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OPTIMIZING BATCH-PROCESSING OPERATIONS WITH
BATCH-POSITION-BASED LEARNING EFFECTS

LEILEI TAT*

Abstract. Motivated by applications in porcelain-making companies, we consider a type of optimiza-
tion problems for batch-processing operations. In production, a single batch-processing machine with
a fixed capacity is used to process jobs. Several jobs can be processed together if their total size is no
more than the machine capacity. Batch-position-based learning effects are considered because workers
become skillful gradually after they perform the processing task repeatedly. The actual processing time
of a batch is a decreasing function of its position in production. The objective is to minimize makespan
and we consider three different problems. In the first problem, jobs have identical sizes and we present
an algorithm which can find optimal solutions in polynomial time. In the second problem, jobs have
identical processing times and we show the problem is NP-hard in the strong sense. We propose an
approximation algorithm with an absolute performance guarantee of 1.5 and asymptotic performance
guarantee of 1.223. In the third problem, jobs have non-identical sizes and processing times simultane-
ously. We propose an algorithm with an absolute and asymptotic performance guarantee of 2. Besides,
we present the evolution of the performance guarantee and provide managerial insights for decision
makers of manufacturing companies.
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1. INTRODUCTION

Learning effects have aroused a lot of interests of researchers in the recent two decades. By contrast to classical
problems, the behavior of workers is considered in optimization problems with learning effects. That is, when
a worker performs the same task repeatedly, he or she becomes skillful gradually and can finish a task more
and more quickly. This is particularly true in the manufacturing companies with batch-processing machines
and non-identical job sizes such as electroplating companies, porcelain companies, metal working companies,
food making companies and so on. In this type of manufacturers, jobs have non-identical processing times and
sizes. Batch-processing machines are used to process jobs and each machine has a fixed capacity. Jobs can
be processed together in a batch as long as the total size of jobs does not exceed the machine capacity. The
processing of a batch cannot be interrupted until all the jobs in it are completed, therefore, the processing time
of a batch equals to the longest processing time of jobs in it. Since jobs need to be assigned in batches before
being processed, the workers’ ability is very important to improve the production efficiency. When a worker
conducts the operations repeatedly, he or she can reduce the processing time gradually.
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Take the porcelain companies for example. The key operation of the production of porcelains is the calcination,
which is conducted in a calcination oven. Learning effects are important to improve the efficiency of calcination.
First, the workers need to check the semi-products and judge whether they are qualified to be processed. The
semi-products are made of clay and have different sizes. A Skillful worker can finish the judgement in a short
time but an apprentice often spends a longer time. Then the semi-products are assigned in batches, which are
processed one by one in the oven. The oven has a large size to accommodate semi-products, which are burned
in at a high temperature around 2000 degrees Fahrenheit and the calcination cannot be interrupted until all
the semi-products are processed. When filling a batch of semi-products in the oven, each semi-product should
be put in a proper position to improve the product quality and energy utilization. A skillful worker can also
finish the filling operation fast but a new worker often needs more time. Finally, skillful workers can make a
correct decision on the completion time, that is, the time when all the semi-products are completed but a new
worker cannot. By the above introduction, we find that the workers’ ability is important to improve makespan
and a worker is trained by the operations of batches. Skills of assigning a batch, filling a batch and processing
a batch are key operations in the calcination. Usually a worker can performs better gradually after processing
batches repeatedly. Therefore, we propose batch-position-based learning effects for this type of manufacturers.
The objective is to minimize makespan with batch-position-based learning effects.

The current research focuses on the classical scheduling [21], i.e., a machine processes one job or a fixed
number of jobs at a time. Biskup [2] proposes the scheduling model with learning effects where t;‘ = t;1% 1
represents the normal processing time of job 7, tf represents the actual processing time if j is assigned as the
Ith job to be processed in production. « represents the learning index and o < 0. DeJong’s learning effects [5]
are also widely used in the research of scheduling and the processing time is defined as t;-“ =t;(M+(1—-M)I*),
where 0 < M < 1 and [ is the position of job j in production, i.e., j is the [th job to be processed. Koulamas
[12] studies the single-machine scheduling problem with learning effects and provides an optimal algorithm to
minimize makespan. Lee et al. [15] consider the release times in the single-machine problem and provide a
branch-and-bound algorithm. Qian and Steiner [22] consider both the learning effects and deterioration effects
and propose polynomial-time optimal algorithms. Jiang et al. [11] consider the learning effects determined by
actual processing times and job positions, where Problems of minimizing Cp,.x and 2?21 C; are shown to be
NP-hard in the ordinary sense and problem of minimizing maximal lateness is shown to be NP-hard in the
strong sense. Except for the research on single-machine problems, multi-machine problems with learning effects
are also studied, such as parallel-machine problems [9,20] and flowshop problems [14].

However, in the problem of scheduling batch-processing machines with jobs having non-identical sizes, jobs are
processed in batches and the number of jobs in a batch is not a constant. As introduced in the beginning of this
section, several jobs can be processed together as long as their total size is not more than the machine capacity.
Obviously, this type of scheduling is more difficult to optimize. The problem of minimizing makespan on a single
batch-processing machine with non-identical sizes is NP-hard in the strong sense [3]. Akiyoshi et al. [1] study
the problem with controllable processing times and propose a recursive decomposition algorithm to minimize
the production cost. Giglio [7] studies the problem with family constraint and proposes mixed-integer linear
programming models. Wang and Leung [27] study the parallel-machine problems with non-identical capacities
and propose algorithms to minimize makespan.

