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AN FPTAS FOR JUST-IN-TIME SCHEDULING OF A FLOW SHOP
MANUFACTURING PROCESS WITH DIFFERENT SERVICE QUALITY LEVELS

Amir Elalouf∗

Abstract. This paper addresses the problem of identifying a profit-maximizing schedule for jobs in
a just-in-time production line, where the decision maker can adjust each job’s processing time, and
thereby its quality level and the profit that can be gained from it. The system comprises two sequential
machines with a transition period between them and a setup time after completion of each job on the
second machine. We first construct an exact algorithm that maximizes the profit. Since this problem
is NP-hard, we construct a fully polynomial time approximation scheme (FPTAS) to address it and
evaluate its computational complexity.

Mathematics Subject Classification. 65D15, 05Exx, 68Rxx.

Received May 16, 2018. Accepted January 27, 2020.

1. Introduction

Production management refers to the application of management principles to the production function in a
factory, with the goal of ensuring that the goods or services produced comply with quantitative specifications
and a given demand schedule. Production management encompasses all decision-making associated with the
production process, including planning, organizing, directing, and control. The current paper focuses on a
specific type of production management strategy called just-in-time production, in which items are created to
meet demand, instead of being produced in surplus and in advance of need. Just-in-time production aims to
reduce the waste associated with overproduction, waiting, and excess inventory. Herein, we seek to determine an
optimal schedule for production of a set of items that the manufacturer wishes to complete at specific due dates;
in particular, he has the option to complete them either “just in time” or after their due dates (not before),
but he does not gain a profit from items that are produced late. We assume that the decision maker can adjust
the processing time of each item, and that the choice of a given item’s processing time affects the item’s quality
and, consequently, the profit that the decision maker can gain from the item. It is noteworthy that although
the concept of quality is subjective, we suggest that a higher-quality item is likely to take longer to prepare and
to be able to command a higher price. Our objective is to identify the production schedule that maximizes the
decision maker’s profit. We further assume that the production process involves two sequential work stations
with a period of transition between them; thus, the problem we address is a permutation flow shop problem.
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To illustrate the use of the model imagine an aircraft repair workshop. There are a variety of parts that need
to be repaired and can be repaired at different levels of quality that will affect the quality of the part and its
reliability. The higher the quality level selected, the longer the repair time will be. However, the resources are
limited, and each part has a deadline. Decision makers have to determine the schedule and the level of quality
for the parts to be repaired.

We first present an exact pseudo-polynomial dynamic programming algorithm to solve the problem. However,
as our problem is NP-hard (as elaborated below), the exact solution is applicable only to small instances. To
address larger instances in a reasonable computation time, it is necessary to construct a heuristic solution or
approximation (see e.g. [4,11]). Accordingly, we develop a fully-polynomial time approximation scheme (FPTAS)
to address the problem.

Several studies have addressed scheduling problems related to the one presented herein. Miltenburg and
Sinnamon [11], for example, used a heuristic technique to solve a mixed model with just-in-time production.
Ye et al. [17] investigated a complex flow shop problem and constructed a heuristic algorithm to solve it.
Perlman et al. [13] investigated a production system with two stations, using queuing theory and numerical
analysis. Pehrsson et al. [12] constructed a method for simultaneous identification of bottlenecks and improve-
ment actions to production systems. Polotski et al. [14] found an optimal production scheduling approach for
hybrid manufacturing–remanufacturing systems with setups. Elalouf and Wachtel [4] constructed an FPTAS to
schedule patient evaluations in an emergency department.

Woeginger [16] presented a natural and uniform approach to fully polynomial time approximation schemes.
He indicated that if a combinatorial optimization problem can be formulated through a dynamic program of
a particular structure and if the involved expenditure and transition functions please specific arithmetical and
structural conditions, then the optimization problem automatically holds a fully polynomial time approximation
scheme (FPTAS).

