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OPTIMAL TRADE CREDIT AND REPLENISHMENT POLICIES
FOR NON-INSTANTANEOUS DETERIORATING ITEMS

Anuj Kumar Sharma1,2, Sunil Tiwari1,3,∗, V.S.S. Yadavalli4

and Chandra K. Jaggi1

Abstract. The present study presents a fuzzy inventory model for non-instantaneous deteriorating
items under conditions of permissible delay in payments. In the current paper, we incorporate the
condition in which, the supplier accepts the partial payment at the end of the credit period and the
reaming amount after that period under the term and condition. Here, the demand rate is a function of
the selling price. Also, it is assumed that shortages are allowed and are fully backlogged. The present
paper also considers that the interest earned (IE) on the fixed deposit amount, i.e., revenue generated
by fulfilling the shortage, balance amount, after settling the account is higher than that of usual
interest rate (Ie). Hence, the objective of this study is to determine the retailer’s optimal policies that
maximize the total profit. Also, some theoretical results are obtained, which shows that the optimal
solution not only exists, it is unique also. The impact of the new proposed credit policy is investigated
on the optimality of the solution for the non-instantaneous deteriorating products. The validation of the
proposed model and its solution method is demonstrated through the numerical example. The results
indicate that the inventory model, along with the solution method, provides a powerful tool to the
retail managers under real-world situations. Results demonstrate that it is essential for the managers
to consider the inclusion of new proposed credit policy significantly increases the net annual profit.
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1. Introduction and literature review

Inventory management is essential for the smooth functioning of any firm. Too much of inventory may lead
to an addition of a high cost to the company. While on the other hand holding decidedly fewer inventories
may lead to stock-out situations and result in loss of potential customers. Inventory theory provides a solution
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to such problems by addressing the fundamental question of when and how much to order. One of the basic
concepts of inventory theory is the economic order quantity (EOQ) formula, which was derived by Harris [18].
Several studies have been done in the past on inventory management. Inventories are primarily classified into
two types: perishable and non-perishable. Non-perishable items have a very long lifetime and hence can be
used for demand fulfilment over an extended period. Products that degrade in quality and utility with time are
called perishable products. Perishable products are primarily of two categories: one, which maintains constant
utility throughout the lifetime, for example, blood (which has a fixed lifetime of 21 days with constant utility)
and medicines, while the other with exponentially, decaying utility, for example, vegetables, fruits, and fish.
Management of perishable items with limited lifetime is a challenge. Inventory models for deteriorating items
have attracted considerable interest from researchers in recent decades. Ghare and Schrader [15] that developed
an exponentially decaying inventory model firstly tackled the problem of modeling the deterioration process.
They observed that certain commodities deteriorate with time by a proportion, which can be approximated
by a negative exponential function of time. Successively, Covert and Philip [10], considered a two parameters
Weibull deterioration function. Since the work of Ghare and Schrader [15] and Covert and Philip [10], significant
works have been done on deteriorating inventory systems that are summarized in Nahmias [29] that presented
a review of the early 60s and 70s referred to fixed and random lifetime models. Thus, Raafat [34], dealt with
the 70s and 80s about continuously deteriorating items. Goyal and Giri [17] extended the review at the 90s.
Finally, Bakker et al. [2], considered the inventory theory with regards to the latest results in such field.

The works cited focused only on those products/items, which starts deteriorated as soon as they enter in
the system. However, several items do not start deteriorating instantly. Items like dry fruits, potatoes, yams,
and even some fruits and vegetables, etc. have a shelf life and start to deteriorate after a time lag. This
phenomenon may be termed as non-instantaneous deterioration. Wu et al. [50] first introduced the phenomenon
“non-instantaneous deterioration” and established the optimal replenishment policy for a non-instantaneous
deteriorating item with inventory level dependent demand and partial backlogged shortages. Further, Ouyang
et al. [30] developed an inventory model for non-instantaneous deteriorating items under trade credits. Other
related works in this area have been done by Ouyang et al. [32], Wu et al. [51], Jaggi and Verma [21], Chang
et al. [5], Geetha et al. [14], Soni et al. [40], Maihami and Kamalabadi [26, 27], Shah et al. [38], Dye [13] and
Tsao [48].

Lately, marketing researchers and practitioners have recognized the phenomenon that the supplier offers
a permissible delay to the retailer if the outstanding amount is paid within the permitted fixed settlement
period, defined as the trade credit period. During the trade credit period, the retailer can accumulate revenues
by selling items and earning interests. As a result, with no incentive for making early payments and earning
interest through the accumulated revenue received during the credit period, the retailer postpones payment up
to the last moment of the permissible period allowed by the supplier. Therefore, offering trade credit leads to
delayed cash inflow and increases the risk of cash flow shortage and bad debt. From the viewpoints of suppliers,
they always hope to be able to find a trade credit policy to increase the sale and decrease the risk of cash flow
shortage and bad debt. In reality, on the operations management side, a supplier is always willing to provide
the retailer, either a cash discount or a permissible delay in payments. In practice, a seller frequently offers
his/her buyers a permissible delay in payment (i.e., trade credit) for settling the purchase amount. Usually,
there is no interest charged if the outstanding amount is paid within the permissible delay period. However,
if the payment is not paid in full by the end of the permissible delay period, then interest is charged on the
outstanding amount.

Ever since Goyal [16] first developed an economic order quantity (EOQ) model under the conditions of per-
missible delay in payments, an increasing interest in the literature dealing with a variety of situations such
as allowing of shortage, partial backlogging, credit-linked demand/order quantity, deterioration, etc. has been
witnessed. Aggarwal and Jaggi [1] extended Goyal’s model for deteriorating items. Jamal et al. [23] further gen-
eralized Aggarwal and Jaggi’s model to allow for shortages. Teng [43] amended Goyal’s model, by considering
the difference between the unit price and unit cost, and then established an easy analytical closed-form solution
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to the problem. Subsequently, Huang [20] proposed an EOQ model in which the supplier offers the retailer a
permissible delay, and the retailer, in turn, provides his/her customers another permissible delay to stimulate
demand. Next, Ouyang et al. [31] established an EOQ model for deteriorating items to allow for partial backlog-
ging under trade credit financing. Liao [24] presented an EPQ model for deteriorating items under permissible
delay in payments. Teng [44] developed ordering policies for a retailer who offers distinct trade credits to its good
and bad credit customers. Hu and Liu [19] presented an EPQ model with the permissible delay in payments
and allowable shortages.

Further, Teng et al. [45] extended an EOQ model for stock-dependent demand to supplier’s trade credit
with a progressive payment scheme. Teng et al. [46] generalized traditional constant demand to non-decreasing
demand. Under different financial environments, Cheng et al. [9] developed the proper mathematical models and
solved the corresponding optimal order quantity and payoff time for maximizing the retailer’s total profit per
unit time when a delay in payment is permissible. Lou and Wang [25] proposed an integrated inventory model
with trade credit financing in which the vendor decides his/her production lot size while the buyer determines
his/her expenditure. Lately, Chen et al. [7] built up an EOQ model when conditionally permissible delay links
to order quantity. Saha and Cárdenas-Barrón [39] developed a mathematical model for a product with price
and time sensitive demand to maximize the profit functions. They allowed the number of price changes to
be a decision variable for policy decisions. Ouyang et al. [33] presented an inventory model under a two-level
permissible delay in payments. Sarkar et al. [36] proposed an economic production quantity (EPQ) inventory
models for deteriorating items with two-level trade credit for fixed lifetime products. Wu et al. [49] demonstrated
a unique replenishment cycle time of the retailer. They developed an inventory model in which the retailer gets
an upstream full trade credit from the supplier whereas offers downstream partial trade credit to credit-risk
customers. Most recently, Jaggi et al. [22] and Tiwari et al. [47] developed two-warehouse inventory models for
non-instantaneous deteriorating items under trade credit policy. They explored the role of permissible delay in
payments with shortages on the optimal policy. Tavakoli and Taleizadeh [42] proposed an inventory system for
a decaying item by considering the combination of prepayment and partial trade. Taleizadeh et al. [41] proposed
an inventory considering prepayment and planned backordering.

Recently, Seifert et al. [37] and Z. Molamohamadi et al. [28] presented an excellent review of trade credit
financing. The details about these works have been shown in Table 1.

