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OPTIMAL STRATEGIES AND PRICING ANALYSIS IN M/M/1 QUEUES WITH
A SINGLE WORKING VACATION AND MULTIPLE VACATIONS

RuiLiNG T1aAN* AND YALI WANG

Abstract. This paper considers the customers’ equilibrium and socially optimal joining-balking behav-
ior in single-server Markovian queues with a single working vacation and multiple vacations. Arriving
customers decide whether to join the system or balk based on the system states and a linear reward-cost
structure, which incorporates the desire of customers for service and their dislike to wait. We consider
that the system states are almost unobservable and fully unobservable, respectively. For these two
cases, we first analyze the stationary behavior of the system, and get the equilibrium strategies of the
customers and compare them to socially optimal balking strategies using numerical examples. We also
study the pricing problem that maximizes the server’s profit and derive the optimal pricing strategy.
Finally, the social benefits of the almost and fully unobservable queues are compared by numerical
examples.
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1. INTRODUCTION

In the past decades, queueing models with vacations have been developed as useful performance analysis
tools for computer systems, communication networks and flexible manufacturing systems. Recently, more and
more researchers begin to study strategic behavior in the vacation queues from an economic point of view.
As to classical vacation queueing models, Burnetas and Economou [2] first studied a Markovian single-server
queueing system with setup times. They derived equilibrium strategies of the customers under various levels
of information and analyzed the stationary behavior of the system under these strategies. Economou et al.
[4] extended this model to M/G/1 queue under unobservable case. Then, Economou and Kanta [3] considered
the Markovian single-server queue with service breakdowns and repairs. They derived equilibrium thresholds
in fully observable and almost observable queues. Li et al. [10] considered the almost and fully unobservable
cases for the same model in [3] and obtained mixed balking strategies. Sun et al. [15,16] studied customers’
equilibrium and socially optimal balking strategies in the observable and unobservable queues with several
types of setup/closedown policies, respectively. Guo and Hassin [5] discussed equilibrium and socially optimal
strategies in observable and unobservable queues with N policy. This work was extended by Guo and Hassin
[6] to heterogenous customers, and they studied both unobservable and observable queues and considered two
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situations regarding customers’ delay sensitivity. Recently, Guo and Li [7] studied strategic behavior and social
optimization in partially-observable Markovian vacation queues. Tian et al. [20] discussed optimal balking
strategies in M/G/1 queue with N policy.

Liu and Wang [11] investigated the strategic joining behavior of customers in a single-server Markovian
queueing system with Bernoulli vacation. Ma et al. [12] studied the equilibrium behaviors in a vacation queue
model with two complementary services, in which the main and secondary services were complementary and a
customer gained no benefit from obtaining only one of them. Zhang and Wang [23] analyzed equilibrium pricing
strategy in an M/G/1 retrial queueing system with setup times in which the server kept idle for a reserved idle
time after completion of a service. About comprehensive and excellent study on strategic queueing systems,
readers are referred to the book of Hassin [8].

Recently, queueing systems with working vacations have been studied extensively where the server takes
vacations once the system becomes empty and can still serve customers at a lower rate than regular one during
the vacations. Research results of the steady-state performance measures on various working vacation queues
can be consulted in the survey given by Tian et al. [19]. As for the work studying customers’ behavior in
queueing systems with working vacations, Zhang et al. [24] and Sun and Li [14] studied almost simultaneously
the equilibrium balking strategies in M/M/1 queues with multiple working vacations for different cases with
respect to the system information. Subsequently, Sun et al. [17,18] considered the customers’ optimal balking
behavior in some single-server Markovian queues with two-stage working vacations and double adaptive working
vacations, respectively. Wang and Zhang [22] considered the equilibrium strategies in the Markovian queues with
a single working vacation. Then, Tian et al. [21] studied equilibrium and optimal strategies in M/M/1 queues
with multiple working vacations and vacation interruptions under three different levels of system information.
Lee [9] observed customer’s equilibrium joining/balking behaviors in M/M/1 queues with a single working
vacation and vacation interruptions.