A simple flow shop model that has some similarity to the one we address was investigated by Choi and Yoon
[1], who showed that the considered problem is NP-hard. Elalouf et al. [3] constructed an FPTAS for that
problem. However, in contrast to the current work, Elalouf et al. [3] did not address the quality level of the
items produced; nor did they consider transportation time between the workstations, or additional setup time
required for the production line after an item has been completed (referred to herein as “turnover time”).

Another stream of literature related to our study investigates the association between scheduling and quality
of service. Mazzeo [10] deals with a practical scheduling decision problem in the U.S airline industry. Daniels and
Carrillo [2] deal with scheduling and quality in a system with uncertainty. Toporkov [15] proposes a scheduling
approach for achieving a desired level of quality of service in distributed computing.

The rest of this paper is organized as follows: In the next section we introduce the mathematical model of
the scheduling problem under consideration and discuss some useful properties of the problem. In Section 3
we design an exact pseudo-polynomial dynamic programming algorithm to solve the problem. In Section 4 we
provide a general description of a new FPTAS. In Sections 5–7 we present three sub-procedures for improving
the FPTAS’ complexity and calculate the computational complexity of the FPTAS. In Section 8 we compare
the running times of the exact algorithm (EXACT) and the approximation algorithm (APP). We conclude the
paper and suggest future research directions in Section 9.

2. Mathematical model

We consider a production line consisting of two workstations, and a set of jobs that need to be completed at
specific due dates. Each job has two stages: (a) the preparation stage, which is done at the first workstation, and
(b) the operating stage, which is done at the second workstation; jobs are transported from the first workstation
to the second, at a fixed transport time that is the same for all jobs. We further assume that, after completing a
job, workstation 2 must undergo a setup procedure (“turnover”) prior to accepting the subsequent job. For each
job, the decision maker can select the quality level at which the job will be processed in the second stage; each
quality level is associated with a different processing time and profit. In particular, we assume that the decision
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maker can complete jobs either exactly on their due dates or afterward, but that jobs cannot be completed
in advance of their due dates. The decision maker gains a profit from a job only if it is completed “just in
time” (i.e., no later than its due date). The decision maker’s objective is to select a production schedule, and
to determine the various jobs’ quality levels, so as to maximize his profit.

More formally, let J be a set of n independent non-preemptive jobs J = {J1, . . . , Jn} available at time zero.
Let dj represent the due date of job Jj . Each job can be carried out on machine 2 in one of m different modes,
each of which is characterized by its own processing time, quality level, and profit. The following parameters
are given:

p1j processing time of job Jj on machine 1;
p2jh processing time of job Jj on machine 2 in mode h, j = 1, . . . , n, h = 1, . . . ,m;
wjh the profit from job Jj if mode h is chosen, and provided that the job is completed at dj ;
tj turnover (setup) time after finishing job Jj on machine 2 (the same for all h) and
r a fixed transport time between machines 1 and 2.

We assume that the values of dj , wjh, ti, p1j , p2jh, and r are each non-negative. The problem is to find the
(ordered) subset of jobs that yields the maximal sum of profits, under the constraint that each of the jobs in the
subset must be finished exactly at its due date (at dj), not before or after. As noted above, because all the jobs
are performed sequentially on the two machines and follow the same route through the machines, this model is
called a (permutation) flow shop.

Our problem is a generalization of the classical Knapsack problem, which is NP-hard (see Garey and Johnson
[6] for definitions and further details). Our solution approach to this problem is similar to the techniques for
treating NP-hard Knapsack-type scheduling problems developed by Gens and Levner [7], Kacem [9], and Zhang
et al. [18]. Following this approach, we first obtain an exact pseudo-polynomial-time algorithm and then convert
it into an FPTAS.

The following claim is evident:

Proposition 2.1. If we have two possible choices h1 and h2 for job Jj, the selection of Jj(h1) dominates Jj(h2)
if p2jh1 ≤ p2jh2 and wjh1 ≥ wjh2.

After discarding all the dominated operation options, we obtain a sorted list of options for each job, with the
entries arranged in increasing order of both parameters p2jh and wj. We assume that each job has at most m
possible non-dominated options.

