RATIRO-Oper. Res. 55 (2021) S673-S698 RAIRO Operations Research
https://doi.org/10.1051/ro/2020007 WWW.rairo-ro.org

OPTIMAL ORDERING POLICY IN A TWO-ECHELON SUPPLY CHAIN
MODEL WITH VARIABLE BACKORDER AND DEMAND UNCERTAINTY

SUMON SARKAR"* AND BIBHAS CHANDRA GIRI!

Abstract. The paper investigates a two-echelon production-delivery supply chain model for products
with stochastic demand and backorder-lost sales mixture under trade-credit financing. The manufac-
turer delivers the retailer’s order quantity in a number of equal-sized shipments. The replenishment
lead-time is such that it can be crashed to a minimum duration at an additional cost that can be
treated as an investment. Shortages in the retailer’s inventory are allowed to occur and are partially
backlogged with a backlogging rate dependent on customer’s waiting time. Moreover, the manufacturer
offers the retailer a credit period which is less than the reorder interval. The model is formulated to find
the optimal solutions for order quantity, safety factor, lead time, and the number of shipments from the
manufacturer to the retailer in light of both distribution-free and known distribution functions. Two
solution algorithms are provided to obtain the optimal decisions for the integrated system. The effects
of controllable lead time, backorder rate and trade-credit financing on optimal decisions are illustrated
through numerical examples.
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1. INTRODUCTION

Supply chain (SC) management is concerned with the coordination of material, information, and money along
with a network of companies whose purpose is to achieve better performance. Supply chain can be classified into
two categories-integrated (or centralized) and non-integrated (decentralized) supply chains. In a non-integrated
supply chain each member decides based on its own policy, which can lead to inefficient decisions (Katok and
Wu [21]). According to Giannoccaro and Pontrandolfo [10], co-ordination strategy incentivises each supply chain
member in such a way that the decisions taken jointly by the members are optimal from a centralized supply
chain perspective to increase the chain profit (Weng [46]). Coordination strategies involve mechanization of
a company’s replenishment processes as well as the connection of buyer and supplier communities with real-time
forecast, inventory on-hand, optimal lot sizing, quality improvements, inspections, and shipment information
to reduce inventory and eliminate unnecessary expenses. The so-called integrated supply chain models simulate
today’s business practices (e.g., automotive, apparel, grocery) where there exists a long relationship between
buyers and suppliers.
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In many cases it is very important to control the lead time to manage the supply chain efficiently. Typically,
lead time consists of order preparation, order transit, delivery time, and set-up time. Consideration of zero or
constant lead time may result in deviation of the optimal solution from the actual one. Therefore, to make the
supply chain more efficient, it is important to consider variable lead time. Generally, lead time is comprised
of several components, and these components can be reduced by additional crashing costs. Reducing lead time
may appear to be convenient in competitive situations because it can lower the safety stock level, reduce the
stock-out losses, and improve the service level to the customer so as to increase the competitive edge in business.

Stochastic inventory models should not neglect backorder-lost sale mixture. In fact, it is reasonable to assume
that only a fraction of the demand is backordered during the stock-out period, while the remaining fraction
is lost. For example, customers whose needs are not serious can wait (these demands are backordered); while
others cannot wait and meet their demands from other sources (these demands are lost). This phenomenon
indicates that, longer the lead time is, higher the shortages are, the smaller the proportion of customers can
wait, and hence smaller the backorder rate would be. Hence, the assumption of lead time (or waiting time)
dependent backorder rate may reflect real life situations. Numerous inventory models have been developed to
include this feature. However, in integrated SC model, this feature has been rarely considered.

In a business organization, the retailer usually pay the price of purchased quantity immediately. But if the
retailer is given some delay time for payment, he/she may tend to buy more items. The retailer can earn
interest from the revenue generated during the delay period. The use of the credit period can be seen in many
deterministic inventory models. However, the use of credit period in stochastic inventory model is rarely found
in the literature.

In some practical situations, information about the demand distribution may be rather limited. That is,
decision makers only know an estimate of the mean and variance, but not the specific distribution types. In
this scenario, the demand is generally considered to be a normally distributed random variable over a given
period of time. However, the normal distribution does not provide the best protection against the occurrence of
other distributions with the same mean and variance. Therefore, it is a challenge to the inventory/supply chain
managers to make decisions without having idea of lead time demand distribution. That is, the replenishment
policy can be optimized considering the worst non-negative distribution with the given mean and variance.
This is called “minimax distribution-free approach”. Due to its practicality (easy to use) and optimality (under
certain conditions), it has received great attention in the inventory management literature. The reader is referred
to some of the recent works dealing with distribution free approach, e.g. [5,22,23].

Many industries have dedicated efforts to improve customer service, control order frequency and reduce costs
with their business partners. In this regard, the following questions may be raised from manager’s view points:

I. What would be the optimal ordering policy for an industry if demand during replenishment lead time is
stochastic?
II. What impact does lead time have on the backorder rate?
III. In which condition an industry manager should invest money to reduce lead time?
IV. What steps a manager will adopt when lead time demand distribution is unknown?

In an attempt to find out the answers to the above questions, this paper presents a continuous review integrated
single-manufacturer single-retailer supply chain model with stochastic demand under controllable lead time.
The manufacturer delivers the retailer’s order quantity in a number of equal-sized shipments. Shortages are
allowed in the retailer’s inventory and a fraction of shortages are partially backlogged with lead time dependent
backlogging rate. Initially the model is developed for the case when lead time demand distribution is known
(normal distribution) and thereafter, the model is developed for unknown distribution case. Distribution-free
approach is employed to find the optimal solution when lead time demand distribution is unknown. In this study,
we assume that the long-term strategic partnership between the retailer and the manufacturer is well established
and, therefore, the retailer and the manufacturer cooperate and share information with each other. Our goal is
to find the optimal order quantity, safety factor, backorder rate, and the number of shipments by minimizing
the annual total cost of the integrated system. Rest of the paper is organized as follows: Section 2 reviews
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the relevant literature. Notation and assumptions are given in Section 3. In Section 4, the proposed model is
formulated mathematically. Section 5 describes the solution procedure of the model. Numerical examples are
given in Section 6. Sensitivity analysis is presented in Section 7 and finally the paper is concluded in Section 8.

2. LITERATURE REVIEW

In the retailing industry, WalMart, and Proctor and Gamble received substantial collaboration benefits by
implementing collaborative planning and replenishment, a business model that intends to help supply chain
members to collaborate in both tactical and strategic levels. Therefore, during the last few years, research on
integrated manufacturer-retailer blue supply chain problem has been primarily focused on shipment schedule
in terms of the size and frequency of shipments transferred between both parties. The cooperation between the
upstream and downstream players gives a far greater benefit than a non-collaborative relationship. Goyal [13]
was the first researcher who introduced a single-supplier single-buyer integrated inventory model. Banerjee [3]
generalized Goyal’s model and presented a joint economic lot size model where the vendor produces order on
lot-for-lot basis to fulfill the buyer’s order quantity under deterministic condition. Further, Goyal [15] relaxed the
lot-for-lot policy of the vendor to generalize Banerjee’s model. Later, Ha and Kim [16] generalized Goyal’s [15]
model and developed an integrated lot-splitting model facilitating multiple shipments in small lots.