The above-mentioned vacation policy is either a classic vacation policy or working vacation policy. However,
to the best of the authors knowledge, researches for the equilibrium strategies in the Markovian queueing systems
with a single working vacation and multiple vacations haven’t been given. The proposed model has potential
applications in the design of queueing system. In order to save operation costs, the server waits for the new
customers and works with a lower service rate when the system becomes empty. After this period, the server may
start a regular busy period if there are still customers in the system. Otherwise, the server may start vacations
when there are still no customers in the system. This process includes working vacation and classic vacation,
which we call a single working vacation and multiple vacations. For example, in order to keep the service system
running efficiently for a long time, it is sometimes necessary to perform some routine maintenance on the service
facility. If the system load becomes smaller, the server can choose to run at low speed (working vacation). The
maintenance procedure is carried out once the system is vacant, and the time for the implementation of the
maintenance is considered as “a server’s vacation”. Customers arriving during this period need to wait until
the routine maintenance is completed before they can be received. This type of vacation is also applicable in
banking systems and machine failure systems.

Motivated by the aforementioned studies and the possible application, we consider customers’ optimal strate-
gies and sever’s profit optimization in an M/M/1 queueing model with a single working vacation and multiple
vacations. We distinguish two cases: the almost unobservable queue and the fully unobservable queue, according
to the information levels regarding system states. As to the almost unobservable case, a customer can only
observe the state of the server and cannot know the number of the customers in the system. However, for the
fully unobservable case, a customer have no information on the server’s current status and the system occupancy.
Our contributions are as follows. First, we not only obtain customer’s equilibrium strategy but also compare
it with socially optimal joining probability which maximizes social benefit in two cases. Second, we derive the
optimal prices charged by the server in equilibrium and server’s optimal profit under our model. Third, we
demonstrate numerical results based on the impact of the system parameters as well as information level on the
equilibrium behavior and social benefit to explore qualitative insights. The results of this paper have not been
reported in the literature on M/M/1 queues with a single working vacation and multiple vacations.
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This paper is organized as follows: descriptions of the model are given in Section 2. Sections 3, and 4 are
devoted to the almost unobservable queue and the fully unobservable queue, respectively. For each type of
queues, we derive and compare the customers’ equilibrium and socially optimal joining-balking strategies. In
Section 5, we present the relation of social benefit in two different cases and demonstrate the effect of system
parameters by several numerical experiments. Finally, conclusions are given in Section 6.

2. MODEL DESCRIPTION

In this paper, we consider an M/M/1 queue with a single working vacation and multiple vacations, where
potential customers arrive according to a Poisson process with rate A\. The service times of the customers are
assumed to be exponentially distributed with rate u. Upon the completion of service, if there is no customer
in the system, the server begins a working vacation and the vacation time is assumed to be exponentially
distributed with the parameter #;. During the working vacation period, arriving customers can be served at a
mean rate of uy (11 < p). Upon the end of the working vacation, if there are also customers in the queue, the
new regular busy period will start and the server will change the service rate from py to p. Otherwise, the server
begins a classic vacation and the vacation time is exponentially distributed with rate 6y. Meanwhile, when a
vacation ends, a regular busy period starts if there are customers in the queue. Otherwise, the server continues
another vacation, and a new regular busy period starts when a customer arrival occurs. This policy is called
single working vacation and multiple vacations (SWV+MV).

We assume that the inter-arrival times, the service times, the working vacation times and vacation times are
mutually independent. In addition, the service discipline is first in first out (FIFO).

Denote by N(t) the number of customers in the system at time ¢, and let J(¢) be the server state at time t:

0, the server is in the vacation period at time t,
J(t) =< 1, the server is in working vacation period at time t,
2, the server is busy at time t.

The process {(N(t),J(t)),t > 0} is a continuous time Markov chain with state space = {0,0} U {0,1} U
{(n,i)ln >1,i=0,1,2}.
Denote the stationary distribution as

Tni = tlirgo P{N(t) =n,J(t) =i}, (n,i) € Q.

In this paper, we assume that arriving customers are identical and we are interested in the customers’ strategic
response as they can decide whether to join or balk upon arrival. If a tagged customer enter the system, he
receives a reward of R units for completing service. There is a waiting cost of C' units per time unit that the
customer remains in the system. Based a reward-cost structure for each customer, a customer’s utility is defined
as R — CW after service completion, where W is his mean sojourn time in the system. All customers want to
maximize their expected utility by making decisions only at their arrival instants. Specifically, customers are
risk neutral and maximize their expected net benefit. Finally, we assume that there are no retrials of balking
customers nor reneging of waiting customers.

3. ALMOST UNOBSERVABLE QUEUES

In this section, we turn our attention to the almost unobservable case, where arriving customers only can
observe the state of the server at their arrival instant and do not observe the number of customers present.