Cheng et al. [4] study the joint scheduling of production and distribution to minimize service span, i.e.,
the period lasting from the beginning of production to the end of product distribution. In practice, scheduling
batch-processing machines is widely applied in steel making companies. Wiebke et al. [28] consider the problem
of minimizing makespan for a given set of coils and a graph theoretic model is proposed. Tang et al. [25] consider
the problem of integrated charging and casting problem in steel making and propose optimization method on
minimizing production cost. Tan et al. [23,24] consider the integrated model of digital goods. Li and Petruzzi [17]
consider the model with demand uncertainty. Then, Liu et al. [19], Hidayat et al. [8] and Li [16] consider the
parallel-machine model to minimize the maximal lateness, which is NP-hard in the strong sense. However, no
research has been found on the scheduling of batch-position-based learning effects.
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In this paper, we consider the batch-position-based learning effects on a single batch-processing machine
and propose three problems. Polynomial time algorithms are proposed and the performance guarantees are
analyzed. The remainder of this paper is organized as follows. In Section 2, we present the scheduling problem
with batch-position-based learning effects and show the computational complexity. In Section 3, we propose
an algorithm for the problem with identical job sizes to find optimal solutions. In Section 4, we propose an
approximation algorithm for the problem with identical processing times. In Section 5, we consider the general
problem and propose an approximation algorithm. In Section 6, we conclude this paper and present directions
for future research.

2. PROBLEM DESCRIPTION

The problem under investigation can be described as follows. There are n jobs to be processed and the job
set is J = {1,...,n}. Job j has a processing time of ¢; and a size of s;. In production, jobs are assigned in
batches and the batch set is B = {b1,...,bx}, where K is the number of batches and b represents the kth
batch. The machine capacity is D and for any batch by, Zjebk s; < D. The normal processing time of by, is

T, = max{t; : j € b}, (2.1)

i.e., the processing of a batch cannot be interrupted until all the jobs are completed. Because of the learning
effects, the workers become more and more skillful and the actual processing times of the latter batches are
shorter than their normal processing times. The actual processing time of by is defined as

T = (M + (1 — M)k™)Ty,. (2.2)

Here 0 < M < 1 and is a constant. « is the learning index and a < 0. k is the position of batch by and the
learning effects are called batch-position-based learning effects. The makespan is

K K
Crmax = »_ T =Y (M + (1= M)k*)T;
k=1 k=1
K K (23)
=M T+ (1-M)> kT,
k=1 k=1

= M~y + (1 - M)o,

where v = Zszl Ty and 0 = Zkl,(:l k*Ty, for simplicity. Since a < 0, we have v > §. We denote the learning
effects as BLE. Let tpin, = min{t; : j € J} and tmax = max{t; : j € J}. Define r as

p— lmin. (2.4)

tmax
where 0 < r < 1 and a larger » means a wider difference between the maximal and minimal processing time.
We consider three different problems in this paper where the production constraints are different. A scheduling
problem can be denoted as 1 |12|n3, where 1 represents the machine configuration, 7y represents the production
constraints and 73 represents the objective function. The problems under investigation can be denoted as follows.

H1 : 1|BLE,batch, Sj = 1,tj|Cmax

H2 : 1|BLE,batCh7 Sj,tj = 1|Cmax

H3 : 1|BLE, batch, Sj, tj ‘Cmax

In the three problems, there is one batch-processing machine and jobs can be processed in batches. Batch-

position-based learning effects are considered and the objective is to minimize makespan. But the production
constraints are different. In II;, jobs have the same size of 1 but non-identical processing times while in I,
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jobs have non-identical sizes and unit processing times. I3 is the general problem where jobs have non-identical
sizes and non-identical processing times at the same time. Next we analyze the computational complexity of
the problems.

We will present an optimal polynomial-time algorithm for II; in Section 3. Now we analyze the computational
complexity of IIy. Consider a special case II§ where M = 1. Cheng et al. [3] have shown that II§ is NP-hard in
the strong sense. Since II3 is a special case of Iy which is also a special case of II3, in computational complexity
IT§ o Il o< II3. We have the following proposition.

Porposition 2.1. II; and Il3 are both NP-hard in the strong sense.

3. ALGORITHM FOR II;

In the following content, we use Ai and m;(i = 1,2,3) to denote our algorithm for solving II; and the
corresponding solution, respectively. For simplicity, we use “*” as the optimality operator. For example, 7}
represents an optimal solution of IT; and K™ represents the number of batches in an optimal solution. In this
section, we consider problem Iy, i.e., 1|BLE, batch, s; = 1,¢;|Cmax. We propose the following Algorithm 3.1 for
I1;.

Algorithm 3.1.

Step 1. Order the jobs in non-increasing order of their processing times ¢; and relabel them as 1,...,n.

Step 2. Assign the first D jobs in the first batch B;. Then repeat to assign the next D jobs in a batch until
the number of remaining jobs is no more than D. Then assign them in the last batch. The obtained batch
set is {By,...,Bk}.

Step 3. Order the batches in non-decreasing order of their processing times and relabel them as bq,...,bx.
Process them one by one in the order.