In the literature, most of the supply chain models have been developed assuming lead time as a fixed or
deterministic parameter. Although this assumption follows JIT (just-in-time) philosophy, it is not fitted in most
of the modern complex setups where overseas, containerized, and air-freight shipping are involved. Liao and
Shyu [29] were the first researchers to study lead time reduction in stochastic environment. In their model,
they assumed that the lead time can be decomposed into several components having different crashing costs for
reducing to a specified minimum duration. Thereafter, a number of researchers have contributed significantly
in controllable lead time literature under various assumptions [4,35,37,47].

Pan and Yang [40] were the first authors who studied lead time reduction in a setting with more than one
economic actor. They considered a system where the product is delivered to a single buyer from a single vendor
and assumed that the vendor may reduce lead time according to the scheme proposed by Liao and Shyu [29].
Ouyang et al. [38] extended Pan and Yang’s [40] model by considering shortages and taking reorder point as
a decision variable. Further, they solved the model using minimax distribution-free approach where only the
first and second moments of the probability of lead time demand were known and finite. They obtained total
cost lower than Pan and Yang’s [40] model. Further extensions can be found in Giri and Roy [11], Jha and
Shanker [20], Mandal and Giri [31] who studied the effects of lead time reduction in single-vendor multi-buyer
supply chain system; Yang and Pan [49], Wu et al. [48], Ouyang et al. [39], Sarkar and Giri [41], who included
quality considerations in the model formulation; Jha and Shanker [19], Y. Li et al. [27], and G. Li et al. [28]
who considered service level constraint with lead time reduction.

Heydari et al. [17] used lead time reduction as an incentive mechanism in order to convince the buyer to
participate in the coordination plan. The showed that a smaller lead time is beneficial to the buyer because of
a lower inventory cost. Yang et al. [50] developed a newsvendor model to investigate inventory competition in
a dual-channel supply chain and explored the delivery lead time decision in the direct channel. Zikopoulos [51]
studied a remanufacturing system and examined the advisability taking into account the stochastic reman-
ufacturing lead-time under different scenarios of returns’ quality and demand for remanufactured products.
Recently, Sarkar and Giri [42] considered the case where the replenishment lead time is a function of lot size and
transportation time, and determined the optimal lot size which minimizes the total cost of the supply chain.

Due to variable lead time, sometimes the vendor may fail to deliver a lot within the desired lead time.
As a result, the buyer may faces stock-out situation, in which case, customers’ demand is not fulfilled result-
ing a financial loss. Moreover, the unsatisfied customers may not turn up next time to meet their demand
from the same source. This indicates that, in reality the backorder rate should not be constant. Ouyang et
al. [37] generalized Ben-Daya and Raouf’s [4] model by considering mixture of backorder and lost sales. Ouyang
and Chuang [36] considered backorder rate as a control variable to generalize Ouyang et al’s [37] model.
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TABLE 1. A comparison of the present model with some related works in the literature.

Author(s) Integrated  Controllable  Variable Trade Variable  Distribution
model lead time backorder credit safety free
rate financing factor approach

Kumar and Goswami [22]
Liao and Shyu [29]
Ouyang et al. [37]

Pan and Yang [40]
Ouyang et al. [38]

Yang and Pan [49]
Ouyang et al. [39]
Ouyang and Chuang [36]
Sarkar et al. [44]

Sarkar and Giri [42]
Ouyang and Chuang [36]
Lee [25]

Lee et al. [26]

Chung and Huang [8]
Chen and Kang [7]
Huang [18]

Wu et al. [48]

This paper

L

<
<<

LK

LK Ll
LK <

LK

<

<K LKL <

Lee [25] and Lee et al. [26] analyzed two inventory models with mixture of normally distributed lead time demand
and controllable negative exponential backorder rate. Sarkar et al. [44] studied an inventory model with quality
improvement and backorder price discount under controllable lead time. Mishra and Tripathy [33] developed an
inventory model with time dependent Weibull deterioration and salvage value. Further, Mishra [32] proposed
an inventory model to develop an optimal pricing policy for deteriorating items with stock and price dependent
demand under partially backlogged shortages. Braglia et al. [5] studied a periodic-review joint-replenishment
problem (JRP) with stochastic demands, backorder-lost sale mixture, and controllable major ordering cost and
lead times. Braglia et al. [6] proposed a continuous review (Q,r) inventory model for deteriorating item with
random demand and partial backlogging.

In today’s competitive business world, organizations are using various types of promotional tool in order to
increase their sales volumes. One such tool is trade-credit or permissible delay-in-payments where the retailer
need not to pay for the goods purchased until a prescribed period offered by the vendor. During the delay
period, the retailer can earn interest from bank/share market by using the revenue on sales. To address the
issue of trade-credit, researchers have made a great deal of efforts [1,14,24,30]. Chung and Huang [8] proposed
a two-warehouse deteriorating inventory model with limited storage capacity under permissible delay in pay-
ments. Chen and Kang [7] developed an integrated vendor-buyer model with variant permissible delay in pay-
ments and imperfect quality item. Huang [18] developed an integrated inventory model to determine the optimal
policy under conditions of order processing cost reduction and permissible delay in payments. Mishra et al. [34]
developed an optimal ordering and pricing policy for perishable items under conditions of permissible delays.
Tiwari et al. [45] investigated an inventory model for deteriorating items with unreliable supply and trade credit
policy. Wu et al. [48] dealt with a probabilistic continuous review (Q,r) inventory policy under permissible delay
in payments where the supplier offers a credit period that is less than average duration of the inventory cycle.
Arkan and Hejazi [2] designed a supply chain model for the coordination between a single buyer and a single
supplier considering credit period and controllable lead time.
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A comparison of the present model with closely related models available in the existing literature is given in
Table 1. It is seen from the literature review that the integrated supply chain models dealing with controllable
lead time and stochastic demand are formulated based on the assumption of full backorder or fixed partial
backorder. However, when an item is on backorder, a customer may look elsewhere for a substitute product,
especially if the expected wait time until the product becomes available is long. That is, a longer lead time
increases the shortage amount as well as decreases the backorder rate. The present work is close to the work of
Ouyang et al. [38]. However, Ouyang et al.’s [38] model has a few distinct differences with the study at hand.
First of all, their model assumes that shortages are fully backlogged, while in this study, we investigate the
case where shortages are partially backlogged with backorder rate as a function of lead time through shortages
quantity. In addition, we found that, trade credit inventory problem has been studied for many times in the
literatures under deterministic as well as periodic review inventory system with less attention being given to
probabilistic and continuous review inventory system. This paper therefore contributes to the literature by
proposing a continuous review integrated supply chain model with stochastic demand under variable backorder
rate and trade credit financing.

