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FORECASTING STOCK MARKET PRICE BY USING FUZZIFIED CHOQUET
INTEGRAL BASED FUZZY MEASURES WITH GENETIC ALGORITHM FOR
PARAMETER OPTIMIZATION

SHANOLI SAMUI PAL AND SAMARJIT KAR*

Abstract. In this paper, fuzzified Choquet integral and fuzzy-valued integrand with respect to sep-
arate measures like fuzzy measure, signed fuzzy measure and intuitionistic fuzzy measure are used to
develop regression model for forecasting. Fuzzified Choquet integral is used to build a regression model
for forecasting time series with multiple attributes as predictor attributes. Linear regression based fore-
casting models are suffering from low accuracy and unable to approximate the non-linearity in time
series. Whereas Choquet integral can be used as a general non-linear regression model with respect
to non classical measures. In the Choquet integral based regression model parameters are optimized
by using a real coded genetic algorithm (GA). In these forecasting models, fuzzified integrands denote
the participation of an individual attribute or a group of attributes to predict the current situation.
Here, more generalized Choquet integral, i.e., fuzzified Choquet integral is used in case of non-linear
time series forecasting models. Three different real stock exchange data are used to predict the time
series forecasting model. It is observed that the accuracy of prediction models highly depends on the
non-linearity of the time series.
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1. INTRODUCTION

Stock market is unpredictable as there are several complex factors influencing its ups and downs. Therefore
the trend of the series is also affected by those factors and by their non-linear relationship. In the stock market
forecasting, technical analysis is one of the traditional methods applied by investors for decision making. There
are some other statistical methods such as autoregressive conditional heteroscedasticity (ARCH) model [10],
generalized ARCH (GARCH) model [4], autoregressive moving average (ARMA) model [5], autoregressive inte-
grated moving average (ARIMA) model [5]. All these models are different types of regression models assuming
some mathematical distribution, those distributions are not always followed by realistic stock market time series
data [3,42].

Nowadays, several soft computing approaches like evolutionary algorithms, artificial neural networks, fuzzy
logic, rough set theory and their hybridization have been developed and perform well in forecasting of stock
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markets. In [9,16], authors proposed hybrid time series forecasting models based on neural network and fuzzy
time series. A hybridized genetic algorithm and neural network model had been developed to predict stock price
index [27]. Caia [7] proposed a hybrid GA model based on fuzzy time series and genetic algorithm (FTSGA)
on TAIEX as experimental data set and concluded that the model improved the accuracy. Teoh et al. [36] pro-
posed a hybrid model based on multi-order fuzzy time series by using rough sets theory to obtain fuzzy logical
relationship from time series and an adaptive expectation model to improve forecasting accuracy on TAIEX
and National Association of Securities Dealers Automated Quotations (NASDAQ) experimental data sets. Pai
and Lin [29] developed a hybrid ARIMA and support vector machines model in stock price forecasting. Lah-
miri [19-21] proposed several hybrid models based on different data decompoisition techniques like variational
mode decompoisition, wavelet transform and applied on stock prices to develop predictive models. Lahmiri and
Boukadoum [25] presented a new ensemble system based on continuous wavelet transform (CWT) to analyze
stock returns, backpropagation neural network (BPNN) to process CWT-based coefficients, and particle swarm
optimization (PSO) to adjust the weights and biases of BPNN. There are some recent works on stock market
time series data. Deep learning technique has been used in predicting digital currencies, like Bitcoin, Digital Cash
and Ripple [24], an ensemble of neural networks (NN) coupled with particle swarm intelligence for parameter
optimization has been used in the technical analysis information fusion [22], singular spectrum analysis (SSA)
and support vector regression (SVR) coupled with particle swarm optimization (PSO) has been implemented
for intraday stock price prediction [23], neural network weight adjustment using zSlices-based generalized type-2
fuzzy set has been applied in predicting closing price index of Shenzhen stock exchange, closing price index of
Shanghai stock exchange [32], fuzzy transformation and neural network with back propagation learning has been
used in stock market closing price index [30], data discretization using fuzzy statistics and rule generation by
rough set theory has been used in stock market time series forecasting [33], an improved fuzzy time series model
for unequal interval length using genetic algorithm has been applied on BSE sensex time series and Shenzhen
stock exchange data [31].

Choquet integral [8] mostly applied on real-valued data. To extend the domain, fuzzified Choquet integral
had been introduced and it has been used in data mining as a non-linear regression tool, classifications and
decision-making. Yang et al. [41] proposed a fuzzified Choquet integral with interval-valued integrand (CIII)
based regression model on temperature prediction. They used double genetic algorithm (GA) to estimate the
regression coefficients as well as the values of signed fuzzy measure. Wang et al. [37] proposed non-linear
non-negative multi-regressions based on Choquet integral, as a generalization of the traditional linear multi-
regression tool. An evolutionary algorithm, GA had been used to adjust the unknown parameters in their work.
Yang et al. [40] proposed fuzzy numbers and fuzzification of the Choquet integral to deal with the linguistic
attributes in data sets. They provided a detailed description of fuzzified Choquet integral with fuzzy integrand.
Their discussion covered the Choquet integral with respect to fuzzy measure and signed fuzzy measure.

