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REMARKS ON PATH FACTORS IN GRAPHS

SIZHONG ZHOU*

Abstract. A spanning subgraph of a graph is defined as a path factor of the graph if its component
are paths. A P>, -factor means a path factor with each component having at least n vertices. A graph
G is defined as a (Ps,, m)-factor deleted graph if G — E’ has a P>,-factor for every E' C F(G) with
|E'| = m. A graph G is defined as a (P>, k)-factor critical graph if after deleting any k vertices of G
the remaining graph of G admits a Ps,-factor. In this paper, we demonstrate that (i) a graph G is
(P>3,m)-factor deleted if x(G) > 2m + 1 and bind(G) > 2 ; (ii) a graph G is (P>3, k)-factor

2 ﬁ’
critical if £(G) > k + 2 and bind(G) > 2££.
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1. INTRODUCTION

All graphs considered in this paper are finite simple graphs. Let G be a graph. We denote by V(G) and E(G)
its vertex set and edge set, respectively. For © € V(G), we use Ng(z) to denote the set of vertices adjacent to
z in G, and dg(x) = |Ng(x)| is the degree of x in G. For a vertex subset X of G, we denote by Ng(X) the
union of Ng(z) for each z € X and by G[X] the subgraph of G induced by X. Let G — X = G[V(G) \ X]. For
E’ C E(G), the graph obtained from G by deleting edges of E’ is denoted by G — E’. The number of connected
components and isolated vertices in G are denoted by w(G) and i(G), respectively. We use A(G) and k(G) to
denote the edge connectivity and the vertex connectivity of G, respectively. The binding number bind(G) of G
is defined as
|Ne (X))

bind(G) = min{ ———~
@ { ]

:0#X CV(G),Ng(X) # V(G)} .

Let n be an integer with n > 2. We use P, to denote the path with n vertices and n — 1 edges. A spanning
subgraph F' of GG is defined as a path factor of G if each component of F' is a path. A P>,-factor means a path
factor with each component having at least n vertices. A graph G is defined as a (P, m)-factor deleted graph
if G — E’ has a P>,-factor for every E' C E(G) with |E’| = m. It is easy to see that a (P>, 0)-factor deleted
graph admits a P>, -factor. If m = 1, then a (P>, m)-factor deleted graph is simply called a P>,-factor deleted
graph. A graph G is defined as a (P>, k)-factor critical graph if after deleting any k vertices of G the remaining
graph of G admits a P>,-factor. Obviously, a (P>, 0)-factor critical graph has a P>,-factor.
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A spanning subgraph F of a graph G is said to be a 1-factor of G if dp(x) =1 for every x € V(G). A graph
R is defined as a factor-critical graph if R — {z} has a 1-factor for every x € V(R). A graph H is defined as a
sun if H = K7, H = K5 or H is the corona of a factor-critical graph R with order at least 3, i.e., H is obtained
from R by adding a new vertex w = w(v) together with a new edge vw for any v € V(R). A sun with at least
six vertices is called a big sun. A component of G is said to be a sun component if it is isomorphic to a sun. We
denote by sun(G) the number of sun components of G.

Kancko [7] presented a necessary and sufficient condition for a graph to admit a P>s-factor. Kano et al. [§]
gave a simpler proof.

Theorem 1.1 (Kaneko [7] and Kano et al. [8]). A graph G has a P>3-factor if and only if sun(G — S) < 2|S5]
for any S C V(G).

A claw is a graph isomorphic to K 3. A graph is called a claw-free graph if it does not contain induced claw.
Kelmans [10] showed the following results on {Ps}-factors in claw-free graphs.

Theorem 1.2 (Kelmans [10]). Let G be a 2-connected claw-free graph of order n. If n =1 (mod 3), then G —x
has a {Ps}-factor for any x € V(QG).

Theorem 1.3 (Kelmans [10]). Let G be a 2-connected claw-free graph of order n. If n =0 (mod 8), then G —e
has a {Ps}-factor for any e € E(QG).

Note that {z} is a subset of V(G) for any x € V(G), and {e} is an subset of E(G) for any e € E(G).
Naturally, motivated by the above theorems, we consider the more general problem.

Problem. Find sufficient conditions for a graph to be a (Ps3, m)-factor critical/deleted graph.

Many results on the binding number conditions for the existence of graph factors were acquired by Nam [12],
Plummer and Saito [13], Zhou [17,18], Robertshaw and Woodall [14]. Some results on factor deleted graphs see
[4,5,19], and some results on factor critical graphs see [2,3,15,16,21]. Many authors [1,6,9,11,20,22,23] studied
the existence of path factors in graphs. In this paper, we study the existence of (P>3, m)-factor deleted graphs
and (P>s, k)-factor critical graphs and obtain some sufficient conditions for graphs to be (P>3, m)-factor deleted
graphs and (Psg, k)-factor critical graphs depending on binding numbers, which are shown in Sections 2 and 3.
Furthermore, our main results in this paper give solutions for the problem above.

