

REMARKS ON PATH FACTORS IN GRAPHS

SIZHONG ZHOU*

Abstract. A spanning subgraph of a graph is defined as a path factor of the graph if its components are paths. A $P_{\geq n}$ -factor means a path factor with each component having at least n vertices. A graph G is defined as a $(P_{\geq n}, m)$ -factor deleted graph if $G - E'$ has a $P_{\geq n}$ -factor for every $E' \subseteq E(G)$ with $|E'| = m$. A graph G is defined as a $(P_{\geq n}, k)$ -factor critical graph if after deleting any k vertices of G the remaining graph of G admits a $P_{\geq n}$ -factor. In this paper, we demonstrate that (i) a graph G is $(P_{\geq 3}, m)$ -factor deleted if $\kappa(G) \geq 2m + 1$ and $\text{bind}(G) \geq \frac{3}{2} - \frac{1}{4m+4}$; (ii) a graph G is $(P_{\geq 3}, k)$ -factor critical if $\kappa(G) \geq k + 2$ and $\text{bind}(G) \geq \frac{5+k}{4}$.

Mathematics Subject Classification. 05C70, 05C38, 90B10.

Received May 17, 2018. Accepted November 20, 2019.

1. INTRODUCTION

All graphs considered in this paper are finite simple graphs. Let G be a graph. We denote by $V(G)$ and $E(G)$ its vertex set and edge set, respectively. For $x \in V(G)$, we use $N_G(x)$ to denote the set of vertices adjacent to x in G , and $d_G(x) = |N_G(x)|$ is the degree of x in G . For a vertex subset X of G , we denote by $N_G(X)$ the union of $N_G(x)$ for each $x \in X$ and by $G[X]$ the subgraph of G induced by X . Let $G - X = G[V(G) \setminus X]$. For $E' \subseteq E(G)$, the graph obtained from G by deleting edges of E' is denoted by $G - E'$. The number of connected components and isolated vertices in G are denoted by $\omega(G)$ and $i(G)$, respectively. We use $\lambda(G)$ and $\kappa(G)$ to denote the edge connectivity and the vertex connectivity of G , respectively. The binding number $\text{bind}(G)$ of G is defined as

$$\text{bind}(G) = \min \left\{ \frac{|N_G(X)|}{|X|} : \emptyset \neq X \subseteq V(G), N_G(X) \neq V(G) \right\}.$$

Let n be an integer with $n \geq 2$. We use P_n to denote the path with n vertices and $n - 1$ edges. A spanning subgraph F of G is defined as a path factor of G if each component of F is a path. A $P_{\geq n}$ -factor means a path factor with each component having at least n vertices. A graph G is defined as a $(P_{\geq n}, m)$ -factor deleted graph if $G - E'$ has a $P_{\geq n}$ -factor for every $E' \subseteq E(G)$ with $|E'| = m$. It is easy to see that a $(P_{\geq n}, 0)$ -factor deleted graph admits a $P_{\geq n}$ -factor. If $m = 1$, then a $(P_{\geq n}, m)$ -factor deleted graph is simply called a $P_{\geq n}$ -factor deleted graph. A graph G is defined as a $(P_{\geq n}, k)$ -factor critical graph if after deleting any k vertices of G the remaining graph of G admits a $P_{\geq n}$ -factor. Obviously, a $(P_{\geq n}, 0)$ -factor critical graph has a $P_{\geq n}$ -factor.

Keywords. Graph, path factor, binding number, connectivity.

School of Science, Jiangsu University of Science and Technology, Mengxi Road 2, 212003 Zhenjiang, Jiangsu, P.R. China.