In this paper, our objective is to develop the forecasting models for stock market time series data which are
multi-attributed and non-linear in nature. Here, we use fuzzified Choquet integral with respect to fuzzy measure,
signed fuzzy measure and intuitionistic fuzzy measure. Fuzzified Choquet integral with respect to fuzzy measure
has been applied as non-linear regression tool [37] and fuzzified Choquet integral with respect to signed fuzzy
measure has been applied [41] on interval valued and crisp data. In this paper, fuzzified Choquet integral with
respect to all three measure is applied on crisp data. Here, attributes are stock exchange basic indexes such as
high price, low price and closing price. We have tried to find, is there any relation among them to predict closing
price. A result comparison is given on three stock exchanges such as Bombay stock exchange (BSE), New York
stock exchange (NYSE) and Taiwan stock exchange corporation (TAIEX) separately in training and testing
data sets. It is observed that their prediction capability highly depends on data. At the same time, Choquet
integral based on fuzzy measure (FM) and intuitionistic fuzzy measure (IFM) gives better results comparison
to Choquet integral based on signed fuzzy measure (SFM). A comparison of the proposed approach and neural
network with backpropagation learning is also shown. In this work, the intuitionistic fuzzy measure has been
considered as one of the non classical measure in Choquet integral based regression model. We have compared
the results of two data sets BSE and TAIEX with the works where intuitionistic fuzzy time series models have
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been proposed [18,38]. But, we can remind about the purposes of the approaches. Purpose of approaches like
ours, is to find participation of predicting attributes to decide the objective attributes. Whereas purposes of
fuzzy time series are forecasting time series with uncertainty due to noise, missing data, etc.

The remainder of this paper is organized as follows. First, preliminaries on Choquet integral has been discussed
in Section 2, which covers Choquet integral with real-valued integrand, fuzzified Choquet integral with fuzzy
measure, signed fuzzy measure and intuitionistic fuzzy measure in its consequent sub-sections. Regression model
based on fuzzified Choquet integral is discussed in Section 3. Proposed method has been described in Section 4.
Brief data descriptions are given in Section 5. Results and discussion are presented in Section 6. Finally, the
conclusions and future research directions are presented in Section 7.

2. PRELIMINARIES

In this section, we discuss about Choquet integral and generalized Choquet integral. The original concept of
Choquet integral [8] supports real-valued integrand and it works as non-linear aggregation tool in data mining
for real numbers. But, it is not capable to deal with qualitative data/linguistic data, etc. This shortcoming can
be overcome by generalized Choquet integral which is extended to fuzzy domain for imprecise information like
linguistic data.

2.1. Choquet integral with real-valued integrand

Let f: X — (—00,00) be a real-valued function. The Choquet integral of f can be defined as:

[raw = [ uira, (2.1)

where f is a non-negative real-valued function on (X, P(X)) such that F, = {z|f(z) > a,z € X} € P(X) for
any « € [0,00), F, € [0,00) is the a-cut set of f.

To calculate the value of integral (2.1), the values of f at X = {z1,xa,...,2 x5} should be rearranged in non-
decreasing order, i.e., f(z}) < f(z5) < ... < f(xly), where (2}, z5,...,2)) is a permutation or rearrangement
of (z1,x9,...,2n). Then, evaluate the value of the expression

JELTED S ) PTG 22

where f(z() = 0.

2.2. Fuzzified Choquet integral with three different measures

The concept of Choquet integral is extended to fuzzy domain as fuzzified Choquet integral to measure the
linguistic information. Three different fuzzy measures are described below.
2.2.1. Fuzzy measure

Let F be a collection of subsets of a nonempty set X, when X is finite it can be power set of X, P(X) with
¢ € F and X € F. A non-negative monotone set function, u, is a mapping from F' to [0,00) satisfying the
conditions:

n(¢) = 0, (2.3)
AC B = u(A) < u(B),YA,BEF (2.4)

w is regular if p(X) = 1.
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TABLE 1. Example.

(o) 0

p({w1}) 0.20
u({z2}) 0.10
n({zs}) 0.40
w({x1,z2}) 0.34
u({z1,23}) 0.75
p({w2, z3}) 0.58
p{z1, 2, 23}) 1

In most of the real life problem, like our proposed work, predictor data points X of time series are finite,
so continuity of u is not required. Such a set function is called a fuzzy measure [37]. This set function is non-
additive in nature which means the joint participation of predictor attributes may be more or less than the sum
of their individual participation to predict the current situation.

Choquet integral is one of the non-linear integrals that is able to aggregate non-negative monotone set function
to replace the additive measure for data mining. It can be defined as in equation (2.1) and after rearrangement
of fat X = {x1,29,...,2N}, the equation (2.2) is evaluated to obtain the integral value.

An example of using non-negative monotone set function and the Choquet integral as an aggregation tool in
data mining is given below.

Example 2.1 ([37]). To detect an object that may be a tank or an armored personnel carrier (APC), three dif-
ferent means, 1, x5 and 3 are adopted, and they are regarded as information sources, that is, X = {1, z2, z3}.
Suppose that the importance of degrees (the values of non-negative monotone set function p) of these means
and their combinations are in Table 1.

Also suppose that, through means z1, 2 and x3, the marginal evaluations (information) for tank hypothesis,
denoted by f1, fo and f3, respectively, which are obtained as f; = f(z1) = 0.85, fo = f(z2) = 0.21, f3 =
f(x3) =0.90.

The Choquet integral with respect to p can be used to obtain a comprehensive assessment for the tank
hypothesis. Its value is calculated as follows:

Let ] = x9, 24 = x1, 5 = x3.

Then f(z}) =0.21, f(z}) = 0.85, f(z%) = 0.90, and

3
[ran= 31060 — £ (@) n (el o)
i=1

= 0.21% 1+ (0.85—0.21) % 0.75
+ (0.90 — 0.85) * 0.40
= 0.71.

Set function g is restricted to be non-negative in case of fuzzy measure, which may represent limitations
in real problems, such as in financial, sociological applications where negative values may exist. Thus a more
generalized fuzzy measure, signed fuzzy measure has been proposed [40,41], which is discussed below in brief.