In most of the inventory models, it is assumed that all of the time parameters and relevant data are already
exactly known and fixed. Furthermore, in practice, those assumptions are unrealistic since they are generally
vague and imprecise, even impossible to get the exact values. That is, they are uncertainty in the real word.
Therefore, in order to incorporate the uncertainty of this parameter the inventory models in a fuzzy sense have
been studied. Yao and Lee [52] applied the extension principle to solve the inventory model with shortages by
fuzzyfying the order quantity. Chang et al. [4] considered the fuzzy problems for the mixture inventory model
involving variable lead-time with backorders and lost sales. They used the probabilistic fuzzy set to construct
a new random variable for lead-time demand and derive the total expected annual cost in the fuzzy sense. Das
et al. [11] studied multi-item stochastic and fuzzy-stochastic inventory models under total budgetary and space
constraints. Chen and Ouyang [6] developed a fuzzy inventory model for the deteriorating item under single
level credit policy.

The inventory problem of deteriorating items has been extensively studied by researchers. Looking through
the inventory models with deteriorating items shows that the deterioration rate is considered constant or some
real – valued functions in most of the previous researches. But, in the real world, deterioration rate is not
actually constant or some pre-defined function and slightly disturbed from its original crisp value. However, the
uncertainties due to deterioration cannot be appropriately treated by using usual probabilistic model. Therefore,
it becomes more convenient to deal such problems with fuzzy set theory. Many inventory models are now being
developed considering deterioration rate to be imprecise or fuzzy such as: De et al. [8], Roy et al. [12], and
Shabani et al. [35].

In real-life inventory situation, it is very difficult to construct a realistic mathematical model, which encodes
the information with both precision and certainty. Since, the real business world is full of uncertainties in a
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Table 1. Summary of related literature with trade credit.

Papers Deterioration Demand rate Shortages Trade credit
policy

Ouyang et al. [30] Non-instantaneous Constant No Single level
Ouyang et al. [32] Non-instantaneous Stock-dependent Stochastic backorder

rate
Single level

Geetha et al. [14] Non-instantaneous Constant Partial backlogging Single level
Soni et al. [40] Non-instantaneous Selling price and

stock dependent
No Single level

Maihami and
Kamalabadi [27]

Non-instantaneous Selling price and
time-dependent

Partial backlogging Single level

Tsao [48] Non-instantaneous Constant No Single level
Goyal [16] No Constant No Single level
Jaggi and Aggarwal [1] Yes Constant No Single level
Jamal et al. [23] Yes Constant Complete backlogging Single level
Teng [43] No Constant No Single level
Huang [20] No Constant No Single level
Ouyang et al. [31] Yes Constant Partial backlogging Single level
Liao [24] Yes Constant No Single level
Teng [44] No Constant No Single level
Hu and Liu [19] Yes Constant Complete backlogging Single level
Teng et al. [45] No Stock-dependent No Progressive pay-

ment scheme
Teng et al. [46] No Time-dependent No Single level
Cheng et al. [9] No Constant No Single level
Lou and Wang [25] No Constant No Single level
Chen et al. [7] No Constant No Credit link

order quantity
Present Paper Non-instantaneous

(Fuzzy)
Selling
price dependent
(Fuzzy)

Complete
backlogging

Single level
(Alternative
Approach)

non-stochastic sense, which leads to the estimation of different inventory parameters as fuzzy numbers. In practi-
cal situations sometimes, the probability distributions of the demands for products are difficult to acquire due to
lack of information and historical data. Thus, an inventory system, the demands are approximately estimated
by the experts depend on their experience and subjective managerial judgments to tackle the uncertainties,
which always fit the real situations.

The main aim of our study is to address the issue of uncertainty – fuzziness, where there may be sufficient or
even abundant data – by way of modeling the annual customer demand information as a normally distributed
fuzzy random variable where the associated probability density function is also taken to be fuzzy.

Our contribution

In the above mention literature on inventory modelling under the conditions of permissible delay in pay-
ments, scholars have assumed that the retailers have to settle their accounts at the end of the credit period,
i.e., the supplier accepts only full amount at the end of the credit period. However, in reality, either the sup-
plier may accept the partial amount at the end of the credit period and unpaid balance subsequently or the
full amount at a fixed point of time after the expiry of the credit period, if the retailer finances the inven-
tory from the supplier itself. This issue motivated us to incorporate the above-mentioned realistic scenario.
In the current paper, we incorporate the condition in which, the supplier accepts the partial payment at the
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end of the credit period and the reaming amount after that period under the term and condition. The main
feature of the alternative trade credit approach is the extension of the trade credit period by considering the
above realistic possibilities. Based on the situations mentioned above, this paper considers the retailer’s opti-
mal policy for non-instantaneous deteriorating items with the permissible delay in payments under different
scenarios in a fuzzy environment. The present study discusses all the possible cases, which might arise and
yet not considered in the previous inventory models under permissible delay in payments. Here, the demand
rate is a function of the selling price. In addition, it is assumed that shortages are allowed and are fully
backlogged.

Moreover, the present paper also considers interest earned (IE) on the fixed deposit amount, i.e., revenue
generated by fulfilling the shortage, balance amount after settling the account is higher than that of usual
interest rate (Ie). Thus, the revenue, along with interest earned, can be utilized to pay off the amount at the
credit period. The whole profit is calculated from the retailer’s point of view. In this model, demand, as well
as deterioration rates are considered as a triangular fuzzy number. Hence, the objective of this study is to
determine the retailer’s optimal policies that maximize the total profit.

2. Notations and assumptions

The following notations and assumptions have been used in developing the model.

2.1. Notations

Parameter Description

I(t) : instantaneous inventory level at time t
Q : order level
S1 : positive stock level
D(p)(=D=a−bp) : price dependent demand
D̃(p)(= D̃ = ã− b̃p) : fuzzy price-dependent demand
A : replenishment cost (ordering cost) for replenishing the items
C : unit purchase cost of the retailer
π : shortage cost per unit per unit time
Θ : deterioration rate and 0 ≤ θ < 1
θ̃ : fuzzy deterioration rate
p(= µc) : selling price per unit
M : credit period offered by the supplier
Ie : rate of interest earned by the retailer ($ per year)
IE : rate of interest earned rate on the fixed deposit amount
Ip : rate of interest payable to the supplier ($ per year)
td : time period during which no deterioration occurs.
Bi : breakeven point, i = 1, 2, 3
TP(.) (µ t1, T ) : total profit in case (.)
T̃P(µ, t1, T ) : total fuzzy profit
TP(.) : total profit in combine form for all cases
TPd(.) : total profit after defuzzification
Decision variables
µ(µ > 1) : mark-up rate
t1 : length of the period with a positive stock of the items
T : replenishment cycle length
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2.2. Assumptions

The mathematical model of the inventory problems is based on the following assumptions:

(i) Replenishment rate is infinite, and lead-time is negligible.
(ii) The planning horizon of the inventory system is infinite.
(iii) Unsatisfied demand/shortages are allowed and fully backlogged.
(iv) Demand rate is assumed to be a function of selling price, i.e., D (p) = a − bp where a, b are positive

constants and 0 < b < a/p. Further, a and b are assumed as a triangular fuzzy number. For notational
simplicity, D(p) and D will be used interchangeably in this paper.

(v) When Ie < IE ≤ Ip and T ≥M , the account is settled at M . Beyond the fixed credit period, the retailer
begins to pay the interest charges on the remaining amount at the rate Ip. Before the settlement of the
replenishment account, the retailer can use the sale revenue to earn interest at the annual rate Ie and IE .

(vi) When Ie ≤ IP < IE and T ≥M , the account is settled at M if the amount in the account of the retailer
is less than the payable amount otherwise pay at the end of the cycle. Beyond the fixed credit period, the
retailer begins to pay the interest charges on the remaining amount at the rate Ip. Before the settlement
of the replenishment account, the retailer can use the sales revenue to earn interest at the rates Ie and IE
per annum.

(vii) When Ip < Ie < IE and T ≥ M , the account is settled at the end of the cycle. Beyond the fixed credit
period, the retailer begins to pay the interest charges on the remaining amount at the rate Ip. Before
the settlement of the replenishment account, the retailer can use the sale revenue to earn interest at the
annual rate Ie and IE .

(viii) When T ≤ M the account is settled at M, and the retailer does not need to pay any interest charge.
Alternatively, the retailer can accumulate revenue and earn interest until the end of the trade credit
period.

