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ON THE EXISTENCE AND STABILITY OF SOLUTIONS TO STOCHASTIC
EQUILIBRIUM PROBLEMS

Lam Quoc Anh1, Nguyen Xuan Hai2, Kien Trung Nguyen1,∗,
Nguyen Hong Quan2 and Dang Thi My Van3

Abstract. In this paper we consider stochastic equilibrium problems involving parameter of proba-
bility measures. Employing the fixed point theorem of Knaster, Kuratowski, Mazurkiewicz, and Fan
(KKM-Fan), conditions for the existence of solutions to such problems are established. We then propose
new metric concepts on the underlying stochastic spaces and study some properties corresponding to
these metrics. Afterwards, we study sufficient conditions for the solution mappings of such problems,
that are closed, upper (lower) semicontinuous and continuous with respect to the mentioned metrics.
Finally, the special cases of stochastic optimization problems are taken into account as the applications.
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1. Introduction

In many real life situations, we usually have to make decisions in a reasonably optimal way under uncertain
conditions, which may exist in the case we cannot list all possible outcomes and/or cannot assign exact prob-
abilities to the various outcomes. For example, the future demands or future interest rates for some products
are not available at the time we make decisions. Another example concerning the planning of water resources to
release into the channels or canals of a river system in each period. Then one of the most important parameters
of this model is the rainfall amounts at various times, which is predicted based on the estimation of histori-
cal records and is therefore uncertain. Various settings similar to these two examples can be also modelled as
the stochastic optimization problems. Therefore, the investigation of stochastic optimization has become one
of the interesting and important topic in optimization theory and applications, including existence conditions
[27, 31, 32, 34, 40, 43], stability conditions [12, 15, 37] and solution methods [3, 14, 45]. This fact has inspired
many mathematicians to study various generalized stochastic problems related to optimization with numerious
applications to real-world problems, such as stochastic variational inequalities [4, 7, 26, 33, 42], stochastic Nash
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equilibrium problems [1, 25, 41, 44], stochastic mathematical programs with equilibrium constraints [8, 22, 35]
with numerious applications to real-world problems.

Study of equilibrium phenomena encountered in engineering, physics, chemistry or economics plays an impor-
tant role in the theory of nonlinear analysis and optimization. There are many models which were proposed for
containing various kinds of these equilibria such as inequalities of Ky Fan [9], Takahashi [36], and Muu [19].
The name “Equilibrium Problem” was first considered by Muu and Oettli [20], since it coincides with finding
the equilibrium point of an optimization problem under certain conditions. Then this model was shown to
contain various important problems related to optimization, including complementarity problems, Nash equi-
librium, traffic network problems, etc. [5]. Therefore, properties of solutions to equilibrium problem and its
related-problems are worthwhile topics to discuss, and they have been studied by many mathematicians all over
the world (see e.g., [2, 11, 38, 39] and the references therein). To the best of our knowledge, conditions for the
existence and stability of solutions to stochastic equilibrium problems have not been under investigation so far
despite of their importance in practice.

In this paper we aim to introduce stochastic equilibrium problems as well as to study the existence and
stability conditions for such problems. Firstly, using KKM-Fan fixed point theorem, we study conditions for the
existence of solutions to such problems. We then propose various metrics on stochastic spaces and employ them
to establish sufficient conditions for solution mappings to such problems to be both closed, upper semicontinuous
or continuous. For applications, we discuss the obtained results in order to deal with some special cases of the
stochastic optimization problems.

The rest of this paper is organized as follows. Section 2 presents the setting of parametric stochastic equilib-
rium problems and some preliminary results used in the sequel. Section 3 is devoted to the existences conditions
for stochastic equilibrium problems. In Section 4, we introduce some metrics on the referenced stochastic spaces
and discuss some results involving the equipped metrics, which are needed in the sequel. In Section 5, we study
sufficient conditions for the solution mappings to such problems to be closed and upper semicontinuous with
respect to the metrics proposed in the previous section. For applications, we consider in the last section special
cases of stochastic optimizations.

2. Preliminaries

Let X be a nonempty, closed and bounded subset of Rk; Ω be a nonempty, closed subset of Rl; P(Ω)
be the set of all Borel probability measures on Ω; and M be a nonempty subset of P(Ω). Furthermore, let
f : Ω ×X ×X → R = R ∪ {±∞} be a single valued mapping such that f(·, x, y) is a measurable function for
x, y ∈ X and K : M ⇒ X be a multivalued mapping. We define a stochastic equilibrium problem involving the
parameter µ ∈M as follows.
(SEPµ) Find x̄ ∈ K(µ) such that

Eµ[f(ω, x̄, y)] ≤ 0, ∀y ∈ K(µ).

Here, Eµ[f(ω, x, y)] =
∫

Ω
f(ω, x, y)µ(dω) is the expectation of f(·, x, y) with respect to the measure µ. Denote

by Sol(EPµ) the solution set to (SEPµ), we get

Sol(SEPµ) =
{
x ∈ X : x ∈ K(µ),

∫
Ω

f(ω, x, y)µ(dω) ≤ 0, ∀y ∈ K(µ)
}
.