2. (P>3,m)-FACTOR DELETED GRAPHS

Theorem 2.1. Let m be a nonnegative integer, and let G be a graph. If K(G) > 2m+1 and bind(G) > 3 — 4ml+4,
then G is a (P>3, m)-factor deleted graph.

If m = 0 in Theorem 2.1, then we get the following corollary.
Corollary 2.2. Let G be a graph with (G) > 1. If bind(G) > 2, then G admits a P>3-factor.
If m =1 in Theorem 2.1, then we get the following corollary.

Corollary 2.3. Let G be a graph with k(G) > 3. If bind(G) > %, then G is a P>3-factor deleted graph.

Remark 2.4. In the following, we show that the conditions x(G) > 2m + 1 and bind(G) > 3 — 4ml+4 = Zﬁii
in Theorem 2.1 can not be replaced by x(G) > 2m and bind(G) > Zzig

Let m be an nonnegative integer with m < 2. Set G = Ks,, V (2m + 3) K>, (see Fig. 1), where V denotes
“join”. For any = € V((2m + 3)K3), we write X = V((2m + 3)K3) \ {z}. It is obvious that x(G) = 2m and
bind(G) = % = EZ—I?. For any E' C E((2m + 3)K3) with |E'| = m, we write G’ = G — E’. We choose
S =V (Kam) CV(G'). Thus, we have

sun(G' = 8) =2m+ (m+3) =3m+3 > 4m = 2|9|.
In terms of Theorem 1.1, G’ has no Pss-factor, that is, G is not a (P>3, m)-factor deleted graph.
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FIGURE 1. Ka,, V (2m + 3) K.
Proof of Theorem 2.1. Let G’ = G — E’ for any E' C E(G) with |E’'| = m. Obviously, V(G’) = V(G) and
E(G") = E(G) \ E'. In order to verify Theorem 2.1, we only need to prove that G’ has a Pss-factor. By

contradiction, suppose that G’ has no P>s-factor. Then by Theorem 1.1, there exists some subset S of V(G’)
such that

sun(G' — S) > 2|S]. (2.1)
If S =0, then from (2.1) we have
sun(G') > 1. (2.2)
On the other hand, note that A(G) > k(G) > 2m + 1, |[E'| = m and G’ = G — E’. Thus, we obtain
sun(G@') <w(@) = 1. (2.3)
In terms of (2.2) and (2.3), we have
sun(G') = w(G') = 1. (2.4)

Since A(G) > k(G) > 2m+ 1, |E'| = m and G’ = G — E’, we have A(G') > m+ 1 and |V(G")| = |V(G)| >
2m 4+ 2.

If m > 1, then A(G") > 2, and so sun(G’) = 0, which contradicts (2.4).

If m =0, then G = G’. Combining this with A(G’) > 1 and (2.4), we obtain that G = K5 or G is a big sun.
If G = K, then it easy to see that bind(G) = 1, which contradicts bind(G) > 3 — 4ml+4. If G is a big sun, then
we write R for the factor-critical subgraph of G. Thus, we obtain

. Na(VG\V(R)] _
hnd@ < Tven vl b

which contradicts bind(G) > % — Wl-‘r‘l' Hence, we may assume that S # (). In the following, we consider two

cases.

Case 1. S is not a vertex cut set of G.
In this case, w(G — S) = w(G) = 1. If [S| > 2L, then we have

sun(G' = S) =sun(G—S —E')<w(@—S—E)<w(G-S)+m=m+1,

and so
sun(G' = S) <m+1< 2|9,

which contradicts (2.1).
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If |S| < 2EL | then we obtain

1
A(G—S)ZK(G—S)ZH(G)—|S\>2m+1—%>m.

According to the integrity of A(G — 5),
MG =8)>m+1.

Thus, we have A(G' —=S) = MG —-S—E') > XG—-S)—m > 1, and so w(G' — S) = 1. It follows from S # 0,
(2.1) and w(G' — S) =1 that
2 <2|S| < sun(G' — S) <w(G' - 9) =1,

which is a contradiction.
Case 2. Sis a vertex cut set of G.
In this case, w(G — S) > 2 and |S| > 2m + 1. Note that sun(G' —S) = sun(G— S — E’) < sun(G — S) + 2m,
that is,
sun(G — S) > sun(G' — S) — 2m. (2.5)
It follows from (2.1), (2.5) and |S| > 2m + 1 that
sun(G — 8) > sun(G' — S) —2m > 2|S| —2m > 2(2m + 1) — 2m = 2m + 2. (2.6)

Suppose that there exist a isolated vertices, bK3’s and ¢ big sun components Hi, Hs,---, H., where
|[V(H;)| >6for 1 <i<c¢,in G—S. Obviously, sun(G—5S) = a+b+c. For each H;, R; denotes the factor-critical
subgraph of H;. We write

Y =V(aK;) UV (bK2) UV (US_, H;).