A job is called early if it is completed no later than its due date; otherwise, it is tardy. A partition of the set
J into two disjointed subsets E (i.e., early) and T (i.e., tardy jobs) is called a feasible schedule if all the jobs
belonging to set E are completed on the second machine exactly on their assigned due dates.

Proposition 2.2. There exists an optimal order on the two workstations (i.e., a schedule) in which all the jobs
of E are processed in non-decreasing order of their due dates (i.e., the EDD order) on both machines.

Proof. By contradiction, assume that in the optimal schedule the jobs are not in the EDD order. According to
this assumption, we have at least two adjacent jobs belonging to E that are not in the EDD order, i.e., j1 and j2,
where j2 is processed immediately after j1, but d2 < d1. Because d2 < d1 and the jobs must be finished exactly
at dj , we must process j2 before j1 on machine 2. A job is ready for processing on machine 2 after completing
its processing on machine 1 plus the fixed r time units for transporting it from machine 1 to machine 2. By
swapping j1 and j2 on machine 1, j1 and j2 will still be processed on time and belong to E. The swap will put
j1 and j2 in the EDD order and will not affect the other jobs in the schedule. This action can be performed on
any pair of adjacent jobs not arranged in the EDD order. �

In a feasible schedule, we may assume, without loss of generality, that the jobs in set E are numbered in
the EDD order, while the jobs in set T can be processed in an arbitrary order and in any arbitrary mode on
both machines after the entire schedule of set E is completed. Since Jj(h) is defined as processing job j in
mode h, and wjh is the profit obtained from processing Jj(h) and finishing it exactly at dj , our objective is
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to find a feasible schedule with a maximum weighted number of jobs in set E. Thus, our two-stage problem of
selecting and scheduling the most urgent operations can be classified in terms of the scheme of Graham et al.
[8] as a two-machine n-job flow shop problem with a non-standard goal of maximizing the weighted number of
just-in-time jobs, i.e., F2|n|maxΣJj(h)∈E wjh.

3. Dynamic programming algorithm

We first show that our scheduling problem can be solved exactly by applying a dynamic programming (DP)
algorithm. Denote wj.max = maxh (wjh). We prove that our algorithm runs in O(n2W log m) time, where
W =

∑n
j=1 wj.max. Any feasible sub-schedule can be described as a sequence π = (Jπ(1)(h1),

Jπ(2)(h2), . . . , Jπ(k)(hk)) of jobs Jπ(1), Jπ(2), . . . , Jπ(k), k ≤ n, and hj ≤ m, all belonging to E, i.e., all the kjobs in
π are performed just-in-time. Each feasible sub-schedule π can be represented by a quadruple (Φπ, Dπ, Lπ, Bπ),
where Φπ is the sub-schedule profit defined as follows: Φπ = Σj = π(1), . . . , π(k)wjh; Dπ is the total processing
time on the first machine, i.e., D = Σj=π(1),...,π(k)p1j ; Lπ is the last job in π, i.e., Lπ = Jπ(k)(hk); and Bπ is
the job that is included in π prior to Lπ, i.e., Bπ = Jπ(k−1)(hk−1). We keep Bπ only for backtracking, which is
needed for finding the best schedule at the end of the algorithm. To simplify notation, we omit the subscript π
in the quadruple components: (Φπ, Dπ, Lπ, Bπ) = (Φ, D, L,B).

Because job B = Jπ(k−1)(hk−1) is the last job to be included in set E in π prior to L = Jπ(k)(hk), the
following condition is necessary in order to include job L = Jπ(k) in set E right after job B = Jπ(k−1) and to
choose for job L option h:

max(Dπ(k) + r, dπ(k−1) + tk−1) + p2, π(k),h ≤ dπ(k). (3.1)

Proposition 3.1. For the last job L = Jπ(k)(hk), which is added to sub-schedule π, the largest hk that satisfies
condition (3.1) is to be selected.