3.1. Equilibrium and social optimization

A mixed strategy for a customer is specified by a vector (go,q1,q2), where g; is the probability of joining
when the server is in state ¢ (¢ = 0, 1,2). If all customers follow the same mixed strategy (qo, ¢1,¢2), then the
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FIGURE 1. Transition rate diagram for the almost unobservable queues.

system follows a Markov chain where the arrival rate equals A\; = Ag; when the server is in state ¢ (¢ = 0,1,2).
The transition diagram is illustrated in Figure 1.

Using the lexicographical sequence for the states, the transition rate matrix @ can be written as the tri-
diagonal block matrix:

Ay Cyp
B, A C
B A C
Q= B A C J
where
_(—Xgp O (A O 0
Ao (91 ~(\a +el>>’ o <0 A 0>’
—(Ago+6p) 0 0o 0 0
A=10 —(>\Q1 +91—|—u1) 01 , B =10 u |,
0 0 —(Ag2 + 1) U
0 0 0 Mo O 0
B = 0 M1 0 y C= 0 )\(]1 0
0 0 pu 0 0 A2

The structure of @ indicates that {(N(t), J(¢)),t > 0} is a quasi birth and death (QBD) process, see Neuts
[13]. To analyze this QBD process, it is necessary to solve for the minimal non-negative solution of the matrix
quadratic equation

R°B+RA+C =0, (3.1)

and this solution is called the rate matrix and denoted by R.
Because the coefficients of equation (3.1) are all upper triangular matrices, we can assume that R has the
same structure as

T11 T12 T13

R=10 To2  T23
0 0 733

Substituting R? and R into (3.1), we obtain the matrix R whose expression is as follows,

oo 0 po
R = O T M(Oll_r,r) 5 (32)

0 0 po
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where
pp= Mo Az Mo
w’ w’ Ao + 0o’
A 01 — /(A 01)2 —4X
r=r(q) = g1+ p1 + 01 \/( g+ +6h) q1p1 <1, (3.3)
2
and r satisfies 0 \
Agi + 01+ (L= 7) = o + 7= = = (3.4)

Theorem 3.1. Assumed that A < u, the stationary probabilities {my; : (n,i) € Q} of the system are as follows:

o = K ¥-op, >0,
T = Kr™, >0,
(3.5)
orr NG 1= 0 N~ -1y
T2 = K | ity 22 s + 2 oops ;o n=>1,
7=0 7=0
where )
1 91 ]. 917’ 01 )
K=[(— 42> - + : 3.6
<1—r Aol—o00 p(l—r)?(L=p2)  p(l—00)(l—p2) (36)
Proof. Using the matrix-geometric solution method, we have
(M0 Tn1, Tn2) = (m10, m1, m12) R*™Y, > 1, (3.7)
and (oo, o1, T10, T11, T12) satisfies the set of equations
(700, o1, 10, T11, T12) B[R] = 0, (3.8)
where
1 "2 oo
oy 0 Po ZO ‘7(])/)2 !
i=
n—1 _ n—2 .
R 0 rnfl #(Bllrr) Z T,Jpgfjf2 ) (39)
7=0
0 0 Py
and

_ (A0 Co
B[R]_<B1 A+RB>'

Solving (3.8) and letting mo; = K, we get

(00, mo1) = K ( O 1) ; (3.10)

Ao’

01 01
=K . 3.11
(7T10,7T11,7712) ()\q0+90,T, u(l—r)) ( )

Substituting the expression of (3.9) into equation (3.7), we obtain the probabilities m,;. Finally, mg; = K can
be determined by the normalization condition Y 7 Tpo + Do Tn1 + D veyq Tn2 = 1. O
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Then the probability that the system is in state ¢ (¢ =0, 1,2), denoted by m;, can be derived as follows:

= K6,
- 0 = — 3.12
0 T;)ﬂ * 7 Aao(1 = 00) (312)
o0
K
7T1=Z7Tn1:1_ s (313)
n=0 r
= K 6,7 6,
= ny = . 3.14
" ;W2 L—=p2 (M(l—T)QJFM(l—Uo)) (B.14)

Let W,,; denotes his expected mean sojourn time given that he finds there are n customers and the server is
at the state ¢ (¢ =0, 1,2) upon his arrival. We have the following results.

