.46)
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Hence, it follows from equations (A.9), (A.44) and (A.45) that

φ[r,2] (π2) = φ[r,2] (π1) for r = α− 1, α+ 2, . . . , n. (A.47)

�

Proof of Lemma 2.6. Note that for r = α+ 2, . . . , n,

φ[r,3](π1) = max
{

∆[α−1,2](π1), φ[α,2](π1), φ[α+1,2](π1), . . . , φ[r,2](π1)
}

+ TP[α−1,2](π1)

+ th,2 + tg,2 +
r∑

p=α+2

t[r,2](π1)− TP[α−1,3](π1)

− th,3 − tg,3 −
r−1∑

p=α+2

t[r,3](π1), (A.48)

φ[r,3](π2) = max
{

∆[α−1,2](π2), φ[α,2](π2), φ[α+1,2](π2), . . . , φ[r,2](π2)
}

+ TP[α−1,2](π2)

+ tg,2 + th,2 +
r∑

p=α+2

t[r,2] (π2)− TP[α−1,3] (π2)

− tg,3 − th,3 −
r−1∑

p=α+2

t[r,3] (π2) , (A.49)

where
∑α+1
p=α+2 t[r,3] (π1) =

∑α+1
p=α+2 t[r,3] (π2) = 0. It should be noted that both sequences π1 and π2 have the

same jobs in positions r = α+ 2, . . . , n, therefore,

r∑
p=α+2

t[r,2] (π1) =
r∑

p=α+2

t[r,2] (π2) and
r−1∑

p=α+2

t[r,3] (π1) =
r−1∑

p=α+2

t[r,3] (π2) . (A.50)

Then, it follows from equations (A.9), (A.21) and (A.48)–(A.50) that when

max{φ[α,2] (π2) , φ[α+1,2] (π2)} ≤ max{φ[α,2] (π1) , φ[α+1,2] (π1)}

we have
φ[r,3] (π2) ≤ φ[r,3] (π1) for r = α+ 2, . . . , n.

�

Proof of Lemma 2.7. From the definition of φ[r,4] for r = α+ 2, . . . , n,

φ[r,4] (π1) = max
{

∆[α−1,3] (π1) , φ[α,3] (π1) , φ[α+1,3] (π1) , . . . , φ[r,3] (π1)
}

+ TP[α−1,3] (π1)

+ th,3 + tg,3 +
r∑

p=α+2

t[r,3] (π1)− TP[α−1,4] (π1)

− th,4 − tg,4 −
r−1∑

p=α+2

t[r,4] (π1) , (A.51)

φ[r,4] (π2) = max
{

∆[α−1,3] (π2) , φ[α,3] (π2) , φ[α+1,3] (π2) , . . . , φ[r,3] (π2)
}

+ TP[α−1,3] (π2)

+ tg,3 + th,3 +
r∑

p=α+2

t[r,3] (π2)− TP[α−1,4] (π2)



552 M. ALLAHVERDI AND A. ALLAHVERDI

− tg,4 − th,4 −
r−1∑

p=α+2

t[r,4] (π2) , (A.52)

where
∑α+1
p=α+2 t[r,4] (π1) =

∑α+1
p=α+2 t[r,4] (π2) = 0. Since both sequences π1 and π2 have the same jobs in

positions r = α+ 2, . . . , n,

r∑
p=α+2

t[r,3] (π1) =
r∑

p=α+2

t[r,3] (π2) and
r−1∑

p=α+2

t[r,4] (π1) =
r−1∑

p=α+2

t[r,4] (π2) . (A.53)

Then, it follows from equations (A.21), (A.34) and (A.51)–(A.53) that

max{φ[α,3] (π2) , φ[α+1,3] (π2)} ≤ max{φ[α,3] (π1) , φ[α+1,3] (π1)}

implies
φ[r,4] (π2) ≤ φ[r,4] (π1) for r = α+ 2, . . . , n.

�

Proof of Theorem 2.8. If follows from Lemma 2.4 that

φ[r,4] (π2) = φ[r,4] (π1) for r = 1, 2, . . . , α− 1. (A.54)

Moreover, if any of the conditions C4-1 to C4-5 of the theorem holds, it follows from Theorem 2.3 that

max{φ[α,4] (π2) , φ[α+1,4] (π2)} ≤ max{φ[α,4] (π1) , φ[α+1,4] (π1)}. (A.55)

Furthermore, Lemma 2.7 implies

φ[r,4] (π2) ≤ φ[r,4] (π1) for r = α+ 2, . . . , n (A.56)

since max{φ[α,3] (π2) , φ[α+1,3] (π2)} ≤ max{ φ[α,3] (π1) , φ[α+1,3] (π1)} if any of the conditions C4-1 to C4-5 of
the theorem holds.

Hence, by equations (A.54)–(A.56)

Φ[r,4] (π2) ≤ Φ[r,4] (π1) . (A.57)

Finally, we obtain from equations (2.4) and (A.57) that

Cmax(π2) ≤ Cmax(π1).

�
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