Proof. According to Proposition 2.1, the choices for a job are sorted entries increasing in both parameters p2jh

and wjh. The objective is to maximize the sum of wjh. We choose the job with the maximum wjh that satisfies
condition (3.1). Indeed, for any job j that satisfies this condition, machine 2 will be ready for the next job at
the same time (dj + tj) for any h. �

We use the following definitions. An extension of a feasible sub-schedule π is a feasible schedule π∼ obtained
from π by adding one or several jobs to set E of π. A feasible schedule π1 dominates a feasible schedule π2 if,
for any extension of π2, there exists an extension of π1 with the same or a better objective value. Obviously,
in this case, π2 can be removed from further consideration without loss of optimality. Let π1 and π2 be two
feasible sub-schedules of jobs from the set {J1, . . . , Jj} with the same last job and the same choice for the last
job in E: π1 = (Φ1, D1, L,B1) and π2 = (Φ2, D2, L,B2). Then, we have the following elimination property:

Property 3.2. Sub-schedule π1 dominates π2 if D1 ≤ D2 and Φ1 ≥ Φ2.

Proof. Indeed, let A be the set of the jobs that are added after job j to sub-schedule π2 in order to create a
schedule π2A. This results in a schedule with an objective value of Φ2 + Φ(A), while Φ(A) is the additional
profit accruing from adding set A to π2. Adding set A to set π1 (creating a schedule π1A) can result in the same
additional profit Φ(A), since D1 ≤ D2. Now about the profit, because Φ1A = Φ1 + Φ(A) ≥ Φ2 + Φ(A) = Φ2A

for any set A, sub-schedule π1 dominates sub-schedule π2. �

Corollary. Consider set S(i) of sub-schedules (quadruples) in which the last job is Ji (wherein each quadruple
has a profit Φ lying between 1 and W =

∑n
j=1 wj.max). After eliminating all the dominated quadruples, set S(i)

contains at most W different quadruples.

Lemma 3.3. F2 |n|maxΣJj∈Ewj can be solved in O(n2W log m) time.
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Proof. We use the following forward DP method for enumerating all the non-dominated sub-schedules. We
initialize the algorithm by setting S(0) = {(0, 0, 0, 0)}. Then we sequentially construct sets S(i) of feasible
quadruples, where i = 1, . . . , n, such that all the quadruples in S(i) have the last job Ji. Assume that sets
S(0), S(1), . . . , S(i− 1) are already constructed. Then, by induction, a current set S(i) is obtained as follows:

– Consider sequentially sets S(0), . . . , S(i − 1), one after another, and add a new job Ji to each quadruple
(Φ, D, L,B) in these sets.

– Check for job j if there is a feasible schedule that does not violate the necessary condition.
– Find the largest p2jh that does not violate the necessary condition.
– If adding a new job Ji(h) to quadruple (Φ, D, L, B) in S(k) (where k = 0, . . . , i − 1) does not violate

inequality (3.1), then a new quadruple (Φ +wih, D+ p1i, Ji, L) is feasible. A set of such feasible quadruples
obtained from a single S(k) by adding job Ji(h) is denoted by Gk(i) (where k = 0, . . . , i−1). By the inductive
premise, each S(k), where k = 0, . . . , i− 1, has at most W quadruples; therefore, we need to examine O(W )
quadruples from S(k) to obtain each Gk(i), for any fixed k = 0, . . . , i− 1. Since all S(k), k = 0, . . . , i− 1, are
sorted, all the sets Gk(i) are sorted for any k, too.
Merge all the Gk(i) obtained for different values of k from 0 to i−1, one after another, into a single (sorted) set
denoted by Tk(i) according to the following rules: T0(i) = S(0) and Tk(i) = Merge((Tk−1(i), Gk(i)). During
the merging of each pair (Tk−1(i), Gk(i)), we eliminate all the dominated quadruples in Tk(i), leaving only
O(W ) non-dominated quadruples in the resulting set. Denote by S(i) the final set obtained after the merging
of the pair (Tk−2(i), Gi−1(i)); by construction, this final set has at most W (non-dominated) quadruples.

Because only dominated schedules are eliminated during the above procedure, at the end of the considered
algorithm, we obtain the required sets S(1) to S(n) that contain an optimal solution. In other words, the optimal
solution is a quadruple with the maximum profit among all the quadruples in sets S(1) to S(n).