Lemma 3.2. If the arriving customer finds the system at state (n,i) and decides to join the queue, his condi-
tional mean sojourn time Wy; is given by

n+1 1

Wio = v n >0, 3.15
0 1% 00 ( )
n4+1 T ( m >n+1
Wiy = n 1 , n>0, 3.16
S 1, < P (3.16)
1
Wi = n: , n>1. (3.17)

Proof. According to the previous assumptions, we have the following equations:

1 1 1
Woo = —+ —, WnOZWHZ'}'*; n =1, (318)
po o o
M1 1 01 1
Wag = - 4 -, 3.19
ol pr+01 o +01p (8:19)
1251 1 01
= — +W,_ +7Wn ) Z 17 3.20
T+ 6 <,U1 " M) g+ 0, " " (8.20)
1
W = 22 n>1. (3.21)
1
From (3.19), we have
{1+ 6 L p—m ( {1 )
— S 1— . 3.22
T+ 0) po1 pa + 0 (322)

By iterating (3.20) and taking into account (3.21) and (3.22), we obtain

1 . n+1
Wy = 2L p (1-( 1 ) ) (3.23)

jz 161 pi1 + 61

We assume throughout the paper that

which ensures that the reward for service exceeds the expected cost for a customer who finds the system
empty. ([l
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Consider an arriving customer who finds the server is on state ¢ (i = 0, 1,2). If the customer decides to enter
the system in state ¢, his mean sojourn time is given by

Z WnOﬂ-nO Z Wnlﬂ-nl E Wn27rn2
n= n= n=1
Wo(go) = ““o——, Wila1) = “——, Walqo,q1,q2) = ““— (3.24)
> Tno > T Tn2
n=0 n=0 n=1

By substituting (3.5), (3.15), (3.16) and (3.17) into (3.24), we have

Wolqo) = % + % (3.25)
_ 1 K=
Wiq) = DR CE T (3.26)
1 r(l—o0¢)?+(1—7)3
Wa(qo, 41, g2) = PSS + L (=) (1= 02)2 Iy p——— (3.27)

Consider a tagged customer who finds the server at state ¢ upon arrival. If he decides to enter the system,
his expected net benefit is given by

C(Ag +600) C

Uo(qo) = R — 10, s (3.28)
_ ¢ . Cp—p)
Con)2 )3
Us(q0,q1,92) = R ¢ Crll —oo)" + (1 = r)") (3.30)

=X prA=r1 =002+ (1 —r)3(1—0p))

Obviously, Wy(go) and Wa(qo, q1,42) are monotonically increasing with respect to gy and g¢a, respectively.
From (3.26), we have

dr dr
da pa (= pa) go-
W{(ql) — q1 q1

p(=r)2 " p(0r+ pa(1—7))?

— 1 pa(p — p) ﬁ
N (u(l =2 0+ (1 - r))2> dar (3.31)

Since A\g1 + 61 + (1 —7) =1 + 1(ilr and

dr _ Ay At b i
dgi 2m VOa + 601 — )2+ 4pa b,

_ Al —=r)
A+ 01+ (1 —7) — par
A1 —7r)2
__ M=t (3.32)

/1,1(1 —’I")2+91 ’

we can obtain W{(q1) > 0 and W;(q1) is increasing for ¢; € [0, 1].
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Theorem 3.3. In the almost unobservable M/M/1
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queue, there exists a unique mized equilibrium strategy

(g8, q5,q5) “observe J(t) and enter with probability qﬁ(t) 7 where the vector ¢§ is given as follows.

1 ( ROop C C A+6, 1
(e —t-n), G EsR<O(GERA) (3.33)
4o = M0 | 1 '
1, R>C 00 +a )
e} Cpu—p1)
0, R <0+ fogn
e _ ) rem(l-re)+61)  C , Clp—p) c Clu—pu)
qf = im0 w T oarey =B S pamry T amma—ron: (3.34)
C Cp—p1)
1, R> sy + amrna ey
0, R <+ Galas, af),
e __ C
g5 = %(M—Wlm>v TRl a) < R < g5+ Galds af). (3.35)
1, R> ;S5 + Salgs, af)-