3. Mathematical model formulation

3.1. Crisp model

A graphical representation of the inventory control problem during cycle (0, T ) is shown in Figure 1. Initially,
the lot size of Q units enters in the inventory system. Out of Q units, Q− S1 units are fulfilling the shortages,
and the remaining S1 unit will be depleted during the time interval [0, t1]. During the time interval, [0, td], there
is no deterioration, so the inventory is depleted only due to demand. Further, during the time interval, [td, t1]
the inventory level is dropping to zero due to the combined effect of demand and deterioration. Moreover, the
demand is backlogged in the interval [t1, T ].

3.2. Inventory levels

The differential equations that describe the inventory level at any time t over the period (0, T ) are given by:

dI (t)
dt

= −D, 0 ≤ t ≤ td (3.1)

dI (t)
dt

+ θI (t) = −D, td < t ≤ t1 (3.2)

dI (t)
dt

= −D, t1 < t ≤ T. (3.3)

The solutions of the above three differential equations (3.1)–(3.3) with using respective boundary conditions
I(0) = S1, I(t1) = 0, are as follows:

I(t) = S1 −Dt, 0 ≤ t ≤ td, (3.4)
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0

S1

td t1

Q

M M M MT

Figure 1. Pictorial representation of inventory level at any time.

I(t) =
D

θ

(
eθ(t1−t) − 1

)
, td < t ≤ t1 (3.5)

I(t) = −D(t− t1), t1 ≤ t ≤ T. (3.6)

Considering continuity of I(t) at t = td, it follows from equations (3.4) and (3.5) that

S1 −Dtd =
D

θ

(
eθ(t1−td) − 1

)
.

This implies that the maximum inventory level per cycle is given by

S1 = D

(
td +

1
θ

(
eθ(t1−td) − 1

))
. (3.7)

The number of deteriorated units S1 −Dt1 is

= D

(
td − t1 +

1
θ

(
eθ(t1−td) − 1

))
. (3.8)

The order size Q is S1 +D(T − t1)

= D

(
T + td − t1 +

1
θ

(
eθ(t1−td) − 1

))
. (3.9)

3.3. Retailer’s profit components

Now, based on the above-obtained inventory levels, the total profit per cycle is obtained as follows:

(a) Ordering cost per cycle = A.

(b) The inventory holding cost per cycle is given by = h

(
td∫
0

I(t)dt+
t1∫
td

I(t)dt

)

Hc = h

{
S1td −

Dt2d
2
− D

θ

(
t1 − td +

1
θ

(
1− eβ(t1−td)

))}
.
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(c) The shortage cost per cycle is given by Sc = π
T∫
t1

I(t)dt = πD(T − t1)2/2.

(d) The purchase cost per cycle = cQ = cD
(
T + td − t1 + 1

θ

(
eθ(t1−td) − 1

))
.

3.4. Interest earned, interest paid and total profit

Also, the supplier offers permissible delay in payment to the retailer. Here, in this paper, we consider two
types of interest earned rate (namely Ie and IE). Where Ie is the rate of interest earned by the retailer on
continuous sales revenue, IE is the rate of interest earned by the retailer on sales revenue gating from satisfying
the shortages or on the excess amount after settling the account or on from T to M when M > T . This concept
taken from the banking system. In the banking system, there is two rates of interest, i.e., interest earned on the
amount, which is in saving account, and interest earned on the fixed deposit amount. These two types of rate
of interest are different. Ip is the rate of interest payable to the supplier after the expiry of the credit period.
Further, the interest earned, interest paid, and profit functions are computed for different scenarios in each case
is discussed in this section. In addition, all the possible cases/sub-cases have been shown in Figure 2.

Case 1: Ie < IE ≤ Ip
The computation for interest earned and interest payable will depend on the following four possible sub-cases

based on the length of td, t1, T, and M :
Subcase 1.1: 0 < M ≤ td; Subcase 1.2: td < M ≤ t1; Subcase 1.3: t1 < M ≤ T ; and Subcase 1.4: T ≤M .

Subcase 1.1: 0 < M ≤ td < T

Since both the interest earned rates are less than the interest paid rate, so the retailer would try to pay off
the total purchase cost to the supplier as soon as possible. At the expiry of M , the retailer will have a certain
amount, which is the sum of the sales revenue during the period [0,M ] and interest earned on regular sales
revenue and fixed deposit. This implies that the amount accumulates after satisfying the shortages during the
same time period.

Hence, the total sales revenue during the time period [0,M ] is Dp{M + (T − t1)}.
The interest earned on regular sales revenue during the time period [0,M ] is (1/2)DM2pIe.
The interest earned on the fixed deposit amount during the time period [0,M ] is D(T − t1)MpIE .
Therefore, at time t = M , the total amount earned by the retailer is

Dp [(T − t1) +M {1 + (T − t1)IE + (1/2)MIe}] ≡W1(say). (3.10)

At the end of trade credit period M , the retailer wishes to settle his account with the supplier, which gives
another two sub-cases viz. Subcase 1.1.1: W1 < Qc and Subcase 1.1.2: W1 ≥ Qc.

Subcase 1.1.1: W1 < Qc

Here, the retailer’s earned amount (W1) is less than the amount payable (Qc) to the supplier. In this situation,
the supplier may either agree to receive the partial payment or not. Thus, further two scenarios may appear:
Scenario 1.1.1.1: When a partial payment is acceptable at M , and the rest amount is to be paid at any time
after M .
Scenario 1.1.1.2: When a partial payment is not acceptable at M , but the full payment is acceptable by the
supplier at any time after M .
Scenario 1.1.1.1: When a partial payment is acceptable at M , and the rest amount is to be paid at any time
after M . For this scenario, further two situations may arise, which are discussed below:



OPTIMAL TRADE CREDIT AND REPLENISHMENT POLICIES 1801

W ≥ cQ

3. Ip < Ie < IE

3.1. M ≤ T 3.2. T < M

Inventory model with 

permissible delay in payments

1. Ie ≤ IE ≤ Ip 2. Ie < Ip < IE

1.1. 0 < M ≤ td 1.2. td < M ≤ t1 1.3. t1 < M ≤ T

W < cQ

1: When partial payment is made at time t = 

M and the rest amount is to be paid after M

2: When full payment is to be made 

at the breakeven point B3 after M

1:  When partial payment is made at time t = 

M and the rest amount is to be paid after M

2:  When full payment is to be made at 

the breakeven point B3 after M

1 (a) The rest amount is paid continuously up to breakeven point B1

1 (b) The rest amount is paid at a single point B2 after M

1 (a) The rest amount is paid continuously up to breakeven point 

1 (b) The rest amount 

is paid at a single 

point B2 after M

1.4. T < M

2.1. 0 < M ≤ td 2.2. td < M ≤ t1 2.3. t1 < M ≤ T 2.4. T < M

W < cQ W ≥ cQ

Figure 2. A schematic diagram flow of our model.

Scenario 1.1.1.1.(a): When the rest amount is paid continuously up to breakeven point B1 (say)
after M

In this scenario, the retailer pays W1 the amount at M , and the rest amount (cQ−W1) along with interest
charged will be paid continuously from M to some payoff time B1 (says) (Figs. 3 and 4).

The interest payable during the period [M,B1] = (1/2) (cQ−W1) (B1 −M) Ip and; The total amount payable
during [M,B1] = (cQ−W1) + (1/2) (cQ−W1) (B1 −M) Ip.

Now, at t = B1, the total amount payable to the supplier = the total amount available to the retailer

⇒ (cQ−W1) + (1/2) (cQ−W1) (B1 −M) Ip = D (B1 −M) p (3.11)
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M

t1B
1 T

IE

Ie Ie

IE

td

Figure 3. Interest earned in Sce-
nario 1.1.1.1. (a).

M T

Ip

td t
1

B
1

Figure 4. Interest payable in Sce-
nario 1.1.1.1. (a).

⇒ B1 = M +
2 (cQ−W1)

2Dp− (cQ−W1) Ip
· (3.12)

After the time B1, the retailer generates revenue D (t1 −B1) p from the regular sale. He also earns interest on
the regular sales revenue during the period [B1, t1], which is (1/2)D (t1 −B1)2 pIe. At time t = t1 the retailer
has the amount D (t1 −B1) p + (1/2)D (t1 −B1)2 pIe. He uses this revenue to earn interest on fix deposit of
this amount during the time period [t1, T ].