Clearly, we have

Y| :a+2b—|—zc:|V(Hi)\. (2.7)

i=1

Claim 1. b> 1.

Proof. Assume that b = 0. If ¢ = 0, then sun(G — S) = a > 2|S| —2m > 2 by (2.6) and sun(G—S) =a+b+c.
Combining this with |S| > 2m + 1, the definition of bind(G) and the hypothesis of Theorem 2.1, we obtain

3 1 : [Ne(V(aKy))| _ 1S
- — < bind < — = < =
> " dmga SO s —yrEsT S
|S] 1 m 1 m 3 m+2

< — = — _ < — —_— = = — —

25| —2m 2 oS —2m ~2 2@mal)—2m 2 2m+2
which is a contradiction.

If ¢ > 1, then sun(G—S) = a+c¢ > 2|S| —2m > 2 by (2.6) and sun(G — S) = a + b + c. For any
x € V(US_ 1 H;) \ V(UL R;), there exists y € V(US_, R;) such that xy € E(US5_, H;). Note that dg_g(x) = 1.
Thus, we obtain

INa(Y \{yDI < IS|+ Y [V(H;)| - 1. (2.8)

i=1

L NGO\ )] _ 18]+ X5, V(H)| ~ 1
SO S T S e i) =1

It follows from (2.7), (2.8), b = 0, the definition of bind(G) and the hypothesis of Theorem 2.1 that
3
2
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that is,
(4m+4)|5|>(6m+5)a+(2m+1Z\V D= (@2m+1).

i=1

Combining this with a + ¢ > 2|S| — 2m and |V (H;)| > 6 for 1 < i < ¢, we have

(4m 4 4)|S| > (6m +5)a + (2m + 1) ZW D= (@2m+1)
> (4m 4+ 2)a + 6(2m + 1)2 —(2m+1)
=(dm+2)(a+c)+42m+1)c— (2m+1)
> (dm+ 2)(a+¢) > (dm + 2)(2|S| — 2m),

which implies
4mlS| < 4m(2m + 1).
It follows from (2.9) and |S| > 2m + 1 that
dm(2m + 1) < 4m|S| < 4m(2m + 1),

which is a contradiction. Claim 1 is proved.

In terms of Claim 1, we obtain |V (bK3)| = 2b > 2. For any z € V(bK>) C Y, we have

INa(Y\ {21 < IS+ (20— 1) + Y [V(H))

i=1

It follows from (2.7), the definition of bind(G) and the hypothesis of Theorem 2.1 that
20 —-1 ¢ H,;
2 4dm+4 Y\ {z}] a+(2b—-1)+ > |V(H;)

In terms of (2.6), (2.11), |V(H;)| > 6 and sun(G — S) = a + b+ ¢, we obtain

|Sz<;_4m1+4><a+2b+Z|V |—1) <2b+Z|V |—1>

i=1

1 1
> | = — _
_<2 4m+4><2a+2b+;|‘/ Dl 1)
S (oL NVoatma2e-1)
“\2 amra) ¢
1 1 1
:<1_2m+2>(a+b+c)_(2_4m+4)
1 1 1
=(1= ) _qy_(Z_
( 2m+2> sun(G = 5) (2 4m+4)
1 1 1
> _ _ N
—(1 2m+2>(2|5| 2m +1) (2 4m+4>
1
> (1 - 2m+2> (2]S] — 2m),

1831

(2.9)

(2.10)

(2.11)
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which implies
2mlS| < 2m(2m + 1).

If m = 0, then we have 0 < 0, which is contradiction. If m > 1, then we obtain |S| < 2m + 1, which contradicts
that |S| > 2m + 1. This completes the proof of Theorem 2.1. O

3. (P>3, k)-FACTOR CRITICAL GRAPHS

Theorem 3.1. Let k be a nonnegative integer, and let G be a graph with k(G) > k+2. If bind(G) > 34E | then
G is a (P>3, k)-factor critical graph.

Proof. Theorem 3.1 holds for k£ = 0 by Corollary 2.2. In the following, we assume that k& > 1.