2.2.2. Signed fuzzy measure

Let F' be a collection of subsets of a nonempty set X, when X is finite it can be power set of (X, P(X))
with ¢ € F and X € F. A nonadditive and non-monotonic set function, u, is a mapping from F to [0, 00) is
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called signed fuzzy measure if p(¢) = 0. Signed fuzzy measure p is called a generalized fuzzy measure if it is
naon-negative, i.e.,

W(A) > 0,VA € F.

It is non-additive in nature which means the joint participation of predictor attributes may be more or less
than the sum of their individual participation to predict the current situation.

Choquet integral of f at X = {z1,22,...,2x} can be defined as:

0
[eS)

[iaw = [ e - uxidas [ uir)d (25)

where f is a measurable function on (X,P(X)) such that F, = {z|f(z) > a,z € X} € P(X) for any a €
[—00,00), Fy, € [0,00) is the a-cut set of f, if both of above Riemann integrals exist and at least one of them
has finite value.

To calculate the value of integration, the values of f at X = {x1,22,...,zx} should be rearranged in non-
decreasing order, i.e., f(z}) < f(zh)... < f(2y), where (2], 25, ...,z ) is a permutation or rearrangement of
(z1,22,...,2n). Then, evaluate the value of the expression

JELTED DI ) PG T (2.6

where f(z() = 0.
An example of using non-negative non-monotonic set function is given below.

Example 2.2 ([41]). Suppose that X = {x1, 29}, u1 = p({x1}) = 2, po = pu({x2}) = 3 and pu3 = p({X}) = 1.
Then, p is a signed fuzzy measure, not a fuzzy measure.

The set function p is non-additive monotonic in case of fuzzy measure and non-additive, non-monotonic
in case of signed fuzzy measure. The property monotonic of fuzzy measure can be replaced by intuitionistic
approach where the monotonic relation within all i are redefined as follows.

2.2.8. Intuitionistic fuzzy measure

The fuzzy set [43] assigns a membership degree to each of its element and non-membership is automatically
the degree equal to one minus the assigned membership degree. Atanassov [1] proposed an extended work of
fuzzy sets to intuitionistic fuzzy sets, which assigns a membership degree and a non-membership degree to each
of its element with given condition that their sum does not exceed one.

Intuitionistic fuzzy set A of a universe of discourse X = {1, 22,...,2x} can be defined as

A = <z, palx),valz;) > |z, € X,

which assigns a membership degree pa(z;) € [0,1] and a non-membership degree v4(z;) € [0, 1] to each of its
element under the condition

0 < palzi) +va(zi) < 1,Vz; € X.

An intuitionistic fuzzy value (IFV) [39] is the ordered pair a(z;) = (ta(®:),va(zi)) where pqo(z;) € [0,1],
Vo (2:) € 10,1], pra(x;) + va(z;) < 1.

Let a(x;) and a(z;) be two IFVs. Then score value can be defined as s(a(z;)) = pa(zi) — va(z;) and
s(a(xj)) = pal(zj) — val(x;), respectively. Accuracy of them can be defined as h(a(z;)) = pa (i) + va(x;) and
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ha(z;)) = palxj) + val(z;), respectively.

If s(a(z;)) < s(a(z;)), then a(z;) is smaller
than a(z;), i.e., a(z;) < afx;),
If s(a(z;)) = s(a(z;)), then (2.7)
If h(a(z;)) = h(a(z;)), then a(z;) is same as a(z;),
If h(a(z;)) < h(a(z;)), then a(z;) is smaller
than a(x;), i.e., a(z;) < axj).
Let F' be a collection of subsets of a nonempty set X, when X is finite it can be power set of X, P(X) with ¢ € F

and X € F. A non-negative monotone set function, u represent the degree of participation and v represent the
degree of non-participation, are mapping from F' to [0, 1) satisfying the conditions:

o) = 0, w(X) =1, v(¢) = 1, v(X) =0 (2.8)
ACB= u(A) <uB),VA,BEF

depending on the scores and accuracy of A and B as defined previously in equation (2.7).

Here p is non-additive monotonic and also non-negative.
Choquet integral of f at X = {z1,22,...,2x} can be defined as:

/fdu - /OOO w(F,) da, (2.10)

where f is a non-negative measurable function on (X, P(X)) such that F, = {z|f(z) > a,z € X} € P(X) for
any « € [0,00), F,, € [0,00) is the a-cut set of f.

To calculate the value of integral, the values of f at X = {x1,22,...,25} should be rearranged in non-
decreasing order, i.e., f(z}) < f(x})... < f(z'y), where (z],25,...,2y) is a permutation or rearrangement of
(x1,22,...,2N). Then, evaluate the value of the expression

JELTED YL I ) PR ) (2.11)
=1

where f(z() = 0.
Another integral operator, Sugeno integral is defined based on Sugeno fuzzy measure [34] which is defined
below:

2.2.4. Sugeno fuzzy measure

A Sugeno fuzzy measure is a function p : F' — [0, 1] such that

(@) = 0. (2.12)

If AC B then u(A) < u(B), If A, € Fand A} C Ay C A3 C Ay... then
lim u(A,) = p ( lim An). (2.13)
3. FuzzIFiED CHOQUET INTEGRAL BASED REGRESSION MODEL

Forecasting models are nothing but regression models representing relationship between predictive and objec-
tive attributes. Objective attributes are the current situation which can be estimated by using historical data
points. Fuzzified Choquet integral [37] is a non-linear regression tool defined as fuzzy measure and has been used
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to represent the non-linear relationship between the attributes. Fuzzified Choquet integral with signed fuzzy
measure [41] had been utilized in temperature prediction to build Choquet Integral with Interval Integrand
(CIII), which was also a regression tool on homogeneous fuzzy data.