The interest earned for the time period [t1, T ] is Dp (t1 −B1) {1 + (1/2) (t1 −B1) Ie} (T − t1)IE .
Therefore, the average profit per unit time is given by

TP1.1.1.1.a (µ, t1, T ) =
1
T

[〈Total selling revenue during [B1, t1]〉+ 〈Interest earned during [B1, t1]〉

+ 〈Interest earned during [t1, T ]〉 − 〈Ordering cost〉 − 〈Holding cost〉
− 〈Shortage cost〉] (3.13)

TP1.1.1.1.(a) (µ, t1, T ) =
1
T

[D (t1 −B1) p [1 + (1/2) (t1 −B1) Ie] [1 + (T − t1)IE ]−A−Hc− Sc] . (3.14)

Scenario 1.1.1.1.(b): When the rest amount paid at a breakeven point B2 (say) after M

In this scenario, the supplier accepts the payment only on two instalments first is at time t = M and second is
at some payoff time B2 (says). The retailer pays amount W1 at time t = M , and the rest amount (cQ−W1)
along with interest charged will be paid at a breakeven point t = B2. Now, during the time interval [M,B2],
the retailer would generate an amount of D(B2−M)p from sales revenue and earn interest from the continuous
interest earn on the selling revenue generated during the same (Figs. 5 and 6).

The interest payable during the period [M,B2] is (cQ−W1) (B2 −M) Ip.
The interest earned during the period [M,B2] is (1/2)D(B2 −M)2pIe.
The total amount payable at t = B2 is (cQ−W1) + (cQ−W1) (B2 −M) Ip and;
The total amount earned during the period [M,B2] = D(B2 −M)p+ (1/2)D(B2 −M)2pIe.
Now, at t = B2, the total amount payable to the supplier is equal to the total amount available to the retailer

⇒ (cQ−W1) + (cQ−W1) (B2 −M) Ip = D (B2 −M) p+ (1/2)D (B2 −M)2 pIe (3.15)

⇒ B2 =
1

DpIe

{
DpMIe +QcIp −Dp−W1Ip +

(
(Dp−QcIp +W1Ip)

2 + 2Dp(Qc−W1)Ie
) 1

2
}
. (3.16)
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Figure 5. Interest earned in Sce-
nario 1.1.1.1. (b).
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Figure 6. Interest payable in Sce-
nario 1.1.1.1. (b).

After the time B2, the retailer generates revenue D (t1 −B2) p from the regular sale. He also earns interest on
the regular sales revenue during the period [B2, t1], which is (1/2)D (t1 −B2)2 pIe. At time t = t1 retailer has
the amount D (t1 −B2) p + (1/2)D (t1 −B2)2 pIe. He uses this revenue to earn interest on fix deposit of this
amount during the time period [t1, T ].

The interest earned for the time period [t1, T ] is Dp (t1 −B2) {1 + (1/2) (t1 −B2) Ie} (T − t1)IE
Therefore, the total profit per unit time is given by

TP1.1.1.1.b (µ, t1, T ) =
1
T

[〈Total selling revenue during [B1, t1]〉+ 〈Interest earned during [B1, t1]〉

+ 〈Interest earned during [t1, T ]〉 − 〈Ordering cost〉 − 〈Holding cost〉
− 〈Shortage cost〉] (3.17)

TP1.1.1.1.(b) (µ, t1, T ) =
1
T

[Dp (t1 −B2) [1 + (1/2) (t1 −B2) Ie] [1 + (T − t1)IE ]−A−Hc− Sc] . (3.18)

Scenario 1.1.1.2: When full payment is to be made at the breakeven point B3 (say) after M

In this scenario, the supplier will charge the interest at the rate (Ip) on amount Qc for the period [M,B3].
However, the retailer has W1 an amount at a time t = M , and he will earn interest at the rate (IE) on fixed
deposit of this amount for the period [M,B3]. After M , he also generates the sales revenue as well as earns
interest on regular sales revenue during the period [M,B3] (Figs. 7 and 8).

The interest earned from fixed deposit amountW1 for the time period [M,B3] isW1IE (B3 −M) and the inter-
est earned on the continuous sales revenue D (B3 −M) p from the time period [M,B3] is (1/2)D (B3 −M)2 pIe.

Hence, the total interest earned during the time period [M,B3] = W1IE (B3 −M) + (1/2)D (B3 −M)2 pIe.
The interest is payable during the same time period = QcIp (B3 −M).
Again, to determine the value of breakeven point, the total amount payable to the supplier should equal to

the total amount available to the retailer i.e.,

Qc+Qc (B3 −M) Ip = W1 +D (B3 −M) p+W1IE (B3 −M) + (1/2)D (B3 −M)2 pIe (3.19)

⇒ B3 =
1

DpIe

{
DpMIe +QcIp −Dp−W1IE +

(
(Dp−QcIp +W1IE)2 + 2DpIe (Qc−W1)

) 1
2
}
. (3.20)

Further, the sales revenue during the time period [B3, t1] is D(t1 − B3)p and the interest earned on regular
sales revenue during this period is (1/2)D(t1 − B3)2pIe. So that, at time t = t1 retailer has the amount
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Figure 7. Interest earned in Sce-
nario 1.1.1.2.
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Figure 8. Interest payable in Sce-
nario 1.1.1.2.

D (t1 −B3) p + (1/2)D (t1 −B3)2 pIe. He uses this revenue to earn interest on fixed deposit of this amount
during the time period [t1, T ].

The interest earned on fix deposit amount = D (t1 −B3) p (1 + (1/2) (t1 −B3) Ie) (T − t1) IE .
Therefore, the average profit per unit time is given by

TP1.1.1.2 (µ, t1, T ) =
1
T

[〈Total selling revenue during [B3, t1]〉+ 〈Interest earned during [B3, t1]〉

+ 〈Interest earned during [t1, T ]〉 − 〈Ordering cost〉 − 〈Holding cost〉
− 〈Shortage cost〉] (3.21)

TP1.1.1.2 (µ, t1, T ) =
1
T

[D (t1 −B3) p (1 + (1/2) (t1 −B3) Ie) [1 + (T − t1) IE ]−A−Hc− Sc] . (3.22)

Subcase 1.1.2: W1 ≥ Qc
In this subcase, the retailer has to pay the only Qc amount to the supplier at the time t = M , and he will

deposit the excess amount (W1 −Qc) to earn the interest at the rate of (IE) for the time period [M,T ]. The
interest earned on this amount is equal to (W1 −Qc) (T −M) IE . Further, after the time t = M , the retailer
continuously sales the product and uses the revenue to earn interest (Fig. 9).

The interest earned on the regular sales revenue D (t1 −M) p during the period [M, t1] is
(1/2)D (t1 −M)2 pIe. At time t = t1 retailer has the amount D (t1 −M) p + (1/2)D (t1 −M)2 pIe. He uses
this revenue to earn interest from the fixed deposit of this amount during the time period [t1, T ], which is
D (t1 −M) p (1 + (1/2) (t1 −M) Ie) (T − t1) IE .

Therefore, the average profit per unit time is given by

TP1.1.2(µ, t1, T ) =
1
T

[〈Total sales revenue during [M, t1]〉+ 〈Interest earned on the sales revenue

during [M, t1]〉+ 〈Interest earned on the sales revenue during [t1, T ]〉
+ 〈Excess amount after paying the amount to the supplier〉+ 〈Interest earned on

the excess amount during [M,T ]〉 − 〈Ordering cost〉 − 〈Holding cost〉
− 〈Shortage cost〉] (3.23)

TP1.1.2(µ, t1, T ) =
1
T

[D (t1 −M) p (1 + (1/2) (t1 −M) Ie) (1 + (T − t1) IE) + (W1 −Qc) {1 + (T −M) IE}

−A −Hc− Sc] . (3.24)
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Figure 9. Interest earned in Subcase 1.1.2.

M Tt1

IE

IE

IE

Ie

td

Figure 10. Interest earned in Case 1.3.

Case 1.2: td < M ≤ t1
In this case, the permissible delay period M lies between the time td at which deterioration start and

non- negative stock period time t1. In this case, the mathematical formulation is the same as of Case 1.1:
0 < M ≤ td < t1 < T .

Case 1.3: t1 < M ≤ T
In this case, the trade credit period M offered by the supplier lies between the stock out period t1 and the

replenishment cycle time T . The retailer will pay off the total amount owed to the supplier at the end of the
trade credit period M . Therefore, there is no interest payable to the supplier, but the retailer uses the sales
revenue to earn interest at the rate of Ie and IE during the period [0,M ] (Fig. 10).

Hence, the total interest earned by the retailer is calculated in three different cases.

(i) The interest earned at the rate of IE on the revenue Dp(T − t1) of shortage items during the period [0,M ]
is Dp(T − t1)MIE .
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Figure 11. Interest earned in Case 1.4.