We formally present the optimization algorithm, called Algorithm 1, in Figure 1.

Algorithm complexity: since we discard the dominated quadruples, there are in total at most W quadruples
in any of the sets Gk(i), T (i), and S(i), for any i and k. Furthermore, constructing each Gk(i) in lines 9–16
requires O(W log m) elementary operations, since each Gk(i) is constructed from a single set S(i). The log m
part seeks to search for the best feasible choice in a sorted list with at most m choices (line 13). Merging the
sorted sets Gk(i) and Tk−1(i), as well as discarding all the dominated quadruples (line 17), is done in linear (in
the number of quadruples) time. Since Gk(i) and Tk−1(i) contain at most W quadruples each, the operations
in line 12 are done in O(W ) time. In lines 5–20, we have two nested loops, the first starting in line 6 and the
second in line 8. Each loop is done in O(n) iterations; in total we have to do O(n2) iterations. Thus, we have
O(n2W log m) elementary operations in total. �

4. The FPTAS

We construct an FPTAS for the considered problem in three stages.

Stage A: let UB be an upper bound on the total profit; on the basis of the discussion above,

UB = W =
n∑
j=1

wj.max.

Find a lower bound LB on the total profit such that UB/LB ≤ n. Notice that LB = max
j

(wj.max) because any

single job Jj can be considered as an E-component of the feasible schedule (E = {Ji}; T = (J\{Ji}).

Stage B: improve the UB/LB ratio to UB/LB ≤ 2 using the algorithm BOUNDS-M, presented in Section 7.
(BOUNDS-M is a modification of an algorithm called BOUNDS, presented in Sect. 6; BOUNDS improves the
ratio to UB/LB ≤ 4. Both BOUNDS and BOUNDS-M incorporate a sub-algorithm called Test, presented in
Sect. 5.)
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Figure 1. The exact pseudo-polynomial DP algorithm (JIT: just-in-time).
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Stage C: find an ε-approximation solution using algorithm AA(LB, UB, ε) presented below; return the
ε-approximate schedule, i.e., set E and value Φappr.

First, we describe a new ε-approximation algorithm, which, given any instance of the considered just-in-time
scheduling problem and an allowable error ε > 0, returns a solution πappr whose profit Φappr = Φ(πappr) is
within εΦ* from the unknown optimal value Φ* for the problem instance being considered. More precisely,
Φappr = Φ(πappr) ≥ (1− ε)Φ*.

Before presenting the algorithm, we begin with the following observations:

– All of the jobs are numbered in increasing order of their due dates (the EDD order).
– Associated with each schedule π is a quadruple (Φ, D, L, B), as introduced in Section 3. As in Algorithm 1,

the quadruples are arranged in increasing order of the Φ values. In order to restore an ε-approximation solu-
tion corresponding to any quadruple, we use the standard backtracking operation that defines a predecessor
job B for the last job in any quadruple.

– If there are two quadruples (Φ1, D1, L1, B1) and (Φ2, D2, L2, B2) such that Φ1 ≥ Φ2 and D1 ≤ D2, then the
quadruple (Φ2, D2, L2, B2) is dominated and should be discarded.

– Let δ = εLB/n. If there are two quadruples in set S(i) (which has the last job Ji in all its quadruples, as
defined in Sect. 3) such that 0 ≤ Φ2 − Φ1 ≤ δ, then the quadruples are called δ-close. We use the operation
called discarding δ-close quadruples from set S(i), which means the following:
(a) Partition the interval [0, UB] into p(UB/LB)(n/ε)q subintervals of equal size no greater than δ = εLB/n;
(b) If more than one quadruple from S(i) falls into any one of the above subintervals, then discard all such

δ-close quadruples, leaving only one representative quadruple in each subinterval, namely, the one with
the smallest (in this sub-interval) D-coordinate.

Now we are ready to present a new ε-approximation algorithm based on Algorithm 1 (see Fig. 2).

Property 4.1. The complexity of AA(LB,UB, ε) is O(n3(log m)(UB/LB)(1/ε)).