3. NOTATION AND ASSUMPTIONS

We use the following notation to develop the proposed model.

Description
Decision variables
Q Retailer’s ordered quantity (units)
L Retailer’s lead time (week)
k Safety factor
I} Fraction of demand which is backordered during stock-out
period, 8 € [0, 1]
m Number of deliveries from the manufacturer to the retailer
Parameters
D Annual demand at the retailer (units/year)
S Manufacturer’s setup cost per setup ($/setup)
A Retailer’s ordering cost per order ($/order)
Th Retailer’s holding cost rate per unit per unit time
Ty Manufacturer’s holding cost rate per unit time
o Retailer’s marginal profit ($/unit)
7r Unit shortage cost at the retailer ($/unit)
C(L) Lead time crashing cost function
r Reorder point at the retailer
te Retailer’s trade-credit period (year)
Cp Purchasing price ($/item)
Cs Selling price ($/item)
Co Unit production cost at the manufacturer ($/item)
1. Fixed interest rate at which the retailer has to pay to the bank

for the remaining amount of stock during the period

t. to Q/D ($/year)

14 Fixed interest rate for the revenue earned by the retailer ($/$/year)

I, Fixed interest rate for calculating the manufacturer’s interest (opportunity)
loss due to trade-credit offer ($/year)

o Standard deviation of the lead time demand

Uy ith component of lead time with u; as minimum duration (days),

i=1,2,....n
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N =

Description

v; ith component of lead time with v; as normal duration (days),
1=1,2,....,n

m; ith component of lead time with m; as crashing cost per day,
1=1,2,3,..n

X Lead time demand having distribution function F', finite mean DL and
standard deviation ov/L

E(X) Mathematical expectation of X

x T max{z,0}

Q Class of p.d.f.s with finite mean DL and standard deviation ov/L

E(X —r)T Expected shortage quantity at the end of the cycle

ETC, Expected average cost for the retailer

ETC, Average cost for the manufacturer

ETCN Expected average cost of the integrated system in normal distribution case

ETCW Expected average cost of the integrated system in distribution-free case

We make the following assumptions to develop the model:

. A supply chain consisting a single-manufacturer and a single-retailer deals with a single type of item.

. The retailer places an order of size m@ which the manufacturer produces with a finite production rate
P(> D) in a single setup but ships the entire quantity to the retailer over m deliveries of equal size.

The retailer’s inventory is continuously monitored. Replenishment is planed whenever the inven-
tory level drops to the reorder point r. The reorder point r is defined by r = the expected
demand during lead time (DL) + safety stock (k) x standard deviation

of lead time demand (ov/L), i.e., = DL + ko+/L, where k is the safety factor and satisfies Pr(X >r)=gq
where ¢ represents the allowable stock-out probability during lead time (see Tiwari et al. [45],
Sarkar et al. [43]).

The lead time L consists of n mutually independent components. The ith component has a minimum
duration wu; days, normal duration v; days, and a crashing cost m; per day. Further, we rearrange m,; as
myp < mo <mg,...,<my,. Then, it is clear that the reduction of lead time should first occur in component
1 (because it has the minimum unit crashing cost), and then component 2, and so on.

Let Ly = Z?Zl v; denote the maximum duration of lead time and L; as the length of lead time with
components 1,2;...,4 crashed to their minimum durations. Then L; can be expressed as (see Liao and
Shyu [29])
n %
LZ:ZUj_ (vj —uy)
j=1 j=1
where i = 1,2,3,...,n, and the lead time crashing cost function C'(L) as

i—1
C(L) =mi(Li-y — L) + > _ mj(v; — uy).
j=1

If a shortened lead time is requested then the extra costs incurred by the manufacturer will be fully transferred
to the retailer. Therefore, lead time crash cost is the retailer’s cost component.

The manufacturer offers a certain trade credit period t. to attract the retailer to cooperate in the integrated
strategy. Therefore, the retailer need not to pay immediately after receiving the deliveries. The offered credit
period t. is less than the reorder interval, which means that the credit period cannot be longer than the
time at which another order is placed. This is in agreement with the usual practice.

The retailer deposits the sale income in a bank with annual interest rate I before the payment is due. At
the payment time, the distributor pays off the purchased products’ cost for all products to the manufacturer.
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The retailer has a loan from a bank for the unsold products’ cost. During the period of delayed payment,
the manufacturer has an interest (opportunity) loss for all products with annual rate I, where I, = I.
9. The backorder rate is variable and it is a function of lead time.

4. MATHEMATICAL MODEL

As mentioned in assumption (3), whenever the inventory level drops to the reorder point r, the retailer
requests the manufacturer for a delivery. The manufacturer produces m@ units (where m is an integer) at one

setup. Therefore, the average cycle time for the manufacturer is m—DQ and the average length of a replenishment
cycle is £
ycle is 3.

According to our assumption, the lead time demand X has a probability density function f(x) with mean
DL and standard deviation ov/L and the reorder point 7 = D + kov/L. Shortages occur when X > r. The
retailer’s expected shortage quantity at the end of a replenishment cycle is E(X — )+ and hence, the expected
backorder quantity is BE(X —r)*. Therefore, the expected loss in sales per shipment cycle is (1 —8)E(X —r)*
and the expected stock-out cost per replenishment cycle is [ + mo(1 — )] E(X —r)™T.

Further, at the beginning of each replenishment cycle, the retailer’s expected net inventory is the safety stock
(r — DL) plus the previous replenishment cycle’s lost sales (1 — 8)E(X —r)T. The expected net inventory level
immediately after a replenishment is Q +r — DL + (1 — 8)E(X — r)*. Therefore, the average inventory over
a replenishment cycle is % +7r— DL+ (1 —-B)E(X —r)*". Hence, the retailer’s holding cost per unit time is
hb[% +r— DL+ (1—B)E(X —r)T]. Further, the safety stock plus the previous replenishment cycle’s lost sales
isr— DL+ (1—3)E(X —r)" which is carried throughout the replenishment cycle. Therefore, the total interest
charged at a rate I, by the manufacturer to the retailer for this amount of stock is ¢y I.[r— DL+ (1—8)E(X —r)T].