*Corresponding author: zsz_cumt@163.com

A spanning subgraph F of a graph G is said to be a 1-factor of G if $d_F(x) = 1$ for every $x \in V(G)$. A graph R is defined as a factor-critical graph if $R - \{x\}$ has a 1-factor for every $x \in V(R)$. A graph H is defined as a sun if $H = K_1$, $H = K_2$ or H is the corona of a factor-critical graph R with order at least 3, i.e., H is obtained from R by adding a new vertex $w = w(v)$ together with a new edge vw for any $v \in V(R)$. A sun with at least six vertices is called a big sun. A component of G is said to be a sun component if it is isomorphic to a sun. We denote by $\text{sun}(G)$ the number of sun components of G .

Kaneko [7] presented a necessary and sufficient condition for a graph to admit a $P_{\geq 3}$ -factor. Kano *et al.* [8] gave a simpler proof.

Theorem 1.1 (Kaneko [7] and Kano *et al.* [8]). *A graph G has a $P_{\geq 3}$ -factor if and only if $\text{sun}(G - S) \leq 2|S|$ for any $S \subseteq V(G)$.*

A claw is a graph isomorphic to $K_{1,3}$. A graph is called a claw-free graph if it does not contain induced claw. Kelmans [10] showed the following results on $\{P_3\}$ -factors in claw-free graphs.

Theorem 1.2 (Kelmans [10]). *Let G be a 2-connected claw-free graph of order n . If $n \equiv 1 \pmod{3}$, then $G - x$ has a $\{P_3\}$ -factor for any $x \in V(G)$.*

Theorem 1.3 (Kelmans [10]). *Let G be a 2-connected claw-free graph of order n . If $n \equiv 0 \pmod{3}$, then $G - e$ has a $\{P_3\}$ -factor for any $e \in E(G)$.*

Note that $\{x\}$ is a subset of $V(G)$ for any $x \in V(G)$, and $\{e\}$ is an subset of $E(G)$ for any $e \in E(G)$. Naturally, motivated by the above theorems, we consider the more general problem.

Problem. Find sufficient conditions for a graph to be a $(P_{\geq 3}, m)$ -factor critical/deleted graph.

Many results on the binding number conditions for the existence of graph factors were acquired by Nam [12], Plummer and Saito [13], Zhou [17, 18], Robertshaw and Woodall [14]. Some results on factor deleted graphs see [4, 5, 19], and some results on factor critical graphs see [2, 3, 15, 16, 21]. Many authors [1, 6, 9, 11, 20, 22, 23] studied the existence of path factors in graphs. In this paper, we study the existence of $(P_{\geq 3}, m)$ -factor deleted graphs and $(P_{\geq 3}, k)$ -factor critical graphs and obtain some sufficient conditions for graphs to be $(P_{\geq 3}, m)$ -factor deleted graphs and $(P_{\geq 3}, k)$ -factor critical graphs depending on binding numbers, which are shown in Sections 2 and 3. Furthermore, our main results in this paper give solutions for the problem above.

2. $(P_{\geq 3}, m)$ -FACTOR DELETED GRAPHS

Theorem 2.1. *Let m be a nonnegative integer, and let G be a graph. If $\kappa(G) \geq 2m+1$ and $\text{bind}(G) \geq \frac{3}{2} - \frac{1}{4m+4}$, then G is a $(P_{\geq 3}, m)$ -factor deleted graph.*

If $m = 0$ in Theorem 2.1, then we get the following corollary.

Corollary 2.2. *Let G be a graph with $\kappa(G) \geq 1$. If $\text{bind}(G) \geq \frac{5}{4}$, then G admits a $P_{\geq 3}$ -factor.*

If $m = 1$ in Theorem 2.1, then we get the following corollary.

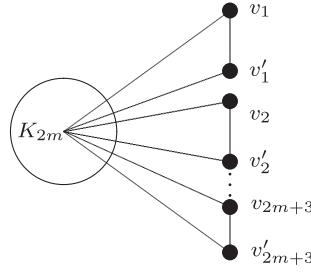
Corollary 2.3. *Let G be a graph with $\kappa(G) \geq 3$. If $\text{bind}(G) \geq \frac{11}{8}$, then G is a $P_{\geq 3}$ -factor deleted graph.*

Remark 2.4. In the following, we show that the conditions $\kappa(G) \geq 2m+1$ and $\text{bind}(G) \geq \frac{3}{2} - \frac{1}{4m+4} = \frac{6m+5}{4m+4}$ in Theorem 2.1 can not be replaced by $\kappa(G) \geq 2m$ and $\text{bind}(G) \geq \frac{6m+5}{4m+5}$.