A multivalued mapping S : M ⊂ P(Ω) ⇒ X identified as S(µ) = Sol(SEPµ) is called the solution mapping to
the reference problem. As mentioned in the previous section, this paper aims to study the nonempty values,
closedness and upper continuity of S regarding the probabilistic parameter µ.

For better illustration, we consider some special cases of (SEPµ) as follows.

(a) If f(ω, x, y) = ϕ(ω, y)− ϕ(ω, x) where ϕ : Ω×X → R̄, then (SEPµ) is the classical optimization problem.
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(b) If f(ω, x, y) = 〈g(ω, x), x − y〉 where g : Ω × X → Rn is a map, then (SEPµ) can reduce to a stochastic
variational inequality.
In the context of Nash games with convex player problems, the problem (SEPµ) could be transferred to a
stochastic variational inequality where f(ω, x, y) = 〈F (ω, x), x − y〉 and F (ω, x) denotes the concatenated
gradient map.

We now recall some concepts and properties that will be used thereafter.

Definition 2.1. Let F : M ⇒ X be a multivalued mapping.

(a) The inverse image of a subset A of M by F is defined by

F−1(A) = {x ∈M : F (x) ∩A 6= ∅}.

(b) F is said to be closed if its graph given as

Graph F = {(µ, x) ∈M ×X : x ∈ F (µ)}

is a closed subset of M ×X.
(c) F is said to be lower semicontinuous (lsc) at µ0 if for any open set U ⊂ X with F (µ0)∩U 6= ∅, there exists

an open neighborhood N of µ0 such that F (µ) ∩ U 6= ∅ for all µ ∈ N .
Equivalently, F is lsc at µ0 if for all sequences {µn}∞n=1 converging to µ0 and for all x ∈ F (µ0), there exist
xn ∈ F (µn) such that {xn}∞n=1 converges to x.

(d) F is said to be upper semicontinuous (usc) at µ0 if for any open set U ⊃ F (µ0), there exists an open
neighborhood N of µ0 such that U ⊃ F (N).
Finally, F is called continuous at µ0 if it is both usc and lsc at µ0. We say that F is lsc (usc, continuous)
if it is lsc (usc, continuous) at every points of M .

We denote by ‖ · ‖ the Euclidean norm on Rk. For x ∈ X and A ⊂ X, denote by d(x,A) = infy∈A ‖x − y‖
and B(A, r) = {x ∈ X : d(x,A) < r}. If F has compact values, then F is usc at µ0 if and only if for any r > 0,
there exists δ > 0 such that F (B(µ0, δ)) ⊂ B(F (µ0), r), where B(F (µ0), r) := {x ∈ X : d(x, F (µ0)) < r}.

Definition 2.2. Let F be as in Definition 2.1.

(a) The mapping F is called Hausdorff lower semicontinuous (H-lsc) at µ0 if for any neighborhood B of the
origin in Rn, there exists an open neighborhood N of µ0 such that F (µ0) ⊂ F (µ) +B for all µ ∈ N .

(b) The mapping F is called Hausdorff upper semicontinuous (H-usc) at µ0 if for any neighborhood B of the
origin in in Rn, there exists an open neighborhood N of µ0 such that F (µ) ⊂ F (µ0) +B for all µ ∈ N .
F is called Hausdorff continuous at µ0 if it is both Hausdorff upper semicontinuous and Hausdorff lower
semicontinuous at µ0.

Obviously, the Hausdorff upper semicontinuity/or Hausdorff lower semicontinuity is weaker/or stronger than
the upper/or lower semi-continuity, respectively, and they are equivalent if the underlying mapping has compact
values.

The Hausdorff continuity is often described in the Hausdorff metric meaning as follows.
For two closed subsets A and B of X, the Hausdorff distance between these subsets is

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
,

which is indeed a metric as X is bounded. Then, F is Hausdorff continuous at µ0 if and only ifH(F (µ), F (µ0))→
0 as µ→ µ0.

A single valued mapping h : X → R is called upper semicontinuous (lower semicontinuous) if for all α ∈ R,
the upper level set {x ∈ X : h(x) ≥ α} (the lower level set {x ∈ X : h(x) ≤ α}, respectively) is closed on X.
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Definition 2.3 (See [28]). Let g : Ω ×X → R. The mapping g is said to be random lower semicontinuous if
the corresponding epigraph multivalued mapping ω → epig(ω, ·) has closed measurable values for each ω ∈ Ω.

Lemma 2.4 (See [28]). Let g be as in Definition 2.3. If g is random lower semicontinuous then the folowing
statements hold

(i) for each ω ∈ Ω and x ∈ X, g(·, x) is measurable and g(ω, ·) is lower semicontinuous.
(ii) the mapping ω → infx∈X g(ω, x) is well defined and measurable.

3. Existence conditions

In this section we assume that K has nonempty, convex and compact values on M , and f(·, x, y) is measurable
for all (x, y) ∈ X × X and f(ω, ·, ·) is an equilibrium function for a.e. ω ∈ Ω on K, i.e., for a.e. ω ∈ Ω,
f(ω, x, x) = 0 for all x ∈ X. In what follows, we investigate sufficient conditions for the existence of solutions
to (SEPµ).

Firstly, we propose and recall some basic concepts and their properties used in the sequel.