In this paper, we are trying to find forecasting model through regression analysis. Let X = {z1,x2,...,2n}
are IV data points in time series. Let, w be the window size. To predict the tth time point objective attribute,
(t —w — 1)th and (t — w)th time point predictive attributes are used and pw are the number of predictive
attributes where p is the different types of predictive attributes and w is the window size. We have developed
the forecasting model to estimate the 3rd data point of closing price by using previous two data points from
high, low and closing price of stock exchange time series as these are basic indexes of stock market data. Here,
p =3 and w = 2. In such way, consecutive w number of historical data from p attributes are used to estimate
current objective attribute. Regression model [41] can be constructed as follows:

g):c—l—/(a.f—&—b)du (3.1)
where
g: estimated value of the objective attribute,
f: are the functional values at {z1,za,...,zn}, in our model those are time series data,

p: fuzzy measure satisfying u(¢) = 0, u(X) =1,A < B = u(A4) < u(B),VA, B € P(X), signed fuzzy measure
satisfying u(¢) = 0, u(A) > 0,VA € P(X) and intuitionistic fuzzy measure described in Section 2.2.3,

a: real-valued function defined on X are scaling parameter,

b: real-valued function defined on X are shifting parameter,

c: adjusting constant.

According to the models, there are 2" 4+ 2n unknown parameters of which 2n + 1 are regression coefficients
and 2" — 1 are the values of fuzzy measure to estimate. To reduce the number of parameters, we use the
technique as in [41] to normalize the functional values. In such way, we can neglect the shifting coefficients and
adjusting constant because after normalization the values of all attributes are referred to the origin. So, number
of parameters reduces to n + 2™ — 1.

4. PROPOSED METHOD

In this proposed approach we try to find a prediction model where fuzzified Choquet integral works as a
regression tool. Three different set functions are used for Choquet integral fuzzy measures or participation
functions.

Yang et al. [41] developed CIII regression tool for temperature prediction on meteorological data. They used
interval data and signed fuzzy measure.

In this paper, we have used normalized time series data points as integrand along with fuzzified Choquet
integral where participation function is fuzzy measure, signed fuzzy measure and intuitionistic fuzzy measure
in three different models.

To get the normalized time series, data points are divided by the maximum upper bounds within which all
the training and testing data points lie. We are using the regression model given below:

i= [a fan (4.1)

where n + 2™ — 1 parameters need to be estimated,

n

JELTED DI ) PTG T (4.2)

i=1
where f(z{) = 0, the values of f at X = {z1,22,...,2n} should be rearranged in non-decreasing order, i.e.,
flh) < f(ah) ... < f(z!y), where (2}, 25, ...,2)) is a permutation or rearrangement of (z1,x2,...,ZN).
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A brief description is given here to elaborate the methodology. An example is already discussed in fuzzy
measure section. The process is similar. We are considering 9 data points, say, 1, Z2, X3, T4, T5, Te, T7, T8, L9
and corresponding time series values, say, f(x1), f(z2), f(z3), f(za), f(zs), f(z6), f(we), f(zs), f(zs). For
w = 2, number of predictive attributes is 6. So, we have f(x1) is the first high price, f(z3) is the first low
price, f(x3) is the first closing price, f(x4) is the second high price, f(z5) is the second low price, f(xg) is
the second closing price, f(x7) is the third high price, f(zs) is the third low price, f(zg) is the third closing
price. f(z1), f(x2), f(xz3), f(x4), f(x5), f(xe) are predictive attributes, when third closing price is the objective
attribute. Again f(x4), f(x5), f(x6), f(x7), f(xs), f(xg) are predictive attributes, when forth closing price is
the objective attribute. Now, f(x1), f(x2), f(x3), f(x4), f(x5), f(xg) is rearranged in non-decreasing order to
get the new arrangement, say, f(z}), f(xh), f(z}), f(xy), f(zf), f(x;) whereas (2}, ), ..., xf) is a permutation
or rearrangement of (z1,xa,...,zs). GA gives us the optimized values of regression coefficients as and values of
participation, say ps. So, approximation of third closing price, say fa, is calculated as:

fAs :al*(f(xll)_f(x()))*:uxllvx/% 7376)
+az x (f(25) — f(21)) * p(ah, ... 26) + ... (4.3)
+ag * (f(z5) — f(25)) * p(zp)

where f(z{) = 0. Next, f(z4), f(x5), f(zs), f(x7), f(xs), f(xg) is rearranged in non-decreasing order to get
the new arrangement, say, f(z}), f(z5), f(x5), f(a}), f(z}), f(zg) whereas (2}, z}, ..., x5) is a permutation or
rearrangement of (x4, x5, ..., x9). Optimized values of regression coefficients as and values of participation, say
us are used to approximate of forth closing price, say fa, as given below:

&’1
N
5
|
S
S
*
—~
=
8
8
|
Kﬁ
—~
5
B
N—
N—
*
=
5
=
8
N
IS
(=]
N—

* p(ahy, ., xg) + (4.4)

where f(x() = 0. Similar process has been followed for more than 9 data points.

w is the fuzzy measure, with non-additive monotonicity and non-negativity, u(¢) = 0,u(X)=1, AC B =
w(A) < u(B),VA, B € F in first model.

In the second model, p is signed fuzzy measure, with non-additivity and non-negativity, u(¢) = 0, u(A) >
0,VA e F.

In the third model, y is the intuitionistic fuzzy measure where participation and non-participation of an
element are considered and score and accuracy values like as intuitionistic fuzzy set are used to order u. Then,
1 are made monotonic.