Where

(RO, — C) — \/p2(RO; — C)% + 4R C6,
2Ry ’
(Mg + 60)*(1 — r(qf))® + r(af) 05 ,
Ag§ +00)(1 —7(g5))3 + +r(af) (L — r(qf))65

re =1+

a(gs, qf) = ol

Proof. From the previous analysis, U; is monotonically decreasing with respect to ¢; (i = 0, 1, 2).
Consider a tagged customer who finds the server at state 0 upon arrival. Since condition R > % + % ensures
that ¢§ is positive, therefore we have two cases:

(1) CWy(0) < R < CWy(1). In this case if all customers who find the system empty enter with probability ¢§ = 1,
then the tagged customer suffers a negative expected benefit if he decides to enter. Hence, ¢§ = 1 does not
lead to an equilibrium. Therefore, there exists a unique ¢§, satisfying Up(g§) = 0, for which customers are
indifferent between entering and balking.

(2) R > CWy(1). In this case, for every strategy of the other customers, the tagged customer has a positive
expected net benefit if he decides to enter. Hence, ¢f = 1.

Similarly, we consider the equilibrium strategy ¢¢ in state 2. We know that the function Uj(¢1) is strictly
decreasing for ¢;. We now consider the equation U;(g;) = 0 and solve for r(g1). We let 7. be the unique solution
of equation for r. < 1 and r. is given by

u(ROy — C) — /2 (RO, — C)? + 4Rpp, COy
2Rpupn

re=1+

The corresponding unique g, is found by considering (3.4) for » = r.. Solving this equation with respect to ¢,
we obtain

g, = 7‘6(,“1(1 —7e) +01)

re Al —re)
Using the standard methodology of equilibrium analysis in unobservable queueing models, we derive the
following equilibria:
(1) If R < CW7(0), then the equilibrium strategy is ¢§ = 0.
(2) If CW1(0) < R < CW7(1), there exists a unique ¢f, satisfying U;(g§) = 0, then the equilibrium strategy is
denoted by ¢f = q;.
(3) If R > CW;(1), then the equilibrium strategy is ¢§ = 1.
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When ¢ and ¢f are determined, the expected net benefit of the arriving customer in state 2 is given by

C
B Ag2

Us(q5, 47, q92) = R — — Calqg, q7)- (3.36)

To find ¢§ in equilibrium, we also consider the following subcases:
(1) If Ua(qg, ¢%,0) < 0, then the equilibrium strategy is ¢§ = 0.
(2) If Ua(q§, ¢5,0) > 0 and Us(q§, ¢5,1) < 0, there exists a unique ¢S, satisfying Ua(g§, ¢5,¢5) = 0, then the
1 . } t e e 1 _ CH
equilibrium strategy is ¢f = § (u 7Ru—0a(qs,q1€))'
(3) If Ua(qs, q%,1) > 0, then the equilibrium strategy is ¢§ = 1.

By rearranging the results, we can obtain the results of Theorem 3.3. This completes the proof. (I

Next, we continue to consider the socially optimal behavior of customers. From (3.12) to (3.14), the effective
arrival rate A is equal to

A = Xqomo + 171 + q272)

01 A1 Ag2 01 01
=K . .
(1—00+1—r+1—p2 (ﬂ(l—r)2+1—00)> (3:37)

And from (3.5), we get the mean number of the customers in the system, denoted by E[L],

E[L] = Z n(ﬂ-nO + 7Tn1) + Z nmTR2
n=0 n=1
_ r 01(Ago + o) 01(1 — aop2) O17(1 —rp2) .

The social benefit per time unit can now be easily computed as

Sau(q07 q1, QQ) = XR - CE[L]
r 01()\(]0 +00) 91(1 —0'0[)2) 91T(1 —’]"pg)
(1—r)? 03 p(l=00)%(1 = p2)? ~ p(1—7)3(1 = p2)?

_XR-CK ( ) - (339)

where X = )\((]071’0 + q17T1 —+ QQ’/TQ).

The social planner expects to impose a socially optimal mixed strategy (¢, ¢7,¢s) to maximize the social
benefit, where (¢, ¢}, q3) can be obtained by max S,.,(qo, g1, ¢2) under conditions 0 < ¢; < 1(i = 0,1,2). It is
easy to see that this is a nonlinear programming problem. Gradient projection methods or barrier and interior
point methods can be used to find the optimal solution (see D.P. Bertsekas [1]). Let @ = (qo, q1, g2), we change
the optimization problem to minimize the problem.