Let m be an nonnegative integer with $m \leq 2$. Set $G = K_{2m} \vee (2m+3)K_2$, (see Fig. 1), where \vee denotes “join”. For any $x \in V((2m+3)K_2)$, we write $X = V((2m+3)K_2) \setminus \{x\}$. It is obvious that $\kappa(G) = 2m$ and $\text{bind}(G) = \frac{|N_G(X)|}{|X|} = \frac{6m+5}{4m+5}$. For any $E' \subseteq E((2m+3)K_2)$ with $|E'| = m$, we write $G' = G - E'$. We choose $S = V(K_{2m}) \subseteq V(G')$. Thus, we have

$$\text{sun}(G' - S) = 2m + (m+3) = 3m + 3 > 4m = 2|S|.$$

In terms of Theorem 1.1, G' has no $P_{\geq 3}$ -factor, that is, G is not a $(P_{\geq 3}, m)$ -factor deleted graph.

FIGURE 1. $K_{2m} \vee (2m+3)K_2$.

Proof of Theorem 2.1. Let $G' = G - E'$ for any $E' \subseteq E(G)$ with $|E'| = m$. Obviously, $V(G') = V(G)$ and $E(G') = E(G) \setminus E'$. In order to verify Theorem 2.1, we only need to prove that G' has a $P_{\geq 3}$ -factor. By contradiction, suppose that G' has no $P_{\geq 3}$ -factor. Then by Theorem 1.1, there exists some subset S of $V(G')$ such that

$$sun(G' - S) > 2|S|. \quad (2.1)$$

If $S = \emptyset$, then from (2.1) we have

$$sun(G') \geq 1. \quad (2.2)$$

On the other hand, note that $\lambda(G) \geq \kappa(G) \geq 2m+1$, $|E'| = m$ and $G' = G - E'$. Thus, we obtain

$$sun(G') \leq \omega(G') = 1. \quad (2.3)$$

In terms of (2.2) and (2.3), we have

$$sun(G') = \omega(G') = 1. \quad (2.4)$$

Since $\lambda(G) \geq \kappa(G) \geq 2m+1$, $|E'| = m$ and $G' = G - E'$, we have $\lambda(G') \geq m+1$ and $|V(G')| = |V(G)| \geq 2m+2$.

If $m \geq 1$, then $\lambda(G') \geq 2$, and so $sun(G') = 0$, which contradicts (2.4).

If $m = 0$, then $G = G'$. Combining this with $\lambda(G') \geq 1$ and (2.4), we obtain that $G = K_2$ or G is a big sun. If $G = K_2$, then it is easy to see that $bind(G) = 1$, which contradicts $bind(G) \geq \frac{3}{2} - \frac{1}{4m+4}$. If G is a big sun, then we write R for the factor-critical subgraph of G . Thus, we obtain

$$bind(G) \leq \frac{|N_G(V(G) \setminus V(R))|}{|V(G) \setminus V(R)|} = 1,$$

which contradicts $bind(G) \geq \frac{3}{2} - \frac{1}{4m+4}$. Hence, we may assume that $S \neq \emptyset$. In the following, we consider two cases.

Case 1. S is not a vertex cut set of G .

In this case, $\omega(G - S) = \omega(G) = 1$. If $|S| \geq \frac{m+1}{2}$, then we have

$$sun(G' - S) = sun(G - S - E') \leq \omega(G - S - E') \leq \omega(G - S) + m = m + 1,$$

and so

$$sun(G' - S) \leq m + 1 \leq 2|S|,$$

which contradicts (2.1).