Algorithm 3.1 finds an optimal number of batches because each job has a size of 1, the optimal number of
batches is K* = [n/D]. Observe Steps 1 and 2 of 3.1 and we have K = [n/D], i.e., K = K*.

Lemma 3.2. If we order the batches of m] in non-decreasing order of their processing times and relabel them

as by, ..., byw, then T}, <1} fork=1,...,K*.

Proof. In Figure 1, m; are shown on the left side, where a batch is represented by a large rectangle and a job
is represented by a small rectangle in it. The length and the height of a rectangle denote the processing time
and the size respectively. In Figure 1, small rectangles have the same height since all jobs have the same size.
If any change is made on m;, without loss of generality, suppose jobs x and y are swapped, where y € b, and
x € by, satisfying t, < ¢, and g < h. The obtained solution is 7{ as shown on the right side of Figure 1. By
(2.1), Ty > t, and T, > t,. Since batches are ordered in non-decreasing order of processing times and g < h,
we have Ty < Tj,.
Now we consider the following four cases.

Case 1. t, = T, and t, = 1}, that is, y is the longest job in batch b, and z is the longest job in bj. In this
case, after swapping = and y we have T, = t, =T} and T}, = t, =T,. So Ty +T), <T; +1T}.

Case 2. t, =T, and t, < T}, that is, y is the longest job in b, but « is not the longest job in bj,. After swapping
we have T, =t, < t, =717 and T}, = T

Case 3. t, < T, and t, = T},. After swapping we have Ty <71y and T, =T, = T;.

Case 4. t, < T, and t, < T},. After swapping we have T, < t, = T and Ty, =Ty

By the above analysis, we find in all the cases,

T, + Ty, < T3 +Tj. (3.1)
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FIGURE 1. Swapping any two jobs in 7.

Since Crpax = Zszl Tk, we have Chax < C3 ... It is easy to see that if x and y are in the same batch,
C(max =C

o ax- D0 any change on m; cannot improve the makespan.
Obviously, If more than two jobs are swapped, Lemma 3.2 also holds in the same way. This completes the
proof. O

Lemma 3.3. Given a batch set {by,...,bx}, processing them in non-decreasing order of processing times min-
1mizes makespan.

Proof. Since the batches are given, they can be handled as jobs. By Lemma 3.2,
K K* K*
D W B 52
k=1 k=1 k=1

Now we show § = Zszl k‘o‘Tj? is also optimal by contradiction. In 7y, batches are ordered in non-decreasing
order of processing time, i.e., T3 <15 < --- < Tgk. Suppose b, and by, are interchanged and the new solution is
7’. Without loss of generality, let g < h. Then

K K !
§—6 =Y kT — kT
=D KT = DOk
k=1 k=1

g—1 h—1 K
= | D ROTe+ Tog™ + > Tk + Thh™ + > Tpk®
k=1 k=g+1 k=h+1 (3.3)
g—1 h—1 K
— (DR T+ Thg® + ) Tk + T+ Y Tik®
k=1 k=g+1 k=h+1
= gga + Tph® — Thga — Tgha
=Ty =Th)(g" —h*) <0
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since a < 0 and 0 < g < h. That is,
§<6. (3.4)

By (2.3), (3.3) and (3.4)

Coax = My + (1 —M)s < My + (1 - M)§ =C,

max?

(3.5)

which implies that no change on 7 can improve makespan. Obviously if more than one change is made on 7y,
the makespan cannot be improved. Lemma 3.3 follows. O

By Lemmas 3.2 and 3.3, we see 3.1 finds an optimal batch set and assigns the batches in an optimal way,
therefore, 3.1 finds an optimal Cp,.x. Now we analyze the time complexity of 3.1. Step 1 is to order n jobs and
the time complexity is O(nlogn). Step 2 is to assign n jobs in batches and the time complexity is O(n). Step 3
is to order K batches and the time complexity is O(nlogn) since K < n. Therefore, the performance of 3.1 is
as follows.

Theorem 3.4. Algorithm 3.1 finds an optimal makespan for II; in O(nlogn) time.

4. APPROXIMATION ALGORITHM FOR II,

In this section, we consider IIy, i.e., II5 : 1|BLE, batch, s;,t; = 1|Cax. Jobs have non-identical sizes but the
same processing time of 1. As shown in Proposition 1, the problem is NP-hard in the strong sense. We propose
the following Algorithm 4.1.

Algorithm 4.1.

Step 1. Order the jobs in non-increasing order of their sizes and relabel them as 1,... n.

Step 2. Assign jobs into batches using First Fit rule. Create the first empty batch b; and put job 1 in it. Then
check all the following jobs one by one as follows. If the total size of jobs is no more than D when putting j
in by, then assign j in by. Otherwise go to check the next job. When all the jobs are checked, b; is obtained.
Then create the second empty batch by and check the remained jobs. Repeat creating empty batches until
there is no job left. The obtained batch list is by,...,bx.

Step 3. Process batches in the order of by,...,bx.

Steps 1 and 2 are equivalent to the famous First Fit Decreasing rule for Bin Packing Problem. Dosa et al. [6]
show that the bound of FFD is Nrpp < 19—1NopT + %, where Nppp represents the number of bins obtained by
FFD and Nopr represents the optimal number of bins. By the conversion before Proposition 2.1 in Section 2,
we have the following proposition.

