
RAIRO-Oper. Res. 54 (2020) 1077–1086 RAIRO Operations Research
https://doi.org/10.1051/ro/2019109 www.rairo-ro.org

SIGNED DOMINATION AND MYCIELSKI’S STRUCTURE IN GRAPHS

Arezoo N. Ghameshlou1,∗, Athena Shaminezhad2,
Ebrahim Vatandoost2 and Abdollah Khodkar3

Abstract. Let G = (V, E) be a graph. The function f : V (G) → {−1, 1} is a signed dominating
function if for every vertex v ∈ V (G),

∑
x∈NG[v] f(x) ≥ 1. The value of ω(f) =

∑
x∈V (G) f(x) is called

the weight of f . The signed domination number of G is the minimum weight of a signed dominating
function of G. In this paper, we initiate the study of the signed domination numbers of Mycielski graphs
and find some upper bounds for this parameter. We also calculate the signed domination number of
the Mycielski graph when the underlying graph is a star, a wheel, a fan, a Dutch windmill, a cycle, a
path or a complete bipartite graph.
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1. Introduction

All graphs considered throughout this paper are simple, finite, undirected and connected. For the terminology
and notations not defined here, we refer the reader to [11]. Let G be a graph with vertex set V (G) and edge set
E(G). The open neighborhood of a vertex v ∈ V (G), denoted by NG(v), is the set of vertices adjacent to v in
G. The closed neighborhood of a vertex v in graph G is NG[v] = NG(v) ∪ {v}. Moreover, the open and closed
neighborhoods of a subset S ⊆ V (G) are NG(S) = ∪v∈SNG(v) and NG[S] = NG(S)∪S, respectively. The degree
of a vertex v ∈ V (G) is degG(v) =| NG(v) |. A vertex v ∈ V (G) is called an odd (even) vertex if degG(v) is odd
(even). For a graph G = (V,E), let Vo and Ve be the set of odd and even vertices, respectively. We denote the
maximum degree of G with ∆(G) and its minimum degree with δ(G).

A vertex with degree of | V (G) | −1 is called a universal vertex. In a complete graph, Kn, all vertices are
universal. Additionally, in Stars, K1,n, and Wheels, Wn, the central vertex is universal. In this paper, we use two
other special graphs having a universal vertex. A Dutch windmill graph Dn

3 is the graph of order 2n + 1 with
vertex set {v, v1, v2, . . . , v2n} and edge set {vvi : 1 ≤ i ≤ 2n}∪{vivi+1 : i = 1, 3, . . . , 2n−1}. The Fan graph, Fn, is
the graph of order n+1 with vertex set {v, v1, v2, . . . , vn} and edge set {vvi : 1 ≤ i ≤ n}∪{vivi+1 : 1 ≤ i ≤ n−1}.

For a function f : V (G) −→ {−1, 1} and a subset S of V (G), we define f(S) =
∑
x∈S f(x). If S = NG[v] for

some v ∈ V (G), then we denote f(S) by f [v]. Let Cf = {v ∈ V (G) : f [v] ≥ 1}. A signed dominating function
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of G is a function f : V (G) −→ {−1, 1} such that for all vertices v of G, v ∈ Cf . The weight of a signed
dominating function f is ω(f) =

∑
v∈V (G) f(v) = f(V (G)). The signed domination number (SDN), γs(G), is

the minimum weight of a signed dominating function of G. A signed dominating function of weight γs(G) is
called a γs(G)-function. For a signed dominating function f of G we define Pf = {v ∈ V (G) : f(v) = 1} and
Mf = {v ∈ V (G) : f(v) = −1}.

The concept of the signed domination number of a graph was proposed in Dunbar et al. [1] and shown that the
problem of determining the signed domination numbers for general graphs is NP-hard. Moreover, the authors
of Dunbar et al. [1] proved that, there exist chordal and k-partite graphs with negative signed domination
numbers. The signed domination number has been extensively studied in the literature; see e.g. Shon et al. [10]
and references therein. The exact values of the signed domination numbers have been determined for some
classes of graphs, including the complete graphs, path and cycles [4], complete bipartite graphs [12], Dutch
windmill graphs, wheels, ladders and prisms [9] and grid graphs [3].

For a graph G with V (G) = {v1, v2, . . . , vn}, let U = {u1, u2, . . . , un} be a disjoint copy of V (G) and let w
be a new vertex. The Mycielski graph µ(G) of G is defined as follows:

V (µ(G)) = V (G) ∪ U ∪ {w},
E(µ(G)) = E(G) ∪ {viuj : vivj ∈ E(G)} ∪ {wui : 1 ≤ i ≤ n}.