If $|S| < \frac{m+1}{2}$, then we obtain

$$\lambda(G - S) \geq \kappa(G - S) \geq \kappa(G) - |S| > 2m + 1 - \frac{m+1}{2} > m.$$

According to the integrity of $\lambda(G - S)$,

$$\lambda(G - S) \geq m + 1.$$

Thus, we have $\lambda(G' - S) = \lambda(G - S - E') \geq \lambda(G - S) - m \geq 1$, and so $\omega(G' - S) = 1$. It follows from $S \neq \emptyset$, (2.1) and $\omega(G' - S) = 1$ that

$$2 \leq 2|S| < \text{sun}(G' - S) \leq \omega(G' - S) = 1,$$

which is a contradiction.

Case 2. S is a vertex cut set of G .

In this case, $\omega(G - S) \geq 2$ and $|S| \geq 2m + 1$. Note that $\text{sun}(G' - S) = \text{sun}(G - S - E') \leq \text{sun}(G - S) + 2m$, that is,

$$\text{sun}(G - S) \geq \text{sun}(G' - S) - 2m. \quad (2.5)$$

It follows from (2.1), (2.5) and $|S| \geq 2m + 1$ that

$$\text{sun}(G - S) \geq \text{sun}(G' - S) - 2m > 2|S| - 2m \geq 2(2m + 1) - 2m = 2m + 2. \quad (2.6)$$

Suppose that there exist a isolated vertices, bK_2 's and c big sun components H_1, H_2, \dots, H_c , where $|V(H_i)| \geq 6$ for $1 \leq i \leq c$, in $G - S$. Obviously, $\text{sun}(G - S) = a + b + c$. For each H_i , R_i denotes the factor-critical subgraph of H_i . We write

$$Y = V(aK_1) \cup V(bK_2) \cup V(\bigcup_{i=1}^c H_i).$$

Clearly, we have

$$|Y| = a + 2b + \sum_{i=1}^c |V(H_i)|. \quad (2.7)$$

Claim 1. $b \geq 1$.

Proof. Assume that $b = 0$. If $c = 0$, then $\text{sun}(G - S) = a > 2|S| - 2m \geq 2$ by (2.6) and $\text{sun}(G - S) = a + b + c$. Combining this with $|S| \geq 2m + 1$, the definition of $\text{bind}(G)$ and the hypothesis of Theorem 2.1, we obtain

$$\begin{aligned} \frac{3}{2} - \frac{1}{4m+4} &\leq \text{bind}(G) \leq \frac{|N_G(V(aK_1))|}{|V(aK_1)|} \leq \frac{|S|}{a} \\ &< \frac{|S|}{2|S| - 2m} = \frac{1}{2} + \frac{m}{2|S| - 2m} \leq \frac{1}{2} + \frac{m}{2(2m+1) - 2m} = \frac{3}{2} - \frac{m+2}{2m+2}, \end{aligned}$$

which is a contradiction.

If $c \geq 1$, then $\text{sun}(G - S) = a + c > 2|S| - 2m \geq 2$ by (2.6) and $\text{sun}(G - S) = a + b + c$. For any $x \in V(\bigcup_{i=1}^c H_i) \setminus V(\bigcup_{i=1}^c R_i)$, there exists $y \in V(\bigcup_{i=1}^c R_i)$ such that $xy \in E(\bigcup_{i=1}^c H_i)$. Note that $d_{G-S}(x) = 1$. Thus, we obtain

$$|N_G(Y \setminus \{y\})| \leq |S| + \sum_{i=1}^c |V(H_i)| - 1. \quad (2.8)$$

It follows from (2.7), (2.8), $b = 0$, the definition of $\text{bind}(G)$ and the hypothesis of Theorem 2.1 that

$$\frac{3}{2} - \frac{1}{4m+4} \leq \text{bind}(G) \leq \frac{|N_G(Y \setminus \{y\})|}{|Y \setminus \{y\}|} \leq \frac{|S| + \sum_{i=1}^c |V(H_i)| - 1}{a + \sum_{i=1}^c |V(H_i)| - 1},$$

