
RAIRO-Oper. Res. 55 (2021) S253–S269 RAIRO Operations Research
https://doi.org/10.1051/ro/2019108 www.rairo-ro.org

OPTIMIZING BATCH-PROCESSING OPERATIONS WITH
BATCH-POSITION-BASED LEARNING EFFECTS

Leilei Tai∗

Abstract. Motivated by applications in porcelain-making companies, we consider a type of optimiza-
tion problems for batch-processing operations. In production, a single batch-processing machine with
a fixed capacity is used to process jobs. Several jobs can be processed together if their total size is no
more than the machine capacity. Batch-position-based learning effects are considered because workers
become skillful gradually after they perform the processing task repeatedly. The actual processing time
of a batch is a decreasing function of its position in production. The objective is to minimize makespan
and we consider three different problems. In the first problem, jobs have identical sizes and we present
an algorithm which can find optimal solutions in polynomial time. In the second problem, jobs have
identical processing times and we show the problem is NP-hard in the strong sense. We propose an
approximation algorithm with an absolute performance guarantee of 1.5 and asymptotic performance
guarantee of 1.223. In the third problem, jobs have non-identical sizes and processing times simultane-
ously. We propose an algorithm with an absolute and asymptotic performance guarantee of 2. Besides,
we present the evolution of the performance guarantee and provide managerial insights for decision
makers of manufacturing companies.

Mathematics Subject Classification. 90C97.

Received February 26, 2019. Accepted November 10, 2019.

1. Introduction

Learning effects have aroused a lot of interests of researchers in the recent two decades. By contrast to classical
problems, the behavior of workers is considered in optimization problems with learning effects. That is, when
a worker performs the same task repeatedly, he or she becomes skillful gradually and can finish a task more
and more quickly. This is particularly true in the manufacturing companies with batch-processing machines
and non-identical job sizes such as electroplating companies, porcelain companies, metal working companies,
food making companies and so on. In this type of manufacturers, jobs have non-identical processing times and
sizes. Batch-processing machines are used to process jobs and each machine has a fixed capacity. Jobs can
be processed together in a batch as long as the total size of jobs does not exceed the machine capacity. The
processing of a batch cannot be interrupted until all the jobs in it are completed, therefore, the processing time
of a batch equals to the longest processing time of jobs in it. Since jobs need to be assigned in batches before
being processed, the workers’ ability is very important to improve the production efficiency. When a worker
conducts the operations repeatedly, he or she can reduce the processing time gradually.

Keywords. Optimization, learning effects, batch processing, scheduling, heuristics.

Anhui University of Traditional Chinese Medicine, Hefei 230012, P.R. China.
∗Corresponding author: 8499640@qq.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2019108
https://www.rairo-ro.org
mailto:8499640@qq.com
https://www.edpsciences.org

S254 L. TAI

Take the porcelain companies for example. The key operation of the production of porcelains is the calcination,
which is conducted in a calcination oven. Learning effects are important to improve the efficiency of calcination.
First, the workers need to check the semi-products and judge whether they are qualified to be processed. The
semi-products are made of clay and have different sizes. A Skillful worker can finish the judgement in a short
time but an apprentice often spends a longer time. Then the semi-products are assigned in batches, which are
processed one by one in the oven. The oven has a large size to accommodate semi-products, which are burned
in at a high temperature around 2000 degrees Fahrenheit and the calcination cannot be interrupted until all
the semi-products are processed. When filling a batch of semi-products in the oven, each semi-product should
be put in a proper position to improve the product quality and energy utilization. A skillful worker can also
finish the filling operation fast but a new worker often needs more time. Finally, skillful workers can make a
correct decision on the completion time, that is, the time when all the semi-products are completed but a new
worker cannot. By the above introduction, we find that the workers’ ability is important to improve makespan
and a worker is trained by the operations of batches. Skills of assigning a batch, filling a batch and processing
a batch are key operations in the calcination. Usually a worker can performs better gradually after processing
batches repeatedly. Therefore, we propose batch-position-based learning effects for this type of manufacturers.
The objective is to minimize makespan with batch-position-based learning effects.

The current research focuses on the classical scheduling [21], i.e., a machine processes one job or a fixed
number of jobs at a time. Biskup [2] proposes the scheduling model with learning effects where tAj = tj l

α. tj
represents the normal processing time of job j, tAj represents the actual processing time if j is assigned as the
lth job to be processed in production. α represents the learning index and α < 0. DeJong’s learning effects [5]
are also widely used in the research of scheduling and the processing time is defined as tAj = tj(M + (1−M)lα),
where 0 ≤ M ≤ 1 and l is the position of job j in production, i.e., j is the lth job to be processed. Koulamas
[12] studies the single-machine scheduling problem with learning effects and provides an optimal algorithm to
minimize makespan. Lee et al. [15] consider the release times in the single-machine problem and provide a
branch-and-bound algorithm. Qian and Steiner [22] consider both the learning effects and deterioration effects
and propose polynomial-time optimal algorithms. Jiang et al. [11] consider the learning effects determined by
actual processing times and job positions, where Problems of minimizing Cmax and

∑n
j=1 Cj are shown to be

NP-hard in the ordinary sense and problem of minimizing maximal lateness is shown to be NP-hard in the
strong sense. Except for the research on single-machine problems, multi-machine problems with learning effects
are also studied, such as parallel-machine problems [9, 20] and flowshop problems [14].

However, in the problem of scheduling batch-processing machines with jobs having non-identical sizes, jobs are
processed in batches and the number of jobs in a batch is not a constant. As introduced in the beginning of this
section, several jobs can be processed together as long as their total size is not more than the machine capacity.
Obviously, this type of scheduling is more difficult to optimize. The problem of minimizing makespan on a single
batch-processing machine with non-identical sizes is NP-hard in the strong sense [3]. Akiyoshi et al. [1] study
the problem with controllable processing times and propose a recursive decomposition algorithm to minimize
the production cost. Giglio [7] studies the problem with family constraint and proposes mixed-integer linear
programming models. Wang and Leung [27] study the parallel-machine problems with non-identical capacities
and propose algorithms to minimize makespan.

Cheng et al. [4] study the joint scheduling of production and distribution to minimize service span, i.e.,
the period lasting from the beginning of production to the end of product distribution. In practice, scheduling
batch-processing machines is widely applied in steel making companies. Wiebke et al. [28] consider the problem
of minimizing makespan for a given set of coils and a graph theoretic model is proposed. Tang et al. [25] consider
the problem of integrated charging and casting problem in steel making and propose optimization method on
minimizing production cost. Tan et al. [23,24] consider the integrated model of digital goods. Li and Petruzzi [17]
consider the model with demand uncertainty. Then, Liu et al. [19], Hidayat et al. [8] and Li [16] consider the
parallel-machine model to minimize the maximal lateness, which is NP-hard in the strong sense. However, no
research has been found on the scheduling of batch-position-based learning effects.