In Section 3, it is explained that we need to estimate n+ 2" —1 number of parameters. GA is a well established
algorithm with many modifications and many application, whereas there are several existing or newly proposed
evolutionary algorithms, efficiencies of whose are more or less same in respect of solution quality, but may
be some of them are computationally efficient [15]. In our work, we compare the results of fuzzified Choquet
integral with fuzzified integrand with fuzzy measure and intuitionistic fuzzy measure with existing work on
fuzzified Choquet integral with fuzzified integrand with signed fuzzy measure [41] where GA had been used as
parameter optimization tool. So, we use the same as optimization algorithm. Following section describes some
important nomenclatures of genetic algorithm.

4.1. Genetic algorithm (GA)

Genetic Algorithm is a search optimization algorithm inspired by Darwin’s law of survival of fittest [12]. It
mimics the process of natural evolution. It uses operators inspired by biological processes of Inheritance, Muta-
tion, Selection and Crossover. The solutions are represented as chromosomes. Each chromosome is composed of
values that can either be the binary, real or floating point in representation. By using an objective function, the
chromosomes are mapped from variable (genotypic) space to objective (phenotypic) space. A set of solutions
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defines the population of a generation. The population evolves as more fit solutions (chromosomes) substitutes
less fit solutions. This way GA gradually nears to optimal solutions.

Here, GA is used to estimate n+ 2" — 1 number of parameters. Initially, fixed number of population is created
in first generation. Each chromosome has n + 2 — 1 number of genes. To estimate the regression coefficients
a s, random numbers following uniform distribution U(—2,2) and g s, random numbers following uniform
distribution U(0, 1) are considered. In each of the three models u(¢) = 0. To reorder u s, we are using steps as
in [37). If we arrange P(F(X)) as, By = 6, By = {f(z1)}, B> = {f(22)}, Bs = {f(21), f(z2)}, Fs = {f(3)},
Es = {f(z1), f(z3)}, Es = {f(x2), f(zs)}, Er = {f(z1), f(x2), fz3)}, Es = {za}, By = {f(z1), f(za)},
oo fx1), f(x2), f(x3), f(x4), ...are predictive attributes. For each Ey, k =2 to (2" — 2), check each E;,, h =
1 to (k — 1), whether Ey C Ej, with u(FEr) > p(Ey). If yes, exchange their values.

There are three main operators selection, crossover and mutation which control the performance of GA.
Crossover and mutation operator are used to explore and exploit the solution space using parent chromosomes
of population and produce child chromosomes. Table 2 shows some of the initial random values for the regression
parameters for a particular population in case of fuzzy measure in fuzzified Choquet integral for BSE data.

In this study, the genetic operators have been used to solve the proposed problem which are discussed below.

— Selection: sum of squared error (SSE) is used as fitness function. According to the minimum SSE value
chromosomes are ranked, best two directly go into the next generation.

— Crossover: two consecutive ranked chromosomes work as parents. Accordingly a single point is selected
randomly from these chromosomes they exchange their gene from that position and create new children
which goes into the next generation.

— Mutation: mutation rate is 0.01 in our models. So, those genes are selected randomly from any chromosomes,
except the best two, and mutated by getting random values following uniform distribution U(-2,2) for
a;, {i=1,...,n}and U(0,1) for pj, {j =1,...,2" — 1}, where n is the number of predicting attributes.

In such way, some fixed number of generation is repeated and lastly, we get the estimated values for those
n + 2" — 1 number of parameters. Using those estimated values, test data sets are observed and root mean
square error (RMSE) is calculated between original and predicted values of time series.

5. DATA DESCRIPTION

Stock market data are multi-attributed in nature and stock market prediction depends on several factors so
it is quite difficult to build forecasting models for itself. As there are several factors for the ups and downs of
the stock market, the pattern is non-linear in nature. In our work, basic indexes of stock exchange time series
data such as high price, low price and closing price are used to develop the models. Following three different
stock exchange time series data are collected as training and testing data sets.

— Bombay stock exchange (BSE): BSE’s popular equity index — the S&P BSE SENSEX- is India’s mostly
tracked stock market benchmark index. There are several work i.e., stock market analysis, forecasting
models on BSE data [11,17]. In this paper, training data set, collected daily from January to December,
2014 (241 data points) and testing data set, collected daily from January to April, 2015 (84 data points)
are used [6].

— New York stock exchange (NYSE): NYSE is American stock exchange, hugely used in several works [13,26].
In our work, training data set, collected daily from January to December, 2014 (252 data points) and
testing data set, collected daily from January to April, 2015 (82 data points) are used [28].

— Taiwan stock exchange corporation (TAIEX): TAIEX is Taiwan stock exchange benchmark index. It is also
hugely used in several works [2,7,14,36]. In our work, training data set, collected daily from January to
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TABLE 2. Initial values of some of (n + 2™ — 1) coeflicients in case of fuzzy measure (FM) in
fuzzified Choquet integral, for n = 6 on BSE time series from Jan to Dec, 2014.

Coefficients FM Coefficients FM

al 0.739194 Lo 0.460309
as -1.669729 1o 0.773016
as 1.921260 11 0.579176
a4 0.291052 Hi2 0.863850
as -1.457822 a3 0.773016
ag —1.871264 14 0.863850
140 0.000000 - -

11 0.138082 - -

2 0.285365 - -

"3 0.199938 158 0.918992
ha 0.285365 U59 0.943652
15 0.576553 1460 0.918992
L6 0.773016 i1 0.943652
W7 0.576553 62 0.918992
48 0.579176 1463 1.000000

December, 2014 (247 data points) and testing data set, collected daily from January to April, 2015 (81 data
points) are used [35].