that is,

$$(4m+4)|S| \geq (6m+5)a + (2m+1) \sum_{i=1}^c |V(H_i)| - (2m+1).$$

Combining this with $a+c > 2|S| - 2m$ and $|V(H_i)| \geq 6$ for $1 \leq i \leq c$, we have

$$\begin{aligned} (4m+4)|S| &\geq (6m+5)a + (2m+1) \sum_{i=1}^c |V(H_i)| - (2m+1) \\ &\geq (4m+2)a + 6(2m+1)c - (2m+1) \\ &= (4m+2)(a+c) + 4(2m+1)c - (2m+1) \\ &> (4m+2)(a+c) > (4m+2)(2|S| - 2m), \end{aligned}$$

which implies

$$4m|S| < 4m(2m+1). \quad (2.9)$$

It follows from (2.9) and $|S| \geq 2m+1$ that

$$4m(2m+1) \leq 4m|S| < 4m(2m+1),$$

which is a contradiction. Claim 1 is proved. \square

In terms of Claim 1, we obtain $|V(bK_2)| = 2b \geq 2$. For any $z \in V(bK_2) \subseteq Y$, we have

$$|N_G(Y \setminus \{z\})| \leq |S| + (2b-1) + \sum_{i=1}^c |V(H_i)|. \quad (2.10)$$

It follows from (2.7), the definition of $\text{bind}(G)$ and the hypothesis of Theorem 2.1 that

$$\frac{3}{2} - \frac{1}{4m+4} \leq \text{bind}(G) \leq \frac{|N_G(Y \setminus \{z\})|}{|Y \setminus \{z\}|} \leq \frac{|S| + (2b-1) + \sum_{i=1}^c |V(H_i)|}{a + (2b-1) + \sum_{i=1}^c |V(H_i)|}. \quad (2.11)$$

In terms of (2.6), (2.11), $|V(H_i)| \geq 6$ and $\text{sun}(G-S) = a+b+c$, we obtain

$$\begin{aligned} |S| &\geq \left(\frac{3}{2} - \frac{1}{4m+4} \right) \left(a + 2b + \sum_{i=1}^c |V(H_i)| - 1 \right) - \left(2b + \sum_{i=1}^c |V(H_i)| - 1 \right) \\ &\geq \left(\frac{1}{2} - \frac{1}{4m+4} \right) \left(2a + 2b + \sum_{i=1}^c |V(H_i)| - 1 \right) \\ &\geq \left(\frac{1}{2} - \frac{1}{4m+4} \right) (2a + 2b + 2c - 1) \\ &= \left(1 - \frac{1}{2m+2} \right) (a+b+c) - \left(\frac{1}{2} - \frac{1}{4m+4} \right) \\ &= \left(1 - \frac{1}{2m+2} \right) \cdot \text{sun}(G-S) - \left(\frac{1}{2} - \frac{1}{4m+4} \right) \\ &\geq \left(1 - \frac{1}{2m+2} \right) (2|S| - 2m + 1) - \left(\frac{1}{2} - \frac{1}{4m+4} \right) \\ &> \left(1 - \frac{1}{2m+2} \right) (2|S| - 2m), \end{aligned}$$

which implies

$$2m|S| < 2m(2m + 1).$$

If $m = 0$, then we have $0 < 0$, which is contradiction. If $m \geq 1$, then we obtain $|S| < 2m + 1$, which contradicts that $|S| \geq 2m + 1$. This completes the proof of Theorem 2.1. \square

3. $(P_{\geq 3}, k)$ -FACTOR CRITICAL GRAPHS

Theorem 3.1. *Let k be a nonnegative integer, and let G be a graph with $\kappa(G) \geq k + 2$. If $\text{bind}(G) \geq \frac{5+k}{4}$, then G is a $(P_{\geq 3}, k)$ -factor critical graph.*

Proof. Theorem 3.1 holds for $k = 0$ by Corollary 2.2. In the following, we assume that $k \geq 1$.