The vertex w is called the root of µ(G) and the vertex ui = c(vi) is called the twin of the vertex vi, i = 1, 2, . . . , n.
The Mycielski graph of a graph G was introduced by Mycielski in order to construct triangle-free graphs with
an arbitrary large chromatic number [8]. In recent years, there have been results reported on Mycielski graphs
related to various domination parameters [2, 5–7]. In [2], it was proved that γ(µ(G)) = γ(G) + 1. This shows
that the domination number of a Mycielski graph exceeds the domination number of its underlying graph G.
As we will see such a result is not true for the signed domination number of Mycielski graphs.

In this paper, we initiate the study of the signed domination numbers of Mycielski graphs. In Section 2,
we present some preliminary results on Mycielski graphs and their signed domination numbers. In Section 3,
we show that the signed domination number of a Mycielski graph, whose underlying graph has at least one
universal vertex, is at least 3. Then we calculate the exact values of γs(µ(G)) when G is a star, a wheel, a
fan, a Dutch windmill or a complete graph. In Section 4, we prove that if γs(G) ≥ 0, then γs(µ(G)) ≤ 2γs(G),
otherwise γs(µ(G)) ≤ γs(G) + 2. Finally, in Section 5, we calculate γs(µ(G)) when G is a cycle, a path or a
complete bipartite graph. It is worth to note that there are graphs G, such as Km,n, when m = 1 or m and n
are both odd, with γs(µ(G)) < γs(G).

2. Preliminary results

For investigating the signed domination numbers of Mycielski graphs the following basic properties are useful.

Observation 2.1. Let G be a graph with vertex set {v1, v2, . . . , vn} and let µ(G) be the graph obtained from
G by Mycielski’s construction.

(1) If ui = c(vi), i = 1, . . . , n, and w is the root of µ(G), then degµ(G)(vi) = 2 degG(vi), degµ(G)(ui) =
degG(vi) + 1 and degµ(G)(w) = n.

(2) ∆(µ(G)) =
{

2∆(G) if ∆(G) ≥ bn2 c
n otherwise.

(3) | Ve(µ(G)) |=
{
n+ no + 1 if n is even,
n+ no if n is odd,

where no is the number of odd vertices in G.

(4) | Vo(µ(G)) |=
{
n− no if n is even,
n− no + 1 if n is odd.

(5) The Mycielski graph µ(G) is r-regular if and only if G = K2.
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(6) The Mycielski graph µ(G) is connected if and only if the underlying graph G does not have any isolated
vertices.

Observation 2.2. Let f be a signed dominating function of G.

(1) If v ∈ V (G) is an even vertex, then f [v] ≥ 1 while if v is an odd vertex, then f [v] ≥ 2.
(2) ω(f) ≡ 1 (mod 2).
(3) If G has an isolated vertex, then w ∈ Pf , where w is the root vertex of µ(G).
(4) If G is a path or a cycle of order n > 2 and w ∈Mf , then ω(f) = 2n− 1.

3. Graphs with universal vertices

In this section, we show that the signed domination number of a Mycielski graph, whose underlying graph
has at least one universal vertex, is at least 3.

Theorem 3.1. Let G be a graph of order n. If G has a universal vertex, then γs(µ(G)) ≥ 3.

Proof. Let v be a universal vertex of graph G, u = c(v), and w be the root vertex. Suppose that f is a
γs(µ(G))-function. We consider two cases.