(ii) The interest earned interest in continuous sales revenue during the period [0, t1] is (1/2)Dpt21Ie.
(iii) The interest earned during the period [t1,M ] is Dt1p(1 + (1/2)t1Ie)IE(M − t1).

At time t = M , the retailer has the amount Dp(T −t1)(1+MIE)+Dpt1(1+(1/2)t1Ie)(1+(M−t1)IE) ≡W2

in his account but the retailer settled his account with the supplier at M . He pays Qc amount to the supplier
and earns interest on the excess amount W2−Qc at the interest rate IE . The interest earned during the period
[M,T ] is (W2 −Qc)(T −M)IE .

Therefore, the average profit per unit time is given by

TP1.3(µ, t1, T ) =
1
T

[〈Excess amount〉+ 〈Interest earned on the excess amount during the period [M,T ]〉

− 〈Ordering cost〉 − 〈Holding cost〉 − 〈Shortage cost〉] (3.25)

TP1.3(µ, t1, T ) =
1
T

[(W2 −Qc) + (W2 −Qc) (T −M)IE −A−Hc− Sc] . (3.26)

Case 1.4: T ≤M
In this case, the trade credit period M offer by the supplier is greater than the replenishment cycle time

T . The retailer will pay off the total amount owed to the supplier at the end of the trade credit period M .
Therefore, there is no interest payable to the supplier, but the retailer uses the sales revenue to earn the interest
at the rate of Ie and IE during the period [0,M ] (Fig. 11).

Here, the retailer earns interest as follows:

(i) The interest earned at the rate of IE on fixed amount which is generated from the shortages revenue
Dp(T − t1) during the period [0,M ] is Dp(T − t1)MIE .

(ii) The interest earned interest in sales revenue during the period [0, t1] is (1/2)Dpt21Ie.
(iii) The interest earned during the period [t1,M ] is Dt1p(1 + (1/2)t1Ie)IE(M − t1).

At t = M , the retailer has Dp(T − t1)(1 +MIE) +Dpt1(1 + (1/2)t1Ie)(1 + (M − t1)IE) ≡W3 (say) amount
in his account, but the retailer settled his account with the supplier at M . He pays Qc amount to the supplier.

Therefore, the average profit per unit time is given by

TP1.3(µ, t1, T ) =
1
T

[〈Excess amount〉 − 〈Ordering cost〉 − 〈Holding cost〉 − 〈Shortage cost〉] (3.27)
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TP1.4(µ, t1, T ) =
1
T

[(W3 −Qc)−A−Hc− Sc] . (3.28)

As earlier one is Case 1: Ie < IE ≤ Ip. Now we discuss the Case 2: Ie < Ip ≤ IE .
This situation indicates that the interest payable rate (Ip) lies between both interest rates Ie and IE . Further,

depending on the values of td,t1, M , and T the following four sub-cases may arise:
Subcase 2.1: 0 < M ≤ td; Subcase 2.2: td < M ≤ t1; Subcase 2.3: t1 < M ≤ T ; and Subcase 2.4: T ≤M .

Subcase 2.1: 0 < M ≤ td
In this case, the retailer would try to pay off the total purchase cost to the supplier as soon as possi-

ble. During the period [0,M ], the retailer uses the sales revenue to earn interest. Hence, the total sales rev-
enue from the period [0,M ] is Dp{M + (T − t1)} and the interest earned during the same time period is
DMp {(T − t1)IE + (1/2)MIe}.

Therefore, the retailer has a total amount at a time t = M is

Dp
[
(T − t1) +M

{
1 + (T − t1)IE + (1/2)M2Ie

}]
≡W1 (say).

However, the retailer owes Qc amounts as the purchase cost from the supplier at time t = 0. Based on the differ-
ence between W1 and Qc, further, there may be the following two Subcases 2.1.1: W1 < Qc and Subcases 2.1.2:
W1 ≥ Qc.

Subcase 2.1.1: W1 < Qc

Since, the fixed amount less than the Qc amount, this implies that the interest earned on the fixed amount
is less than the interest paid amount. So, he will pay the amount Qc as soon as possible. The mathematical
formulation of this subcase is same as Subcase 1.1.1 W1 < Qc in case 1. So, for this subcase, the profit functions
are the same.

Subcase 2.1.2: W1 ≥ Qc
In this subcase, the interest earned rate on the fixed amount is greater than the interest payable rate.

Therefore, interest in W1 is greater than the interest payable in one cycle. So, the retailer cannot pay any
amount before the cycle length. He pays the total amount along with interest charge at the end of cycle length
(Figs. 12 and 13).

The interest payable during the period [M,T ] is Qc(T −M)Ip.
The interest earned on the amount W1 during the period [M,T ] is W1IE(T −M).
Further, after time t = M , the retailer continuously sales the products and uses the revenue to earn interest.
So, interest earned on the sales revenue during the period [M, t1] is (1/2)D(t1 −M)2pIe and also earned

interest during the period [t1, T ] on the revenue D(t1−M)p+ (1/2)D(t1−M)2pIe is D(t1−M)p(1 + (1/2)(t1−
M)Ie)(T − t1)IE .

Therefore, the average profit per unit time is given by

TP2.1.2(µ, t1, T ) =
1
T

[〈Total sales revenue during [M, t1]〉+ 〈Interest earned on the sales revenue

during [M, t1]〉+ 〈Interest earned on the sales revenue during [t1, T ]〉+ 〈Total amount at
M i.e., W1〉+ 〈Interest earned on the amountW1during [M,T ]〉 − 〈Purchasing cost〉
− 〈Interest payable〉 − 〈Ordering cost〉 − 〈Holding cost〉 − 〈Shortage cost〉] (3.29)

TP2.1.2(µ, t1, T ) =
1
T

[D (t1 −M) p (1 + (1/2)D (t1 −M) Ie) [1 + (T − t1) IE ]

+ W1 {1 + IE(T −M)} −Qc {1 + (T −M)Ip} −A−Hc− Sc] . (3.30)
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Figure 12. Interest earned in Sub-
case 2.1.2.
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Figure 13. Interest payable in Sub-
case 2.1.2.

Subcase 2.2: td < M ≤ t1
In this case, the permissible delay period M lies between the time td at which deterioration starts and

non-negative stock period time t1. In this case, the mathematical formulation is the same as of Case 2.1, i.e.,
0 < M ≤ td. So, the mathematical formulation for this case is not necessitating.

Subcase 2.3: t1 < M ≤ T
In this case, the trade credit period M offered by the supplier lies between stock out period t1 and replen-

ishment cycle time T . So, the retailer sells all the products up to the time t1 and generates sales revenue. He
uses this sales revenue to earn interest at the rate of Ie and IE during the period [0,M ] (Figs. 14 and 15).

The interest earned at the rate of IE on the shortages revenue Dp(T − t1) during the period [0,M ] is
Dp(T − t1)MIE .

The interest earned interest in continuous sales revenue during the period [0, t1] is (1/2)Dpt21Ie.
The interest earned during the period [t1,M ] is Dt1p(1 + (1/2)t1Ie)Ie(M − t1).
At t = M , the retailer has the amount Dp(T − t1)(1 +MIE) +Dpt1(1 + (1/2)t1Ie)(1 + (M − t1)IE) ≡W2 in

his account, but the retailer settles his account with the supplier at M . He pays Qc amount to the supplier at M
but in this case, only one possibility W2 ≥ Qc, because of the sales all product. Since the interest earned rate on
fixed deposit is higher than interest payable rate. So, he will pay Qc amount with interest payable Qc(T −M)Ip
at the end of the cycle length despite at the end of permissible delay in payments. He earns the interest on the
amount W2 by fixed deposit at the rate IE .

The interest earned during the period [M,T ] is W2(T −M)IE .
Therefore, the average profit per unit time is given by

TP2.3(µ, t1, T ) =
1
T

[〈Total amount at M〉+ 〈Interest earned on W2 during the period [M,T ]〉

− 〈Purchasing cost〉 − 〈Interest payable〉 − 〈Ordering cost〉 − 〈Holding cost〉
− 〈Shortage cost〉] (3.31)

TP2.3(µ, t1, T ) =
1
T

[W2 {1 + (T −M)IE} −Qc {1 + (T −M)Ip} −A−Hc− Sc] . (3.32)

Case 2.4: T ≤M
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Figure 15. Interest payable in Sub-
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Figure 16. Interest earned in Case 2.4.