minimize f(Q) = —Sau(q0,q1,q2) = —AR+ CEI[L]
9i(Q)=¢;: >0, i=0,1,2,

3.40
hi(Q)=1—¢q; >0, i=0,1,2. (3.40)

subject to {

Taking the barrier function methods as an example, the main steps of the proposed algorithm are as follows:

Step 1. k = 1. Let @ is a inner point of the feasible region {Q|g;(Q) > 0,h;(Q) > 0,i = 0,1,2}. And ¢ is
a sufficiently small positive number. Define a parameter sequence {v;} with 0 < yx4+1 <%,k =0,1,2,..., and
v — 0.
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Step 2. Constructing an augmented objective function F(Q,vx) = f(Q) + 7 B(Q), where B(Q) is a barrier
function and its expression is defined as follows

BQ)=-> {g(@)} - In{h(Q)}.
1=0 =0

Step 3. Solve the unconstrained optimization problem

min F'(Q, V&)

with Qj as the starting point. We can use unconstrained methods such as Newton’s method to obtain minimum
point Qx1.

Step 4. It 0 < v B(Qr+1) < €, Qi1 is the optimal solution. We stop the calculation. Otherwise, we change
vk toyk+1 and k = k + 1, and repeat Step 2 to Step 4.

We need to note that Q) is the inner point of the feasible region {Q|g;(Q) > 0,h;(Q) > 0,i =0,1,2}.

Of course, we can simplify our calculation process by MATLAB software. In addition, we give a numerical
results of optimal strategies.
Example: When we assume that R =7, C =1, A = 0.6, o = 0.9, y3 = 0.5, p = 0.2 and 0, = 0.05, we
obtain socially optimal strategies (¢g, ¢, q5) = (0.3296,0.5299,0.8185), while equilibrium joining probabilities
are (g8, q5,45) = (0.2667,0.8444,0.9192). We observe that the individual optimal joining strategy is inconsistent
with the socially optimal joining strategy.

3.2. Pricing analysis

From the above numerical example, we know that the individual optimal joining probability is different from
the socially optimal joining probability, which shows that individual optimization deviates from the goals desired
by the society. In equilibrium, the social welfare cannot attain the maximization. To eliminate the gap between
the equilibrium and socially optimal strategies, the social planner can select a price p (0 < p < R) and impose
this charge on the customers that enter the queue. Then the reward of the customers that enter the system
becomes R — p in noncooperative case.

Let W (qo, g1, g2) be the mean sojourn time of a customer that enter the system. Based on the above, we obtain
W(qo,q1,q2) = moWo(qo) +m1W1(q1) +m2Wa(qo, g1, g2). Then, the expected benefit of an arriving customer who
decides to enter the system is

U = moUo(qo) + m1U1(q1) + m2U2(qo, 41, g2)
=7o(R—p—CWy(q))+m(R—p—CWi(q1)) +m(R—p—CWa(q,q1,92))
=R—p—CW(q,q1, ) (3.41)

The monopoly does not give up the residual benefits of customers, so we have p = R—CW (qo, ¢1,q2). Let Il be
the expected server profit per time unit. For the system, the monopoly’s problem is a nonlinear programming
problem to maximize II; with respect to qg, ¢1 and go:

Oy = Ap = AR - CW(qo,q1,q2))- (3.42)

Then the objectives of a monopolistic server and the society are consistent with each other, so we can induce
the socially optimal joining probabilities (g, ¢7, ¢5) by an appropriate price, which also maximizes profit of the
server.

Moreover, as mentioned above, if the server chooses the optimal pricing strategy, the expected benefit of the
customer equals

U

R - (R - CW(QS,QL q;)) - CW(QQ,Q]_’ Q2)
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case when C' = 1, §y = 0.2, 8, = 0.05, u; = 0.5,

It can be seen that (¢f,q},¢5) is the zero point of the function U. In other words, they are also customers
equilibrium strategy.