OPTIMIZING BATCH-PROCESSING OPERATIONS S255

In this paper, we consider the batch-position-based learning effects on a single batch-processing machine
and propose three problems. Polynomial time algorithms are proposed and the performance guarantees are
analyzed. The remainder of this paper is organized as follows. In Section 2, we present the scheduling problem
with batch-position-based learning effects and show the computational complexity. In Section 3, we propose
an algorithm for the problem with identical job sizes to find optimal solutions. In Section 4, we propose an
approximation algorithm for the problem with identical processing times. In Section 5, we consider the general
problem and propose an approximation algorithm. In Section 6, we conclude this paper and present directions
for future research.

2. Problem description

The problem under investigation can be described as follows. There are n jobs to be processed and the job
set is J = {1, . . . , n}. Job j has a processing time of tj and a size of sj . In production, jobs are assigned in
batches and the batch set is B = {b1, . . . , bK}, where K is the number of batches and bk represents the kth
batch. The machine capacity is D and for any batch bk,

∑
j∈bk sj ≤ D. The normal processing time of bk is

Tk = max{tj : j ∈ bk}, (2.1)

i.e., the processing of a batch cannot be interrupted until all the jobs are completed. Because of the learning
effects, the workers become more and more skillful and the actual processing times of the latter batches are
shorter than their normal processing times. The actual processing time of bk is defined as

TAk = (M + (1−M)kα)Tk. (2.2)

Here 0 ≤ M ≤ 1 and is a constant. α is the learning index and α < 0. k is the position of batch bk and the
learning effects are called batch-position-based learning effects. The makespan is

Cmax =
K∑
k=1

TAk =
K∑
k=1

(M + (1−M)kα)Tk

= M

K∑
k=1

Tk + (1−M)
K∑
k=1

kαTk

= Mγ + (1−M)δ,

(2.3)

where γ =
∑K
k=1 Tk and δ =

∑K
k=1 k

αTk for simplicity. Since α < 0, we have γ > δ. We denote the learning
effects as BLE. Let tmin = min{tj : j ∈ J} and tmax = max{tj : j ∈ J}. Define r as

r =
tmin

tmax
, (2.4)

where 0 < r ≤ 1 and a larger r means a wider difference between the maximal and minimal processing time.
We consider three different problems in this paper where the production constraints are different. A scheduling
problem can be denoted as η1|η2|η3, where η1 represents the machine configuration, η2 represents the production
constraints and η3 represents the objective function. The problems under investigation can be denoted as follows.

Π1 : 1|BLE,batch, sj = 1, tj |Cmax

Π2 : 1|BLE,batch, sj , tj = 1|Cmax

Π3 : 1|BLE,batch, sj , tj |Cmax

In the three problems, there is one batch-processing machine and jobs can be processed in batches. Batch-
position-based learning effects are considered and the objective is to minimize makespan. But the production
constraints are different. In Π1, jobs have the same size of 1 but non-identical processing times while in Π2,

S256 L. TAI

jobs have non-identical sizes and unit processing times. Π3 is the general problem where jobs have non-identical
sizes and non-identical processing times at the same time. Next we analyze the computational complexity of
the problems.

We will present an optimal polynomial-time algorithm for Π1 in Section 3. Now we analyze the computational
complexity of Π2. Consider a special case Πs

2 where M = 1. Cheng et al. [3] have shown that Πs
2 is NP-hard in

the strong sense. Since Πs
2 is a special case of Π2 which is also a special case of Π3, in computational complexity

Πs
2 ∝ Π2 ∝ Π3. We have the following proposition.

Porposition 2.1. Π2 and Π3 are both NP-hard in the strong sense.

3. Algorithm for Π1

In the following content, we use Ai and πi(i = 1, 2, 3) to denote our algorithm for solving Πi and the
corresponding solution, respectively. For simplicity, we use “*” as the optimality operator. For example, π∗1
represents an optimal solution of Π1 and K∗ represents the number of batches in an optimal solution. In this
section, we consider problem Π1, i.e., 1|BLE,batch, sj = 1, tj |Cmax. We propose the following Algorithm 3.1 for
Π1.

Algorithm 3.1.

Step 1. Order the jobs in non-increasing order of their processing times tj and relabel them as 1, . . . , n.
Step 2. Assign the first D jobs in the first batch B1. Then repeat to assign the next D jobs in a batch until

the number of remaining jobs is no more than D. Then assign them in the last batch. The obtained batch
set is {B1, . . . , BK}.

Step 3. Order the batches in non-decreasing order of their processing times and relabel them as b1, . . . , bK .
Process them one by one in the order.

Algorithm 3.1 finds an optimal number of batches because each job has a size of 1, the optimal number of
batches is K∗ = dn/De. Observe Steps 1 and 2 of 3.1 and we have K = dn/De, i.e., K = K∗.

Lemma 3.2. If we order the batches of π∗1 in non-decreasing order of their processing times and relabel them
as b∗1, . . . , b

∗
K∗ , then Tk ≤ T ∗k for k = 1, . . . ,K∗.

Proof. In Figure 1, π1 are shown on the left side, where a batch is represented by a large rectangle and a job
is represented by a small rectangle in it. The length and the height of a rectangle denote the processing time
and the size respectively. In Figure 1, small rectangles have the same height since all jobs have the same size.
If any change is made on π1, without loss of generality, suppose jobs x and y are swapped, where y ∈ bg and
x ∈ bh satisfying ty < tx and g < h. The obtained solution is πs1 as shown on the right side of Figure 1. By
(2.1), Tg ≥ ty and Th ≥ tx. Since batches are ordered in non-decreasing order of processing times and g < h,
we have Tg ≤ Th.

Now we consider the following four cases.

Case 1. ty = Tg and tx = Th, that is, y is the longest job in batch bg and x is the longest job in bh. In this
case, after swapping x and y we have Tg = tx = T sh and Th = tx = T sy . So Tg + Th ≤ T sg + T sh .

Case 2. ty = Tg and tx < Th, that is, y is the longest job in bg but x is not the longest job in bh. After swapping
we have Tg = ty < tx = T sg and Th = T sh .

Case 3. ty < Tg and tx = Th. After swapping we have Tg ≤ T sh and Th = Tx = T sg .
Case 4. ty < Tg and tx < Th. After swapping we have Tg < tx = T sg and Th = T sh .

By the above analysis, we find in all the cases,

Tg + Th ≤ T sg + T sh . (3.1)

OPTIMIZING BATCH-PROCESSING OPERATIONS S257

1

…
…
...

…

x

…
…

y

…
…
..

…
..

n-D+1

…

n

…

Swap x and y

b1
s

bg
s

bh
s

bK
s

π1
π1
s

1

…
…
...

…

x

…
…

y

…
…
..

…
..

n-D+1

…

n

…

b1

bg

bh

bK

Figure 1. Swapping any two jobs in π1.