Definition 3.1. Let A ⊂ Rk be a nonempty and convex subset, and ϕ : A → R̄ be a single valued mapping.
Then, ϕ is said to be 0-lower level quasiconcave on A if for each x1, x2 ∈ A and λ ∈ [0, 1] and ϕ[λx1+(1−λ)x2] ≤ 0
then ϕ(x1) ≤ 0 or ϕ(x2) ≤ 0.

Remark 3.2. If ϕ is quasiconcave on A, i.e., min{ϕ(x1), ϕ(x2)} ≤ ϕ[λx1 + (1 − λ)x2] for all x1, x2 ∈ A and
λ ∈ [0, 1], then it is 0-lower level quasiconcave on A.

Now we introduce equivalent statements of the 0-lower level quasiconcavity. Because the proofs are elementary,
we would like to omit them.

Lemma 3.3. Let ϕ,A be as in Definition 3.1. The following conditions are equivalent to each other.

(a) ϕ is 0-lower level quasiconcave on A.
(b) For all {x1, x2, . . . , xn} ⊂ A and x ∈ conv{x1, x2, . . . , xn} satisfying ϕ(x) ≤ 0, then there exists i ∈
{1, 2, . . . , n} such that ϕ(xi) ≤ 0, where conv{x1, x2, . . . , xn} is the convex hull of {x1, x2, . . . , xn}, i.e.,
{x1, x2, . . . , xn} = {x ∈ Rn : x =

∑n
i=1 λixi, λi ≥ 0,

∑n
i=1 λi = 1}.

(c) The set {x ∈ A : ϕ(x) > 0} is convex.

Based on Lemma 3.3, the following example shows that the converse of Remark 3.2 is not true.

Example 3.4. Let A = Rk and ϕ : A → R̄ be defined by ϕ(x) = 1 + ‖x‖ for all x ∈ A. Then, the set
{x ∈ A : ϕ(x) > 0} is equal to Rk, and hence it is convex. Applying Lemma 3.3, we conclude that ϕ is 0-
lower level quasiconcave on A. However, for x1 = (−2, 0, . . . , 0), x2 = (2, 0, . . . , 0) ∈ A and λ = 1

2 , we have
3 = min{ϕ(x1), ϕ(x2)} > ϕ[λx1 + (1− λ)x2] = 1, so ϕ is not quasiconcave on A.

Now we recall the concept of KKM mapping introduced by Knaster, Kuratowski and Mazurkiewicz in 1929.

Definition 3.5 (See [18]). Let X be a subset of topological vector space Y . A map G : X ⇒ Y is called a
KKM mapping on X if for each subset {x1, . . . , xn} ⊂ X, then conv{x1, x2, . . . , xn} ⊂ ∪ni=1G(xi).

The following result is usually known as the KKM-Fan fixed point theorem.

Lemma 3.6 (See [10], Cor. 1). Let X be an arbitrary set in a topological vector space Y , and let G : X ⇒ Y
be a KKM mapping with closed values on X. If G(x) is compact for at least one x ∈ X, then ∩x∈XG(x) 6= ∅.

Let µ ∈M be fixed, we study sufficient conditions for the existence of solutions to (SEPµ).

Theorem 3.7. Assume that

(i) For each ω ∈ Ω and y ∈ K(µ), the set {x ∈ K(µ) : Eµ[f(ω, x, y)] ≤ 0} is closed;
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(ii) for each x ∈ K(µ), f(ω, x, ·) is 0-lower level quasiconcave for a.e. ω ∈ Ω on K(µ).

Then, the problem (SEPµ) is feasible.

Proof. For x, y ∈ K(µ), setting

P (x) = {z ∈ K(µ) : Eµ[f(ω, x, y)] > 0},
Φ(x) = K(µ) ∩ P (x),
Q(y) = K(µ) \ Φ−1(y),

we have

Q(y) = {x ∈ K(µ) : x 6∈ Φ−1(y)} = {x ∈ K(µ) : y 6∈ Φ(x)}
= {x ∈ K(µ) : y 6∈ P (x)} = {x ∈ K(µ) : x 6∈ P−1(y)}
= K(µ) \ P−1(y),

where the subsets Φ−1(y) and P−1(y) are the inverse images of y by the multivalued mappings Φ and P ,
respectively.

We first prove that Q is a KKM mapping on K(µ). Suppose, we proceed by contradiction and assume that
there exist a subset {y1, y2, . . . , yn} ⊂ K(µ) and x̂ ∈ conv{y1, y2, . . . , yn} such that x̂ 6∈ ∪ni=1Q(yi). Then,
for all i ∈ {1, 2, . . . , n}, x̂ 6∈ Q(yi), i.e., yi ∈ Φ(x̂). Hence, yi ∈ P (x̂) for all i ∈ {1, 2, . . . , n}. Consequently,
Eµ[f(ω, x̂, yi)] > 0 for all i ∈ {1, 2, . . . , n}. This contradicts assumption (ii) and the equilibrium assumption of
f . So, Q is a KKM mapping on K(µ).

It follows from assumption (i) that Q(y) is a closed subset as

Q(y) = K(µ)\P−1(y) = {x ∈ K(µ) : Eµ[f(ω, x, y)] ≤ 0}.