We assume that the permissible delay period is t. which is less than the reorder interval. This assumption is
realistic, as the payment for the earlier order should be cleared before another order is placed. Here, the retailer
earns interest on the sales revenue at the rate I; during the time period (0, ¢.). Therefore, the retailer’s interest

2
items are cleared at the beginning of the cycle. Therefore, the interest earned per unit time from the backlogged

items is %ﬁE(X — r)T. The retailer still has some inventory (Q — Dt.) after the credit period .. If he

takes a short term loan from the bank at an interest rate I.. for the duration (¢, %) to finance the unsold stock

2
then his opportunity cost (due to payment of interest) per unit time is % tQ/D(Q — Dt)dt = %

Though in most of the existing literature the backorder rate is considered as constant, in this paper, we take
the backorder rate 3 as a variable and define it as

5

2,2
earn per unit time is SfaB fotc Dtdt = 2Lea - Additionally, the previous replenishment cycle’s backlogged

1
1+ aBE(X —r)t

(4.1)

a (0 < a < 00) being a constant. From (4.1), we see that the backorder rate is a decreasing function of shortage
quantity. Further, as o — oo, we have § — 0 (complete lostsale case) and as @ — 0, we have § — 1 (complete
backordered case).

The retailer’s expected total cost per unit time is

ETCy(Q,r, L) = Ordering cost + Holding cost + Safety stock plus previous cycle’s lostsale
cost + Stockout cost + Opportunity (interest) cost — Interest earned

= AD Q4 1) [~ DL+ (1- R )]
. 2
+ g [+ mo(1 =B E(X —r)" + W
242
_ D?tZcds CsthdDﬂE(X — )t (4.2)

2Q Q
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FIGURE 2. Retailer’s inventory in manufacturer’s one cycle.

On the other hand, the manufacturer’s total cost is
TC,(m) = Setup cost + Holding cost + Opportunity (interest) cost.

Figure 1 displays the inventory pattern of the manufacturer. The manufacturer delivers the first lot as soon
as it has @ items and then starts building up the inventory as its production rate is higher than that of the
demand. This build-up of inventory in the production time (T},) is supplied in equal shipments during the
non-production time (7). Figure 2 depicts the behavior of the retailer’s inventory. Figure 3 shows the same
behavior of inventory in another form. The triangle “ABG” and the rectangle “BCGE” are the total inventory
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N\ G E
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FI1GURE 3. Time-weighted inventory for manufacturer and retailer.

at the manufacturer’s end while the shaded rectangles are the total inventory supplied to the retailer. Hence,
the total inventory or stock level at the manufacturer can be determined by using Figure 3.

Following the method in Goyal [13], the total inventory at the manufacturer in a cycle is the sum of areas of
the triangle AGB and the rectangle BGCE in Figure 3, i.e.,

m2Q2
2P’
2 — J—
Areapcgr = meQ) |:(m — 1) <g _ Cfg)):| _ mQ (m PB(P D)

The total inventory moved to the retailer in a cycle by the manufacturer is m(m — 1)Q?/2D. So, the manufac-
turer’s total inventory in a cycle is

Areaapg = %(mQ/P)mQ =

mQ? | m@m—1)(P D) m(m-1)Q?

2P PD 2D ’
mQ? D
= —1)— —2)—=».

v {m-n-m-27]

Therefore, the manufacturer’s holding cost per unit time is
vEU D
=7 ‘;Q [(m—l)—(m—Q)P} .

The manufacturer’s setup cost per unit time is i—g.

Hence, the manufacturer’s total cost per unit time is

SD  rye,Q

{(m —1)— (m— 2)113} + IepteD. (4.3)
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Therefore, the expected average total cost of the supply chain is the sum of the retailer’s expected average total
cost given by (4.2) and manufacturer’s average total cost given by (4.3), i.e.,

ETC(Q,r,L,m) = g {A +C(L) + i} + Tbc;Q +ep(rp+ 1) [r— DL+ (1 = B)E(X —r)*]
i g [+ mo(1 — B B(X — )t + 9= gézc)%bfc B D%;igfd
_ %M(x -t + % {(m —1)—(m— 2)?} + Lyept.D. (4.4)

5. SOLUTION PROCEDURE

5.1. Lead time demand follows normal distribution

In this sub-section, we assume that the lead time demand X is normally distributed with mean DL and
standard deviation /L. We note that = DL 4 koL and the expected shortage quantity at the end of
a cycle is

E(X —r)t = /00 (x —r) f(a)dx

> 1 (e—DL)?
= xTr — (DL+]€U\/Z)} — e " 2:2L dx.
/DLJrkJ\E{ o/ L\ 2n

After some calculations, the above expression reduces to (see Pan and Yang [40]; Ouyang et al. [38];
Sarkar et al. [44])

E(X —r)" = oVLU(k), (5.1)
where U(k) = ¢(k) — k[1 — ®(k)], and ¢ and ® denote the standard normal probability density function and

distribution function, respectively.
Substituting the value of E(X —r)" in (1), we get
1

P T aovTo )

(5.2)

Therefore, when lead time demand follows normal distribution, the expected average total cost of the supply
chain can be obtained by using (5.1) and (5.2) in (4.4) as

ETCN(Q,k,L,m) = %[G(m) + C(L)] + cp(ry + I ko VL + %H(m)

2 B cstely aU\/Z‘I’(k)M(Q) o
* {Q (W 1 +aa\/f\ll(k)) - 1+ aoV/LY(k) } VLK)

(Q — Dte)2cblc DQtECS[d

+ 0 2o+ lucsteD (5.3)
where G(m) = A+ %
M(Q) = % +ep(ry + 1)
D

H(m) = rpcp + rpcy |(m—1) — (m — Q)F
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Note 1. It is clear that if I; = 0,1, = 0,1, = 0 and o = 0, i.e., the case when trade-credit is not allowed and
shortages are fully backlogged, (5.3) reducers to

ETCYN(Q,k,L,m) = g[G(m) + 7oVLU(k) 4+ C(L)] + %H(m) + ryepkoVL (5.4)

which is exactly same as Equation (7) of Ouyang et al.’s [38]. Therefore, Ouyang et al.’s [38] model is a special
case of our model.
Note 2. If we take I; = 0 and I. = 0 then the retailer’s cost function (4.2) becomes

ETCy(Q, L) = g[A + R(L)] + rpc (‘j + km/Z>

moaoV/ LU (k)

i rbcbaaﬁ\ll(k:) D
1+ aoVLV(k)

I +aoVIU(k) @

} oV LU (k) (5.5)

which is same as the expected average cost derived by Ouyang and Chuang [36] (taking ryc, = h, ¥(k) = G(k),
and C(L) = R(L)). This indicates that Ouyang and Chuang’s [36] model is also a special case of our model.