Theorem 3.4. In the almost unobservable queue, there exist unique equilibrium strategies where customers join
the queue with probabilities (qf, g7, q3) and the optimal price p* = R— CW (¢, ¢5, ¢5), and the server’s mazimal
profit is 11 = Sau (a5, 41+ 43)-

3.3. Numerical experiments

We investigate the effect of several system parameters on the behavior of customers in the almost unobservable
queue and explore the sensitivity of equilibrium and socially optimal balking probabilities. It should be noted
that the stable condition must be satisfied. The results are shown in Figures 2-5. It is observed that ¢ < g¢f,
g5 < ¢5, while the other two probabilities g§ and g are not able to determine the relationship. Figures 2 and 3
study the effect of equilibrium and socially optimal joining probabilities under service reward R and normal
service rate p, respectively. We observe that the joining probabilities increase with R and p. It is very intuitive
that customers can get higher utility from the large service reward and service rate. On the other hand, we
observe that all probabilities decrease as A increases in Figure 4. Figure 5 describes that the monotonicity of all
probabilities is diverse. Among them, the probability ¢¢ is monotonously increased, which indicates that more
customers are willing to enter the queueing system during working vacation. This is because the shorter working
vacation period allows the server to enter the regular busy period more quickly.

4. FULLY UNOBSERVABLE CASE

In this section, we focus on the fully unobservable case, where arriving customers cannot observe the state
of the system at their arrival instant.

4.1. Equilibrium and social optimization

There are two pure strategies available for a customer, to join the queue or not to join the queue. A pure
or mixed strategy can be described by a fraction ¢ (0 < ¢ < 1), and arriving customers join the queue with
probability ¢ or leave the system with complementary probability 1 — ¢q. Then, the probability of joining is Aq.
The transition diagram is illustrated in Figure 6.
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In the fully unobservable case, all customers have the same joining probability of q. Therefore, by considering
do =q1 = g2 = q in (3.5), we can get the mean sojourn time of a joining customer (Fig. 6),

Wiq) = /\iq <Z n(Tno + Tn1) + Y nm)

n=0 n=1

_ 1 B st r(q) 0:1(1 —r(q))

Y h ((1 b <1 u) MA—r@) | b ) ’ (1)
where

N A+ 0 — (A +601)2 — AAqu
b v r(q) = 2 ; (4.2)

I VRN P S 10 W AN
K= (=g -2+ a-p (1-2)+ La-r@) (4.3

We consider a tagged customer. If he decides to enter the system, his expected net benefit is

U(g) = R—-CW(q)

_p__¢ B M r(q) 01(1—r(q)
= f 1= Aq Cr <(1 6)(1 lt)x\q(l—r(q))Jr Agto ) (44)

According to the previous method, we can get the solution ¢ by solving the equation U(g) = 0. Due to the
complex expression of W (q), We can’t get the concrete expression of g. However, by using sufficient numerical
experiments, we can get that W(q) either monotonously increases with respect to ¢ or first decreases then
increases with ¢, and W (q) is strictly convex with ¢ and it has a minimum. This is due to the fact that an
increase in ¢ is equivalent to an increase in arrival rate. When customers join the system in vacation time, a
shorter vacation time will trigger the server to switch to a regular busy period. The waiting time will decreases
with the increase of the service rate. However, If the system is always in state 2, the waiting time of customers
will increases as the arrival rate increases. Figure 7 shows that W(q) is increasing with repent to ¢, so there
exists a unique equilibrium strategy. However, in Figure 8 there may be two equilibrium strategies. When
R =12,C = 1, we have q¢. = (q1,¢2). However, it is obvious that only the larger one is stable. So we only
consider the customers’ stable equilibrium strategy, which is unique. Therefore, there exists a unique mixed
equilibrium strategy ¢. and g, = min{g, 1}.

The social benefit per time unit can now be easily computed as

Stu(q) = Ag(R — CW(q))
_ __Cc _ M r(q) 01(1—r(9) )
=\ (R Yy CK, <(1 B) <1 m ) o= @) Ly >> (4.5)
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q

FIGURE 8. Mean sojourn time of the fully unobservable queue for A =1, =3,u; = 1.5,60) =
1,6, =0.2.

From the perspective of social optimization, denote the customers’ socially optimal mixed strategy as ¢*,
which can be obtained by max S, (¢) with respect to ¢ and solving the equation.

Let 2 be the root of the first-order optimal condition S%,(¢) = 0. They have the following relation.

Theorem 4.1. If0 < 2* < 1 and S%,(q) <0, then ¢* = 2*; if 0 < 2* < 1 and S%,(q) > 0 or a* > 1, then
qg-=1.
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4.2. Pricing analysis

For the fully unobservable queue, if the server imposes a price p on the customers that enter the queue,
customer’s equilibrium strategy satisfies R —p — CW(q) = 0. The monopoly’s problem is to maximize II, = Agp
and

p=R—-CW(q)
—R— ¢ —CKl((l—ﬁ)(l—ul> r(q) +91<1_T(Q)))7 (4.6)

1= Aq w) Al —r(q)) Agbo

so we have I, = Sy, (q). Therefore, we can induce the socially optimal joining probabilities ¢* by an appropriate
price, which also maximizes profit of the server. At the same time, the optimal strategy ¢* is also the customer’s
equilibrium strategy, and the optimal price p* = R — CW (¢*), and the server’s maximal profit is IT} = Sy, (¢*).