By the boundedness of X, Q(y) is compact. Applying Lemma 3.6, there exists x̄ ∈ X such that

x̄ ∈ ∩y∈K(µ)Q(y) = K(µ) \ [∪y∈KΦ−1(y)].

This also means that x̄ ∈ K(µ) and x̄ 6∈ Φ−1(y) for all y ∈ K(µ), i.e., y /∈ P (x̄) for all y ∈ K(µ). Hence, we
conclude that Eµ[f(ω, x̄, y)] ≤ 0 for all y ∈ K(µ). Therefore, x̄ is a solution to (SEPµ). �

Remark 3.8. For a mapping g : Ω × X → Rk, we define F (x) = Eµ[g(ω, x)] for x ∈ X and ω ∈ Ω, where
µ ∈M is given. A stochastic variational inequality (SVI) mentioned in [26] is as follows.
(SVIµ) Find x̄ ∈ X such that

〈F (x̄), x̄− y〉 ≤ 0,∀y ∈ X.

Setting f(ω, x, y) = 〈g(ω, x), x−y〉, then the problem (SEPµ) reduces to above stochastic variational inequality.
For (SVIµ), assumption (ii) of Theorem 3.7 is clearly satisfied, employing this theorem, we get the following
result.

Corollary 3.9. (SVIµ) is feasible if the set M = {x ∈ X : Eµ[f(ω, x, y)] ≤ 0} is closed for each y ∈ X and
ω ∈ Ω.

Because our approach is different from that of [26], Corollary 3.9 cannot be compared to Proposition 3 in [26].

Finally, we employ a regularity property of f to replace assumption (i) in Theorem 3.7 as follows.

Theorem 3.10. Suppose that assumption (ii) of Theorem 3.7 is satisfied and assume further that, for each
y ∈ K(µ), the mapping f(·, ·, y) is random lower semicontinuous on Ω × K(µ). Then, the problem (SEPµ) is
feasible.
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Proof. We need to prove that the assumption (i) of Theorem 3.7 holds true. Taking

M = {x ∈ K(µ) : Eµ[f(ω, x, y)] ≤ 0},

and an arbitrary sequence {xn} ⊂M converging to x∗, we will show that x∗ belongs to M . Because f is random
lower semicontinuous, Lemma 2.4(i) implies that for each ω ∈ Ω and y ∈ K(µ), f(·, x∗, y) is measurable, f(ω, ·, y)
is lower semicontinuous, and hence it follows from [31] (Appendix) that Eµ[f(ω, x, y)] is well-defined. Also,

Eµ[f(ω, x∗, y)] ≤ Eµ[lim inf
n→∞

f(ω, xn, y)].

Putting g(ω, y) = minx∈K(µ) f(ω, x, y). Because f is random lower semicontinuous, Lemma 2.4(ii) implies that
the function g is well defined and measurable, and hence the Fatou’s lemma (see e.g., [32], Thm. 58) can use to
get

Eµ[f(ω, x∗, y)] ≤ Eµ[lim inf
n→∞

f(ω, xn, y)] ≤ lim inf
n→∞

Eµ[f(ω, xn, y)] ≤ 0,

or equivalently, x∗ ∈ M . Thus, assumption (i) of Theorem 3.7 holds. Applying Theorem 3.7, we conclude that
the solution set of (SEPµ) is nonempty. �

4. Various probabilistic metric spaces

To study the stability of (SEPµ), we introduce some metrics in the set of parameters with probability measure
P(Ω) and its subset Pp(Ω). Noting that it follows from different goal of investigating the stochastic problems,
various metrics on P(Ω) and its subsets are introduced (see [6, 12, 16, 17, 21, 23, 24, 28–30]). Among them is the
Fortet-Mourier metric (see e.g., [23]): For p ≥ 1, let

Pp(Ω) =
{
µ ∈ P(Ω) :

∫
Ω

||ω||pµ(dω) <∞
}
,

the Fortet-Mourier metric is defined

ζp(µ, ν) = sup
g∈Tp(Ω)

∣∣∣ ∫
Ω

g(ω)(µ− ν)(dω)
∣∣∣,∀µ, ν ∈ Pp(Ω),

where
Tp(Ω) = {g : Ω→ R : |g(ω)− g(ω̄)| ≤ ||ω − ω̄||max{1, ||ω||p−1, ||ω̄||p−1},∀ω, ω̄ ∈ Ω}.

For more comprehensive details of this metric, we refer the reader to [13] and the references therein.
Now, we define the following sets used in the sequel.

K = {K : P(Ω) ⇒ X : K has closed values},

L = {f : Ω×X ×X → R : ∀y ∈ X, f(·, ·, y) is random lower semicontinuous}.
For µ ∈ P(Ω) and f ∈ L, let

Γf (µ, y) =
{
x ∈ X :

∫
Ω

f(ω, x, y)µ(dω) ≤ 0
}
.

Lemma 4.1. For y ∈ X, if f(·, ·, y) is random lower semicontinuous then Γf (µ, y) is compact on X for all µ.