In order to show that the expected cost function (5.3) is strictly convex i.e., it has a unique minimum,
we derive the following propositions:

Proposition 5.1. For given wvalues of Q,k, and m, ETC‘N(Q,k,L,m) s concave in L € [Li,L;_l], where
,  \2
Lifl =min {Li—h (7ﬁc$tcldiﬂ> } .

ooV (k)

Proof. See Appendix A. Hence, the minimum value of the expected total cost ETCYN (Q, k, L, m) will occur at
the end points of the interval [L;, L, ;] (see Liao and Shyu [29] and Ouyang et al. [38]). O

Proposition 5.2. If I. > %7 then for fized values of m and L € [L;, L;—1], ETON(Q,I@’,L,m) is convex in Q

cstel,
and k for all Q@ > 0 and k > 0 such that U(k) > deE

Proof. See Appendix B. O

Proposition 5.3. For given values of m and L € [L;, Li_1], ETCY (Q, k, L,m) has a unique minimum provided

that I, > % and k > 0 such that ¥(k) > 71'22?%’ and the corresponding values of QQ and k are given by

0= 2D[G(m) 4+ oV LU (k)A(k, L) + C(L)] + F, (5.6)
N F2 + H(m) ’ '
_ a1 BV (k L)]*Q
=07 (- S D@V 1) £ Do D= 7
Proof. See Appendix C.
The optimal value of m i.e. m* can be obtained from
ETCY (m* — 1) > ETCY (m*) < ETCY (m* 4 1). (5.8)

The following algorithm is suggested to obtain numerically the optimal values of @ and k for specific values of
m and L. (]
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Algorithm 1.
Step 1 Set m = 1.
Step 2 For each L;, i =0,1,2,...,n, perform 2a to 2c.
2a Set k;; = 0 (implies ¥(k;;) = 0.39894).
2b Substituting ¥(k;1) into (10), evaluate Q1.
2c¢ Utilize ;1 to obtain the value of k;o from (11) by checking the normal table, and evaluate ¥(k;s2).
2d Repeat 2b to 2c¢ until no change occurs in the values of @; and k;.
Step 3 For each set of values (Q;, ks, L;, m), find ETCN(Q;, ki, Li,m),i =1,2,...,n.
Step 4 Find minizo’l’g,m’nETCN(Qi; ki, Li,m).
IFETCN(Qr,, k%, LY, m) = ming—o.1 2. o ETCN(Qy, ki, Ly, m), then (QF,, k%, L%,,m) is the optimal solution
for fixed m.
Step 5 Set m = m + 1 and repeat Steps 2, 3, and 4 to get ETCN( c kX LY m).

Step 6 If ETCYN(Qr,, k%, L%, m) < ETCN(Q%, 1, kX, 1, L%,_1,m), then go to Step 5;
otherwise, go to Step 7.

Step 7 Set ETCN(Q%,, kX, L%, m) = ETCN(Q*,_,, k5 1, L
solution.

After substituting the values of k* and L*, the optimal backorder rate and the reorder point can be

obtained as

m). Then (Q*, k*,L*,m) is the optimal

*
m—1>

1

= and r* = DL* + k*oV L*.
1+ aovV L*U(k*)

ﬁ*

5.2. Lead time demand is distribution-free

In many practical situations, the information about the probability distribution of the lead time demand is
limited or unavailable. In this section, we relax the assumption of normally distributed lead time demand. We
assume that the density function of the lead time demand belongs to 2 with finite mean DL and standard
deviation ov/L. If the distributional form of lead time demand X is unknown, the exact value of E(X — r)*
cannot be determined. Therefore, the min-max distribution-free approach is used to solve this problem (Gallego
and Moon [9], Ouyang et al. [38], and Lee [25]):

min-maxpeq ETCY(Q,k,L,m). (5.9)

The following proposition which was proposed by Gallego and Moon [9] is used to approximate the value of
E(X —r)".

Proposition 5.4. For any F € ,

1
E(X -r)t< 3 {\/02L+(T—DL)2 - (r—DL)}. (5.10)
Substituting r = DL + ko/L in (5.10), the following inequality is obtained:

E(X —r)t < %a\/Z(\/Hk?—k). (5.11)

Using the above inequality, the backorder rate B can be expressed as

1
> .
T 1+ taoVL (VI+E—k)

B (5.12)
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Using (4.4) and (5.12), Equation (5.9) becomes

ETCY (@, L k,m) = g[G(m) +C(L)] + ey(ry + L)k VL + ”’CQ”Q + %H(m)

%aaﬁ (\/1 + k2 — k)
(1 + %aox/z(\/l + k2 - k)) M(@)

D CStCId 1
+ 2= SoVL(V1+k2—k

Q( 1—|—;a0\/f(\/1+k2—k‘)>‘|2 ( )
(Q — Dtc)zcbfc _ D2izCSId

2Q 2Q

Similar to the case of normally distributed demand, it can be easily verified that, for fixed (Q,k, m),
ETCW(Q,L7 k,m) is convex in L € [L;, L;—1]. Therefore, the minimum expected average cost will occur at
the end point of the interval [L;, L;—1]. Further, keeping m and L € [L;, L;_1] fixed, it can also be verified
that ETCW(Q,L,kJn) is convex in @ and k. Therefore, for fixed values of m and L € [L;, L;_1], the ex-
pected average cost will be minimum at the point (Q,k) which satisfies ETCY (Q, L, k,m)/dQ = 0 and
OETCY(Q, L, k,m)/dk = 0, simultaneously. This gives

+

+ Iept.D. (5.13)

Q= \/QD[G(m) R (5.14)
Lt (k. ) = w[@M(Q) + Dslyt.] (5.15)

Duw(r + 7o) — QF, (w + ozk:ax/f) 7

where w(k,L) = $aocVL (VI+k2—k), 7 =m+ f_‘;”;((i?) and T(k,L) = & — 1ji(ckld1:)' The following
algorithm is developed to obtain the optimal values of @ and k for a specific values of m and L € [L;, L;—1].

Algorithm 2.
Step 1 Set m = 1.
Step 2 For each L;, i =0,1,2,...,n, perform Steps 2a—2c.
2a Set kil =0.
2b Evaluate Q;; from (5.14).
2c Utilize @1 to obtain the value of k5 from (5.15).
2d Repeat Steps 2b and 2c¢ until no change occurs in the values of @; and k;.
Step 3 For each set of values (Q;, ks, L;, m), compute ETCY (Q;, ki, Li,m),i = 1,2,...,n.
Step 4 Find min;—o 1.2 ETCY(Qi, ki, , Li, m).
If ETCY(Qrr, ki, L, m) = minj—g 12 oETCY(Qi, ki, Li,m), then (QXF, ki L m) is the optimal
solution for fixed m.
Step 5 Set m = m + 1, repeat Steps 2-4 to get ETCY (Q**, kX, L**, m).
Step 6 If ETCY( ke L om) < ETCY( ki, L1, m), then go to Step 5; otherwise, go to Step 7.
Step 7 Set ETCY (QxF, kX, L, m) = ETCY(Qx*_,, kx|, L1, m). Then (Q**,k**, L**,m) is the optimal
solution.
After substituting the values of k** and L**, the optimal backorder rate and the reorder point can be
obtained as

1
1+ JaoVIF (VIR — k)

*k

and r** = DL** + k** oV L**.
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TABLE 2. Parameter values.