Porposition 4.2. Algorithm 4.1 finds a solution mo with K < %K* + %

In II,, each job has a unit processing time and so T}, = max{t; : j € by} = 1. By (2.3),

K
Y=Y Ti=K (4.1)
k=1

and

K K
0= KT, = k. (4.2)
k=1 k=1

Lemma 4.3. In my, v < 1.57%, i.e., S0 Tp < 15525 Ty
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Proof. We analyze v and v* in the following three cases where K* =1, K* = 2 and K* > 3, respectively.

Case 1: K* =1.
This implies that all the jobs can be assigned in one batch, that is, >
since jobs can also be assigned in one batch. Thus

n

j=18; <D.In this case, mo is optimal

v
— =1 (4.3)
'Y*
Case 2: K* =2.
In this case, there are 2 batches in 5. By Proposition 4.2, K < % +
then v = v*. If K = 3, then v = 1.5v*. So when K* = 2,

2 =28 thatis, K=2or 3. If K =2,

g
L <15 4.4
= (44)

and the worst case appears when K = 3.
Case 3: K* > 3.
In this case, we have
11 s | 2
ol K gK +3 11 2 11 2 13
= <25 - < — 4 — = — = 1.445. 4.5
v K* T K~ 9+3K*_9+9 9 (45)

By (4.3)—(4.5), we have v/v* < 1.5. O

Now we consider §/0*, i.e., Zszl ka/zli:l k. We also investigate three cases as shown in the proof of
Lemma 4.3. When K* = 1, there is no learning effect since there is only one batch in 7. That is,

) 1«
—=—=1. 4.
o* 1« (4.6)
When K* =2, K =2o0r3. I K=2,6/0"=1.1f K =3,
0 1% 4+ 2% + 3¢ 3
2 -1 )
5+ 1o+ 20 T

Consider function ’(Oé) = 119a BZW and we have
( ) 0g 0og >0

(14 2+)2
That is, f(c) is an increasing function of a. Since o < 0, we have f(a) < f(0) = 3. So when K* =2,

(;i* =14 f(a)<1405=15. (4.7)

o) =

When K* > 3,

ﬁ k:lka

14+ ...+ K~ B (K*+1)a+...+KC¥

1a+...+<K*)a 1a+...+(K*)a

(K" + )UK -K*) | K-K' K (4.8)

SK*+2 11 2 11 2 13
9 3 _ = <

SR DA
= k=1t

IA

1+

< 4 ==
- K* 9+3K**9+9 9
= 1.445.

By the above discussion, we have the following lemma on §.
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Lemma 4.4. In m, §/6* <13/9 =15, i.e., S0 kT, < 15K koTy.
Now we obtain the performance of 4.1 when solving IIs.

Theorem 4.5. The time complexity of 4.1 is O(n?). When solving 1y, Algorithm 4.1 finds a solution with
Crnax/Clhiax < 1.5 for all instances. When the size of Ila approaches infinity, lim Cupax/Ch. = 11/9 = 1.223

Proof. The time complexity of 4.1 can be analyzed as follows. Steps 1 is to order jobs and batches and they
both cost O(nlogn) time. In Step 2, testing operations are needed for a job. Since there are n jobs, the number
of testing operations is no more than n for each job. Step 3 is executed in O(n) time. Therefore, the time
complexity of 4.1 is O(n?).

By Lemmas 4.3 and 4.4, we have Ciax/C} 1 < 1.5 for all instances. The worst case of 1.5 appears in instances
where K* = 2 and K = 3, however, in all the other cases, Ciyax/Cih i < 1.5.

Response: By (4.5) and (4.8), we have v/7* < 4 + 2= and §/6* < L + 32+, So when the size of I,
approaches infinity,

. Chax . Cmax .11 2 11
1 = 1 < 1 - = . 4.
Jim T = dm S < dm St e = (4.9)
Theorem 4.5 follows. O

By (2.3), Cax = MZle T, + (1 - M) 2521 k*Ty, where 0 < M < 1. When M decreases, the leaning
effects become more important in the production. If M = 0, we find Cyax = Zszl k*T}. Observe the proof of
Lemma 4.4, we have Ciax/Cmax+ < 1.445 which is better than the ratio in Theorem 4.5. This indicates that
learning effects have positive influence on the productivity. If workers are well trained and perform in a good way,
they can improve the production system effectively. However, by (4.8), we find that if o decreases, Algorithm 4.1
can find a better objective function. A smaller o means workers are better in learning and working, so better
workers can make a better production performance, i.e., a smaller makespan.

5. APPROXIMATION ALGORITHM FOR THE GENERAL PROBLEM

Now we consider the general problem II3, i.e., 1|BLE, batch, s;,¢;|Cmax. In this problem, jobs have non-
identical sizes and processing times at the same time and the problem is NP-hard in the strong sense as shown
in Proposition 2.1. We propose the following algorithm to solve II3.

Algorithm 5.1.

Step 1. Order the jobs in non-increasing order of processing times relabel them as 1,...,n.

Step 2. Assign jobs in batches using First Fit rule as Step 2 of Algorithm 4.1. The obtained batches are
Bl,BQ...,BK with T1 Z TQ Z ...TK.

Step 3. Reverse the order of the batches and relabel them as by,...,bx. Then process by, ...,bx one by one.
The obtained solution is 73 and the makespan is Ciax.