In this case, the trade credit period M offered by the supplier is greater than the replenishment cycle time
T . The retailer will pay off the total amount owed to the supplier at the end of the trade credit period M .
Therefore, there is no interest payable to the supplier, but the retailer uses the sales revenue to earn interest at
the rate of Ie and IE during the period [0,M ] (Fig. 16).

Hence, the retailer the total interest earned is calculated in three different cases:

(i) The interest earned at the rate of IE on the revenue Dp(T − t1) of shortage items during the period [0,M ]
is Dp(T − t1)MIE .
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Figure 17. Interest earned in Case 3.1.
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Figure 18. Interest payable in Case 3.1.

(ii) The interest earned interest in continuous sales revenue during the period [0, t1] is (1/2)Dpt21Ie.
(iii) The interest earned during the period [t1,M ] is Dt1p(1 + (1/2)t1Ie)IE(M − t1).

At t = M , the retailer has the amount Dp(T − t1)(1 + MIE) + Dpt1(1 + (1/2)t1Ie)(1 + (M − t1)IE) ≡ W3

(say) in his account, but the retailer settled his account with the supplier at M . He pays Qc amount to the
supplier.

Therefore, the average profit per unit time is given by

TP2.4(µ, t1, T ) =
1
T

[〈Excess amount〉 − 〈Ordering cost〉 − 〈Holding cost〉 − 〈Shortage cost〉] (3.33)

TP2.4(µ, t1, T ) =
1
T

[(W3 −Qc)−A−Hc− Sc] . (3.34)

Subcase 3: Ip ≤ Ie < IE

In this case, both interest earned Ie and IE are greater than the interest payable Ip. In this case, the retailers
cannot pay any amount at the end of permissible delay in payments. He settles his account at the end of cycle
length if the permissible delay period is less than cycle length. If permissible delay period is greater than cycle
length, then he settles his account at M . Further, depending on values of T and M , two sub-cases may arise
which are as follows: Subcases 3.1: M ≤ T and Subcases 3.2: T < M .

Subcase 3.1: M ≤ T
This case situation indicates that the replenishment cycle time T is greater than or equals to the permissible

delay in payments M (Figs. 17 and 18).
In this case, interest earned is calculated in three parts.

(i) Interest earned on shortages revenue during the period [0, T ] is D(T − t1)pTIE .
(ii) Interest earned on the sale revenue proceeds during the period [0, t1] is (1/2)Dt21pIe.

(iii) Interest earned during the period [t1, T ] is (Dt1p+ (1/2)Dt21pIe)(T − t1)IE .

Moreover, the total interest earned in one cycle is

D(T − t1)pTIE + (1/2)Dt21pIe +
(
Dt1p+ (1/2)Dt21pIe

)
(T − t1) IE .

In this case, the retailer paid total amount Qc as well as interest payable Qc(T −M)Ip at the end of cycle
length. The total payable amount at the end of cycle length is Qc(1 + (T −M)Ip).
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Figure 19. Interest earned in Case 3.2.

Therefore, the average profit per unit time is given by

TP3.1(µ, t1, T ) =
1
T

[〈Total sale revenue during [0, T ]〉+ 〈Interest earned on the sales revenue

during [0, t1]〉+ 〈Interest earned on the sales revenue during [t1, T ]〉+ 〈Interest earned on
shortages revenue during [0, T ]〉 − 〈Total amount paid as well as interest payable at T 〉
− 〈Ordering cost〉 − 〈Holding cost〉 − 〈Shortages cost〉] (3.35)

TP3.1(µ, t1, T ) =
1
T

[
DTp+

1
2
Dt21pIe +D(T − t1)pTIE +

(
Dt1p+

1
2
Dt21pIe

)
(T − t1)

× IE −Qc {1 + (T −M) Ip} −A−Hc− SC] . (3.36)

Subcase 3.2: T < M

In this case, the replenishment cycle time T is less than or equal to the permissible delay period M . In this
situation, the retailer will pay off the total amount owed to the supplier at the end of the trade credit period
M . Therefore, there is no interest payable to supplier charge, but the retailer uses the sales revenue to earn
interest at the rate of Ie and IE during the period [0,M ] (Fig. 19).

The interest earned is calculated in three parts:

(i) Interest earned on shortages revenue during the period [0,M ] is D(T − t1)pMIE .
(ii) Interest earned on the sale revenue proceeds during the period [0, t1] is (1/2)Dt21pIe.

(iii) Interest earned during the period [t1,M ] is (Dt1p+ (1/2)Dt21pIe)(M − t1)IE .

Hence, the interest earned in one cycle is

D(T − t1)pMIE + (1/2)Dt21pIe +
(
Dt1p+ (1/2)Dt21pIe

)
(M − t1) IE .

Therefore, the average profit per unit time is given by

TP3.2(µ, t1, T ) =
1
T

[〈Sales revenue〉+ 〈Interest earned〉 − 〈Purchasing cost〉 − 〈Ordering cost〉

− 〈Holding cost〉 − 〈Shortages cost〉] (3.37)
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TP3.2(µ, t1, T ) =
1
T

[
DTp+D(T − t1)pMIE + (1/2)Dt21pIe

+ Dt1p (1 + (1/2)t1Ie) (M − t1) IE −Qc−A−Hc− Sc] . (3.38)

The average profit can write as in the combined form

TP(µ, t1, T )

=






TP1.1.1.1.(a)(.) if 0 < M ≤ td, W1 < Qc, Ie < IE ≤ Ip, partiallly and rest amount paid continuosly

TP1.1.1.1.(b)(.) if 0 < M ≤ td, W1 < Qc, Ie < IE ≤ Ip, partiallly and rest amount in second shippment

TP1.1.1.2(.) if 0 < M ≤ td, W1 < Qc, Ie < IE ≤ Ip, and full amount made after t = M

TP1.1.2(.) if 0 < M ≤ td, W1 ≥ Qc, and Ie < IE ≤ Ip
TP1.2.1.1.(a)(.) if td < M ≤ t1, W1 < Qc, Ie < IE ≤ Ip, partiallly and rest amount paid continuosly

TP1.2.1.1.(b)(.) if td < M ≤ t1, W1 < Qc, Ie < IE ≤ Ip, partiallly and rest amount in second shippment

TP1.2.1.2(.) if td < M ≤ t1, W1 < Qc, Ie < IE ≤ Ip, and full amount made after t = M

TP1.2.2(.) if td < M ≤ t1, W1 ≥ Qc, and Ie < IE ≤ Ip
TP1.3(.) if t1 < M ≤ T, and Ie < IE ≤ Ip
TP1.4(.) if T ≤M and Ie < IE ≤ Ip
TP2.1.1.1.(a)(.) if 0 < M ≤ td, W1 < Qc, Ie < Ip ≤ IE , partiallly and rest amount paid continuosly

TP2.1.1.1.(b)(.) if 0 < M ≤ td, W1 < Qc, Ie < Ip ≤ IE , partiallly and rest amount in second shippment

TP2.1.1.2(.) if 0 < M ≤ td, W1 < Qc, Ie < Ip ≤ IE , and full amount made after t = M

TP2.1.2(.) if 0 < M ≤ td, W1 ≥ Qc, and Ie < Ip ≤ IE
TP2.2.1.1.(a)(.) if td < M ≤ t1, W1 < Qc, Ie < Ip ≤ IE , partiallly and rest amount paid continuosly

TP2.2.1.1.(b)(.) if td < M ≤ t1, W1 < Qc, Ie < Ip ≤ IE , partiallly and rest amount in second shippment

TP2.2.1.2(.) if td < M ≤ t1, W1 < Qc, Ie < Ip ≤ IE , and full amount made after t = M

TP2.2.2 if td < M ≤ t1, W1 ≥ Qc, and Ie < Ip ≤ IE
TP2.3(.) if t1< M ≤ T and Ie < Ip ≤ IE
TP2.4(.) if T ≤M and Ie < Ip ≤ IE
TP3.1(.) if M ≤ T and Ip ≤ Ie < IE

TP3.2(.) if T ≤M and Ip ≤ Ie< IE

.