Parameters Values Parameters Values Parameters Values

D 600 units/year P 2000 units S $1500/set up
A $200/order b $0.2/unit/year Ty $0.2/unit/year
cp $100/unit/year Cs $110/unit/year Co $70/unit/year
) $150/unit ™ $50/unit o 7 units/week

TABLE 3. Lead time data.

Lead time Normal duration Minimum duration Unit crashing
component i v; (days) u; (days) cost m; ($/day)
1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

TABLE 4. Optimal results in Example 6.1.

m_ Ly kyn Ry Q. Bn  ETCY(Qn,kn, Ly, m)

1 3 1.00 47 264 091 $8349
2 4 1.20 63 174 0.93 $7311
3 4 1.31 64 136 0.94 $7094
4 4 1.39 66 114 0.95 $7105

Notes. The bold values indicate the optimal solution of the decision variables.

6. NUMERICAL EXAMPLES

Example 6.1. In order to illustrate the solution procedure of the model, we consider in Table 2 the data
which are used by Ouyang et al. [38]. For controllable backorder rate and trade-credit financing, we take some
additional parameter-values as: mo = $150/unit, a = 0.1, ¢, = 0.2 years, I; = $0.04/$/ year, I. = $0.08/$/ year,
I, = $0.04/$/ year. The lead time has three components with data given in Table 3. Using the lead time data
and Algorithm 1, we obtain the results for the case when lead time demand follows normal distribution. The
summary of optimal results is given in Table 4. Variation of the expected average cost with respect to number
of shipments m is depicted in Figure 4. From Table 4, we obtain the optimal order quantity @* = 136 units,
safety stock k* = 1.31, reorder point r* = 64 units, lead time L = 4 weeks, number of lots (delivered from
the manufacturer to the retailer) m* = 3, backorder rate §* = 0.94, and the minimum expected average cost
ETCY = $7094.

We now examine the case when both parties take decisions independently to determine their own optimal
policies. When the retailer takes decision independently, his optimal policy is as follows: order quantity Q; = 112
units, safety stock kj = 1.39, reorder point rj = 66 units, lead time L; = 4 weeks, backorder rate 5* = 0.95,
and the minimum expected average cost is $2735.67. Also, the manufacturer’s optimal production quantity is
m5 Q5 = 448 units and the minimum average cost $4370.53. Therefore, when the manufacturer and the retailer
do not cooperate with each other, the expected average cost of the supply chain is $7106, see Table 5. However,
when both parties cooperate with each other, the expected average cost is $7094, which is less than the expected
average cost of the supply chain in the decentralized system. From Table 5, we can observe that the retailer’s
expected average cost in the decentralize model is lower than that of the integrated model, which implies that
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FIGURE 4. ETC vs. number of shipments (m).

TABLE 5. Allocation of expected average cost.

Model type Retailer Manufacturer
Independent  Order quantity 112 Number of shipments 4
Lead time (weeks) 4 Production quantity 448
Safety factor 1.39
Reorder point 66
Backorder rate 0.95
Expected average cost  $2735.67  Average cost $4370.53
Integrated Order quantity 136 Number of shipments 3
Lead time (weeks) 4 Production quantity 408
Safety factor 1.31
Reorder point 64
Backorder rate 0.94
Expected average cost  $2789.92  Average cost $4304.28

Allocated average cost  $2731.00 Allocated average cost  $4363.20

the retailer may not prefer integrated decision making model unless there is some cost sharing mechanism.
Goyal [13] suggested the following method to allocate the expected cost among the retailer and the manufacturer:
Retailer’s cost = p x ETCN(Q*,r*, L*) and manufacturer’s cost = (1 — p) x ETCYN (Q*,r*, L*), where

ETCy(Q}, k3, L) + ETC, (Qym3)’

p (6.1)

The allocated costs for the retailer and the manufacturer are shown in Table 5.

We now investigate the effects of controllable backorder and trade-credit financing on the average costs of the
manufacturer and the retailer. In Table 6, we compare the results of our model with those of Ouyang et al. [38]
where shortages were fully backlogged and trade-credit financing was not considered. From Table 6, we observe
that the expected average cost of the supply chain is greater than that of the Ouyang et al.’s [38] model by
6.11%. This is due to consideration of variable backorder and trade-credit financing. In our model, the retailer’s
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TABLE 6. A comparative study.

Integrated model Independent model

Present model Ouyang et al. [38] Present model Ouyang et al. [38]

(Is=0,I. =0, (Is= 0,1, =0,
I, =0, =0) I, =0, =0)

Retailer’s cost $2789.92 $2862.7 $2735.67 $2832.0
Manufacturer’s cost $4304.28 $3797.7 $4370.53 $3893.9
Joint cost $7094.20 $6660.4 $7106.20 $6725.9
Retailer’s
allocated cost $2731.00 $2804.4 — —
Manufacturer’s
allocated cost $4363.20 $3856.0 - —

TABLE 7. Optimal results in distribution-free case (Example 6.2).

m_ Ly ki Ry Qi B ETCY(QukiLilm)
1 3 1.16 49 271 0.82 $8658
2 3 1.44 52 184  0.84 $7760
3 3 162 54 146 0.85 $7652
4 3 1.77 56 124 0.86 $7754

Notes. The bold values indicate the optimal solution of the decision variables.

allocated cost which is 60% of the integrated cost is 3% more than that of Ouyang et al.’s [38] model. On the
other hand, the manufacturer’s allocated cost which is 40% of the integrated cost is 3% less than that of Ouyang
et al.’s [38] model. This indicates that the manufacturer is beneficial in our model.

Example 6.2. In this example, we use the same data as given in Table 1. Applying Algorithm 2, we obtain
the results of the model when lead time demand does not follow any specific distribution. The results are given
in Table 7.

6.1. Evaluation of expected value of additional information (EVAI)

Now, we compare the results of the distribution-free model with those of the normal distribution model.
We see from Tables 4 to 10 that, in the normal distribution model, the set of optimal values of the decision
variables is (Q*, k*, L*, m*) = (136,1.31,4, 3), and that in the distribution-free model is (Q**, k**, L**,m™*) =
(146,1.62,3,3). If we utilize the solution obtained by the distribution-free approach instead of utilizing the
normal distribution model, then the added cost will be ETCN(Q**7 K L** m**) — ETCN(Q*, k*, L*, m*)
= ETCN(146,1.62,3,3) — ETCY (136,1.31, 4, 3)=7200 — 7094 = $106. This amount is said to be the expected
value of additional information (EVAI) for the retailer that he would be willing to pay to collect the information
to know the form of lead time demand distribution.

Additionally, we consider the same problem with negative exponential backorder rate as § = fe B,
B(r) = E(X —r)* (Lee et al. [26]). Results are given in Table 8.