Let G' = G — U for any U C V(G) with |U| = k. To prove Theorem 3.1, we only need to verify that G’
admits a P>g-factor. By contradiction, we assume that G’ has no P>z-factor. Then from Theorem 1.1, there
exists some subset S of V(G') satisfying

sun(G' — S) > 2|S| + 1. (3.1)
Claim 2. |S| > 2.
Proof. Let S = 0. Then it follows from (3.1) that
sun(G') > 1. (3.2)
By k(G) > k+2, |U| =k and G' = G — U, we have
MG) > k(G)=k(G-U)>k(G)— Ul =k(G) —k>2. (3.3)
According to (3.3) and the definition of a sun, we obtain
sun(G') =0,

which contradicts (3.2).
Let |S| = 1. By (3.1), we have

sun(G' — S) > 3. (3.4)
Note that A(G' —S) > k(G'—5) =k(G-U-S) > k(G)—|U|—|S| = &(G)—k—1>1, and so, w(G' — S) = 1.

Thus, we obtain
sun(G' — S) <w(G@ - 8) =1,

which contradicts (3.4). This completes the proof of Claim 2. O

Suppose that there exist a isolated vertices, bKs’s and ¢ big sun components Hi, Hs,--- ,H., where
|[V(H;)| >6 for 1 <i<e, in G'—S. Combining this with (3.1) and Claim 2, we have

sun(G' = S)=a+b+c>2|S|+1>5. (3.5)

We now consider the following two cases by the value of a.

Case 1. a=0.
In this case, b+ ¢ > 5 by (3.5). We write Q = (bK2) U (US_; H;). Clearly, there exist z,y € V(Q) such that
dg(z) =1 and zy € E(Q). Thus, we have

ING(VQ\ (g1 < U]+ 18]+ 26+ S [V(H) = 1= 8]+ k+ 26+ 3|V (Hy)| - 1.

i=1 i=1
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Combining this with the definition of bind(G) and the hypothesis of Theorem 3.1, we obtain

Sk, ING(V(@Q\ (D] _ S|k 2+ X [VH) 1
SO S TN S s, v -1

According to (3.5), (3.6), |[V(H;)| > 6, k> 1 and b+ ¢ > 5, we have

48] > (5+ k) <2b+Z|V |—1>—4<2b+Z|V |—1>—4k
=1
(1+Fk) <2b+ZIV |—1>—4k

(3.6)

> (14 k)(2b+ 6c—1) — 4k
>1+k)(b+c+4)—4k
> (1+k)(21S|+1+4) —4k
=2(14+k)|S|+5+k > 4|S|+6,

which is a contradiction.
Case 2. a>1.

Let Y = V(aK;) U V(bK>) U V(U5_  H;). Tt is obvious that |[Ng(Y)| < |U|+ |S|+2b+ >5_, |V(H,)| =
IS| +k+2b+ > 5, |V(H;)|. In view of bznd(G) > 54k and the definition of bind(G), we obtain

5+k INc(Y)| _|S|+k+2b+3 5 | |V(H,)
< bind(G < == : 3.7
T =S T S T s, V) &0
By (3.5), (3.7), |[V(H;)| 2 6,a > 1 and k > 1, we have
4181 > (5+k) <a+2b+Z|V(Hi)|> —4 <2b+ZV(Hi)|> — 4k
i=1 i=1
=(1+k) <a+2b+Z|V(H¢)|> +4a — 4k
i=1
> (1+k)(a+ 2b+ 6¢) + da — 4k
> (1+k)(a+b+c)+4a—4k
> (14 k)(2|S| + 1) + 4a — 4k
> (2k +2)|S| + 2 + 4a — 4k,
that is,
A|S| > (2k +2)[S| + 2+ da — 4k. (3.8)

If £ = 1, then by (3.8) and a > 1, we have 4|S| > 4|S|+ 2+ 4a — 4 > 4|S| + 2, which is a contradiction. If k > 2,
then it follows from (3.8) and a > 1 that

4k — 2 — 4a < 4k — 4 — 2a
2k — 2 - 2k — 2
which contradicts Claim 2. Theorem 3.1 is proved. O

5] <

<2,

Remark 3.2. In the following, we show that the conditions £(G) > k + 2 and bind(G) > %% in Theorem 3.1
can not be replaced by x(G) > k + 1 and bind(G) > 3t~
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FIGURE 2. K41V (2Ky U K7).

Let k be an nonnegative integer. Let G = K11V (2K3 U K1), (see Fig. 2), where V denotes “join”. We write

_ INe(X)| _

X =V (2K2 U Kq). It is easy to see that x(G) = k + 1 and bind(Q) SRS % For any U C V(Kj41)
with |U| = k, we write G’ = G — U. We choose S = V(K1) \U C V(G’), and so |S| = 1. Thus, we obtain

sun(G' = S)=3>2=2|5|.

According to Theorem 1.1, G’ has no Pss-factor, that is, G is not a (P>3, k)-factor critical graph.
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