(3.39)

For our convenience, we let twenty-two events as

E1 = {t|0 < M ≤ td, W1 < Qc, Ie < IE ≤ Ip, partiallly and rest amount paid continuosly}
E2 = {t|0 < M ≤ td, W1 < Qc, Ie < IE ≤ Ip, partiallly and rest amount in second shippment}
E3 = {t|if0 < M ≤ td, W1 < Qc, Ie < IE ≤ Ip, and full amount made after t = M}
E4 = {t|0 < M ≤ td, W1 ≥ Qc, and Ie < IE ≤ Ip}
E5 = {t|iftd < M ≤ t1, W1 < Qc, Ie < IE ≤ Ip, partiallly and rest amount paid continuosly}
E6 = {t|td < M ≤ t1, W1 < Qc, Ie < IE ≤ Ip, partiallly and rest amount in second shippment}
E7 = {t|td < M ≤ t1, W1 < Qc, Ie < IE ≤ Ip, and full amount made after t = M}
E8 = {t|td < M ≤ t1, W1 ≥ Qc, and Ie < IE ≤ Ip}
E9 = {t|t1 < M ≤ T, and Ie < IE ≤ Ip}
E10 = {t|T ≤M and Ie < IE ≤ Ip}
E11 = {t|0 < M ≤ td, W1 < Qc, Ie < Ip ≤ IE , partiallly and rest amount paid continuosly}
E12 = {t|0 < M ≤ td, W1 < Qc, Ie < Ip ≤ IE , partiallly and rest amount in second shippment}
E13 = {t|0 < M ≤ td, W1 < Qc, Ie < Ip ≤ IE , and full amount made after t = M}
E14 = {t|0 < M ≤ td, W1 ≥ Qc, and Ie < Ip ≤ IE}

(3.40)



OPTIMAL TRADE CREDIT AND REPLENISHMENT POLICIES 1813

E15 = {t|td < M ≤ t1, W1 < Qc, Ie < Ip ≤ IE , partiallly and rest amount paid continuosly}
E16 = {t|td < M ≤ t1, W1 < Qc, Ie < Ip ≤ IE , partiallly and rest amount in second shippment}
E17 = {t|td < M ≤ t1, W1 < Qc, Ie < Ip ≤ IE , and full amount made after t = M}
E18 = {t|td < M ≤ t1, W1 ≥ Qc, and Ie < Ip ≤ IE}
E19 = {t|t1 < M ≤ T and Ie < Ip ≤ IE}
E20 = {t|T ≤M and Ie < Ip ≤ IE}
E21 = {t|M ≤ T and Ip ≤ Ie < IE}
E22 = {t|T ≤M and Ip ≤ Ie < IE}

.

(3.41)

Define the characteristic functions as

ϕj(t) =

{
1 t ∈ Ej
0 t ∈ Ecj

j = 1, . . . , 22. (3.42)

Moreover, let

H1 =
1

T
(A+ Hc + Sc) (3.43)

Hk+1 = Xkϕk(t), k = 1, . . . , 22 (3.44)

where
X1 = TP1.1.1.1.(a)(.)−H1, X2 = TP1.1.1.1.(b)(.)−H1,

X3 = TP1.1.1.2(.)−H1, X4 = TP1.1.2(.)−H1, X5 = TP1.2.1.1.(a)(.)−H1,

X6 = TP1.2.1.1.(b)(.)−H1, X7 = TP1.2.1.2(.)−H1, X8 = TP1.2.2(.)−H1,

X9 = TP1.3(.)−H1, X10 = TP1.4(.)−H1,

X11 = TP2.1.1.1.(a)(.)−H1, X12 = TP2.1.1.1.(b)(.)−H1, X13 = TP2.1.1.2(.)−H1,

X14 = TP2.1.2(.)−H1,

X15 = TP2.2.1.1(a)(.)−H1, X16 = TP2.2.1.1(b)(.)−H1, X17 = TP2.2.1.2(.)−H1,

X18 = TP2.2.2(.)−H1,

X19 = TP2.3(.)−H1, X20 = TP2.4(.)−H1, X21 = TP3.1(.)−H1, X22 = TP3.2(.)−H1[2pt]

(3.45)

where,

TP2.2.1.1(a)(.) = TP2.1.1.1.(a)(.) = TP1.2.1.1.(a)(.) = TP1.1.1.1.(a)(.),

TP2.2.1.1(b)(.) = TP2.1.1.1.(b)(.) = TP1.2.1.1.(b)(.) = TP1.1.1.1.(b)(.),

TP2.2.1.2(.) = TP2.1.1.2(.) = TP1.2.1.2(.) = TP1.1.1.2(.),

TP1.2.2(.) = TP1.1.2(.),= TP1.3(.) = TP1.4(.),TP2.2.2(.) = TP2.1.2(.)

i.e., X15 = X11 = X5 = X1, X16 = X12 = X6 = X2, X17 = X13 = X7 = X3, X8 = X4, X18 = X14].

(3.46)

In this paper, we use the similar methodology/approach as of Chen and Ouyang [6]; we can obtain a collective form of
the total cost per unit time in all cases as follows (Fig. 20):

TP(µ, t1, T ) =

((
22∑

k=1

Hk+1

)

−H1

)

. (3.47)

3.5. The proposed fuzzy model
In this section, we formulated the fuzzy model of an above-discussed crisp model. In order to show the fuzzy perfor-

mance rates and the fuzzy availabilities of the components, fuzzy triangular numbers defined as follows are used. Let
∼
K = (k1, k2, k3) where k1 < k2 < k3 and defined on R ∈ (−∞,∞), is called a triangular fuzzy number if its membership
function is

µK̃(x) =






x− k1

k2 − k1
, if k1 ≤ x ≤ k2

k3 − x
k3 − k2

, if k2 ≤ x ≤ k3

0, otherwise

.
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1

α

k1 k2 k3k L (α) k R (α)

Figure 20. α-cut of a triangular fuzzy number.

when k1 = k2 = k3 = k, the fuzzy point reduces to k̃ = (k, k, k).
The family of all fuzzy triangular numbers on R is denoted as

FN = { (k1, k2, k3)| k1 < k2 < k3∀k1, k2, k3 ∈ R} .

The α-cut of
∼
K = (k1, k2, k3) ∈ FN , 0 ≤ α ≤ 1, is K(α) = [KL (α) ,KR (α)], where KL(α) = k1 + (k2 − k1)α and

KR(α) = k3 − (k3 − k2)α are the left and right endpoints of K(α).

We use the signed distance method to defuzzify the fuzzy triangular numbers. Let
∼
K = (k1, k2, k3) is a triangular

fuzzy number then the signed distance from K̃ to 0 is defined as

d(K̃
∼
0) =

1∫

0

d
(

[kL(α)α,KR(α)α] ,
∼
0
)

=
1

4
(k1 + 2k2 + k3) .

In the real business environment, the decision maker would not easily determine the exact value of the parameters. Thus,
the decision maker determines that the approximate value of the parameters, i.e., near about the exact value for that cause
we assume two parameters of demand function and deterioration rate in a fuzzy environment, i.e., D(p) = D̃(p) = ã−b̃(p),
and θ = θ̃. Put these values, and θ̃ = (θ−∆3, θ, θ+ ∆3) in (3.44), then the crisp model is converted into a fuzzy model,
i.e.,

T̃P(µ, t1, T ) =

((
22∑

k=1

H̃k+1

)

− H̃1

)

. (3.48)

Since demand function is a triangular fuzzy number, so that ÃP is also triangular fuzzy number i.e.,

T̃P(µ, t1, T ) = (TP1,TP2,TP3) (3.49)

where TPi =
(∑14

k=1H(k+1)i

)
−H15−i , i = 1, 2, 3;

H̃k = (Hk1 , Hk2 , Hk3) and k = 1, . . . , 23 (3.50)

H1i =
1

T

(

A+ h

(

S1td −
D(4−i)t

2
d

2
+

(

−
D(4−i)

θi
(t1 − td) +

Di
θ2(4−i)

(
eθi(t1−td) − 1

)))

+
πDi(T − t1)2

2

)

(3.51)

H2i =
1

T




Di
(
t1 −B1(4−i)

)
p+

1

2
Di
(
t1 −B1(4−i)

)2

pIe +Dip
(
t1 −B1(4−i)

)

{
1 +

1

2

(
t1 −B1(4−i)

)
Ie

}
(T − t1)IE



ϕ1(t) (3.52)
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H3i =
1

T

[
Di
(
t1 −B2(4−i)

)
p+

1

2
Di
(
t1 −B2(4−i)

)2

pIe +Dip
(
t1 −B2(4−i)

)

×
(

1 +
1

2

(
t1 −B2(4−i)

)
Ie

)
(T − t1) IE

]
ϕ2(t) (3.53)

H4i =
1

T




Di
(
t1 −B3(4−i)

)
p+

1

2
Di
(
t1 −B3(4−i)

)2

pIe+(
Di
(
t1 −B3(4−i)