7. SENSITIVITY ANALYSIS

In this section, we perform sensitivity analysis to investigate the effects of the key parameters on the optimal
solutions.
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TABLE 8. Summary of results for negative exponential backorder rate.

€ Ly, kn Ry Qn  Bn  ETCY(Qn, ki, Ly,,m)

0.00 3 1.58 68 136 0.97 $7208
2.00 3 1.78 71 136 0.98 $7252
10.0 3 1.89 73 136 0.98 $7292
20.0 3 1.89 73 136 0.98 $7303
40.0 3 1.87 72 136 0.98 $7305
80.0 3 1.87 72 136 0.98 $7305
00 3 1.87 72 136 0.98 $7305

TABLE 9. Effect of trade-credit period ¢, on optimal results.

tt m Ly, ki, R, Qn Bn ETCY(Q, ki, Ly,m)
0.1 4 4 140 66 111 0.95 $7174
02 3 4 131 64 136 0.94 $7094
03 3 4 129 64 141 0.94 $7087
04 3 4 127 64 147 0.94 $7160
05 3 4 125 64 155 0.93 $7306
06 2 4 113 62 201 0.92 $7452
0.7 2 4 1.11 62 211 0091 $7619
08 2 4 1.08 61 222 0091 $7827
09 2 4 1.06 61 234 0091 $8070

7.1. Effect of trade-credit period (t.)

Table 9 presents the effect of credit period ¢, ranging from 0.1 to 0.9 on optimal solutions. From Table 7,
it is observed that a higher value of credit period increases the retailer’s order quantity. Safety factor and
reorder point both tend to decrease as credit period increases. Furthermore, the expected average cost of the
supply chain tends to decrease for ¢. € [0.1,0.3] and increase for t. € [0.4,0.9]. The expected average cost and
order quantity are more sensitive for higher value of ¢., whereas the reorder point and the safety factor are less
sensitive to ¢. (see Figs. 5 and 6).

7.2. Effect of backorder parameter (a)

Table 10 indicates that an increase in the value of « increases the expected average cost whereas it decreases
the backorder rate. This is due to the fact that, as shortage quantity becomes more sensitive to backorder
parameter «, shortage quantity increases resulting an increase in the average cost. Even for small value of «,
the expected average cost, safety factor, and the reorder point are highly sensitive. When « takes a very high
value, the expected average cost represents the lost sale case (i.e., 3 — 0), and when « takes a very small value,
the expected average cost represents the fully backorder case (i.e., § — 1). However, o has no effect on lead
time and number of shipments (see Figs. 7 and 8).

7.3. Effect of lead time demand standard deviation (o)

We investigate the effect of lead time standard deviation on the optimal results. From Table 11, we see that
an increase in the value of o decreases the backorder rate. This is due to the fact that a higher value of o implies
higher amount of shortages which decreases the backorder rate. Also, we see that, as o increases, the order
quantity and the safety factor also increase. This is because shortages increase for higher value of o, which leads
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to larger order quantity and safety stock. Figures 9 and 10 also indicate that o impacts the expected average
cost significantly.

8. CONCLUSIONS

Customer’s demand, replenishment lead time, and time gap between placing and receiving of an order play
vital roles in economic order quantity (EOQ) modelling. In most cases, customers do not have patience to
wait during shortage period to meet their demands from the next replenishment which results in lost sales.
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TABLE 10. Effect of backorder parameter o on optimal results.

a m Ly kn Ry Qn  Bm  ETCN(Qr,km, Ly, m)

0.00 3 4 1.12 62 137 1.00 $7059

050 3 4 1.51 67 136 0.83 $7145

1.00 3 4 1.60 68 136 0.75 $7173

10.0 3 4 1.83 72 136 0.35 $7261

20.0 3 4 1.85 72 136 0.22 $7278

40.0 3 4 1.86 72 136 0.13 $7290

80.0 3 4 1.87 72 136 0.07 $7297

100 3 4 1.87 72 136 0.06 $7299

o0 3 4 1.87 72 136 0.00 $7305

== Backorder rate Safety stock
1.2 4 -2
- 1.8
g 11 \ - 1.6
5 0.8 - )
] 12 o
g S
‘5 0.6 - -1 E
= F08 <
S 04 =y
5 -06 @
3 L04 &
8 5, 0.4
-0.2
O T T T T T T T T v O

0 0.5 1 10 20 40 80 100 300
Backorder parameter (a)

FIGURE 7. Backorder parameter («) vs. safety factor (k) and backorder rate (3).
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TABLE 11. Effect of standard deviation o on optimal results.

o m Ly ki Ry, Qn  Bn  ETCN(Qn, k., Ly, m)

1 4 6 1.29 72 111 0.99 $6430

3 4 6 1.34 79 112 0.97 $6676

5 3 4 1.28 59 135 0.95 $6896

7 3 4 1.31 64 136  0.94 $7094

9 3 4 1.34 70 137  0.93 $7295

14 3 3 1.36 67 141 091 $7762

20 3 3 1.40 83 143 0.89 $8297
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FIGURE 9. Lead time standard deviation (o) vs. expected average total cost (ETC) and order
quality (Q).

Consequently, partial backordering rate varies with replenishment lead time. Moreover, a larger lead time creates
a negative impression that reduces customers’ demand. The aim of this paper was to determine the inventory
policy when a system faces lead time dependent backlogging rate along with stochastic lead time demand. To
investigate the problem, an integrated manufacturer-retailer supply chain model is considered where the market
demand is uncertain, shortages are partially backlogged, and the lead time is controllable. Also, a trade credit
period offered by the manufacturer to the retailer is incorporated. To reduce the replenishment lead time, we
have decomposed the lead time into several components with normal and minimum durations having different
crashing costs for reducing to a specified minimum duration. First, we have formulated the model considering
known lead time demand distribution and then studied extensively for unknown distribution case. A comparative
study on the results of non-integrated approach and integrated approach is conducted. The proposed model
can be utilized to different kinds of firms, such as electronic assembling frameworks, the garments fabricating
industries, food industries and so on.

The results of the paper indicate that, in case when lead time demand deviation is high, choosing lead time
reduction strategy may reduce the total expected system cost. Further, it is seen that the increment of lead
time dependency parameter shifts the model to full lost sale case where expected total cost is maximum. Cases
with smaller lead time demand deviation may be interpreted as a restriction on the invest amount on lead
time reduction. In such a situation, a company may search for cost-optimal solutions without investing in lead
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FIGURE 10. Lead time standard deviation (o) vs. safety factor (k) and backorder rate (3).

time reduction. Accordingly, it can be seen that trade credit offer increases the order quantity which helps in
establishing coordination between the supply chain players.