Since jobs have non-identical processing times, we order them by processing time first and then assign them
in batches in 5.1. Xia and Tan (2010) show that the performance of First Fit for Bin Packing Problem is
FF < %OPT, where FF represents the number of bins found by FF and OPT represents the optimal number
of bins. In 5.1, Step 1 makes jobs ready for assignment and Step 2 is to assign them in batches. Since in Step
2 we only assign jobs in batches by their sizes, it is equivalent to First Fit for Bin Packing Problem. Therefore,
we obtain the following proposition.

Porposition 5.2. Algorithm 5.1 finds a solution w3 with K < 1—72K*

Since K < 1—72K* < 2K*, we can add (2K* — K) empty batches to the batch list of m3. An empty batch does
not cost processing time or machine capacity and it is designed for the convenience of the following analysis.
Now the batch list is {b1,...,bx,brt1,-..,bak+}, where the latter (2K* — K) batches are empty batches.
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Lemma 5.3. If we order the batches in w3 and w5 in non-increasing order of processing times, then To, <
Top—1 <TF forallk=1,...,K*".

Proof. Since batches are ordered in non-increasing order of processing times, 73 > Tb > --- > Thi« and
Ty > T3 > -+ > Tk.. Find job ¢ which makes >-f 1s; < (z—1)D and >j=18; > (= 1)D in the job list

obtained by Step 1 of 5.1. Here z is and arbitrary batch number, i.e., x € {1,..., K}. Now consider the position
of ¢ in 73. If ¢ is assigned in a batch of b}, b3, ..., b}, then at least one job with a longer processing time should

be assigned in b, since Z‘JZ;} s; < (x—1)D. By (2.1), T} > t4. If ¢ is not assigned in b}, b3, ..., b%, then we also
have T); > t,. So we obtain

T, > t,. (5.1)
In 73, we will show jobs 1,. .., q are all assigned in by, bo, . . . , ba,.. Consider the worst case where the most batches
are needed to accommodate jobs 1,...,q. The worst case appears when any two jobs cannot be combined in

a batch, that is, s; +s; > D for any ¢ # j. In the worst case, the number of batches is the same as the case
where each job has the same size s and s > D/2. Obviously at most (¢ — 1) batches are needed to assign jobs
1,...,(¢g — 1). Since Z‘;;} s; < (x —1)D, we have ¢ — 1 < (z —1)D/s < 2(z — 1). This implies that jobs
1,...,(qg — 1) can be assigned in by,...,baz_o, i.e., ¢ can be assigned in by, _1 because ¢ is the longest job in
the remained jobs and has priority to be assigned. So in the worst case Th,—1 = t4 and in the other cases, jobs
1,...,q can be assigned in fewer batches. Therefore,

T2:c—1 S tq- (52)

By (5.1) and (5.2), Ts;—1 < T. Because batches are ordered in non-increasing order of processing times, we
have Ty, < T5,—1 < T . Here b, represents an arbitrary batch and hence Tp;, < Tor—q < T} O

By Lemma 5.3, we analyze the performance of 5.1 when solving II5. The objective function is shown in (2.3),
and we first analyze v/+* and then §/5*.
In order to find a bound of v/v*, we consider two cases where K* < 3 and K* > 4, respectively.

Case 1: K* < 3.

Case 1.1: K* = 1. In this case, all the jobs can be assigned in one batch, and K = 1. Thus v = v* = max{¢; :
j=1,...,n}.

Case 1.2: K* = 2. By proposition 5.2, K < % X2 = 2—74, 1.e., K < 3. Now consider the worst case where K = 3.
In the batch list obtained by Step 1, consider job y which makes Z;’;ll s; < D and 2?21 s; > D as shown in
Figure 2. 3 is shown on the left side and 73 is shown on the right. Since t; > to > --- > ¢, TT =t; and Ty >t
in 73. By contrast, in 73, 1,...,(y — 1) are all assigned in b; since Z;”;ll sj < D. Therefore, Th = t; = 17,
T, =t, =Ty and T3 < t, =Ty < T}. We obtain

T +To+Ts Ti+T5+T T T 1
T _nthrds Bt g I8 oy 8 oyl (5.3)
R T + T3 T+ T3 275 >

If K* =2 and K = 2, « is optimal by the above discussion.

Case 1.3: K* = 3. Now K < % X 3 = 3—76 and we also consider the worst case where K = 5. Similar to
Case 1.2, find the special job y and we have T = ¢, = 17 and Ty = T, = Tj. For the rest batches, we
analyze their processing times using (2.4), that is, 7 = tmin/tmax. Because tmin = min{p; : j = 1,...,n} and

. T* . .
tmax = max{p; : j = 1,...,n}, we have tmin < T} < tmax for any k =1,..., K*. Thus, 7 < ta:‘—; < Imin — g,

P Ty — tmax
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FIGURE 2. The case where K* = 2 and K = 3.