Since Cmax =
∑K
k=1 Tk, we have Cmax ≤ Csmax. It is easy to see that if x and y are in the same batch,

Cmax = Csmax. So any change on π1 cannot improve the makespan.
Obviously, If more than two jobs are swapped, Lemma 3.2 also holds in the same way. This completes the

proof. �

Lemma 3.3. Given a batch set {b1, . . . , bK}, processing them in non-decreasing order of processing times min-
imizes makespan.

Proof. Since the batches are given, they can be handled as jobs. By Lemma 3.2,

γ =
K∑
k=1

Tk =
K∗∑
k=1

Tk ≤
K∗∑
k=1

T ∗k = γ∗. (3.2)

Now we show δ =
∑K
k=1 k

αTAK is also optimal by contradiction. In π1, batches are ordered in non-decreasing
order of processing time, i.e., T1 ≤ T2 ≤ · · · ≤ TK . Suppose bg and bh are interchanged and the new solution is
π′. Without loss of generality, let g < h. Then

δ − δ′ =
K∑
k=1

kαTAk −

(
K∑
k=1

kαTAk

)′

=

g−1∑
k=1

kαTk + Tgg
α +

h−1∑
k=g+1

Tkk
α + Thh

α +
K∑

k=h+1

Tkk
α


−

g−1∑
k=1

kαTk + Thg
α +

h−1∑
k=g+1

Tkk
α + Tgh

α +
K∑

k=h+1

Tkk
α


= Tgg

α + Thh
α − Thgα − Tghα

= (Tg − Th)(gα − hα) ≤ 0

(3.3)

S258 L. TAI

since α < 0 and 0 < g < h. That is,
δ ≤ δ′. (3.4)

By (2.3), (3.3) and (3.4)

Cmax = Mγ + (1−M)δ ≤Mγ′ + (1−M)δ′ = C ′max, (3.5)

which implies that no change on π1 can improve makespan. Obviously if more than one change is made on π1,
the makespan cannot be improved. Lemma 3.3 follows. �

By Lemmas 3.2 and 3.3, we see 3.1 finds an optimal batch set and assigns the batches in an optimal way,
therefore, 3.1 finds an optimal Cmax. Now we analyze the time complexity of 3.1. Step 1 is to order n jobs and
the time complexity is O(n log n). Step 2 is to assign n jobs in batches and the time complexity is O(n). Step 3
is to order K batches and the time complexity is O(n log n) since K ≤ n. Therefore, the performance of 3.1 is
as follows.

Theorem 3.4. Algorithm 3.1 finds an optimal makespan for Π1 in O(n log n) time.

4. Approximation algorithm for Π2

In this section, we consider Π2, i.e., Π2 : 1|BLE,batch, sj , tj = 1|Cmax. Jobs have non-identical sizes but the
same processing time of 1. As shown in Proposition 1, the problem is NP-hard in the strong sense. We propose
the following Algorithm 4.1.

Algorithm 4.1.

Step 1. Order the jobs in non-increasing order of their sizes and relabel them as 1, . . . , n.
Step 2. Assign jobs into batches using First Fit rule. Create the first empty batch b1 and put job 1 in it. Then

check all the following jobs one by one as follows. If the total size of jobs is no more than D when putting j
in b1, then assign j in b1. Otherwise go to check the next job. When all the jobs are checked, b1 is obtained.
Then create the second empty batch b2 and check the remained jobs. Repeat creating empty batches until
there is no job left. The obtained batch list is b1, . . . , bK .

Step 3. Process batches in the order of b1, . . . , bK .

Steps 1 and 2 are equivalent to the famous First Fit Decreasing rule for Bin Packing Problem. Dosa et al. [6]
show that the bound of FFD is NFFD ≤ 11

9 NOPT + 2
3 , where NFFD represents the number of bins obtained by

FFD and NOPT represents the optimal number of bins. By the conversion before Proposition 2.1 in Section 2,
we have the following proposition.

Porposition 4.2. Algorithm 4.1 finds a solution π2 with K ≤ 11
9 K

∗ + 2
3 .

In Π2, each job has a unit processing time and so Tk = max{tj : j ∈ bk} = 1. By (2.3),

γ =
K∑
k=1

Tk = K (4.1)

and

δ =
K∑
k=1

kαTk =
K∑
k=1

kα. (4.2)

Lemma 4.3. In π2, γ ≤ 1.5γ∗, i.e.,
∑K
k=1 Tk ≤ 1.5

∑K∗

k=1 T
∗
k .

OPTIMIZING BATCH-PROCESSING OPERATIONS S259

Proof. We analyze γ and γ∗ in the following three cases where K∗ = 1, K∗ = 2 and K∗ ≥ 3, respectively.

Case 1: K∗ = 1.
This implies that all the jobs can be assigned in one batch, that is,

∑n
j=1 sj ≤ D. In this case, π2 is optimal

since jobs can also be assigned in one batch. Thus
γ

γ∗
= 1. (4.3)

Case 2: K∗ = 2.
In this case, there are 2 batches in π∗2 . By Proposition 4.2, K ≤ 22

9 + 2
3 = 28

9 , that is, K = 2 or 3. If K = 2,
then γ = γ∗. If K = 3, then γ = 1.5γ∗. So when K∗ = 2,

γ

γ∗
≤ 1.5 (4.4)

and the worst case appears when K = 3.
Case 3: K∗ ≥ 3.

In this case, we have

γ

γ∗
=

K

K∗
≤

11
9 K

∗ + 2
3

K∗
=

11
9

+
2

3K∗
≤ 11

9
+

2
9

=
13
9

= 1.445. (4.5)

By (4.3)–(4.5), we have γ/γ∗ ≤ 1.5. �

Now we consider δ/δ∗, i.e.,
∑K
k=1 k

α/
∑K∗

k=1 k
α. We also investigate three cases as shown in the proof of

Lemma 4.3. When K∗ = 1, there is no learning effect since there is only one batch in π2. That is,

δ

δ∗
=

1α

1α
= 1. (4.6)

When K∗ = 2, K = 2 or 3. If K = 2, δ/δ∗ = 1. If K = 3,

δ

δ∗
=

1α + 2α + 3α

1α + 2α
= 1 +

3α

1 + 2α
·

Consider function f(α) = 3α

1+2α and we have

f ′(α) =
3α(1 + 2α) log 3− 3α2α log 2

(1 + 2α)2
> 0.

That is, f(α) is an increasing function of α. Since α < 0, we have f(α) < f(0) = 1
2 . So when K∗ = 2,

δ

δ∗
= 1 + f(α) < 1 + 0.5 = 1.5. (4.7)

When K∗ ≥ 3,
δ

δ∗
=
∑K
k=1 k

α∑K∗

k=1 k
α

=
1α + · · ·+Kα

1α + · · ·+ (K∗)α
= 1 +

(K∗ + 1)α + · · ·+Kα

1α + · · ·+ (K∗)α

≤ 1 +
(K∗ + 1)α(K −K∗)

(K∗)αK∗
≤ 1 +

K −K∗

K∗
=

K

K∗

≤
11
9 K

∗ + 2
3

K∗
=

11
9

+
2

3K∗
≤ 11

9
+

2
9

=
13
9

= 1.445.