Case 1: n is odd. By using Observation 2.2, part 1, we have f [u] = f(u) + f(V (G) \ {v}) + f(w) ≥ 2
and f [w] = f(w) + f(U) ≥ 2. This implies that f(V (G) \ {v}) ≥ 0 and f(U \ {u}) ≥ 0. If f(w) = −1, then
f(V (G) \ {v}) ≥ 2 and f(U) ≥ 3. Hence, γs(µ(G)) = f(v) + f(V (G) \ {v}) + f(U) + f(w) ≥ 3. Now assume
f(w) = 1 and f(u) = −1. Then f(V (G) \ {v}) ≥ 2 and f(U \ {u}) ≥ 2. Hence, γs(µ(G)) = f(v) + f(V (G) \
{v}) + f(U) + f(w) ≥ 3. Finally, if f(u) = f(w) = 1, then f(V (G) \ {v}) ≥ 0 and f(U \ {u}) ≥ 0. Suppose
that f(V (G) \ {v}) = f(U \ {u}) = 0. If f(v) = −1, then f [v] < 1. That is a contradiction. Hence, γs(µ(G)) =
f(v)+f(V (G)\{v})+f(U\{u})+f(u)+f(w) ≥ 1+2 = 3. Now assume that f(V (G)\{v}) = 0 and f(U\{u}) ≥ 2.
Therefore, γs(µ(G)) = f(v)+f(V (G)\{v})+f(U)+f(w) ≥ −1+2+2 = 3. Similarly, if f(V (G)\{v}) ≥ 2 and
f(U \{u}) = 0, the γs(µ(G)) = f(v)+f(V (G)\{v})+f(U)+f(w) ≥ −1+2+2 = 3. Finally, if f(V (G)\{v}) ≥ 2
and f(U \{u}) ≥ 2, then we dedicate that γs(µ(G)) = f(v)+f(V (G)\{v})+f(U)+f(w) ≥ −1+2+2+2 = 5.

Case 2: n is even. By using Observation 2.2, part 1, we have f [w] = f(w) + f(u) +
∑
x∈U\{u} f(x) ≥ 1.

Since f(u) + f(w) ≥ −2, we have
∑
x∈U\{u} f(x) ≥ −1. Similarly, f [u] = f(u) + f(w) +

∑
x∈V (G)\{v} f(x) ≥ 1

and
∑
x∈V (G)\{v} f(x) ≥ −1.

If
∑
x∈U\{u} f(x) =

∑
x∈V (G)\{v} f(x) = −1, then f [v] < 1; that is a contradiction. Now, we consider the

following subcases:

Subcase 2.1.
∑
x∈V (G)\{v} f(x) = 1 and

∑
x∈U\{u} f(x) = −1.

Then f [v] = f(v)+
∑
x∈V (G)\{v} f(x)+

∑
x∈U\{u} f(x) ≥ 1 if and only if f(v) = 1. Furthermore, f [w] = f(w)+

f(u) +
∑
x∈U\{u} f(x) ≥ 1 if and only if f(u) = f(w) = 1. Thus, γs(µ(G)) = f [v] + f(u) + f(w) ≥ 1 + 1 + 1 = 3.

Subcase 2.2.
∑
x∈V (G)\{v} f(x) = −1 and

∑
x∈U\{u} f(x) = 1.

Then f [v] = f(v)+
∑
x∈V (G)\{v} f(x)+

∑
x∈U\{u} f(x) ≥ 1 if and only if f(v) = 1. Furthermore, f [u] = f(u)+

f(w)+
∑
x∈V (G)\{v} f(x) ≥ 1 if and only if f(u) = f(w) = 1. Thus, γs(µ(G)) = f [v]+f(u)+f(w) ≥ 1+1+1 = 3.

Subcase 2.3.
∑
x∈V (G)\{v} f(x) =

∑
x∈U\{u} f(x) = 1.

Then f [w] = f(w) + f(u) +
∑
x∈U\{u} f(x) ≥ 1 if and only if f(u) + f(w) ≥ 0. First let f(u) = f(w) = 1.

Then f [v] = f(v) +
∑
x∈V (G)\{v} f(x) +

∑
x∈U\{u} f(x) = f(v) + 1 + 1 = f(v) + 2 ≥ 1, and γs(µ(G)) =

f [v] + f(u) + f(w) ≥ 1 + 1 + 1 = 3. Now let f(u) + f(w) = 0. We claim that f(v) = 1. Assume f(v) = −1.
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Define N =
∑
y∈V (µ(G))

∑
x∈Nµ(G)[y]

f(x). We have

N =
∑

y∈V (µ(G))

∑
x∈Nµ(G)[y]

f(x) =
∑

x∈V (µ(G))

f [x]

≥
∑

x∈V (µ(G))

1 =| V (µ(G)) |= 2n+ 1.
(3.1)

On the other hand, it is easy to verify that N counts the value f(x) exactly | Nµ(G)[v] |= 1 + degµ(G)(x) times
for each x ∈ V (µ(G)). So, N =

∑
x∈V (µ(G))(1 + degµ(G)(x))f(x). Therefore,

N =
∑

x∈V (G)\{v}

(1 + degµ(G)(x))f(x) +
∑

x∈U\{u}

(1 + degµ(G)(x))f(x)

+ (1 + degµ(G)(w))f(w) + (1 + degµ(G)(u))f(u) + (1 + degµ(G)(v))f(v).