6. RESULT AND DISCUSSION

In this work, window size w denotes previous w days data, which are used to predict the following day. Here,
we consider the window size w = 2 that means the previous two days high price, low price and closing price are
used to predict the closing price of the following day. So, there are six predictive attributes and one objective
attribute in our models. Recent pasts help in future prediction, so, a small w value is considered here. It can be
more than that or can be one.

Data are normalized by dividing with possible maximum bounds of each data sets. In case of training data sets
on the mentioned period, maximum bounds are 30000 (BSE), 12000 (NYSE), 9600 (TAIEX), respectively. For
testing data sets, maximum bounds for three data sets are 29700 (BSE), 12000 (NYSE) and 10000 (TAIEX),
respectively. Real coded GA is used to estimate the regression coeflicients and values of different fuzzy measures.
There are total n+2"—1 coefficients and values to estimate three different models on three data sets BSE, NYSE
and TATEX. The estimated coefficients and values are shown for three data sets in three tables, Tables 3, 4 and 5,
respectively. We consider the population size as 32 and the number of generation as 4000 for the three models.
Mutation rate is 0.01. Root mean square error (RMSE) is determined to measure the error metric in all models.
Average forecasting error (AFE) has been also calculated as another error metric for fuzzy measure (FM), signed
fuzzy measure (SFM), and intuitionistic fuzzy measure (IFM) (three measures are used in fuzzified Choquet
integral). Expression of AFE is given below.

n

AFE(%) = %Z |actual; — forecasted,|

1 . .1
actual; X 100% (6.1)

i=1

Figures 1-3 depicted the original and predicted time series of BSE, NYSE and TAIEX training data sets
respectively. Figures 4-6 depicted the original and predicted time series of BSE, NYSE and TAIEX testing data
sets respectively.
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TABLE 3. Estimated values of (n + 2™ — 1) coefficients in case of fuzzy measure (FM), signed
fuzzy measure (SFM), and intuitionistic fuzzy measure (IFM) (three measures are used in

fuzzified Choquet integral), for n = 6 on BSE time series from Jan to Dec, 2014.

Coefficients FM SFM IFM Coefficients FM SFM IFM

ai 1.001850 0.997722 1.001786 29 0.826733 0.316854  0.883147
as 1.020738 1.999913 1.010067 1430 0.925647 0.986097 0.883147
as -0.1596056  1.173825 —0.162312  us31 0.939286 0.598963 0.942181
a4 1.819574 1.819680 1.674141 32 0.266828 0.613451 0.123118
as 1.917177 1.912547 1.799764 1433 0.451697 0.289407  0.417008
ae 1.403884 0.260558  1.484512 34 0.307593 0.437006 0.335642
1o 0.000000 0.000000  0.000000 1435 0.620910 0.475107  0.526025
H1 0.000035 0.300474 0.000014 136 0.656003 0.790286  0.709087
L2 0.000582 0.266130  0.000197 137 0.689078 0.912565 0.686800
3 0.003961 0.815374 0.003843 1438 0.767673 0.518612 0.802742
L4 0.024842 0.509317 0.003630 39 0.782944 0.385196  0.784369
s 0.003961 0.000259 0.003843 140 0.826733 0.847749  0.882758
U6 0.024842 0.564478  0.029209 Hat 0.806418 0.316900 0.866230
w7 0.027561 0.211735 0.055120 L4z 0.826733 0.093871 0.882758
s 0.027561 0.510747  0.027877 1443 0.826733 0.195280 0.882758
) 0.027561 0.369897 0.055120 Haa 0.826733 0.764383  0.882758
H1o 0.027561 0.110082 0.055120 Las 0.826733 0.420881  0.882758
pit 0.027561 0.860815  0.055120 Ha6 0.826733 0.666690 0.883147
12 0.120934 0.409111  0.055120 Lha7 0.826733 0.414863 0.882758
H13 0.027561 0.000034 0.055120 [has 0.826733 0.976745 0.883147
14 0.468303 0.015003 0.296834 [ha9 0.826733 0.392907 0.883147
His 0.826733 0.092553  0.883147 1450 0.826733 0.677480 0.883147
i 0.057002 0.728482  0.087866 Us1 0.826733 0.421734 0.883147
pir 0.150681 0.052609 0.117208 52 0.826733 0.414863 0.908513
His 0.178600 0.808626 0.092374 53 0.826733 0.897801 0.883147
119 0.306197 0.745554  0.201281 54 0.947962 0.392907 0.923137
1420 0.374579 0.726202 0.364465 155 0.939947 0.677480 0.916199
21 0.337001 0.096452 0.426883 56 0.9507505 0.421734 0.980335
22 0.552278 0.541576  0.690733 157 0.959481 0.816385  0.942977
23 0.557365 0.015182 0.717555 58 0.981284 0.498486 0.992273
24 0.579004 0.872365 0.717618 1459 0.980498 0.997820 0.992273
25 0.761509 0.787605 0.736485 160 0.995567 0.250788  0.994644
126 0.783150 0.785216  0.834082 161 0.989781 0.449020 0.997925
par 0.826733 0.339131 0.883147 62 0.999625 0.268684  0.999591
o8 0.826733 0.531680 0.883147 163 1.000000 0.989173  1.000000
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RMSE in every 4000 generations on three data sets are shown in Figures 7-9. It is observed that after some
generation all of them converge.

Tables 6 and 7 show the RMSE of training and testing data sets of three stock market data. Bold face shows
the best result among them. It can be observed that, the result does not remarkably fluctuate for three different
fuzzy measure. In Table 6, fuzzy measure gives a better result for BSE and NYSE where as signed measure
gives better for TAIEX. In case of testing data sets, fuzzy measure gives less error for BSE and TAIEX data
sets and intuitionistic fuzzy measure gives less error for NYSE and which are shown in Table 7.