(4.8)

By the above discussion, we have the following lemma on δ.

S260 L. TAI

Lemma 4.4. In π2, δ/δ∗ ≤ 13/9 = 1.5, i.e.,
∑K
k=1 k

αTk ≤ 1.5
∑K∗

k=1 k
αT ∗k .

Now we obtain the performance of 4.1 when solving Π2.

Theorem 4.5. The time complexity of 4.1 is O(n2). When solving Π2, Algorithm 4.1 finds a solution with
Cmax/C

∗
max ≤ 1.5 for all instances. When the size of Π2 approaches infinity, lim

n→∞
Cmax/C

∗
max = 11/9 = 1.223

Proof. The time complexity of 4.1 can be analyzed as follows. Steps 1 is to order jobs and batches and they
both cost O(n log n) time. In Step 2, testing operations are needed for a job. Since there are n jobs, the number
of testing operations is no more than n for each job. Step 3 is executed in O(n) time. Therefore, the time
complexity of 4.1 is O(n2).

By Lemmas 4.3 and 4.4, we have Cmax/C
∗
max ≤ 1.5 for all instances. The worst case of 1.5 appears in instances

where K∗ = 2 and K = 3, however, in all the other cases, Cmax/C
∗
max < 1.5.

Response: By (4.5) and (4.8), we have γ/γ∗ ≤ 11
9 + 2

3K∗ and δ/δ∗ ≤ 11
9 + 2

3K∗ . So when the size of Π2

approaches infinity,

lim
n→∞

Cmax

C∗max

= lim
K∗→∞

Cmax

C∗max

≤ lim
K∗→∞

11
9

+
2

3K∗
=

11
9
· (4.9)

Theorem 4.5 follows. �

By (2.3), Cmax = M
∑K
k=1 Tk + (1 −M)

∑K
k=1 k

αTk where 0 ≤ M ≤ 1. When M decreases, the leaning
effects become more important in the production. If M = 0, we find Cmax =

∑K
k=1 k

αTk. Observe the proof of
Lemma 4.4, we have Cmax/Cmax∗ ≤ 1.445 which is better than the ratio in Theorem 4.5. This indicates that
learning effects have positive influence on the productivity. If workers are well trained and perform in a good way,
they can improve the production system effectively. However, by (4.8), we find that if α decreases, Algorithm 4.1
can find a better objective function. A smaller α means workers are better in learning and working, so better
workers can make a better production performance, i.e., a smaller makespan.

5. Approximation algorithm for the general problem

Now we consider the general problem Π3, i.e., 1|BLE,batch, sj , tj |Cmax. In this problem, jobs have non-
identical sizes and processing times at the same time and the problem is NP-hard in the strong sense as shown
in Proposition 2.1. We propose the following algorithm to solve Π3.

Algorithm 5.1.

Step 1. Order the jobs in non-increasing order of processing times relabel them as 1, . . . , n.
Step 2. Assign jobs in batches using First Fit rule as Step 2 of Algorithm 4.1. The obtained batches are

B1, B2 . . . , BK with T1 ≥ T2 ≥ . . . TK .
Step 3. Reverse the order of the batches and relabel them as b1, . . . , bK . Then process b1, . . . , bK one by one.

The obtained solution is π3 and the makespan is Cmax.

Since jobs have non-identical processing times, we order them by processing time first and then assign them
in batches in 5.1. Xia and Tan (2010) show that the performance of First Fit for Bin Packing Problem is
FF ≤ 12

7 OPT, where FF represents the number of bins found by FF and OPT represents the optimal number
of bins. In 5.1, Step 1 makes jobs ready for assignment and Step 2 is to assign them in batches. Since in Step
2 we only assign jobs in batches by their sizes, it is equivalent to First Fit for Bin Packing Problem. Therefore,
we obtain the following proposition.

Porposition 5.2. Algorithm 5.1 finds a solution π3 with K ≤ 12
7 K

∗.

Since K ≤ 12
7 K

∗ < 2K∗, we can add (2K∗ −K) empty batches to the batch list of π3. An empty batch does
not cost processing time or machine capacity and it is designed for the convenience of the following analysis.
Now the batch list is {b1, . . . , bK , bK+1, . . . , b2K∗}, where the latter (2K∗ −K) batches are empty batches.

OPTIMIZING BATCH-PROCESSING OPERATIONS S261

Lemma 5.3. If we order the batches in π3 and π∗3 in non-increasing order of processing times, then T2k ≤
T2k−1 ≤ T ∗k for all k = 1, . . . ,K∗.

Proof. Since batches are ordered in non-increasing order of processing times, T1 ≥ T2 ≥ · · · ≥ T2K∗ and
T ∗1 ≥ T ∗2 ≥ · · · ≥ T ∗K∗ . Find job q which makes

∑q−1
j=1 sj ≤ (x − 1)D and

∑q
j=1 sj > (x − 1)D in the job list

obtained by Step 1 of 5.1. Here x is and arbitrary batch number, i.e., x ∈ {1, . . . ,K}. Now consider the position
of q in π∗3 . If q is assigned in a batch of b∗1, b

∗
2, . . . , b

∗
x, then at least one job with a longer processing time should

be assigned in bx since
∑q−1
j=1 sj ≤ (x− 1)D. By (2.1), T ∗x ≥ tq. If q is not assigned in b∗1, b

∗
2, . . . , b

∗
x, then we also

have T ∗x ≥ tq. So we obtain

T ∗x ≥ tq. (5.1)

In π3, we will show jobs 1, . . . , q are all assigned in b1, b2, . . . , b2x. Consider the worst case where the most batches
are needed to accommodate jobs 1, . . . , q. The worst case appears when any two jobs cannot be combined in
a batch, that is, si + sj > D for any i 6= j. In the worst case, the number of batches is the same as the case
where each job has the same size s and s > D/2. Obviously at most (q − 1) batches are needed to assign jobs
1, . . . , (q − 1). Since

∑q−1
j=1 sj ≤ (x − 1)D, we have q − 1 ≤ (x − 1)D/s < 2(x − 1). This implies that jobs

1, . . . , (q − 1) can be assigned in b1, . . . , b2x−2, i.e., q can be assigned in b2x−1 because q is the longest job in
the remained jobs and has priority to be assigned. So in the worst case T2x−1 = tq and in the other cases, jobs
1, . . . , q can be assigned in fewer batches. Therefore,

T2x−1 ≤ tq. (5.2)

By (5.1) and (5.2), T2x−1 ≤ T ∗x . Because batches are ordered in non-increasing order of processing times, we
have T2x ≤ T2x−1 ≤ T ∗x . Here bx represents an arbitrary batch and hence T2k ≤ T2k−1 ≤ T ∗k . �

By Lemma 5.3, we analyze the performance of 5.1 when solving Π3. The objective function is shown in (2.3),
and we first analyze γ/γ∗ and then δ/δ∗.