Let $G' = G - U$ for any $U \subseteq V(G)$ with $|U| = k$. To prove Theorem 3.1, we only need to verify that G' admits a $P_{\geq 3}$ -factor. By contradiction, we assume that G' has no $P_{\geq 3}$ -factor. Then from Theorem 1.1, there exists some subset S of $V(G')$ satisfying

$$\text{sun}(G' - S) \geq 2|S| + 1. \quad (3.1)$$

Claim 2. $|S| \geq 2$.

Proof. Let $S = \emptyset$. Then it follows from (3.1) that

$$\text{sun}(G') \geq 1. \quad (3.2)$$

By $\kappa(G) \geq k + 2$, $|U| = k$ and $G' = G - U$, we have

$$\lambda(G') \geq \kappa(G') = \kappa(G - U) \geq \kappa(G) - |U| = \kappa(G) - k \geq 2. \quad (3.3)$$

According to (3.3) and the definition of a sun, we obtain

$$\text{sun}(G') = 0,$$

which contradicts (3.2).

Let $|S| = 1$. By (3.1), we have

$$\text{sun}(G' - S) \geq 3. \quad (3.4)$$

Note that $\lambda(G' - S) \geq \kappa(G' - S) = \kappa(G - U - S) \geq \kappa(G) - |U| - |S| = \kappa(G) - k - 1 \geq 1$, and so, $\omega(G' - S) = 1$. Thus, we obtain

$$\text{sun}(G' - S) \leq \omega(G' - S) = 1,$$

which contradicts (3.4). This completes the proof of Claim 2. \square

Suppose that there exist a isolated vertices, bK_2 's and c big sun components H_1, H_2, \dots, H_c , where $|V(H_i)| \geq 6$ for $1 \leq i \leq c$, in $G' - S$. Combining this with (3.1) and Claim 2, we have

$$\text{sun}(G' - S) = a + b + c \geq 2|S| + 1 \geq 5. \quad (3.5)$$

We now consider the following two cases by the value of a .

Case 1. $a = 0$.

In this case, $b + c \geq 5$ by (3.5). We write $Q = (bK_2) \cup (\bigcup_{i=1}^c H_i)$. Clearly, there exist $x, y \in V(Q)$ such that $d_Q(x) = 1$ and $xy \in E(Q)$. Thus, we have

$$|N_G(V(Q) \setminus \{y\})| \leq |U| + |S| + 2b + \sum_{i=1}^c |V(H_i)| - 1 = |S| + k + 2b + \sum_{i=1}^c |V(H_i)| - 1.$$

Combining this with the definition of $\text{bind}(G)$ and the hypothesis of Theorem 3.1, we obtain

$$\frac{5+k}{4} \leq \text{bind}(G) \leq \frac{|N_G(V(Q) \setminus \{y\})|}{|V(Q) \setminus \{y\}|} \leq \frac{|S| + k + 2b + \sum_{i=1}^c |V(H_i)| - 1}{2b + \sum_{i=1}^c |V(H_i)| - 1}. \quad (3.6)$$

According to (3.5), (3.6), $|V(H_i)| \geq 6$, $k \geq 1$ and $b + c \geq 5$, we have

$$\begin{aligned} 4|S| &\geq (5+k) \left(2b + \sum_{i=1}^c |V(H_i)| - 1 \right) - 4 \left(2b + \sum_{i=1}^c |V(H_i)| - 1 \right) - 4k \\ &= (1+k) \left(2b + \sum_{i=1}^c |V(H_i)| - 1 \right) - 4k \\ &\geq (1+k)(2b + 6c - 1) - 4k \\ &\geq (1+k)(b + c + 4) - 4k \\ &\geq (1+k)(2|S| + 1 + 4) - 4k \\ &= 2(1+k)|S| + 5 + k \geq 4|S| + 6, \end{aligned}$$

which is a contradiction.