Proof. Since the sub-interval length is δ = εLB/n, we have O(n(UB/LB)(1/ε)) sub-intervals in the inter-
val [0,UB]. Because there is at most one representative quadruple in each sub-interval, we have in total
O(n(UB/LB)(1/ε)) quadruples in any of the sets Gk(i), T (i), and S(i), for any i and k. Furthermore, con-
structing each Gk(i) in lines 9–16 in Figure 2 requires O(n(UB/LB)(1/ε)(log m)) elementary operations. The
log m part corresponds to a search for the best feasible choice in a sorted list with at most m choices (line
13). Merging the sorted sets Gk(i) and Tk−1(i), as well as discarding all the dominated and δ-close quadru-
ples (line 17), is done in linear (in the number of quadruples) time. Since Gk(i) and Tk−1(i) contain at most
n(UB/LB)(1/ε) quadruples each, the operations in line 17 are done in O(n(UB/LB)(1/ε)) time. In lines 5–20,
we have two nested loops, the first starting in line 6 and the second in line 8. Each loop is done in O(n) iterations;
in total we have to do O(n2) iterations. Thus, we have O(n3(log m)(UB/LB)(1/ε)) elementary operations in
total. �

As long as the ratio UB/LB ≤ n, the algorithm AA(LB,UB, ε) runs in O(n4(1/ε)(log m)) time. We can
improve the complexity by a factor of n. To do this, we construct a procedure called BOUNDS (Sect. 4),
which finds an improved ratio UB/LB ≤ 4, which runs in O((logm)n3 log log n). Next, we further improve that
procedure by developing a modified procedure called BOUNDS-M, which obtains a ratio of UB/LB ≤ 2, and runs
faster than BOUNDS, in O((log m)n3). BOUNDS and BOUNDS-M are based on a parametric sub-algorithm
called Test(v, ε). We elaborate on each of those procedures in the following sections.

5. Testing procedure: a sub-algorithm for bounds and BOUNDS-M

The testing procedure Test(v, ε) is applied repeatedly as a sub-procedure in algorithms BOUNDS and
BOUNDS-M to narrow the gap between UB and LB until UB/LB ≤ 4 and UB/LB ≤ 2, respectively. This
sub-algorithm has the following property: if it outputs “yes”, then the maximum weighted number of just-in-
time jobs Φ* is definitely larger than or equal to v, i.e., Φ* ≥ v; if it outputs “no”, then Φ* ≤ v(1+ε).
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Figure 2. The ε -approximation algorithm AA(LB,UB, ε).
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Test(v, ε) works similarly to the ε-approximation algorithm AA(LB, UB, ε) (Algorithm 2), but uses a different
value of δ and has a different form of output. A full description of Test is presented in Figure 3. In particular,
Test(v, ε) has the following features:

(i) Whereas in AA(LB, UB, ε) we partition the interval [0, UB] into d(UB/LB) (n/εe subintervals, in
Test(v, ε) we partition the interval [0, v] into d(n/εe subintervals.

(ii) Whereas AA(LB, UB, ε) continues its work until it performs all the iterations in the loops, Test(v, ε) can
terminate when it finds a feasible schedule with a profit greater than or equal to v.

(iii) Whereas AA(LB, UB, ε) returns an ε-approximation set, Test(v, ε) depends on the parameter and returns
“yes”, if Φ* ≥ v or “no” if Φ∗ ≤ (1 + ε)v.

(iv) If Test(v, ε) outputs “yes”, then the maximum weighted number of just-in-time jobs Φ* is larger than or
equal to v; if it outputs “no”, then Φ* ≤ v(1 + ε). The proof of this claim is along the same lines as the
proofs of the test validity in Gens and Levner [7], and is omitted here.

Property 5.1. The complexity of Test(v, ε) is O(n3(1/ε)(log m)).