Proof. Taking an arbitrary sequence {xn}∞n=1 ⊂ Γf (µ, y) converging to x ∈ X, we prove that x ∈ Γf (µ, y).
Because of the Fatou’s lemma, we have∫

Ω

f(ω, x, y)µ(dω) ≤ lim inf
n→∞

∫
Ω

f(ω, xn, y)µ(dω) ≤ 0,

i.e., x ∈ Γf (µ, y). Therefore, Γf (µ, y) is a closed set. Since X is bounded, Γf (µ, y) is compact. �
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Motivated by the Hausdorff metric on compact subsets, we define the functions ρ and σp on P(Ω) and Pp(Ω),
respectively, as follows.
– For every µ, ν ∈ P(Ω),

ρ(µ, ν) = sup
K∈K

H(K(µ),K(ν)) + sup
f∈L

sup
y∈X
H(Γf (µ, y),Γf (ν, y)).

– For every µ, ν ∈ Pp(Ω),

σp(µ, ν) = sup
K∈K

H(K(µ),K(ν)) + sup
g∈Tp(Ω)

∣∣∣ ∫
Ω

g(ω)(µ− ν)(dω)
∣∣∣.

Because X is bounded, we conclude that K(µ) and Γf (µ, y) are compact subsets of X. This together with
the finite value of Fortet-Mourier metric, the functions ρ and σp are finite values. Employing properties of
supremum of a set, the Hausdorff metric for compact sets and the Fortet-Mourier metric, ρ and σp are metrics
on P(Ω) and Pp(Ω), respectively. Therefore, the parameter spaces of probability measure (P(Ω), ρ), (Pp(Ω), σp)
and (Pp(Ω), ζp) are metric spaces.

Thanks to the nice definitions of ρ and σp, we get the following wonderful results.

Lemma 4.2. Let R : (P(Ω), ρ) ⇒ X and T : (Pp(Ω), σp) ⇒ X be multivalued mappings. If R and T have
nonempty and closed values, then they are closed and lower semicontinuous.

Proof. Firstly, taking an arbitrary sequence {(µn, yn)} ⊂ GraphR converging to (µ, y), we show that (µ, y) ∈
GraphR. Because H(R(µn), R(µ)) ≤ ρ(µn, µ) and ρ(µn, µ)→ 0 as n→ +∞, we conclude that

H(R(µn), R(µ))→ 0 as n→ +∞.

Since d(y,R(µ)) = infz∈R(µ) ||y − z|| ≤ ||yn − y|| +H(R(µn), R(µ)) → 0, we get d(y,R(µ)) = 0. As R(µ) is a
closed subset of X, we have y ∈ R(µ). Therefore, R is closed.

Next, we prove that R is lsc. Let {µn} ⊂ P(Ω) be an arbitrary sequence converging to µ ∈ P(Ω), and
y ∈ R(µ). For each n, as R(µn) is a nonempty, closed set and X is bounded, there exists yn ∈ R(µn) such that
‖yn − y‖ = d(y,R(µn)). We have

‖yn − y‖ = d(y,R(µn))
≤ sup
y′∈R(µ)

d(y′, R(µn))

≤ H(R(µn), R(µ)) ≤ ρ(µn, µ)→ 0,

and hence yn → y. Therefore, R is lower semicontinuous.
Using the same arguments, the conclusions for T in Lemma 4.2 are also obtained. �

Unfortunately, the following example shows that for the metric space (Pp(Ω), ζp), the similar results as that
of Lemma 4.2 do not hold.

Example 4.3. Let Ω = R, X = [0, 1], µ̄ ∈ Pp(Ω) be fixed, E : (Pp(Ω), ζ) ⇒ X defined by

E(µ) =

{
{1}, if µ = µ̄,

{0}, otherwise.

Then, E is closed-valued, but it is not lsc. For this case, E is a single-valued mapping, we will show that E
is discontinuous. Taking a sequence {µn}, µn = n−1

n µ̄+ 1
n µ̂ where µ̂ ∈ Pp(Ω) is given, then

ζp(µn, µ̄) =
1
n

sup
g∈Tp(Ω)

∣∣∣ ∫
Ω

g(ω)(µ̂− µ̄)(dω)
∣∣∣.

Because of the definitions of Tp(Ω) and Pp(Ω), the supg∈Tp(Ω) |
∫

Ω
g(ω)(µ̂−µ̄)(dω)| is finite, and hence ζp(µn, µ̄)→

0 as n→ +∞. Because E(µn) = 0 6→ E(µ̄) = 1, E is not continuous at µ̄.
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Consider a map H : Pp(Ω) ⇒ X defined by

H(µ) =
{
x ∈ X :

∫
Ω

mi(ω, x)µ(dω) ≤ 0, i = 1, 2, . . . , l
}
, (4.1)

where mi : Ω × X → R satisfy: for x ∈ X, mi(·, x) ∈ Tp(Ω), and mi are random lower semicontinuous,
i = 1, 2, . . . , l. Fatou’s lemma shows obviously that H has closed values.

Lemma 4.4. The map H : (Pp(Ω), ζp) ⇒ X defined by (4.1) is closed and upper semicontinuous.