So
Y 7T1+T2+T3+T4+T5 7Tf+T;+T3+T4+T5

v Ty + Ty +T; - Ty + Ty + T3

2

<T1*+T2*+T3+T4+T§‘7 T3+ 1Ty
- T+ Ty + T3 T+ Ty + T3 (5.4)
2T 2 ’
<1+ = " =1+ = <1+
Ty +15 + T3 2+T* 247
B r
a r+2

Case 2: K* > 4. By Lemma 53, the batch list in T3 is {bl,bg,... ,bgk_l,bgk,...,bgK*_l,bgK*}, which is
corresponding to {b},...,b5.,..., b5} in w3 and Top < Top—q < T for k=1,..., K*. In 73, batches bap_1, boy
point to by in 73 for each k= 1 , K* if K = 2K™ holds. However, by Proposition 5.2 we find K < %K*,
that is, there are less than 2K* batches in m3. Since two consecutive batches in w3 points to one batch in 73,

the last batch bx in w3 does not point to by in 73 but b} with v* < K*. Here

=

The batches with indexes larger than |12 K*| are all empty batches, i.e., T, = 0 for k > [22K*]. By (5.5), we
have L1—72K*J = 2u* or 2u* — 1, hence K = Ll—zK*J < 2u*. So

12K*J

L2 57+ g even
hWﬁ+D k) 55

[22K*] is odd.

[SIESIE

o Zk 1 Zk 1(T2k 1+ Tar)
ry* Zk . T* - Zk . T*
2 ZZ:1 _ 2
_— ’U,* * K* « - . 1+ +T* -
D=t T+ 20w n Tf 1+ T++7+TK (5.6)
2 2
< e < —
1+ # 1+ T
u 1 max
2

u*

1+ (B —1)r
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TABLE 1. Bounds of v/v* for K* =4,5,6,7.

K* 5 6 7

* 48 60 72 84
R2K*/7 2 i kA kA
|[12K*/7| 6 8 10 12
u” 3 4 5 6

* * 4 5 6 7

K /*u g 2r éz 2r 23 2r g 2r
v/ ~ T3 ~ rt4 ~ rt5 ~ r+6

TABLE 2. Bounds of v/v* for K* = Tm + i.

K Tm+1 Tm+ 2 Tm+ 3 Tm + 4 ™m+5 m + 6 ™m+T7
Z2K* Lm+2  D2m+% D22m+3% Dm+¥ D2m+ P D2m+ 2 12m+12
L1—72K*j 12m +1 12m+ 3 12m +5 12m + 6 12m + 8 12m + 10 12m + 12
u* 6m+ 1 6m + 2 6m+ 3 6m + 3 6m +4 6m +5 6m + 6
K*/’LL* Tm+1 Tm+2 Tm—+3 Tm+4 Tm+5 Tm+6 7

" 6m—+1 - 6m—+1 o 6m—+3 o 6m+3 o 6m—+4 o 6m—+5 - 6 o
v/ 2o ez 2T ez T rerE 2T vz T rH6+ D i E 27 rye

If K* =4, then |2K*| = [2| = 6. By (5.5) we find u* = 3 and by (5.6),

¥ 2 2r
LA QU B ——
YT+ (3-1)r r+3

In the similar way, we obtain the bound of v/+* as shown in Table 1 for K* € {4,5,6,7}.
Here 0 <7 < 1. If r = 1, tiin = tmax, which implies that all the jobs have the same processing time. Since

for K* € {4,5,6,7}, the difference between K* and u* is one unit, and 2 — riZ* =2 1+2ﬁ is an increasing

function of u*, the worst ratio of v* appears when K* = 7.
Lemma 5.4. When there are no more than seven batches in 75, v/v* < 12/(r + 6).

Now we consider the case where K* > 8. In this case we can find two positive integers m and i to make
K* ="7Tm+i where 1 < i < 7. As in the analysis of Case 1.4, the results of /~* are shown in Table 2. Line 1
shows the value of K*. Lines 2 and 3 show the value of 22 K* and |12 K*|. Line 4 shows the value of u* which is
obtained from (5.5) and line 5 shows the ratio of K*/u*. Line 6 shows the bound of «/+* which can be obtained
from (5.6).

For a given m, the bounds of v/v* are shown in Line 6 of Table 2 and we find that the worst result is

2 — T+21# which appears when i = 6, i.e., K* = 7m + 6. Since 2 — H_g:_% is a decreasing function of m, the

worst bound appears when m = 1 and ¢ = 6, that is K* = 13. So when K* > §,
2 24
T —9_ " : (5.8)
¥ T y*lK*=13 r+64+6 r412

Lemma 5.5. When there are more than seven batches in w5, v/v* < 24/(r + 12).

By Lemmas 5.4 and 5.5, we only need to compare 12/(r +6) with 24/(r +12) and then we can find the upper
bound of «/v* for all K*. Since

12 24 1
r+6 r+12  (r+6)(r+12)

<0, (5.9)

we have the following theorem.
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Theorem 5.6. For any instance of I3, v/v* < 24/(r + 12).

Now we investigate the ratio of §/6*, that is, Zszl k“Ty/ Zi:l k*T}:. By Lemma 3.3, we find in an optimal
solution 73, batches are ordered in non-decreasing order of processing times. That is 77 < Ty < --- < Tg.,.
Actually, since we have added (2K* — K) empty batches in our solution 73 and batches are ordered in non-
decreasing order, T} = --- = Tog+«_x = 0. That is, by,...,bog+_k are all empty batches. By Lemma 5.3, for
any k=1,...,K*

Top—1 < To, <T}. (5.10)

Theorem 5.7. For any instance of I3, 6/0* < 14 2%, where « is the learning index and o < 0.