Case 2. $a \geq 1$.

Let $Y = V(aK_1) \cup V(bK_2) \cup V(\bigcup_{i=1}^c H_i)$. It is obvious that $|N_G(Y)| \leq |U| + |S| + 2b + \sum_{i=1}^c |V(H_i)| = |S| + k + 2b + \sum_{i=1}^c |V(H_i)|$. In view of $\text{bind}(G) \geq \frac{5+k}{4}$ and the definition of $\text{bind}(G)$, we obtain

$$\frac{5+k}{4} \leq \text{bind}(G) \leq \frac{|N_G(Y)|}{|Y|} \leq \frac{|S| + k + 2b + \sum_{i=1}^c |V(H_i)|}{a + 2b + \sum_{i=1}^c |V(H_i)|}. \quad (3.7)$$

By (3.5), (3.7), $|V(H_i)| \geq 6$, $a \geq 1$ and $k \geq 1$, we have

$$\begin{aligned} 4|S| &\geq (5+k) \left(a + 2b + \sum_{i=1}^c |V(H_i)| \right) - 4 \left(2b + \sum_{i=1}^c |V(H_i)| \right) - 4k \\ &= (1+k) \left(a + 2b + \sum_{i=1}^c |V(H_i)| \right) + 4a - 4k \\ &\geq (1+k)(a + 2b + 6c) + 4a - 4k \\ &\geq (1+k)(a + b + c) + 4a - 4k \\ &\geq (1+k)(2|S| + 1) + 4a - 4k \\ &\geq (2k+2)|S| + 2 + 4a - 4k, \end{aligned}$$

that is,

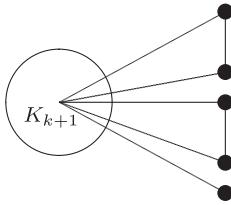
$$4|S| \geq (2k+2)|S| + 2 + 4a - 4k. \quad (3.8)$$

If $k = 1$, then by (3.8) and $a \geq 1$, we have $4|S| \geq 4|S| + 2 + 4a - 4 \geq 4|S| + 2$, which is a contradiction. If $k \geq 2$, then it follows from (3.8) and $a \geq 1$ that

$$|S| \leq \frac{4k - 2 - 4a}{2k - 2} \leq \frac{4k - 4 - 2a}{2k - 2} < 2,$$

which contradicts Claim 2. Theorem 3.1 is proved. \square

Remark 3.2. In the following, we show that the conditions $\kappa(G) \geq k + 2$ and $\text{bind}(G) \geq \frac{5+k}{4}$ in Theorem 3.1 can not be replaced by $\kappa(G) \geq k + 1$ and $\text{bind}(G) \geq \frac{5+k}{5}$.

FIGURE 2. $K_{k+1} \vee (2K_2 \cup K_1)$.

Let k be an nonnegative integer. Let $G = K_{k+1} \vee (2K_2 \cup K_1)$, (see Fig. 2), where \vee denotes “join”. We write $X = V(2K_2 \cup K_1)$. It is easy to see that $\kappa(G) = k + 1$ and $\text{bind}(G) = \frac{|N_G(X)|}{|X|} = \frac{5+k}{5}$. For any $U \subseteq V(K_{k+1})$ with $|U| = k$, we write $G' = G - U$. We choose $S = V(K_{k+1}) \setminus U \subseteq V(G')$, and so $|S| = 1$. Thus, we obtain

$$\text{sun}(G' - S) = 3 > 2 = 2|S|.$$

According to Theorem 1.1, G' has no $P_{\geq 3}$ -factor, that is, G is not a $(P_{\geq 3}, k)$ -factor critical graph.

Acknowledgements. The author is grateful to the anonymous referees for their valuable comments and suggestions in improving this paper. This work is supported by 333 Project of Jiangsu Province and Six Big Talent Peak of Jiangsu Province (Grant No. JY-022).