Proposed approach and neural network with backpropagation learning are used on multi-attributed stock
market time series forecasting. Here, BPNN is used with six nodes in the input layer, four nodes in the hidden
layer and one node in the output layer. Two nodes take input from high price, another two nodes take input
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TABLE 4. Estimated values of (n + 2™ — 1) coefficients in case of fuzzy measure (FM), signed
fuzzy measure (SFM), and intuitionistic fuzzy measure (IFM) (three measures are used in
fuzzified Choquet integral), for n = 6 on NYSE time series from Jan to Dec, 2014.

Coefficients FM SFM IFM Coefficients FM SFM IFM

a1 1.000137 0.999520 1.000172 29 0.903234 0.882722 0.811177
as 0.879961 1.999018 0.877917 1430 0.867404 0.986097 0.811177
as 1.999036 1.999653 1.999846 31 0.946338 0.598963  0.920361
a4 1.251068 1.896727 1.268682 32 0.162922 0.613451 0.087012
as 1.977279 1.827485  1.998530 1433 0.428875 0.289407 0.150244
ae -1.995239 0.086653 —1.999920 w34 0.266828 0.437006 0.123118
Lo 0.000000 0.000000  0.000000 1435 0.486976 0.475107 0.201281
st 0.000035 0.181489  0.000745 136 0.486976 0.956441 0.483266
U2 0.001071 0.940567  0.002226 137 0.486976 0.912565  0.489943
"3 0.001071 0.815374 0.003321 1438 0.518612 0.518612 0.483266
4 0.001193 0.509317  0.004677 U39 0.625401 0.411527  0.544009
s 0.001071 0.122467 0.003321 140 0.612626 0.847749  0.609309
U6 0.015593 0.564478 0.010832 Hat 0.626180 0.316900 0.576049
w7 0.001193 0.306232 0.011305 L4z 0.625777 0.093871  0.622615
s 0.017286 0.000156  0.021595 1443 0.732067 0.195280 0.639615
o 0.017286 0.192188 0.021595 s 0.783505 0.764383  0.702773
H1o0 0.017286 0.110082 0.021595 Las 0.851378 0.111579  0.804137
H11 0.017286 0.230791  0.021595 Ha6 0.827418 0.349170 0.793967
H12 0.017286 0.409111  0.021595 Lar 0.855331 0.959169 0.857573
H13 0.017286 0.046987 0.021595 [has 0.860509 0.556586  0.862823
H14 0.468303 0.015003 0.033656 L9 0.860509 0.159394  0.866676
H1s 0.028714 0.000254 0.021595 1450 0.903234 0.420881 0.866676
Hie6 0.109985 0.667571  0.045682 Us1 0.910705 0.999926  0.908219
paz 0.044649 0.052609  0.058937 52 0.910705 0.414863 0.908219
H1s 0.177244 0.808626  0.075525 53 0.952414  0.999963 0.922752
H19 0.279695 0.621286  0.200602 54 0.933616  0.392907 0.922752
1420 0.276470 0.726202 0.161438 155 0.952414 0.677480 0.922752
H21 0.429052 0.096452  0.298964 56 0.952414 0.421734 0.922752
M2z 0.337001 0.541576  0.290616 157 0.975203 0.816385 0.922752
23 0.488228 0.015182  0.450685 58 0.952414 0.347522 0.922752
24 0.493976 0.872365 0.320299 1459 0.984693 0.997820 0.939273
25 0.689595 0.787605 0.622615 160 0.988721 0.250788  0.953315
26 0.720983 0.785216  0.622615 U6l 0.999916 0.005843  0.999823
pa7 0.813654 0.339131 0.736485 62 0.999994 0.268684 0.999714
28 0.796959 0.531680 0.717968 63 1.000000 0.989173  1.000000

from low price and the remaining two nodes take input from closing price out of six nodes in input layer. The
neural network is trained with historical data and RMSE are shown in Table 6. We can say from the result
comparisons that proposed approaches work well comparison to neural network with backpropagation learning.
As we are concluding from here, we do not test it with testing data sets.

Table 8 shows the execution time of the regression model using fuzzified Choquet integral with all three
measures and BPNN. From the table, it has been observed that the computation time of our model is quite
high as it has used population based algorithm to find the regression parameters comparison to BPNN based
forecasting model. Calculated AFEs for regression model using fuzzified Choquet integral with all three measures
on BSE, NYSE and TAIEX are given in Table 9.
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TABLE 5. Estimated values of (n + 2™ — 1) coefficients in case of fuzzy measure (FM), signed
fuzzy measure (SFM), and intuitionistic fuzzy measure (IFM) (three measures are used in
fuzzified Choquet integral), for n = 6 on TAIEX time series from Jan to Dec, 2014.