By Observation 2.1, part 1, and the assumptions of Subcase 2.3 We have

N = (n + 1)(f(w) + f(u)) + (2n− 1)(−1)

+
∑

x∈V (G)\{v}

(1 + degµ(G)(x))f(x) +
∑

x∈U\{u}

(1 + degµ(G)(x))f(x)

≤ 1− 2n + (2n− 1)
∑

x∈V (G)\{v}

f(x) + (n + 1)
∑

x∈U\{u}

f(x) = n + 1.

(3.2)

Comparing Inequalities (3.1) and (3.2), we deduce that 2n+ 1 ≤ n+ 1.
This contradicts n ≥ 1. Therefore, f(v) = 1, and f [v] = f(v) +

∑
x∈V (G)\{v} f(x) +

∑
x∈U\{u} f(x) = 3.

Thus, γs(µ(G)) = f [v] + f(u) + f(w) = 3 + 0 = 3.

Subcase 2.4.
∑
x∈V (G)\{v} f(x) = 1 and

∑
x∈U\{u} f(x) ≥ 3.

In this case we have, γs(µ(G)) =
∑
x∈U\{u} f(x) + f [u] + f(v) ≥ 3 + 1 + (−1) = 3.

Subcase 2.5.
∑
x∈V (G)\{v} f(x) ≥ 3 and

∑
x∈U\{u} f(x) = 1.

It is easy to verify that γs(µ(G)) = f [w] + f(v) +
∑
x∈V (G)\{v} f(x) ≥ 1 + (−1) + 3 = 3.

Subcase 2.6.
∑
x∈V (G)\{v} f(x) ≥ 3 and

∑
x∈U\{u} f(x) ≥ 3.

Then
γs(µ(G)) = f(u) + f(w) + f(v) +

∑
x∈V (G)\{v}

f(x) +
∑

x∈U\{u}

f(x)

≥ −1− 1− 1 + 3 + 3 = 3.

�

We now show that the lower bound given in Theorem 3.1 can be achieved for some families of graphs. Recall
that the Dutch windmill graph Dn

3 is the graph of order 2n+ 1 with vertex set {v, v1, v2, . . . , v2n} and edge set
{vvi : 1 ≤ i ≤ 2n} ∪ {vivi+1 : i = 1, 3, . . . , 2n− 1}.

Corollary 3.2. For every graph G ∈ {Kn,K1,n, D
n
3 }, γs(µ(G)) = 3.

Proof. First suppose that G = Kn. Let V (G) = {v1, v2, . . . , vn}. Suppose that w is the root vertex of µ(G)
and ui = c(vi) for i = 1, 2, . . . , n. Let f : V (µ(G)) −→ {−1, 1} be the function which assigns 1 and −1 to the
vertices v2, v3, . . . , vn, u2, u3, . . . , un, respectively, and f(v1) = f(u1) = f(w) = 1. Now let G = K1,n. Suppose
that V (G) = {v, v1, v2, . . . , vn}, where v is the universal vertex in K1,n. For i = 1, 2, . . . , n, set ui = c(vi),
u = c(v) and assume w is the root vertex. Define f : V (µ(G)) −→ {−1, 1} with f(v) = f(u) = f(w) = 1. For
i = 1, . . . , n, this function assigns 1 and −1 to the vertices v1, v2, . . . , vn, u1, u2, . . . , un, respectively. Finally, let
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G = Dn
3 . Let V (G) = {v, v1, v2, . . . , v2n} and v is the universal vertex in Dn

3 . Suppose that w is the root vertex
of µ(G), u = c(v) and ui = c(vi) for i = 1, 2, . . . , 2n. Let f : V (µ(G)) −→ {−1, 1} be the function which assigns
1 and −1 to the vertices v1, v2, . . . , v2n, u1, u2, . . . , u2n, respectively, and f(v) = f(u) = f(w) = 1.

In each case, it is clear that f is an SDF. So γs(µ(G)) ≤ ω(f) = 3. By Theorem 3.1, the proof is
complete. �

Corollary 3.3. Let Wn be the wheel graph of order n+ 1. Then γs(µ(Wn)) = 3.

Proof. Let v be the universal vertex of graph Wn and (v1, v2, . . . , vn) be the n-cycle in Wn. Suppose that w is the
root vertex of µ(Wn), u = c(v) and ui = c(vi) for i = 1, 2, . . . , n. We define the function f : V (µ(Wn))→ {−1, 1}
with f(u) = f(v) = f(w) = 1.