In order to find a bound of γ/γ∗, we consider two cases where K∗ ≤ 3 and K∗ ≥ 4, respectively.

Case 1: K∗ ≤ 3.

Case 1.1: K∗ = 1. In this case, all the jobs can be assigned in one batch, and K = 1. Thus γ = γ∗ = max{tj :
j = 1, . . . , n}.

Case 1.2: K∗ = 2. By proposition 5.2, K ≤ 12
7 ×2 = 24

7 , i.e., K ≤ 3. Now consider the worst case where K = 3.
In the batch list obtained by Step 1, consider job y which makes

∑y−1
j=1 sj ≤ D and

∑y
j=1 sj > D as shown in

Figure 2. π∗3 is shown on the left side and π3 is shown on the right. Since t1 ≥ t2 ≥ · · · ≥ ty, T ∗1 = t1 and T ∗2 ≥ ty
in π∗3 . By contrast, in π3, 1, . . . , (y − 1) are all assigned in b1 since

∑y−1
j=1 sj ≤ D. Therefore, T1 = t1 = T ∗1 ,

T2 = ty = T ∗2 and T3 ≤ ty = T ∗2 ≤ T ∗1 . We obtain

γ

γ∗
=
T1 + T2 + T3

T ∗1 + T ∗2
=
T ∗1 + T ∗2 + T3

T ∗1 + T ∗2
= 1 +

T3

T ∗1 + T ∗2
≤ 1 +

T3

2T ∗2
≤ 1 +

1
2

= 1.5. (5.3)

If K∗ = 2 and K = 2, γ is optimal by the above discussion.
Case 1.3: K∗ = 3. Now K ≤ 12

7 × 3 = 36
7 and we also consider the worst case where K = 5. Similar to

Case 1.2, find the special job y and we have T1 = t1 = T ∗1 and T2 = Ty = T ∗2 . For the rest batches, we
analyze their processing times using (2.4), that is, r = tmin/tmax. Because tmin = min{pj : j = 1, . . . , n} and
tmax = max{pj : j = 1, . . . , n}, we have tmin ≤ T ∗k ≤ tmax for any k = 1, . . . ,K∗. Thus, T∗3

T∗2
≤ tmin

T∗2
≤ tmin

tmax
= r.

S262 L. TAI

y

…

y-

…

b2
*

3

*

…

b1
*

y-

…

b2

…

b1

b3

… y

…
...

z
...…

3

b3

Figure 2. The case where K∗ = 2 and K = 3.

So
γ

γ∗
=
T1 + T2 + T3 + T4 + T5

T ∗1 + T ∗2 + T ∗3
=
T ∗1 + T ∗2 + T3 + T4 + T5

T ∗1 + T ∗2 + T ∗3

≤ T ∗1 + T ∗2 + T3 + T4 + T ∗3
T ∗1 + T ∗2 + T ∗3

= 1 +
T3 + T4

T ∗1 + T ∗2 + T ∗3

≤ 1 +
2T ∗2

T ∗2 + T ∗2 + T ∗3
= 1 +

2

2 + T∗3
T∗2

≤ 1 +
2

2 + r

= 2− r

r + 2
·

(5.4)

Case 2: K∗ ≥ 4. By Lemma 5.3, the batch list in π3 is {b1, b2, . . . , b2k−1, b2k, . . . , b2K∗−1, b2K∗}, which is
corresponding to {b∗1, . . . , b∗k∗ , . . . , b∗K∗} in π∗3 and T2k ≤ T2k−1 ≤ Tk for k = 1, . . . ,K∗. In π3, batches b2k−1, b2k
point to b∗k in π∗3 for each k = 1, . . . ,K∗ if K = 2K∗ holds. However, by Proposition 5.2 we find K ≤ 12

7 K
∗,

that is, there are less than 2K∗ batches in π3. Since two consecutive batches in π3 points to one batch in π∗3 ,
the last batch bK in π3 does not point to b∗K in π∗3 but b∗u∗ with u∗ < K∗. Here

u∗ =

{
1
2b

12
7 K

∗c b 127 K
∗c is even

1
2

(
b 127 K

∗c+ 1
)
b 127 K

∗c is odd.
(5.5)

The batches with indexes larger than b 127 K
∗c are all empty batches, i.e., Tk = 0 for k > b 127 K

∗c. By (5.5), we
have b 127 K

∗c = 2u∗ or 2u∗ − 1, hence K = b 127 K
∗c ≤ 2u∗. So

γ

γ∗
=
∑K
k=1 Tk∑K∗

k=1 T
∗
k

≤
∑u∗

k=1(T2k−1 + T2k)∑K∗

k=1 T
∗
k

≤
2
∑u∗

k=1 T
∗
k∑u∗

k=1 T
∗
k +

∑K∗

k=u∗+1 T
∗
k

=
2

1 +
T∗
u∗+1+···+T

∗
K∗

T∗1 +···+T∗
u∗

≤ 2

1 + (K∗−u∗)T∗
K∗

u∗T∗1

≤ 2
1 + K∗−u∗

u∗ × tmin
tmax

=
2

1 +
(
K∗

u∗ − 1
)
r
·

(5.6)

OPTIMIZING BATCH-PROCESSING OPERATIONS S263

Table 1. Bounds of γ/γ∗ for K∗ = 4, 5, 6, 7.

K∗ 4 5 6 7

12K∗/7 48
7

60
7

72
7

84
7

b12K∗/7c 6 8 10 12
u∗ 3 4 5 6
K∗/u∗ 4

3
5
4

6
5

7
6

γ/γ∗ 2− 2r
r+3

2− 2r
r+4

2− 2r
r+5

2− 2r
r+6

Table 2. Bounds of γ/γ∗ for K∗ = 7m+ i.

K∗ 7m+ 1 7m+ 2 7m+ 3 7m+ 4 7m+ 5 7m+ 6 7m+ 7

12
7
K∗ 12m+ 12

7
12m+ 24

7
12m+ 36

7
12m+ 48

7
12m+ 60

7
12m+ 72

7
12m+12

b 12
7
K∗c 12m+ 1 12m+ 3 12m+ 5 12m+ 6 12m+ 8 12m+ 10 12m+ 12

u∗ 6m+ 1 6m+ 2 6m+ 3 6m+ 3 6m+ 4 6m+ 5 6m+ 6
K∗/u∗ 7m+1

6m+1
7m+2
6m+1

7m+3
6m+3

7m+4
6m+3

7m+5
6m+4

7m+6
6m+5

7
6

γ/γ∗ 2− 2r

r+6+ 1
m

2− 2r

r+6+ 2
m

2− 2r

r+6+ 3
m

2− 2r

r+6+ 4
m

2− 2r

r+6+ 5
m

2− 2r

r+6+ 6
m

2− 2r
r+6

If K∗ = 4, then b 127 K
∗c = b 487 c = 6. By (5.5) we find u∗ = 3 and by (5.6),

γ

γ∗
≤ 2

1 +
(

4
3 − 1

)
r

= 2− 2r
r + 3

· (5.7)

In the similar way, we obtain the bound of γ/γ∗ as shown in Table 1 for K∗ ∈ {4, 5, 6, 7}.
Here 0 < r ≤ 1. If r = 1, tmin = tmax, which implies that all the jobs have the same processing time. Since

for K∗ ∈ {4, 5, 6, 7}, the difference between K∗ and u∗ is one unit, and 2 − 2r
r+u∗ = 2 − 2

1+u∗
r

is an increasing
function of u∗, the worst ratio of γ∗ appears when K∗ = 7.