4.3. Numerical experiments

We consider the fully unobservable system and explore the equilibrium and socially optimal probabilities
with respect to some parameters of the system. The results are presented in Figures 9-12 and we find that
equilibrium ¢, is always greater than socially optimal probability ¢*. This shows that individual optimization
leads to queues that are longer than are socially desired, and always leads to system congestion. To eliminate
this difference, social planners can set a price that allows customers to adopt socially optimal strategies and
maximize monopoly profits, as discussed in the previous Section 4.2. Regarding the sensitivity of each parameter,
an interesting conjecture arises from these figures. Equilibrium and socially optimal probabilities are increasing
with respect R and p, which is very intuitive. The probabilities are decreasing with respect to A\. When A is
higher, arriving customer are less willing to enter. The reason is that too many customers entering the queue will
lead to an increase in waiting time. Moreover, all probabilities increase as 6; increases. The working vacation
time becomes shorter, and the server can quickly switch to the regular busy period, which makes the waiting
time of the customer shorter and the customer is more willing to enter the system.
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5. COMPARISON OF SOCIAL BENEFIT

In this section we consider the equilibrium and optimal social benefits for different system parameters in
the almost and fully unobservable queues by numerical experiment. For the almost unobservable queues, when
all customers follow the equilibrium strategy (g5, ¢5,¢5), the social welfare per time unit in equilibrium can be
denoted by Suu(qs, 4%, ¢5). On the other hand, the social planner wants to maximize his social welfare by an
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optimal strategy (qg,q;,q3), which is expressed by Sa. (¢, q7,¢s). Similarly, for fully unobservable case, the
equilibrium social benefit and optimal social benefit can be expressed by Sf,(¢e) and Sf,(¢*), respectively.
The numerical experiment is concerned with the social benefit under equilibrium strategy for the different
information levels. Figure 13 shows that Sq. (g5, q5,¢5) (or Sru(ge)) is increasing with respect to the service
reward R. Because The increase in service reward does not change the customer’s waiting cost but will attract
more customers into the system. Figure 14 shows that equilibrium social benefit first increases then decreases
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FIGURE 14. Equilibrium social benefit of two cases
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with A and it has a maximum. This is because ) is relatively small, there are fewer customers in the system and
the customer has less waiting time. And as it continues to increase, the waiting time for customers increases,
which leads to a reduction in social benefits. As to the optimal social benefit for the different information levels,
the social benefit Su, (5, 7, 95) (or Sy,(g*)) is increasing with respect to the reward R in Figure 15. Figure 16

shows that optimal social benefit first monotonously increases, then achieves maximum and keeps invariable
when A exceeds the constant value.
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In addition, Figures 13 and 14 show that Su. (4§, ¢5,¢5) > Sru(ge). This indicates that the system organizer
should properly disclose the status of the server before the arriving customer makes a decision, when the arrival
rate A is relatively large or the reward R is relatively small. Similarly, we also find that Sa. (g5, ¢1,¢5) > Sru(q®).
This indicates that the social planners and system organizers should choose similar decisions to maximize social
benefits. Of course, through the previous discussion, we also know that the equilibrium strategy and the social
optimal strategy are generally not uniform. There are two ways to improve this problem, either by revealing
the server state information or by setting a toll to let the customer choose the optimal probability to enter the
queueing system.

6. CONCLUSION

In this paper, we analyze the M/M/1 queueing system with a single working vacation and multiple vaca-
tions. Two different cases with respect to the levels of information provided to arriving customers have been
investigated extensively. For these models, we present an extensive analysis of equilibrium joining strategies
and socially optimal joining probability of the customers, and discuss the pricing strategy. And we compare
the social benefit of two different cases numerically. In contrast with other related queueing models, this work
combines working vacation and classic vacation queue. Furthermore, the direct generalization is the study of
the corresponding observable model. One can also study the equilibrium strategies and pricing problem in the
M/G/1 queue with working vacation and classic vacations.
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