One limitation of our work is clearly the consideration of single manufacturer single retailer situation, which re-
stricts its applicability to industries. Future research may focus on studying some other backorder rate functions
(e.g., exponential) in a multiple sourcing environment. One can consider imperfect production and investment
in quality improvement to extend the present work. Further, the entire replenishment lead time can be taken
as an addition of different lead time components (e.g., setup time, production time, transportation time, etc.)
and investment can be made to reduce a specific component (Glock [12]).

APPENDIX A. PROOF OF PROPOSITION 5.1

The expected average cost for normally distributed lead time demand is

BTN (Q. k. L.m) = 2[G(m) + C(L)] + ey + LkoVE + 2 H(m)

D( cstely aoVLY(K)M(Q) .
{Q( 1+0¢0\/f\11(k))+ 1+ aoV/LY(k) } VLU()

(Q 7 DtC)ZcbIc . DthcsId
2Q 2Q

D
Q
+

+

+ I,cpteD. (A1)

For fixed m, taking the first order partial derivative of ETC™ (Q, k, L, m) with respect to L € [L;, Li—1] we have

OETCYN  cy(ry + I ko L=1/? (2 + v)v?
oL 2 +M(Q) 20L(1 + v)?

Dv cstely D
* 2aLQ {ﬂ- 0+ v)2} B @Ci' (A.2)
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The second order derivative of ETCYN(Q, k, L, m) with respect to L € [L;, L;_1] is

OETCY 1 _a/2 (3 +v)0?
502 = fzcb(rb + I.)koL /2 _ M(Q)izlaLQ(l e
Dmv cstelq(1 4+ 3v)
4aL2Q { (1+v)3 } 0 (A-3)
2
L < Vrestdy —m
rao¥ (k)

’ ! 2
Hence, ETCY(Q, k, L, m) is concave in L € [L;, L, ;] where L, ; = min {Li_l, (7%) } Therefore,

Proposition 5.1 is proved.

APPENDIX B. PROOF OF PROPOSITION 5.2

For fixed m and L € [L;, L;_1], taking first and second order partial derivatives of ETCN(Q7 k,L,m) with
respect to @) and k, we have

OETCN D D¢, I, D¢,y
50—~ grlGm + C) = 5 + s
D st H
A it B
N
8E6TIS = cy(ry + L.)o VL + ac® LU (k)A(k) {(12:5)2} M(Q)
DX(k)o/L cstely
+ 0 <7T— i +v)2> (B.2)
O*ETCN 2D _ cstely
0 [G(m) +C(L) + oVLU(k) {77 - H
+ Q23g(cblc —cody) > 0if I, > C‘;Id and U(k) > L{d@ (B.3)
b ToOXO
OPETCN vovVLo(k) (2 +v) 2002 L[®(k) —1]2
akQ - (’I"b + Ic)cb < (1 T U)2 + (1 n U)3
{D(Wo + cstedq) + (e + Tb)} + Do Lo(k)
Q Q
_ Tov cstc-[d . csthd
(W TOrer 0+ v)2> >0t k) > T (B.4)

where 7 = 7 + {97, A(k) = ®(k) — 1,0 = aoVLU(k).

From (B.3) and (B.4), we can say that if I, > %, ETCY(Q, k, L,m) is convex in Q and k for all Q > 0 and
k > 0 such that U(k) > % Hence Proposition 5.2 is proved.
ToQo
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APPENDIX C. PROOF OF PROPOSITION 5.3

For convexity of the cost function given in (5.3), the Hessian matrix for ETCY (Q, k, L, m) must be positive
definite. The Hessian matrix is given by

H2ETCN (1) H2ETCN (1)
H= Q2 0Q0k ]
H?ETCN (1) H?ETCN (1)
0koQ ok?
where BQEgSQN() nd 82EgkCQN() are given in (B.3) and (B.4), and
PETCY  9?ETCN  DoVL[1 - (k)] T ctely (1)
9Qok  o0koQ Q2 T 0?2 1to)2 ‘
Now
2
H| = O*’ETCN () y O*ETCN() | 9°ETCM ()
Q2 k2 0Q0k
B 2D _ Cstc-[d D2tg
— {Q3 {G(m) + C(L) + oV LU(k) {w T H 5 (epIo — csId)}
vovV/ Lo (k) (2 + v) 2a0°L[®(k) —1)* (D
" {(rb e ( (1+v)? MY Q (mo +eatela) +ep(le 4 )

DoV Lo(k) (_ o cstely DovVL[1 — ®(k)] [_ o cstely ’
TG (”(1+v>2‘<1+v>2>}‘{ Q@ {”<1+v>2‘<1+v>2]}

- Eo\/f\ll(k) {W_ cStCId} Do/ Lo(k) <7r+ mov  Csteld >

Q' o) Q T+ (40P

2
_ {Daﬁg; P (k)] {WJF (17:?1;)2 _ (fsj_cf)g} } (after deleting the positive terms)
2D2 2L¢ cstedg\ [ T cstely
T — T+ —
( 1+v)< (14 )2 (1+v)2>
D% 2L k)2 cotedy \°
< T+of i+ v)2>
2D%¢ 2ng5 cstedy _ Tov cstely
T+ T+ —
( 1+U (1+v)2>( (1+wv)? (1+U)2>
2D%¢ 2L¢ U (k) ToU cStCId cstedy _ ToU cstedy
(14+0v)2  (1+0)? 1—|—v><7r (1+v)2_(1—|—11)2)
D% 2L cstely \?
( 1 + v? (14 v)2>
2D%¢ 2Lq§( YU (k) ToU ctedy \2
Q! (” (T+0)? <1+v>2>
2D?%¢ 2L¢ cstedy _ Tov cstedy
( ) (o)
2
D2 2L ) <7r + 171)1; - (;S—T—Cﬁ;) (after deleting the negative terms)



S696 SUMON SARKAR AND BIBHAS CHANDRA GIRI

2D202Lop(k)W(k) [_ v cstedy \°
Q' (” @+ “)
2
D2 2L[1 _ ( 1 + ) gii‘;) (after deleting the positive terms)
2D2 2L<;§( Y ( ToU cotedy \2 5
S (74 s - ) Co%®) - [o(h) — 1)
> 0,

because ¢(k) > 0, ¥(k) > 0 and 2¢(k)¥ (k) — [®(k) —1]2 > 0, for all k > 0 (see Ouyang et al. [37]). Therefore, if
the Hessian matrix for ETCY (Q,k, L, m) is positive definite then there exists a unique optimal solution which

. . P2 N = N
can be obtained from the first order necessary conditions OEBTCS =0 and % =0 as

0 |2PIG0m) + ax/i\f(f)ﬁ((j;)@ O]+ B (C.2)

o (1 ) B[V(k, DIPQ )
w(k, L)QM(Q)[L + V (k, L)] + D[V (k, L)]2 — Dst.l; )’

k=

where I, = D?t%(cpl. — csly), Fo = cp(ry + 1), A(k, L) =7 — %, V(k,L)=1+v(k,L).
Hence the proposition is proved.
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