Lemma 5.4. When there are no more than seven batches in π∗3 , γ/γ∗ ≤ 12/(r + 6).

Now we consider the case where K∗ ≥ 8. In this case we can find two positive integers m and i to make
K∗ = 7m+ i where 1 ≤ i ≤ 7. As in the analysis of Case 1.4, the results of γ/γ∗ are shown in Table 2. Line 1
shows the value of K∗. Lines 2 and 3 show the value of 12

7 K
∗ and b 127 K

∗c. Line 4 shows the value of u∗ which is
obtained from (5.5) and line 5 shows the ratio of K∗/u∗. Line 6 shows the bound of γ/γ∗ which can be obtained
from (5.6).

For a given m, the bounds of γ/γ∗ are shown in Line 6 of Table 2 and we find that the worst result is
2 − 2r

r+6+ i
m

which appears when i = 6, i.e., K∗ = 7m + 6. Since 2 − 2r
r+6+ 6

m

is a decreasing function of m, the
worst bound appears when m = 1 and i = 6, that is K∗ = 13. So when K∗ ≥ 8,

γ

γ∗
≤ γ

γ∗

∣∣∣
K∗=13

= 2− 2r
r + 6 + 6

=
24

r + 12
· (5.8)

Lemma 5.5. When there are more than seven batches in π∗3 , γ/γ∗ ≤ 24/(r + 12).

By Lemmas 5.4 and 5.5, we only need to compare 12/(r+6) with 24/(r+12) and then we can find the upper
bound of γ/γ∗ for all K∗. Since

12
r + 6

− 24
r + 12

= − 12r
(r + 6)(r + 12)

< 0, (5.9)

we have the following theorem.

S264 L. TAI

Theorem 5.6. For any instance of Π3, γ/γ∗ ≤ 24/(r + 12).

Now we investigate the ratio of δ/δ∗, that is,
∑K
k=1 k

αTk/
∑K∗

k=1 k
αT ∗k . By Lemma 3.3, we find in an optimal

solution π∗3 , batches are ordered in non-decreasing order of processing times. That is T ∗1 ≤ T ∗2 ≤ · · · ≤ T ∗K∗ .
Actually, since we have added (2K∗ − K) empty batches in our solution π3 and batches are ordered in non-
decreasing order, T1 = · · · = T2K∗−K = 0. That is, b1, . . . , b2K∗−K are all empty batches. By Lemma 5.3, for
any k = 1, . . . ,K∗

T2k−1 ≤ T2k ≤ T ∗k . (5.10)

Theorem 5.7. For any instance of Π3, δ/δ∗ ≤ 1 + 2α, where α is the learning index and α < 0.

Proof. First we define the following function

f(k) =
(2k − 1)α + (2k)α

kα
· (5.11)

We have

f(k) =
(2k − 1)α + (2k)α

kα
=
(

2− 1
k

)α
+ 2α. (5.12)

Since α < 0,

f ′(k) =
α
(
2− 1

k

)α−1

k2
< 0. (5.13)

This implies that f(k) is a decreasing function of k., i.e., f(k) ≤ f(1). So

δ

δ∗
=

1αT1 + 2αT2 + · · ·+ (2K∗ − 1)αT2K∗−1 + (2K∗)αT2K∗

1αT ∗1 + · · ·+ (K∗)αT ∗K∗

=
∑K∗

k=1((2k − 1)αT2k−1 + (2k)αT2k)∑K∗

k=1 k
αT ∗k

≤
∑K∗

k=1((2k − 1)α + (2k)α)T ∗k∑K∗

k=1 k
αT ∗k

≤
∑K∗

k=1 f(k)k
αT ∗k∑K∗

k=1 k
αT ∗k

≤
∑K∗

k=1 f(1)k
αT ∗k∑K∗

k=1 k
αT ∗k

= f(1) = 1 + 2α.

(5.14)

Theorem 5.7 follows. �

By Theorems 5.6 and 5.7, the performance guarantee of 5.1 is max{ 24
r+12 , 1 + 2α}. Since

24
r + 12

− (1 + 2α) =
12− r
12 + r

− 2α. (5.15)

So
Cmax

C∗max

≤ max
{

24
r + 12

, 1 + 2α
}

=

{
24
r+12 α ≤ log2

12−r
12+r

1 + 2α α > log2
12−r
12+r

. (5.16)

Observe (5.16) and we have Cmax
C∗

max
< 2 regardless of the value.

OPTIMIZING BATCH-PROCESSING OPERATIONS S265

0 0.2 0.4 0.6 0.8 1

r

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

/
*

Figure 3. Performance influenced by r.

Theorem 5.8. When solving Π3, Algorithm 5.1 can find a solution with Cmax
C∗

max
≤ max

{
24
r+12 , 1 + 2α

}
< 2 in

O(n2) time, where C∗max is the optimal makespan.

Now we analyze the evolution of performance of 5.1 caused by K∗, r and α respectively, which are key
parameters of the problem. First, the worst result of γ/γ∗ is 24

r+12 which appears when K∗ = 13 as shown in
Lemma 5.5. When K∗ = 1, Algorithm 5.1 is optimal. When K∗ > 13, the performance guarantee is better
than 24

r+12 . This implies that a better demand can bring a better production efficiency. In order to improve the
production system, marketing should be improved first. When more products are needed, the makespan can be
reduced even better. In view of the problem scale, the operations department of a manufacturing company is
not isolated from the other departments but closely related to the other departments, especially the marketing
department.

Second, by Theorem 5.6 the influence of r on the production efficiency is shown in Figure 3. The performance
guarantee of 5.1 is a decreasing function of r, which is the ratio of tmin/tmax. That is, the performance becomes
better when r increases. A larger r means more differences between products, i.e., the customers have different
requirements on the processing times. Therefore, diversity of products makes it difficult to optimize the produc-
tion system. For the decision makers, it is important to find a trade-off between the diversity of products and
production efficiency. Diversity of products can improve customer’s satisfaction and custom-made products are
even better, however, the diversity makes it difficult to improve makespan simultaneously. On the other aspect,
we find that the performance of 4.1 is better than 5.1 and the reason is that jobs have the same size in Π2 but
different sizes in Π3. It also implies the diversity of products brings difficulty to the production system.