If n ≡ 0, 1 (mod 4), then for i ≡ 1, 2 (mod 4) define f(ui) = 1, otherwise f(ui) = −1. Let f(vi) = −f(ui)
for i ∈ {1, 2, . . . , n}.

If n ≡ 2 (mod 4), then let f(un−1) = −1 and f(un) = 1. For i = 1, 2 . . . , n − 2, if i ≡ 1, 2 (mod 4), define
f(ui) = 1, otherwise f(ui) = −1. Let f(vi) = −f(ui) for i ∈ {1, 2, . . . , n}.

If n ≡ 3 (mod 4), then let f(un) = 1. For i = 1, 2 . . . , n− 1, if i ≡ 1, 2 (mod 4), define f(ui) = −1, otherwise
f(ui) = 1. Let f(vi) = −f(ui) for i ∈ {1, 2, . . . , n}.

In each case, f is an SDF of G and w(f) = 3, so the result follows by Theorem 3.1. �

Recall that the Fan graph Fn is the graph of order n + 1 with vertex set {v, v1, v2, . . . , vn} and edge set
{vvi : 1 ≤ i ≤ n} ∪ {vivi+1 : 1 ≤ i ≤ n− 1}.

Corollary 3.4. Let Fn be the fan graph of order n+ 1. Then γs(µ(Fn)) = 3.

Proof. Suppose that w is the root vertex of µ(Fn), u = c(v) and ui = c(vi) for i = 1, 2, . . . , n. We define the
function f : V (µ(Fn))→ {−1, 1} with f(u) = f(v) = f(w) = 1.

If n ≡ 0, 1 (mod 4), then for i ≡ 1, 2 (mod 4) define f(ui) = 1, otherwise define f(ui) = −1.
If n ≡ 2 (mod 4), then let f(un−1) = −1 and f(un) = 1. For i = 1, 2 . . . , n − 2, if i ≡ 1, 2 (mod 4) define

f(ui) = 1, otherwise f(ui) = −1.
If n ≡ 3 (mod 4), then for i = 1, 2 . . . , n, if i ≡ 1, 2 (mod 4) define f(ui) = 1, otherwise f(ui) = −1.
Finally, set f(vi) = −f(ui) for i ∈ {1, 2, . . . , n}.
In each case f is an SDF of G and w(f) = 3, so the result follows by Theorem 3.1. �

4. A relation between γs(G) and γs(µ(G))

In this section, we present an upper bound for the signed domination number of µ(G) in terms of the signed
domination number of G.

Theorem 4.1. For any graph G of order n,

γs(µ(G)) ≤
{

2γs(G) + 1 if γs(G) ≥ 0,
γs(G) + 2 if γs(G) ≤ −1.

Proof. Let V (G) = {v1, v2, . . . , vn}. Suppose that f is a γs(G)-function of graph G. Assume that w is the root
vertex of µ(G). Define, ui = c(vi) for i = 1, 2, . . . , n. We consider two cases:

Case 1. γs(G) ≥ 0.
Define a new function g : V (µ(G))→ {−1, 1} by

g(x) =


1 if x = w,

f(x) if x ∈ V (G),
f(vi) if x = ui.
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It is easy to verify that g is a signed dominating function of graph µ(G). Therefore,

γs(µ(G)) ≤ ω(g) = 2γs(G) + 1.

Case 2. γs(G) ≤ −1.
Then |Mf |≥ dn2 e. Without loss of generality, let

f(v1) = f(v2) = . . . = f(v|Mf |) = −1.

Now define the function g : V (µ(G))→ {−1, 1} by

g(x) =


f(x) if x ∈ V (G),
−1 if x ∈ {u1, u2, . . . , ubn2 c}
1 otherwise.

Obviously, g is a signed dominating function of µ(G). Thus,

γs(µ(G)) ≤ ω(g) = γs(G) +
⌈n

2

⌉
−
⌊n

2

⌋
+ 1 ≤ γs(G) + 2.

�

The bound presented in Theorem 4.1 for a graph G with γs(G) ≥ 0 is sharp if G = Kn. Additionally,
Corollary 3.2 shows that this bound is sharp for µ(Kn) when n is odd.

5. Cycles, paths and complete bipartite graphs

In this section we find the signed domination number of µ(G) when G is a cycle, a path, or a complete
bipartite graph.