REFERENCES

- [1] K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi and H. Matsuda, Path factors in claw-free graphs. *Discrete Math.* **243** (2002) 195–200.
- [2] H. Enomoto, M. Plummer and A. Saito, Neighborhood unions and factor critical graphs. *Discrete Math.* **205** (1999) 217–220.
- [3] W. Gao and W. Wang, New isolated toughness condition for fractional (g, f, n) -critical graphs. *Colloq. Math.* **147** (2017) 55–66.
- [4] W. Gao, L. Liang, T. Xu and J. Zhou, Degree conditions for fractional (g, f, n', m) -critical deleted graphs and fractional ID- (g, f, m) -deleted graphs. *Bull. Malaysian Math. Sci. Soc.* **39** (2016) 315–330.
- [5] W. Gao, J. Guirao and H. Wu, Two tight independent set conditions for fractional (g, f, m) -deleted graphs systems. *Qualitative Theory Dyn. Syst.* **17** (2018) 231–243.
- [6] M. Johnson, D. Paulusma and C. Wood, Path factors and parallel knock-out schemes of almost claw-free graphs. *Discrete Math.* **310** (2010) 1413–1423.
- [7] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. *J. Comb. Theory Ser. B* **88** (2003) 195–218.
- [8] M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two. *Discrete Math.* **283** (2004) 129–135.
- [9] K. Kawarabayashi, H. Matsuda, Y. Oda and K. Ota, Path factors in cubic graphs. *J. Graph Theory* **39** (2002) 188–193.
- [10] A. Kelmans, Packing 3-vertex paths in claw-free graphs and related topics. *Discrete Appl. Math.* **159** (2011) 112–127.
- [11] R. Matsubara, H. Matsumura, M. Tsugaki and T. Yamashita, Degree sum conditions for path-factors with specified end vertices in bipartite graphs. *Discrete Math.* **340** (2017) 87–95.
- [12] Y. Nam, Binding numbers and connected factors. *Graphs Comb.* **26** (2010) 805–813.
- [13] M. Plummer and A. Saito, Toughness, binding number and restricted matching extension in a graph. *Discrete Math.* **340** (2017) 2665–2672.
- [14] A. Robertshaw and D. Woodall, Binding number conditions for matching extension. *Discrete Math.* **248** (2002) 169–179.
- [15] Y. Yuan and R. Hao, Independence number, connectivity and all fractional (a, b, k) -critical graphs. *Discuss. Math. Graph Theory* **39** (2019) 183–190.
- [16] S. Zhou, A sufficient condition for a graph to be an (a, b, k) -critical graph. *Int. J. Comput. Math.* **87** (2010) 2202–2211.
- [17] S. Zhou, Binding numbers for fractional ID- k -factor-critical graphs. *Acta Math. Sin. English Ser.* **30** (2014) 181–186.
- [18] S. Zhou, Some results about component factors in graphs. *RAIRO: OR* **53** (2019) 723–730.
- [19] S. Zhou, Z. Sun and H. Ye, A toughness condition for fractional (k, m) -deleted graphs. *Info. Process. Lett.* **113** (2013) 255–259.
- [20] S. Zhou, J. Wu and T. Zhang, The existence of $P_{\geq 3}$ -factor covered graphs. *Discuss. Math. Graph Theory* **37** (2017) 1055–1065.
- [21] S. Zhou, L. Xu and Z. Xu, Remarks on fractional ID- k -factor-critical graphs. *Acta Math. Appl. Sin. English Ser.* **35** (2019) 458–464.
- [22] S. Zhou, F. Yang and L. Xu, Two sufficient conditions for the existence of path factors in graphs. *Sci. Iran.* **26** (2019) 3510–3514.
- [23] H. Zhang and S. Zhou, Characterizations for $P_{\geq 2}$ -factor and $P_{\geq 3}$ -factor covered graphs. *Discrete Math.* **309** (2009) 2067–2076.