Proof. Since the sub-interval length is δ = εv/n, we have O(n/ε) sub-intervals in the interval [0, v]. Because
there is at most one representative quadruple in each sub-interval, we have in total O(n/ε) quadruples in any
of the sets Gk(i), T (i), and S(i), for any i and k. Furthermore, constructing each Gk(i) in lines 9–16 requires
O(n/ε) elementary operations. The log m part corresponds to a search for the best feasible choice in a sorted
list with at most m choices (line 13). Merging the sorted sets Gk(i) and Tk−1(i), as well as discarding all the
dominated and δ-close quadruples (line 18), is done in linear (in the number of quadruples) time. Since Gk(i)
and Tk−1(i) contain at most O(n/ε) quadruples each, the operations in line 18 are done in O(n/ε) time. In lines
5–20, we have two nested loops, the first starting in line 6 and the second in line 8. Each loop is done in O(n)
iterations; in total we have to do O(n2) iterations. Thus, we have O(n3(1/ε)(log m)) elementary operations in
total. �

6. The narrowing procedure: BOUNDS

Using Test(v, ε), we can obtain the BOUNDS algorithm presented in Figure 4, which improves the UB/LB
ratio to UB/LB ≤ 4.

In what follows, Test (v, 1) denotes Test(v, ε) with fixed ε = 1. Clearly, if Test (v, 1) outputs “yes”, then
Φ ≥ v; if it outputs “no”, then Φ* ≤ 2v.

In the algorithm description (Fig. 4), TUB denotes a tentative upper bound (note that it is allowed to be
smaller than the optimal value Φ* in some steps of the algorithm).

Property 6.1. The LB and UB returned by BOUNDS satisfy the following conditions:

(1) LB ≤ Φ* ≤ UB,
(2) UB/LB ≤ 4.

Proof. The initial LB and UB values (the input) satisfy the first condition. While the initial UB must satisfy
UB ≥ Φ*, TUB in line 5 satisfies a relaxed condition TUB ≥ 0.5 Φ*. Lines 2–6 are the logarithmic binary search
loop. In each iteration, we test a new v value and use it to update LB or TUB.

Consider two cases:

Case 1. If Test(v, 1) in line 5 returns “yes”, then Φ* ≥ v. Thus LB is increased to v. In this case, Φ* ≥ v and
LB remains ≤ Φ* every time when the algorithm performs this update.

Case 2. If Test(v, 1) in line 5 returns “no”, then Φ* ≤ 2v and TUB is updated to v. In this case, v ≥ 0.5Φ*, i.e.,
each time when we update TUB it will be at least 0.5Φ*. The loop in lines 2–6 runs until TUB/LB ≤ 2. When
the loop terminates, UB is updated to 2TUB (line 7). After this operation, Φ* must lie between the (new) LB
and the (new) UB. Since TUB/LB ≤ 2 and UB = 2TUB, when the algorithm terminates UB/LB ≤ 4. �
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Figure 3. The testing procedure Test(v, ε).
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Figure 4. BOUNDS algorithm.

Property 6.2. The complexity of BOUNDS is O((log m)n3 log log n).

Proof. The logarithmic binary search that reduces the ratio UB/LB from n to 4 requires log log n iterations.
Test(v, 1) runs in O((log m)n3) time and does not depend on ε. Thus, the total complexity of BOUNDS is
O(n3log log n). �

7. Modified narrowing procedure: BOUNDS-M

In this section we present a modification of BOUNDS that originates from the procedure suggested by Ergun
et al. [5] for solving the restricted shortest path problem. Although we are solving a different problem, we use the
key idea presented by Ergun et al. [5]; namely, when we run Test(v, ε), we choose ε to be a function of UB/LB,
changing from iteration to iteration. For the reader’s convenience, we distinguish the allowable error (ε) in the
FPTAS from the iteratively-changing error in the testing procedure by denoting the latter by θ. Accordingly,
the testing procedure presented in Section 5 will subsequently be referred to as Test(v, θ). The idea is that when
UB and LB are far from each other, we choose a large θ; when UB and LB get closer, we choose a smaller θ.
More precisely, similarly to Ergun et al. [5], in each iteration of Test(v, θ), we set θ =

√
UB/LB− 1, whereas v

takes the value of v =
√

LB ·UB/ (1 + θ).
Although the modified algorithm BOUNDS-M for the scheduling problem literally coincides with the corre-

sponding narrowing algorithm of Ergun et al. [5] for the routing problem, we present it in Figure 5 for the sake
of completeness.