Coefficients FM SFM IFM Coefficients FM SFM IFM

ay 1.005114 1.004078 1.004903 29 0.812369 0.316854  0.930620
as 0.062318 1.997224 0.071716 1430 0.903234 0.986097 0.925602
as 0.935566 1.951227 0.972023 131 0.966087 0.598963 0.942181
aq 0.563145 1.014179 0.627733 32 0.329202 0.613451 0.118832
as 1.099774 1.335693 1.165907 133 0.451697 0.289407 0.240272
ag -1.995239 -1.864760 —1.999920 w34 0.857989 0.437006 0.150244
m 0.000000 0.000000 0.000000 135 0.806418 0.475107 0.302554
1 0.028482 0.000098 0.016145 36 0.938083 0.887022 0.887786
2 0.012417 0.266130 0.016145 w3z 0.877036 0.912565 0.602239
43 0.028482 0.815374 0.016145 138 0.938083 0.518612 0.887786
ha 0.028482 0.509317 0.016145 39 0.938410 0.385196 0.887786
5 0.028482 0.000062 0.016145 a0 0.942302 0.847749 0.887786
6 0.030094 0.564478 0.018121 pat 0.942302 0.316900 0.887786
w7 0.028482 0.000020 0.016145 a2 0.942302 0.093871 0.918650
48 0.050183 0.153060 0.032904 143 0.942302 0.195280 0.908000
149 0.028482 0.000016 0.016145 Lhaa 0.942302 0.764383 0.918650
H1o 0.050183 0.110082 0.032904 a5 0.942302 0.111579 0.973116
Hit 0.050183 0.860815 0.032904 a6 0.967387 0.349170 0.950932
12 0.050183 0.409111 0.032904 a7 0.975235 0.956354  0.983556
13 0.050183 0.000876 0.032904 [as 0.975235 0.556586 0.976101
14 0.235785 0.015003 0.094166 149 0.975235 0.159394  0.983556
H1s 0.050183 0.000065 0.032904 150 0.975235 0.420881 0.983556
16 0.129973 0.728482 0.059415 U5t 0.975235 0.811393 0.983556
nir 0.050515 0.052609 0.123118 52 0.975235 0.414863 0.983556
H1s 0.207790 0.808626 0.075525 Us3 0.975235 0.526401 0.983556
19 0.320103 0.745554 0.201281 54 0.975235 0.392907 0.983556
1420 0.410539 0.726202 0.152240 155 0.975235 0.677480 0.983556
21 0.510363 0.096452 0.364465 56 0.975235 0.421734 0.983556
22 0.468303 0.541576 0.457297 57 0.976302 0.816385 0.983556
23 0.526025 0.015182 0.717555 58 0.975235 0.052287 0.983556
24 0.526025 0.872365 0.489943 159 0.984562 0.997820 0.983556
25 0.527146 0.787605 0.736485 160 0.989717 0.250788  0.993348
1426 0.527146 0.785216 0.761509 61 0.999954 0.005843 0.999948
a7 0.618874 0.339131 0.896676 62 0.999994 0.268684 0.999871
128 0.814572 0.531680 0.825861 63 1.000000 0.989173  1.000000

609

Table 10 shows the calculated RMSE and AFE of intuitionistic fuzzy time series [18,38] for BSE and TAIEX
for different time period. Though the perspective of the models are different, it can be concluded that RMSEs
131.28 and 43.23 are smaller than 192.38 and 68.60, which is obtained in our proposed approach.

Time complexity of an algorithm depends on the execution time of each statement of the code. Though BPNN
takes a quite small time to execute, but it is not computationally efficient. Whereas fuzzified Choquet integral
with different fuzzy measures shows good results taking more time than BPNN. As GA is used in proposed
approach and it has its parameters like number of generations and population size, together with the number
of us, as in a block of code those three parameters are used in separate for-loops to evaluate the expression
like (4.3) or (4.4). The time complexity depends on those three parameters. Therefore, the time complexity is
O(gPp), where g is the number of generations, P is the population size and p is the number of measure values.
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from Jan to Dec, 2014.
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7. CONCLUSION

In this study, we have developed three different time series models based on fuzzified Choquet integral with
respect to fuzzy measure, signed fuzzy measure and intuitionistic fuzzy measure on stock exchange data sets
from BSE, NYSE and TAIEX. A comparative study is given in the result and discussion section.

The results have been verified in stock exchange time series prediction with respect to three different measure.
Since, stock exchange time series are non-linear in nature, from result on testing data sets we can say accuracy
of prediction models highly depends on the non-linearity of the time series.

In future, intuitionistic fuzzy measure can be improved as intuitionistic fuzzy sets for more improved prediction
include participation and non-participation of attribute. Except that, different fuzzy measure in the sense of
higher order fuzzy set/fuzzy type-2 can also be developed. Another aspect of the proposed approach is in its
application where we need to decide the participation of predictive attributes to predict the objective attributes.
It can be utilized in autonomous transportation system to make a comfort, safe and timely travel planning.
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TABLE 6. RMSE of training data set for three time series BSE, NYSE, TAIEX from Jan to
Dec, 2014 by using three different measures.

Fuzzy measure (FM) Signed FM  Intuitionistic FM BPNN
BSE 192.38 238.16 192.63 3550.31
NYSE  70.89 74.59 70.91 403.91
TAIEX 68.60 68.04 68.44 476.39
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FIGURE 9. RMSE in each generation of TAIEX training data from Jan to Dec, 2014.

TABLE 7. RMSE of testing data set for three time series BSE, NYSE, TAIEX from Jan to
April, 2015 by using three different measures.

FM SFM IFM

BSE 388.31 454.39 389.16
NYSE 132.74 137.24 132.49
TAIEX 89.74 92.19 90.16

TABLE 8. Execution time of training data set for three time series BSE, NYSE, TAIEX from
Jan to Dec, 2014 by using three different measures.

FM SFM IFM BPNN

BSE 5m13.500s  6m8.000s 6m8.675s 0.470s
NYSE 5m23.056s 6m25.431s 6ml17.546s 0.243s
TAIEX 5m9.437s 6m11.176s 6m8.778s 0.235s

TABLE 9. AFE of training data set for three time series BSE, NYSE, TAIEX from Jan to Dec,
2014 by using three different measures.

FM SFM IFM

BSE 0.60% 0.64% 0.60%
NYSE  0.50% 0.54% 0.50%
TAIEX 0.58% 0.58% 0.58%

TABLE 10. RMSE and AFE of training data set for two time series BSE, TAIEX for different
time period by using intuitionistic fuzzy time series.

RMSE AFE

BSE 131.28 [18]  6.307% [18]
TAIEX 43.23 [38]  0.51% [38]
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