Proof. For any sequence {µn} converging to µ in (Pp(Ω), ζp), let {yn} be a sequence in X such that for all n,
yn ∈ H(µn) and yn → y for n→∞. By Fatou’s lemma, for i = 1, 2, . . . , l, we have∫

Ω

mi(ω, y)µ(dω) ≤ lim inf
n→∞

∫
Ω

mi(ω, yn)µ(dω)

≤ lim inf
n→∞

[∣∣∣ ∫
Ω

mi(ω, yn)(µn − µ)(dω)
∣∣∣+
∫

Ω

mi(ω, yn)µn(dω)
]

≤ lim inf
n→∞

[
sup

g∈Tp(Ω)

∣∣∣ ∫
Ω

g(ω)(−µn + µ0)(dω)
∣∣∣+
∫

Ω

mi(ω, yn)µn(dω)
]

≤ lim inf
n→∞

[
ζp(µn, µ) +

∫
Ω

mi(ω, yn)µn(dω)
]

= lim inf
n→∞

∫
Ω

mi(ω, yn)µn(dω) ≤ 0.

Hence, y ∈ H(µ), i.e., H is closed. As H(µ) is a closed subset of a bounded set X, H is compact-valued, or
equivalently, it is upper semicontinuous. �

5. Stability conditions

In this section we investigate the closedness, upper semicontinuity or continuity of solution mappings to
stochastic equilibrium problems. From here on, we assume that all assumptions of Theorem 3.10 are satisfied
for all µ ∈ M , and hence by applying Theorem 3.10, the solution sets to such problems are nonempty at the
reference points.

We first get the result regarding the closeness of solution set.

Lemma 5.1. Given µ ∈ P(Ω) and assume that K has closed values. Then, the solution set S(µ) is a closed
set.

Proof. We have

S(µ) =
{
x ∈ K(µ) :

∫
Ω

f(ω, x, y)µ(dω) ≤ 0,∀y ∈ K(µ)
}

= K(µ) ∩
[
∩y∈K(µ)Γf (µ, y)

]
.

Combining the closedness of K(µ) and Lemma 4.1, we conclude that S(µ) is closed. �

Next, we study sufficient conditions for the closedness and continuity properties of the solution mapping S
with respect to (P(Ω), ρ).

Theorem 5.2. Assume that K : P(Ω) ⇒ X has closed values and f is continuous in the second and third
arguments for a.e. ω. Then, the solution mapping S is both continuous and closed on (P(Ω), ρ).
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Proof. Let µ0 ∈ P(Ω) be arbitrary, using Lemmas 4.2 and 5.1, we conclude that S is closed and lsc at µ0. Next
we prove that S is upper semicontinuous at µ0. Suppose, on the contrary, that S is not usc at µ0. Then, there
exist an open neighborhood U of S(µ0) and a sequence {µn} converging to µ0 such that for each n, there is
xn ∈ S(µn) \ U . Since xn ∈ S(µn) ⊂ K(µn) for all n, we have

d(xn,K(µ0)) ≤ H(K(µn),K(µ0)) ≤ ρ(µn, µ0). (5.1)

As K(µ0) is closed and X is bounded, for each n, there exists x∗n ∈ K(µ0) such that

‖xn − x∗n‖ = d(xn,K(µ0)). (5.2)

Employing the closedness of K(µ0) and the boundedness of X, we can assume that {x∗n} converges to some
point x0 in K(µ0). From (5.1), (5.2) and the fact that ρ(µn, µ0)→ 0 as n→ +∞, we have xn → x0 as n→ +∞.
Since xn ∈ S(µn), ∫

Ω

f(ω, xn, y)µn(dω) ≤ 0 ∀y ∈ K(µn). (5.3)

Next, we show that x0 ∈ Γf (µ0, y) =
{
x ∈ X :

∫
Ω
f(ω, x, y)µ0(dω) ≤ 0

}
for all y ∈ K(µ0). Suppose that

there is y0 ∈ K(µ0) satisfying x0 /∈ Γf (µ0, y0), i.e.,
∫

Ω
f(ω, x0, y0)µ0(dω) > 0. Applying Lemma 4.2, the lower

semicontinuity K is obtained, and hence there exists a sequence {yn} such that yn ∈ K(µn) and yn → y0. Since
f(ω, ·, ·) is continuous for a.e. ω and {(µn, xn, yn)} converges to (µ0, x0, y0), we conclude that the corresponding
sequence {

∫
Ω
f(ω, xn, yn)µn(dω)} converges to

∫
Ω
f(ω, x0, y0)µ0(dω) > 0. In other words, there is n0 ∈ N such

that for all n ≥ n0,
∫

Ω
f(ω, xn, yn)µn(dω) > 0, which contradicts (5.3). This implies x0 ∈ Γ(µ0, y) for all

y ∈ K(µ0). Hence, x0 ∈ S(µ0) ⊂ U , this contradicts the fact that xn /∈ U for all n, and also S is upper
semicontinuous. In summary, S is both continuous and closed on (P(Ω), ρ). �

Passing to the space (Pp(Ω), σp), we also establish a result similar to that of Theorem 5.2.

Theorem 5.3. Assume that the mapping K : Pp(Ω) ⇒ X has closed values, and for all ω, ω̄ ∈ Ω, for all
x, y ∈ X, f(ω, ·, ·) is lower semicontinuous for a.e. ω, and

|f(ω, x, y)− f(ω̄, x, y)| ≤ ‖ω − ω̄‖max{1, ‖ω‖p−1, ‖ω̄‖p−1}. (5.4)

Then, the solution mapping S is both continuous and closed on (Pp(Ω), σp).