Theorem 5.1. For every cycle Cn of order n,

γs(µ(Cn)) =



n
2 + 1 if n ≡ 0 (mod 8),
n+5

2 if n ≡ 1, 5 (mod 8),
n
2 + 2 if n ≡ 2, 6 (mod 8),
n+7

2 if n ≡ 3 (mod 8),
n
2 + 3 if n ≡ 4 (mod 8),
n+3

2 if n ≡ 7 (mod 8).

Proof. Let Cn be a cycle with vertices v1, v2, . . . , vn. Let w be the root vertex of the graph µ(Cn) and for
every i = 1, 2, . . . , n, ui = c(vi). Let f be an SDF of µ(Cn). If f(w) = −1, then by Observation 2.2, Part 4,
ω(f) = 2n− 1. Now let f(w) = 1 and

f(ui) =

{
−1 if i = 1, . . . ,

⌊
n
2

⌋
,

1 if otherwise.
(5.1)

So, |Mf ∩U |= bn2 c. Since degµ(Cn)(u) = 3 for u ∈ U , in order to satisfy the condition f [u] ≥ 1, there can be at
most one negative vertex in Nµ(Cn)[u]. Hence, if ui ∈Mf∩U , then f [ui] ≥ 1 if and only if f(vi−1) = f(vi+1) = 1.
Therefore by equality (5.1), for i = 1, 2, . . . , bn2 c, f [ui] ≥ 1 if and only if

f(vn) = f(v1) = f(v2) = . . . = f(vbn2 c+1) = 1.
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For i = bn2 c+ 2, . . . , n− 1, assign −1,−1, 1, 1,−1,−1, . . . to vi ∈ {vbn2 c+2, . . . , vn−1}, respectively. It is easy to
verify that f is an SDF for a graph µ(Cn). Moreover, there is precisely one negative vertex in Nµ(Cn)[u]. for
every u ∈ Pf except for un if n ≡ 1, 2 (mod 8), un−1 and un if n ≡ 3, 4 (mod 8) and un−1 if n ≡ 5, 6 (mod 8),
which have no negative vertices in their closed neighborhoods. Therefore f is a γs(µ(Cn))-function.

A simple calculation shows that:

|Mf |=



3n
4 if n ≡ 0 (mod 8),
3n−3

4 if n ≡ 1, 5 (mod 8).
3n−2

4 if n ≡ 2, 6 (mod 8),
3n−5

4 if n ≡ 3 (mod 8),
3n−4

4 if n ≡ 4 (mod 8),
3n−1

4 if n ≡ 7 (mod 8).

Hence, γs(µ(Cn)) = ω(f) = 2n+ 1− 2 |Mf |. This completes the proof. �

The proof of the following result is straightforward.

Lemma 5.2. Let Pn be a path of order n. Then

γs(µ(Pn)) =


3 if n = 2, 3, 5, 7
1 if n = 4
5 if n = 6.

Theorem 5.3. For a path Pn, n ≥ 8,

γs(µ(Pn)) =



n+5
2 if n ≡ 1 (mod 8),

n+4
2 if n ≡ 2 (mod 8),

n+3
2 if n ≡ 3, 7 (mod 8),

n+2
2 if n ≡ 0, 4 (mod 8),

n+1
2 if n ≡ 5 (mod 8),

n
2 if n ≡ 6 (mod 8).

Proof. Let v1, v2, . . . , vn be the vertices of the path Pn. Let w be the root vertex of graph µ(Pn) and for every
i = 1, 2, . . . , n, ui = c(vi). If f is an SDF of Pn with f(w) = −1, then by Observation 2.2, Part 4, ω(f) = 2n−1.
We now define a function f : V (µ(Pn)) → {−1, 1} as follows: f(w) = 1 and f(ui) = f(vi) = −1 for i ∈ {1, n}.
Then f [ui], f [vi] ≥ 1 if and only if for every i ∈ {2, 3, n−1, n−2}, f(ui) = f(vi) = 1. Now for each i = 4, . . . , n−3,
define

f(ui) =

{
−1 if i = 4, . . . , bn+2

2 c,
1 if otherwise.

(5.2)

Clearly,
|Mf ∩ U |=

⌊n
2

⌋
.