Proof. First we define the following function

(2k — 1)* + (2k)*

fay = e (5.11)
We have N
Foy = R ”;J“ @R _ (2 - ]16) +20. (5.12)
Since a < 0, X
fooy = % <. (5.13)

This implies that f) is a decreasing function of k., i.e., f) < f(1). So

§ 1Ty +2°Ty + -+ (2K* — 1)*Togee 1 + (2K*)*Togc-

o* 19T + - + (K*)oT.
_ (2K = 1)° Ty + (20)° o)
= e -
> k=1 KT,
K~ *
S (k- )+ @R))T .
- i keTy (5414
K~ *
< >kt f KT
_— K* @ *
k1 KT,
ZkKjl fa)k*Ty;
<SS L Tl =1
je1 BT,
Theorem 5.7 follows. O
By Theorems 5.6 and 5.7, the performance guarantee of 5.1 is max{%, 1+ 2%}, Since
24 12—r
—(1+2%) = — 2%, 5.15
r+12 (1+2%) 12 +r ( )
So
i 24 24 <1 12—r
Cmax 1o e A ek A R (5.16)
Cr ax r+12 1+2% a>logy 57

Observe (5.16) and we have g‘“a" < 2 regardless of the value.

*
m
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FIGURE 3. Performance influenced by r.

Theorem 5.8. When solving 113, Algorithm 5.1 can find a solution with % < max{ M1+ 2"“} < 2in

max r+12 ’
O(n?) time, where C;

rax 18 the optimal makespan.

Now we analyze the evolution of performance of 5.1 caused by K*, r and « respectively, which are key
parameters of the problem. First, the worst result of v/v* is rﬁz which appears when K* = 13 as shown in
Lemma 5.5. When K* = 1, Algorithm 5.1 is optimal. When K* > 13, the performance guarantee is better
than %. This implies that a better demand can bring a better production efficiency. In order to improve the
production system, marketing should be improved first. When more products are needed, the makespan can be
reduced even better. In view of the problem scale, the operations department of a manufacturing company is
not isolated from the other departments but closely related to the other departments, especially the marketing

department.

Second, by Theorem 5.6 the influence of r on the production efficiency is shown in Figure 3. The performance
guarantee of 5.1 is a decreasing function of , which is the ratio of ¢;,in /tmax. That is, the performance becomes
better when r increases. A larger » means more differences between products, i.e., the customers have different
requirements on the processing times. Therefore, diversity of products makes it difficult to optimize the produc-
tion system. For the decision makers, it is important to find a trade-off between the diversity of products and
production efficiency. Diversity of products can improve customer’s satisfaction and custom-made products are
even better, however, the diversity makes it difficult to improve makespan simultaneously. On the other aspect,
we find that the performance of 4.1 is better than 5.1 and the reason is that jobs have the same size in IIy but
different sizes in II5. It also implies the diversity of products brings difficulty to the production system.

Third, the learning effects have an obvious influence on the performance of 5.1 as shown in Figure 4. The
performance guarantee is an increasing function of «, that is, Algorithm 5.1 performs worse when a becomes
larger. A larger o means worse learning effects, i.e., the workers cannot improve their abilities effectively. Workers
are the leading factor of learning effects and thus, better workers are necessary for a better production system.
From Figure 4, we find when o = —1 the learning effects are the best and 6/6* < 1.5. However, when o — 0
there is no learning effect and §/6* < 2. For the decision makers, it is important to improve the learning effects
and design effective rules to motivate workers to enhance their skills.

Finally, by Theorem 5.8 we present the evolution of the performance by the change of r and «a as shown
in Figure 5. The worst result appears when r — 0, i.e., the differences between jobs are sufficiently large or
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F1GURE 5. Evolution of performance guarantee by the change of r and a.

a = 0, i.e., there is no learning effect for workers. For decision makers, the diversity of products and learning
effects need to be considered at the same time. As shown in Figure 5, when » — 1 and o — —1, Algorithm 5.1
performs well. The production efficiency can be guaranteed if there are effective learning effects and the diversity
of products is designed well.

6. COMPUTATIONAL EXPERIMENTS

In order to show the performance of our proposed algorithm, we conduct experiments. Since problem II3 is
the general model and is most difficult to solve, we generate random instances of II3. The parameters are set
as follows. Let D = 50, that is, the machine capacity is fixed. The sizes of jobs are classified into three levels,
S1, 52 and S3 where the size of a job obeys uniform distribution on the interval (1, 10), (1, 25) and (1, 50).
Parameter M is also classified in 3 levels where M1 = 0.1, M2 = 0.5 and M3 = 0.9 respectively. Parameter r
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TABLE 3. Experimental results of Ciyax/C