Third, the learning effects have an obvious influence on the performance of 5.1 as shown in Figure 4. The
performance guarantee is an increasing function of α, that is, Algorithm 5.1 performs worse when α becomes
larger. A larger α means worse learning effects, i.e., the workers cannot improve their abilities effectively. Workers
are the leading factor of learning effects and thus, better workers are necessary for a better production system.
From Figure 4, we find when α = −1 the learning effects are the best and δ/δ∗ ≤ 1.5. However, when α → 0
there is no learning effect and δ/δ∗ ≤ 2. For the decision makers, it is important to improve the learning effects
and design effective rules to motivate workers to enhance their skills.

Finally, by Theorem 5.8 we present the evolution of the performance by the change of r and α as shown
in Figure 5. The worst result appears when r → 0, i.e., the differences between jobs are sufficiently large or

S266 L. TAI

-1 -0.8 -0.6 -0.4 -0.2 0

 (Learning index)

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

/
*

Figure 4. Performance influenced by learning index.

Figure 5. Evolution of performance guarantee by the change of r and α.

α = 0, i.e., there is no learning effect for workers. For decision makers, the diversity of products and learning
effects need to be considered at the same time. As shown in Figure 5, when r → 1 and α→ −1, Algorithm 5.1
performs well. The production efficiency can be guaranteed if there are effective learning effects and the diversity
of products is designed well.

6. Computational experiments

In order to show the performance of our proposed algorithm, we conduct experiments. Since problem Π3 is
the general model and is most difficult to solve, we generate random instances of Π3. The parameters are set
as follows. Let D = 50, that is, the machine capacity is fixed. The sizes of jobs are classified into three levels,
S1, S2 and S3 where the size of a job obeys uniform distribution on the interval (1, 10), (1, 25) and (1, 50).
Parameter M is also classified in 3 levels where M1 = 0.1, M2 = 0.5 and M3 = 0.9 respectively. Parameter r

OPTIMIZING BATCH-PROCESSING OPERATIONS S267

Table 3. Experimental results of Cmax/C
∗
max.

n 100 500 1000
α −0.9 −0.5 −0.1 −0.9 −0.5 −0.1 −0.9 −0.5 −0.1

S1M1r1 1.201 1.246 1.258 1.265 1.270 1.301 1.275 1.284 1.288

S1M1r2 1.225 1.240 1.254 1.245 1.269 1.290 1.265 1.281 1.291

S1M1r3 1.267 1.278 1.296 1.278 1.287 1.295 1.283 1.290 1.321

S1M2r1 1.270 1.275 1.279 1.281 1.298 1.301 1.269 1.280 1.289

S1M2r2 1.261 1.270 1.275 1.280 1.283 1.289 1.281 1.283 1.295

S1M2r3 1.265 1.271 1.275 1.275 1.279 1.280 1.279 1.286 1.289

S1M3r1 1.263 1.275 1.289 1.268 1.271 1.270 1.269 1.271 1.270

S1M3r2 1.271 1.289 1.286 1.274 1.290 1.294 1.281 1.281 1.285

S1M3r3 1.261 1.274 1.290 1.271 1.281 1.291 1.285 1.281 1.288

S2M1r1 1.291 1.294 1.299 1.298 1.291 1.291 1.301 1.304 1.311

S2M1r2 1.290 1.291 1.298 1.298 1.290 1.314 1.291 1.299 1.347

S2M1r3 1.310 1.303 1.318 1.311 1.320 1.300 1.315 1.323 1.318

S2M2r1 1.301 1.327 1.321 1.332 1.323 1.317 1.324 1.341 1.321

S2M2r2 1.318 1.325 1.328 1.341 1.325 1.322 1.300 1.336 1.328

S2M2r3 1.321 1.325 1.322 1.330 1.341 1.345 1.331 1.335 1.345

S2M3r1 1.320 1.324 1.326 1.331 1.328 1.332 1.335 1.341 1.328

S2M3r2 1.340 1.338 1.338 1.331 1.332 1.300 1.341 1.340 1.351

S2M3r3 1.356 1.367 1.398 1.320 1.371 1.384 1.398 1.381 1.391

S3M1r1 1.381 1.361 1.388 1.390 1.458 1.401 1.411 1.461 1.410

S3M1r3 1.440 1.451 1.500 1.419 1.443 1.429 1.432 1.480 1.481

S3M2r1 1.481 1.491 1.430 1.541 1.436 1.438 1.447 1.451 1.472

S3M2r2 1.581 1.498 1.4485 1.473 1.491 1.468 1.500 1.428 1.439

S3M2r3 1.480 1.529 1.521 1.471 1.520 1.503 1.532 1.528 1.537

S3M3r1 1.583 1.479 1.581 1.561 1.520 1.473 1.526 1.548 1.623

S3M3r2 1.535 1.562 1.534 1.526 1.545 1.594 1.530 1.537 1.542

S3M3r3 1.541 1.524 1.538 1.543 1.500 1.547 1.628 1.523 1.526

indicates the difference between processing time of jobs and three levels of r are tested where r1 = 1, r2 = 5 and
r3 = 10. So an instance is denoted by SaMbrc, where a, b, c = 1, 2, 3. For example, instance S2M1r3 represents
an instance where job sizes obey uniform distribution on (1, 25), M = 0.1 and r = 10. We run each instance
20 times and show the average value of Cmax/C

∗
max, where C∗max is represented by a lower bound since Π3 is

NP-hard in the strong sense. Obviously the actual results are better than the presented results since the lower
bound is better than C∗max. Let R represent the worst case ratio of 5.1.

The results are presented in Table 3, where different scales of instances are tested. Line 1 shows the scale of
the instances where n = 100, 500 and 1000 respectively. In each scale, we consider three levels of learning effects
where α = −0.9, −0.5 and −0.1 respectively as shown in Line 2. Then we present the worst-case ratio of our
algorithm in all 27 instances. From the results we find the learning effects influence the results obviously. In
most cases, the performance becomes better when α becomes larger, that is, there are better learning effects.
The best result is 1.201, which appears in the instance S1M1r1. The worst result is 1.628, which appears in
the instance S3M3r3. Since the optimal C∗max is replaced by a lower bound, the actual results are better than
those in Table 3. We find that even in the largest instance, the worst case ratio is strictly less than 2, which
demonstrates the effectiveness of our proposed algorithm.

S268 L. TAI

7. Conclusions

In this paper, we investigate the problem of scheduling a single batch-processing machine with learning effects.
Motivated by applications in real industries such as porcelain companies, electroplating companies, food making
companies and metal working companies, we propose batch-position-based learning effects. Jobs are assigned
in batches and then batches are processed one by one. Workers become more and more skillful after they have
processed batches repeatedly, which makes the actual processing time of a batch less than its normal processing
time. We propose problems of minimizing makespan with batch-position-based learning effects and provide
effective algorithms. Three problems are considered where the second and third problems are both NP-hard in
the strong sense. We provide an algorithm for the first problem and approximation algorithms for the NP-hard
problems. The time complexity and performance guarantees are analyzed and the evolution of the performance
is shown.