Proof. Let µ0 ∈ Pp(Ω), due to Lemmas 4.2 and 5.1, it is necessary to check that S is usc at µ0. If S is not usc
at µ0, then there are an open neighborhood U of S(µ0) in X and a sequence {µn} converging to µ0 such that
for each n, there exists xn ∈ S(µn) but xn /∈ U . By the proof of Theorem 5.2, {xn} converges to x0 ∈ K(µ0),
we prove that ∫

Ω

f(ω, x0, y)µ0(dω) ≤ 0, ∀y ∈ K(µ0). (5.5)

By Lemma 4.2, for each y ∈ K(µ0), there exists yn ∈ K(µn) such that yn → y. Combining (5.4) with the lower
semicontinuity of f(ω, ·, ·) for a.e. ω and Fatou’s lemma, we imply that∫

Ω

f(ω, x0, y)µ0(dω) ≤ lim inf
n→∞

∫
Ω

f(ω, xn, yn)µ0(dω)

≤ lim inf
n→∞

[∣∣∣ ∫
Ω

f(ω, xn, yn)(−µn + µ0)(dω)
∣∣∣+
∫

Ω

f(ω, xn, yn)µn(dω)
]

≤ lim inf
n→∞

[
sup

g∈Tp(Ω)

∣∣∣ ∫
Ω

g(ω)(−µn + µ0)(dω)
∣∣∣+
∫

Ω

f(ω, xn, yn)µn(dω)
]
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≤ lim inf
n→∞

[
σp(µn, µ0) +

∫
Ω

f(ω, xn, yn)µn(dω)
]

= lim inf
n→∞

∫
Ω

f(ω, xn, yn)µn(dω) ≤ 0.

So, x0 ∈ S(µ0) ⊂ U that is incorrect as xn /∈ U for all n. The proof follows. �

In the special case, K : Pp(Ω) ⇒ X is identified by (4.1), we obtain sufficient conditions for the solution set
to (SEP) to be closed and upper semicontinuous with respect to the Fortet-Mourier metric as follows.

Theorem 5.4. Assume that the mapping K is identified by (4.1), and assume further that f(ω, ·, y) is lower
semicontinuous for any (ω, y) ∈ Ω×X and the multivalued mapping T : (Pp(Ω), ζp) ⇒ X is given by

T (µ) =
{
x ∈ X :

∫
Ω

f(ω, x, y)µ(dω) ≤ 0, ∀y ∈ K(µ)
}

is closed. Then, the solution mapping S is both closed and upper semicontinuous on (Pp(Ω), ζp).

Proof. Applying Lemma 4.4, K is closed. It is clear that

S(µ) = K(µ) ∩ T (µ).

Since f(ω, ·, y) is lower semicontinuous, T (·) is closed, and hence S(·) is closed. By the boundeness of X, we
imply that S is closed with compact values, and hence it is upper semicontinuous. �

Remark 5.5. Applying Fatou’s lemma, one can prove that the mapping T defined in Theorem 5.4 is closed if
K is continuous, and f(ω, ·, ·) is lower semicontinuous for a.e. ω ∈ Ω.

6. Applications

In this section, as examples, we apply the main results to two special cases of the stochastic equilibrium
problem depending on parameters of a probability measure. Based on a modified version of the KKM-Fan
theorem and new metrics proposed in Section 4, we study qualitative properties of solutions to such special
cases, and hence our approaches and results are different from the existing ones in the literature. Let X, Ω,
P(Ω), Pp(Ω) be defined as the previous sections.

6.1. Stochastic optimization problems

Let F,mi : Ω × X → R be mappings such that F (·, x) and mi(·, x) are measurable for all x ∈ X and
i = 1, 2, . . . , n. Let K : M ⇒ X be given by

K(µ) =
{
x ∈ X :

∫
Ω

mi(ω, x)µ(dω) ≤ 0, i = 1, 2, . . . , n
}
.

We consider the parametric stochastic optimization problem studied in [24]:

(SOPµ) min
x∈K(µ)

Eµ[F (ω, x)] = min
x∈K(µ)

∫
Ω

F (ω, x)µ(dω).

Setting f(ω, x, y) = F (ω, x) − F (ω, y), then the problem (SOPµ) becomes a special case of the problem
(SEPµ).

For µ ∈M , the optimal value of (SOPµ) at parameter µ is

v(µ) = min
x∈K(µ)

∫
Ω

F (ω, x)µ(dω),
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and the solution mapping S1 to (SOPµ) is identified by

S1(µ) =
{
x ∈ K(µ) :

∫
Ω

F (ω, x)µ(dω) = v(µ)
}
. (6.1)

Now we equip Pp(Ω) with a metric σ′p as follows.
For µ, ν ∈ Pp(Ω),

σ′p(µ, ν) = max

{
sup
K′∈K

h(K ′(µ),K ′(ν)), sup
g∈Tp(Ω)

∣∣∣ ∫
Ω

g(ω)(µ− ν)(dω)
∣∣∣} .

Obviously, for all µ, ν ∈ Pp(Ω), we have

σ′p(µ, ν) ≤ σp(µ, ν) ≤ 2σ′p(µ, ν). (6.2)

Employing the results of Section 5, we introduce sufficient conditions of the existence and stability for the
problem (SOPµ).