max"*

n 100 500 1000
o -0.9 -0.5 —0.1 -09 -05 -01 -09 -05 —0.1

S1M1rl 1.201 1.246 1.258 1.265 1.270 1.301 1.275 1.284 1.288
S1M1r2 1225 1.240 1.254 1.245 1.269 1.290 1.265 1.281 1.291
S1M1r3  1.267 1.278 1.296 1.278 1.287 1.295 1.283 1.290 1.321
S1M2r1 1270 1.275 1.279 1.281 1.298 1.301 1.269 1.280 1.289
S1M2r2 1.261 1.270 1.275 1.280 1.283 1.289 1.281 1.283 1.295
S1M2r3 1.265 1.271 1275 1.275 1.279 1.280 1.279 1.286 1.289
S1M3rl 1263 1.275 1.289 1.268 1.271 1.270 1.269 1.271 1.270
S1M3r2 1.271 1.289 1.286 1.274 1.290 1.294 1.281 1.281 1.285
S1M3r3 1261 1.274 1.290 1.271 1.281 1.291 1.285 1.281 1.288
S2M1rl  1.291 1.294 1.299 1.298 1.291 1.291 1.301 1.304 1.311
S2M1r2 1290 1.291 1.298 1.298 1.290 1.314 1.291 1.299 1.347
S2M1r3 1310 1.303 1.318 1.311 1.320 1.300 1.315 1.323 1.318
S2M2rl  1.301 1.327 1.321 1.332 1.323 1.317 1.324 1.341 1.321
S2M2r2 1318 1.325 1.328 1.341 1.325 1.322 1.300 1.336 1.328
S2M2r3  1.321 1.325 1.322 1.330 1.341 1.345 1.331 1.335 1.345
S2M3r1 1320 1.324 1.326 1.331 1.328 1.332 1.335 1.341 1.328
S2M3r2  1.340 1.338 1.338 1.331 1.332 1.300 1.341 1.340 1.351
S2M3r3  1.356 1.367 1.398 1.320 1.371 1.384 1.398 1.381 1.391
S3M1rl  1.381 1.361 1.388 1.390 1.458 1.401 1.411 1.461 1.410
S3M1r3 1440 1.451 1.500 1.419 1.443 1429 1432 1.480 1.481
S3M2r1 1481 1491 1430 1.541 1.436 1.438 1.447 1.451 1.472
S3M2r2 1.581 1.498 1.4485 1.473 1.491 1.468 1.500 1.428 1.439
S3M2r3 1480 1.529 1.521 1471 1.520 1.503 1.532 1.528 1.537
S3M3rl  1.583 1479 1.581 1.561 1.520 1.473 1.526 1.548 1.623
S3M3r2 1535 1.562 1.534 1.526 1.545 1.594 1.530 1.537 1.542
S3M3r3 1.541 1.524 1.538 1.543 1.500 1.547 1.628 1.523 1.526

indicates the difference between processing time of jobs and three levels of r are tested where r1 =1, 72 = 5 and
r3 = 10. So an instance is denoted by SaMbrc, where a,b,c = 1,2, 3. For example, instance S2M 173 represents
an instance where job sizes obey uniform distribution on (1, 25), M = 0.1 and r = 10. We run each instance
20 times and show the average value of Cax/C}h o, Where CF s represented by a lower bound since II3 is
NP-hard in the strong sense. Obviously the actual results are better than the presented results since the lower
bound is better than C} ... Let R represent the worst case ratio of 5.1.

The results are presented in Table 3, where different scales of instances are tested. Line 1 shows the scale of
the instances where n = 100, 500 and 1000 respectively. In each scale, we consider three levels of learning effects
where o = —0.9, —0.5 and —0.1 respectively as shown in Line 2. Then we present the worst-case ratio of our
algorithm in all 27 instances. From the results we find the learning effects influence the results obviously. In
most cases, the performance becomes better when o becomes larger, that is, there are better learning effects.
The best result is 1.201, which appears in the instance S1M1r1l. The worst result is 1.628, which appears in
the instance S3M3r3. Since the optimal C7 . is replaced by a lower bound, the actual results are better than
those in Table 3. We find that even in the largest instance, the worst case ratio is strictly less than 2, which

demonstrates the effectiveness of our proposed algorithm.
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7. CONCLUSIONS

In this paper, we investigate the problem of scheduling a single batch-processing machine with learning effects.
Motivated by applications in real industries such as porcelain companies, electroplating companies, food making
companies and metal working companies, we propose batch-position-based learning effects. Jobs are assigned
in batches and then batches are processed one by one. Workers become more and more skillful after they have
processed batches repeatedly, which makes the actual processing time of a batch less than its normal processing
time. We propose problems of minimizing makespan with batch-position-based learning effects and provide
effective algorithms. Three problems are considered where the second and third problems are both NP-hard in
the strong sense. We provide an algorithm for the first problem and approximation algorithms for the NP-hard
problems. The time complexity and performance guarantees are analyzed and the evolution of the performance
is shown.

For future research, many interesting problems keep open and deserve investigation. First, scheduling mul-
tiple batch-processing machines with learning effects is an interesting direction. Since the general problem of
scheduling a single batch-processing machine is NP-hard in the strong sense, the problem of scheduling multiple
batch-processing machines is also NP-hard in the strong sense. The problems are more difficult to solve and
approximation algorithms need further investigation. Second, the supply chain scheduling problem with learning
effects is an interesting direction. In this paper, we only consider the production part, however, the inventory and
distribution parts are also important for manufacturers for minimizing operational cost and serving customers.
As in the production part, learning effects also exist in the inventory and distribution parts and need investiga-
tion. Therefore, the supply chain scheduling problem is more complex and the algorithms deserve more study.
Finally, the management methods are also interesting for research. Since workers become skillful gradually in the
supply chain system, effective motivating methods deserve investigation. Such a method can motivate workers
to improve their learning effects, which is important to the operations of the manufacturers. The derivation of
the management methods relies on further research on learning effects of workers and optimization methodology
on supply chain.
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