For future research, many interesting problems keep open and deserve investigation. First, scheduling mul-
tiple batch-processing machines with learning effects is an interesting direction. Since the general problem of
scheduling a single batch-processing machine is NP-hard in the strong sense, the problem of scheduling multiple
batch-processing machines is also NP-hard in the strong sense. The problems are more difficult to solve and
approximation algorithms need further investigation. Second, the supply chain scheduling problem with learning
effects is an interesting direction. In this paper, we only consider the production part, however, the inventory and
distribution parts are also important for manufacturers for minimizing operational cost and serving customers.
As in the production part, learning effects also exist in the inventory and distribution parts and need investiga-
tion. Therefore, the supply chain scheduling problem is more complex and the algorithms deserve more study.
Finally, the management methods are also interesting for research. Since workers become skillful gradually in the
supply chain system, effective motivating methods deserve investigation. Such a method can motivate workers
to improve their learning effects, which is important to the operations of the manufacturers. The derivation of
the management methods relies on further research on learning effects of workers and optimization methodology
on supply chain.

Acknowledgements. This work is supported by Anhui soft science project under grant number 1607a0202031, Humanities
and Social Sciences in Anhui Universities under Grant number SK2016A0526 and research project of innovation and
development of Social Sciences in Anhui under Grant number 2017CXF083.

References

[1] S. Akiyoshi, V.S. Natalia and A.S. Vitaly, Application of submodular optimization to single machine scheduling with control-
lable processing times subject to release dates and deadlines. INFORMS J. Comput. 28 (2016) 148–161.

[2] D. Biskup, Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 115 (1999) 173–178.

[3] T.C.E. Cheng, C.T. Ng, J.J. Yuan and Z.H. Liu, Single machine parallel batch scheduling subject to precedence constraints.
Nav. Res. Logist. 51 (2004) 949–958.

[4] B.Y. Cheng, J.Y.T. Leung, K. Li and S.L. Yang, Single batch machine scheduling with deliveries. Nav. Res. Logist. 62 (2015)
470–482.

[5] J.R. DeJong, The effects of increasing skill on cycle time and its consequences for time standards. Economics 1 (1957) 51–60.

[6] G. Dosa, R. Li, X. Han and Z. Tuza, Tight absolute bound for first fit decreasing bin packing: FFD(L) ≤ 11/9OPT(L) + 6/9.
Theor. Comput. Sci. 510 (2013) 13–61.

[7] D. Giglio, Optimal control strategies for single-machine family scheduling with sequence-dependent batch setup and controllable
processing times. J. Sched. 18 (2015) 525–543.

[8] N.P.A. Hidayat, A. Cakravastia, T.M.A.A. Samadhi and A.H. Halim, A batch scheduling model for m heterogeneous batch
processor. Int. J. Prod. Res. 54 (2016) 1170–1185,

[9] X. Huang, M.Z. Wang and P. Ji, Parallel machines scheduling with deteriorating and learning effects. Optim. Lett. 8 (2014)
493–500.

[10] M. Ji, D. Yao, Q. Yang and T.C.E. Cheng, Machine scheduling with DeJongs learning effect. Comput. Ind. Eng. 80 (2014)
195–200.

[11] Z. Jiang, F. Chen and H. Kang, Single-machine scheduling problems with actual time-dependent and job-dependent learning
effect. Eur. J. Oper. Res. 115 (2013) 173–178.

OPTIMIZING BATCH-PROCESSING OPERATIONS S269

[12] C. Koulamas, A note on single-machine scheduling with job-dependent learning effects. Eur. J. Oper. Res. 207 (2010) 1142–
1143.

[13] P.J. Lai and W.C. Lee, Single-machine scheduling with general sum-of-processing-time-based and position-based learning
effects. OMEGA Int. J. Manage. Sci. 39 (2011) 467–471.

[14] W.C. Lee, Scheduling with general position-based learning curves. Inf. Sci. 181 (2011) 5515–5522.

[15] W.C. Lee, C.C. Wu and P.H. Hsu, A single-machine learning effect scheduling problem with release times. OMEGA Int. J.
Manage. Sci. 28 (2010) 3–11.

[16] Y. Li, Combined scheduling algorithm for re-entrant batch-processing machines in semiconductor wafer manufacturing. Int. J.
Prod. Res. 53 (2015) 1866–1879.

[17] M. Li and N.C. Petruzzi, Demand uncertainty reduction in decentralized supply chains. Prod. Oper. Manage. 26 (2017)
156–161.

[18] M. Liu, Parallel-machine scheduling with past-sequence-dependent delivery times and learning effect. Appl. Math. Model. 37
(2013) 9630–9633.

[19] L.L. Liu, C.T. Ng and T.C.E. Cheng, Scheduling jobs with release dates on parallel batch processing machines. Discrete Appl.
Math. 157 (2009) 1825–1830.

[20] D. Okolowski and S. Gawiejnowicz, Exact and heuristic algorithms for parallel-machine scheduling with DeJongs learning
effect. Comput. Ind. Eng. 59 (2010) 272–279.

[21] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer (2008).

[22] J. Qian and G. Steiner, Fast algorithms for scheduling with learning effects and time-dependent processing times on a single
machine. Eur. J. Oper. Res. 225 (2013) 547–551.

[23] Y. Tan and J. Carrillo, Strategic analysis of the agency model for digital goods. Prod. Oper. Manage. 24 (2017) 724–741.

[24] Y. Tan, J. Carrillo and H.K. Cheng, The agency model for digital goods. Decis. Sci. 47 (2016) 628–660.

[25] L.X. Tang, G.S. Wang and Z.L. Chen, Integrated charge batching and casting width selection at baosteel. Oper. Res. 62 (2014)
772–787.

[26] T.T. Tran, A. Araujo and J.C. Beck, Decomposition methods for the parallel machine scheduling problem with setups.
INFORMS J. Comput. 28 (2016) 83–95.

[27] J.Q. Wang and J.Y.T. Leung, Scheduling jobs with equal-processing-time on parallel machines with non-identical capacities
to minimize makespan. Int. J. Prod. Econ. 156 (2014) 325–331.

[28] H. Wiebke, K.G. Felix, M.H. Rolf and L.E. Marco, Integrated sequencing and scheduling in coil coating. Manage. Sci. 57
(2011) 647–666.

[29] D.L. Yang and W.H. Kuo, A single-machine scheduling problem with learning effects in intermittent batch production. Comput.
Ind. Eng. 57 (2009) 762–765.

	Introduction
	Problem description
	Algorithm for 1
	Approximation algorithm for 2
	Approximation algorithm for the general problem
	Computational experiments
	Conclusions
	References