According to the Mycielski’s construction, for every i = 2, . . . , n− 1, degµ(Pn)(ui) = 3. So if ui ∈Mf ∩ U , then
f [ui] ≥ 1 if and only if f(vi) = 1, for i = 4, 5, . . . , bn+2

2 c+ 1.
Assign −1,−1, 1, 1,−1,−1, 1, 1, . . . to the remaining unlabeled vi ∈ V (Pn) from the lowest index to the highest

index, respectively. It is easy to verify that f is an SDF. Moreover, there is precisely one negative vertex in
Nµ(Pn)[u] for every u ∈ (Pf ) except for u3 if n ≡ 5, 6 (mod 8), u3, un−2 if n ≡ 0, 7 (mod 8), u3, un−3 if n ≡ 3, 4
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(mod 8) and u3, un−2, un−3 if n ≡ 1, 2 (mod 8), which have no negative vertices in their closed neighborhoods.
Hence, f has the minimum weight subject to the conditions f(w) = 1 and f(ui) = f(vi) = −1 for i ∈ {1, n}.

A simple calculation shows that:

|Mf |=



3n−3
4 if n ≡ 1 (mod 8),

3n−2
4 if n ≡ 2 (mod 8),

3n−1
4 if n ≡ 3, 7 (mod 8),

3n
4 if n ≡ 0, 4 (mod 8),
3n+1

4 if n ≡ 5 (mod 8),
3n+2

4 if n ≡ 6 (mod 8).

Now let g : V (µ(Pn)) → {−1, 1} be an SDF of Pn with g(w) = 1, g(u1) = −1 and g(un) = 1. In order to
minimize the weight of g we must have g(u2) = . . . = g(ubn2 c) = −1. Then g(v1) = g(v2) = . . . = g(vbn2 c+1) = 1
and g(ubn2 c+1) = 1. Let x = dn2 e − 1. If x ≡ 0, 1, 3 (mod 4), then we assign −1,−1, 1, 1,−1,−1, 1, 1, . . . to
vbn2 c+2, . . . , vn−2, respectively. If x ≡ 2 (mod 4), then assign −1,−1, 1, 1 to vbn2 c+2, . . . , vn−2, respectively.

Finally, define g(vn−1) = −1 and g(vn) = 1. Notice that if g(vn) = g(vn−1) = −1, then g[vn−1] < 1 when
x ≡ 2 (mod 8) or n ≡ 5, 6 (mod 8). Therefore, |Mg ∩ V (Pn) |= 2bx4 c+ i, where

i =


0 if x ≡ 0 (mod 4),
1 if x ≡ 1, 2 (mod 4),
2 if x ≡ 3 (mod 4).

This shows that if n ≡ 5, 6 (mod 8), then ω(g) = ω(f)+2, otherwise ω(g) = ω(f). Finally, Let g(v1) = g(v2) = 1.
If we define g(v2) = g(v3) = −1, then g(v4) = g(v5) = g(u2) = g(u3) = g(u4) = 1. Now define g(u5) = g(u6) =
. . . = g(ubn2 c+4) = −1. Therefore we must have g(ubn2 c+5) = . . . = g(un) = 1 and g(v6) = . . . = g(vbn2 c+5) = 1.
Let x = dn2 e − 5. If x ≡ 0, 1, 3 (mod 4), then assign −1,−1, 1,−1,−, 1, . . . to the remaining vertices in V (Pn),
respectively. If x ≡ 2 (mod 4), then assign −1,−1, 1, 1,−1,−1, . . . to vbn2 c+6, . . . , vn−2, respectively. Finally,
define g(vn−1) = −1 and g(vn) = 1. Notice that if g(vn) = g(vn−1) = −1, then g[vn−1] < 1 if x ≡ 2 (mod 8), or
n ≡ 5, 6 (mod 8). Therefore, |Mg ∩ V (Pn) |= 2bx4 c+ i, where

i =


0 if x ≡ 0 (mod 4),
1 if x ≡ 1, 2 (mod 4),
2 if x ≡ 3 (mod 4).

This shows that if n ≡ 5, 6 (mod 8), then ω(g) = ω(f) + 2, otherwise ω(g) = ω(f).
Finally, if g : V (µ(Pn))→ {−1, 1} is an SDF of Pn with g(w) = 1 and g(u1) = g(un) = 1, in a similar fashion,

it can be shown that ω(f) ≤ ω(g). Hence, γs(µ(Pn)) = ω(f) = 2n+ 1− 2 |Mf |. �

Theorem 5.4. For a complete bipartite graph Km,n with m ≥ n ≥ 2, γs(µ(Km,n)) = 5.

Proof. Suppose that X = {x1, . . . , xm} and Y = {y1, . . . , yn} are the partite sets of Km,n. In Mycielski’s
construction, define c(xi) = x′i for 1 ≤ i ≤ m,X ′ = {x′1, . . . , x′m}, c(yj) = y′j for 1 ≤ j ≤ n and Y ′ = {y′1, . . . , y′n}.
Let w be the root vertex of µ(Km,n).