The complexity of BOUNDS-M is O((log m)n3). The proof is just the same as that of Lemma 5 in Ergun
et al. [5]. The only difference is that the complexity of Test(v, θ) in the routing problem of Ergun et al. [5] is
O(mn/θ), whereas in our scheduling problem the complexity of Test(v, θ) is O((log m)n3/θ).

Furthermore, the computational complexity of the FPTAS ought to be calculated.

Theorem 7.1. The time complexity of the FPTAS is O((log m)n3/ε).
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Figure 5. BOUNDS-M algorithm.

Proof. Stage A: at this stage, we find wmax and W . For this purpose, a single scan over all values of wjh is
needed, which is carried out in O(n log m) time.

Stage B: the procedure BOUNDS-M is performed in O((log m)n3) time.
Stage C: at this stage, AA(LB, UB, ε) runs in O((log m)n3/ε).
Therefore, the total complexity of the FPTAS is O((log m)n3/ε). �

8. Computational experiments

In order to examine the computational properties of the new approximation algorithm, we compared, for
several scenarios, the running times of the proposed approximation algorithm (APP) with the exact algorithm
(EXACT).

We coded all the programs in Java and ran them on a computer with Intel Core i5 CPU, 3.06 GHz, 8 GB
memory. Table 1 exemplifies the testing results. It illustrates the impact of the attribute sizes on the running
time; parameter w denotes the maximum value of wjh considered. From the experiment results, one can observe
that the pseudo-polynomial running time depends on UB (see Lem. 3.3), whereas UB depends on the wjh
values. The table also vividly demonstrates that the average running time of the approximation algorithm
APP depends on different ε-values. Figures 6(Graph 1) and 7(Graph 2) display the comparison results. While
Figure 6(Graph 1) compares the running time of different scenarios of EXACT, Figure 7(Graph 2) compares
the running time of APP and EXACT with epsilon = 0.01.

The entries with an asterisk required more than one hour of the average running time in our experiments.
The values were obtained by extrapolation of the experimental data on the basis of theoretical worst-case
estimations.

9. Conclusion and future work

We have considered the problem of scheduling a just-in-time production process, in which the decision maker
can select the jobs’ quality levels, thereby determining their processing times and associated profits.



AN FPTAS FOR JUST-IN-TIME SCHEDULING OF A FLOW SHOP S739

Table 1. The average running time of the exact algorithm and the approximation algorithm.

Network Average running time (s) Average running time (s)
size of the exact algorithm of the approximation algorithm

# of jobs # of modes w =1000 w =2500 ε = 0.1 ε = 0.01

20 100 Less than 1 s Less than 1 s Less than 1 s Less than 1 s
100 100 6 17 Less than 1 s Less than 1 s
200 200 53 164 Less than 1 s 6
500 200 430 1008 9 96
700 400 1553 3595 32 296
1000 400 3183 8317∗ 92 864
1200 500 7613∗ 14 886∗ 155 1549

Figure 6. Graph 1. EXACT Running time.

Figure 7. Graph 2. Running time of EXACT vs APP.
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The suggested scheduling model provides a basis for the design of fast practical algorithms. We developed
a new dynamic programming (DP) algorithm to solve the problem in pseudo-polynomial time. Using the DP
algorithm, we constructed a new FPTAS for the problem.

Whether or not the running time of the FPTAS can be further improved remains an interesting open question.
Future work should be undertaken in the following directions:

– A multi-stage modification of the suggested two-stage scheduling model that permits the analysis and treat-
ment of more complicated production systems;

– Design of on-line algorithms and experimental evaluation of their performance in practice;
– An experimental evaluation of various scheduling scenarios including dynamic, learning and deterioration

factors;
– Present-day advances in IT technologies, such as geographical information systems, mobile agents, and

RFIDs, should be introduced into the scheduling model.
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