Corollary 6.1. For (SOPµ), assume that

(i) K : Pp(Ω) ⇒ X K has nonempty, convex and compact values;
(ii) F is continuous and quasiconvex in the second argument for a.e. ω ∈ Ω;
(iii) F is measurable in the first argument, and for all ω, ω̄ ∈ Ω, x ∈ X,

|F (ω, x)− F (ω̄, x)| ≤ 1
2
||ω − ω̄||max

{
1, ||ω||p−1, ||ω̄||p−1

}
.

Then, the solution mapping S1 identified by (6.1) is closed, continuous and nonempty-valued on (Pp(Ω), σp) and
(Pp(Ω), σ′p), and further, for all µ, ν ∈ Pp(Ω),

|v(µ)− v(ν)| ≤ σ′p(µ, ν).

Proof. Setting f(ω, x, y) = F (ω, x)−F (ω, y) for all ω ∈ Ω, and x, y ∈ X, then (SOPµ) becomes a special of the
problem (SEPµ). Now we check that all assumptions of Theorem 3.7 hold true. Obviously, the assumption (ii)
of this theorem is satisfied as F is quasiconvex in the second argument for a.e. ω ∈ Ω.

Because Ω is a Borel set and F is lower semicontinuous, Theorem 14.31 of [28] implies that f(·, ·, y) is random
lower semicontinuous for each y ∈ K(µ). Due to Theorem 3.10, the first assumption is also fulfilled. Applying
Theorem 3.7, we conclude that the problem (SOPµ) has solutions for all µ.

Applying Theorem 5.3 for f(ω, x, y) = F (ω, x)− F (ω, y), the conclusion (a) is obtained.
For the conclusion (b), employing (6.2), the closedness and continuity of S1 on (Pp(Ω), σ′p) are derived by

that ones of S1 on (Pp(Ω), σp). Now, for all µ, ν ∈ Pp(Ω), let x′ ∈ S1(µ) and x′′ ∈ S1(ν), we have

|v(µ)− v(ν)| ≤ max
{∫

Ω

F (ω, x′)(µ− ν)(dω),
∫

Ω

F (ω, x′)(ν − µ)(dω)
}

≤ sup
g∈Tp(Ω)

∣∣∣ ∫
Ω

g(ω)(µ− ν)(dω)
∣∣∣

≤ max

{
sup
K′∈K

h(K ′(µ),K ′(ν)), sup
g∈Tp(Ω)

∣∣∣ ∫
Ω

g(ω)(µ− ν)(dω)
∣∣∣}

= σ′p(µ, ν).

Hence, the proof is complete. �
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6.2. Optimization problem with probabilistic constraint

Let X be a convex, closed and bounded subset of Rn, g : X → Rk be a mapping, and let κ : X → Rm be a
continuous mapping and ξ : Ω→ Rm be a mapping with m-dimensional stochastic vector values. Let r be fixed,
we consider the following parametric optimization problem with stochastic constraint.
(OPµ) min

{
g(x) : x ∈ X, µ

(
{ω ∈ Ω : κ(x) ≥ ξ(ω)}

)
≥ r
}

.
Setting

f(ω, x, y) = g(x)− g(y),
K(µ) =

{
x ∈ X : µ

(
{ω ∈ Ω : κ(x) ≥ ξ(ω)}

)
≥ r
}
,

then (OPµ) becomes a special case of (SEPµ). Assigning

∆µ(κ(x)) = µ
(
ω ∈ Ω : κ(x) ≥ ξ(ω)

)
.

As κ is continuous, K(µ) =
{
x ∈ X : ∆µ(κ(x)) ≥ r

}
is closed. Therefore, the distance ρ′′ on P(Ω) defined as

ρ′′(µ, ν) = sup
K′∈K

H(K ′(µ),K ′(ν)) ∀µ, ν ∈ P(Ω)

is a metric on P(Ω).
Similar to the first one, now we discuss existence and stability conditions of the solutions to the problem

(OPµ).

Corollary 6.2. For (OPµ), assume that

(i) the set µ
(
{ω ∈ Ω : κ(x) ≥ ξ(ω)}

)
≥ r
}

is nonempty, convex and compact;
(ii) g is continuous and quasiconvex.

Then, the problem (OPµ) is feasible for each µ and its solution mapping defined by

S2(µ) = argmin
{
g(x) : x ∈ X,∆µ(κ(x)) ≥ r

}
is both closed and continuous on (P(Ω), ρ′′).

Proof. Setting

K(µ) = {x ∈ X : µ
(
{ω ∈ Ω : κ(x) ≥ ξ(ω)}

)
≥ r
}
},

f(ω, x, y) = g(x)− g(y),∀ω ∈ Ω,∀x, y ∈ K(µ),

then (OPµ) is also a special case of (SEPµ). Using the similar arguments as that of the proof for Corollary 6.1,
we conclude that the solution set of (OPµ) is nonempty for each µ. Combining Theorem 5.2 and the fact that
ρ′′(µ, ν) = ρ(µ, ν) for all µ, ν ∈ P(Ω), we obtain the last conclusion of Corollary 6.2. �
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