Let f be an SDF of µ(Km,n) with f(w) = −1. For 2 ≤ n ≤ 4 and 2 ≤ m ≤ 3, one can see that ω(f) ≥ 7. Now
let m ≥ 4 and n ≥ 5 and both m and n are odd. Since f [w] ≥ 1, it follows that

∑m
i=1 f(x′i) +

∑n
i=1 f(y′i) ≥ 2.

For x′ ∈ X ′, the inequality f [x′] ≥ 1 implies that

n∑
i=1

f(yi) ≥ 1. (5.3)
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Similarly, if y′ ∈ Y ′, the inequality f [y′] ≥ 1 implies that

m∑
i=1

f(xi) ≥ 1. (5.4)

On the other hand, for x ∈ X, the inequalities f [x] ≥ 1 and (5.3) show that
∑n
i=1 f(y′i) ≥ −1. Similarly, if y ∈ Y ,

then by the inequalities f [y] ≥ 1 and (5.4) we have
∑m
i=1 f(x′i) ≥ −1. However if

∑m
i=1 f(x′i) =

∑n
i=1 f(y′i) = −1,∑m

i=1 f(x′i) = 1,
∑n
i=1 f(y′i) = −1 or

∑m
i=1 f(x′i) = −1,

∑n
i=1 f(y′i) = 1, then f [w] < 1, a contradiction.

Therefore,
∑m
i=1 f(x′i) ≥ 1 and

∑n
i=1 f(y′i) ≥ 1. If Mf ∩ X ′ = ∅, then γs(Km,n) ≥ m + 2 ≥ 7. Similarly, if

Mf ∩ Y ′ = ∅, then γs(µ(Km,n)) ≥ n+ 2 ≥ 7. Now assume Mf ∩X ′ and Mf ∩ Y ′ are not empty.
If x′ ∈ Mf ∩X ′, then

∑n
i=1 f(yi) ≥ 3. Similarly, for y′ ∈ Mf ∩ Y ′, we have

∑n
i=1 f(xi) ≥ 3. Thus, ω(f) ≥

3 + 3 + 1 + 1 − 1 ≥ 7. For the cases m,n are even or m,n have different parity, in a similar fashion, we can
deduce that ω(f) ≥ 7.

Now let f be an SDF of µ(Km,n) with f(w) = 1. Since f [w] ≥ 1, it follows that f(X ′) + f(Y ′) ≥ 0. If there
is no negative vertex in X or in Y , then f(X) ≥ 2 or f(Y ) ≥ 2, respectively, because m ≥ n ≥ 2. If there is a
negative vertex in X or in Y , then f(Y ) + f(Y ′) ≥ 2 or f(X) + f(X ′) ≥ 2, respectively. Hence,

ω(f) = f(X) + f(Y ) + f(X ′) + f(Y ′) + f(w) ≥ 5.

Define f : V (µ(Km,n)) −→ {−1, 1} as follows: First set f(w) = 1. Then if m or n is even, assign
1, 1,−1, 1,−1, . . . ,−1, 1 to all vertices of X from i = 1 to i = m and all vertices of Y from j = 1 to j = n,
respectively. Then assign 1,−1, 1,−1, . . . to all vertices in X ′ and all vertices in Y ′, respectively. Similarly,
if m and n are odd, assign 1, 1,−1, 1,−1, 1, . . . , 1,−1 to all vertices of X and all vertices of Y . Then assign
1,−1, 1,−1, . . . to all vertices in X ′ and all vertices in Y ′, respectively. It is easy to verify that f is an SDF of
µ(Km,n) and

|Mf ∩ U |=


n+m

2 m and n are even,
n+m−1

2 m and n have diffrent parity,
n+m−2

2 m and n are odd,

and

|Mf ∩ V (G) |=


n+m−4

2 m and n are even,
n+m−3

2 m and n have diffrent parity,
n+m−2

2 m and n are odd.

Thus, | Mf |= n + m − 2. So, γs(µ(Km,n)) ≤ ω(f) = 2n + 2m + 1 − 2n − 2m + 4 = 5. This completes the
proof. �

We conclude this paper with the following problem.

Problem 5.5. Classify the graph G for which there exists a signed dominating function f with f(w) = −1 and
ω(f) = γs(µ(G)), where w is the root of µ(G).
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