)
p+

1

2
Di
(
t1 −B3(4−i)

)2

pIe

)
(T − t1) IE



ϕ3(t) (3.54)

H5i =
1

T




Di (t1 −M) p+

1

2
Di (t1 −M)2 pIe +

(
W1i −Q(4−i)c

)
{1 + (T −M) IE}

+

(
Di (t1 −M) p+

1

2
Di (t1 −M)2 pIe

)
(T − t1) IE



φ4(t) (3.55)

H6i =
1

T




Di
(
t1 −B1(4−i)

)
p+

1

2
Di
(
t1 −B1(4−i)

)2

pIe +Dip
(
t1 −B1(4−i)

)

{
1 +

1

2

(
t1 −B1(4−i)

)
Ie

}
(T − t1)IE



ϕ5(t) (3.56)

H7i =
1

T




Di
(
t1 −B2(4−i)

)
p+

1

2
Di
(
t1 −B2(4−i)

)2

pIe +Dip
(
t1 −B2(4−i)

)

(
1 +

1

2

(
t1 −B2(4−i)

)
Ie

)
(T − t1) IE



ϕ6(t) (3.57)

H8i =
1

T




Di
(
t1 −B3(4−i)

)
p+

1

2
Di
(
t1 −B3(4−i)

)2

pIe+(
Di
(
t1 −B3(4−i)

)
p+

1

2
Di
(
t1 −B3(4−i)

)2

pIe

)
(T − t1) IE



ϕ7(t) (3.58)

H9i =
1

T




Di (t1 −M) p+

1

2
Di (t1 −M)2 pIe +

(
W1i −Q(4−i)c

)
{1 + (T −M) IE}

+

(
Di (t1 −M) p+

1

2
Di (t1 −M)2 pIe

)
(T − t1) IE



φ8(t) (3.59)

H10i =
1

T

[(
W2i −Q(4−i)c

)
+
(
W2i −Q(4−i)c

)
(T −M)IE

]
ϕ9(t) (3.60)

H11i =
1

T

[(
W3i −Q(4−i)c

)]
ϕ11(t) (3.61)

H12i =
1

T




Di
(
t1 −B1(4−i)

)
p+

1

2
Di
(
t1 −B1(4−i)

)2

pIe +Dip
(
t1 −B1(4−i)

)

{
1 +

1

2

(
t1 −B1(4−i)

)
Ie

}
(T − t1)IE



ϕ11(t) (3.62)

H13i =
1

T




Di
(
t1 −B2(4−i)

)
p+

1

2
Di
(
t1 −B2(4−i)

)2

pIe +Dip
(
t1 −B2(4−i)

)

(
1 +

1

2

(
t1 −B2(4−i)

)
Ie

)
(T − t1) IE



ϕ12(t) (3.63)

H14i =
1

T




Di
(
t1 −B1(4−i)

)
p+

1

2
Di
(
t1 −B1(4−i)

)2

pIe +Dip
(
t1 −B1(4−i)

)

{
1 +

1

2

(
t1 −B1(4−i)

)
Ie

}
(T − t1)IE



ϕ13(t) (3.64)

H15i =
1

T



Di (t1 −M) p+
1

2
Di (t1 −M)2 pIe +Di (t1 −M) p

(
1 +

1

2
Di (t1 −M) Ie

)

(T − t1) IE +W1i {1 + IE(T −M)} −Q(4−i)c {1 + (T −M)Ip}



φ14(t) (3.65)

H16i =
1

T




Di
(
t1 −B1(4−i)

)
p+

1

2
Di
(
t1 −B1(4−i)

)2

pIe +Dip
(
t1 −B1(4−i)

)

{
1 +

1

2

(
t1 −B1(4−i)

)
Ie

}
(T − t1)IE



ϕ15(t) (3.66)
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H17i =
1

T




Di
(
t1 −B2(4−i)

)
p+

1

2
Di
(
t1 −B2(4−i)

)2

pIe +Dip
(
t1 −B2(4−i)

)

(
1 +

1

2

(
t1 −B2(4−i)

)
Ie

)
(T − t1) IE



ϕ16(t) (3.67)

H18i =
1

T




Di
(
t1 −B3(4−i)

)
p+

1

2
Di
(
t1 −B3(4−i)

)2

pIe

+

(
Di
(
t1 −B3(4−i)

)
p+

1

2
Di
(
t1 −B3(4−i)

)2

pIe

)
(T − t1) IE



ϕ17(t) (3.68)

H19i =
1

T



Di (t1 −M) p+
1

2
Di (t1 −M)2 pIe +Di (t1 −M) p

(
1 +

1

2
Di (t1 −M) Ie

)

(T − t1) IE +W1i {1 + IE(T −M)} −Q(4−i)c {1 + (T −M)Ip}



φ18(t) (3.69)

H20i =
[
W2 {1 + (T −M)IE} −Q(4−i)c {1 + (T −M)Ip}

]
φ19(t) (3.70)

H21i =
1

T
(W3i −Qic)φ20(t) (3.71)

H22i =
1

T



DiTp+
1

2
Dit

2
1pIe +Di(T − t1)pTIE +

(
Dit1p+

1

2
Dit

2
1pIe

)
(T − t1) IE

−Q(4−i)c {1 + (T −M) Ip}



ϕ21(t) (3.72)

H23i =
1

T

[
DiTp+Di(T − t1)pMIE +

1

2
Dit

2
1pIe +Dit1p

(
1 +

1

2
t1Ie

)
(M − t1) IE −Q(4−i)c

]
φ22(t) (3.73)

B1i = M +
2
(
cQi −W1(4−i)

)

2D(4−i)p−
(
cQi −W1(4−i)

)
Ip

(3.74)

B2i =
1

D(4−i)pIe

{
DipMIe +QicIp −D(4−i)p− IpW1(4−i)

+
((
Dip−Q(4−i)cIp +W1iIe

)2
+ 2Dip(Qic−W1(4−i))Ie

) 1
2
}

(3.75)

B3i =
1

D(4−i)pIe

{
DipMIe +QicIp −D(4−i)p−W1(4−i)IE +

((
Dip+W1iIE −Q(4−i)cIp

)2

+ 2DpIe
(
Qic−W1(4−i)

)) 1
2
}

(3.76)

W1i = Dip

[
(T − t1) +M

{
1 + (T − t1)IE +

1

2
MIe

}]
(3.77)

W2i = Dip(T − t1) (1 +MIE) +Dipt1

(
1 +

1

2
t1Ie

)
(1 + (M − t1) IE) (3.78)

W3i = Dip(T − t1) (1 +MIE) +Dipt1

(
1 +

1

2
t1Ie

)
(1 + (M − t1) Ie) (3.79)

Qi = Di

(
T + td − t1 +

1

θ(4−i)

(
eθi(t1−td) − 1

))
, Di = ai − pb(4−i) and p = µc (3.80)

Hci = h

(

S1td −
D(4−i)t

2
d

2
+

(

−
D(4−i)

θi
(t1 − td) +

Di
θ2(4−i)

(
eθi(t1−td) − 1

)))

(3.81)

Sci =
πDi(T − t1)2

2
· (3.82)

Now defuzzify the fuzzy profit function by, using signed distance method, measured from T̃P to 0̃

TPd(µ, t1, T ) =
1

4
{TP1 + 2TP2 + TP3} . (3.83)

The necessary conditions for the total profit to be maximum is

∂TPd (µ, t1, T )

∂µ
= 0 (3.84)
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∂TPd (µ, t1, T )

∂t1
= 0 (3.85)

∂TPd (µ, t1, T )

∂T
= 0. (3.86)

Equations (3.84)–(3.86) can be solved simultaneously for the optimal values of µ, t1 and T (say µ∗, t∗1 and T ∗) which
satisfies the sufficient conditions also.

4. Theoretical results and theorems for the optimal solution

Now, in this section, we discuss the theoretical aspects of our proposed model for the crisp case. In this paper, we
incorporate a similar concept for proving the optimality as used by Chen et al. [8]. Here, to solve the problem, we apply
the existing theoretical result in concave fractional programming. If f(x) is non-negative, differentiable and (strictly)
concave, and g(x) is positive, differentiable and convex, then the real-valued function

z (x) =
f (x)

g (x)
· (4.1)

Is (strictly) pseudo-concave. For detailed proof, please see Cambini and Martein [3].

For simplicity, let us define

J =

[

Dp

{

{1 + (T − t1)IE}
d2B1

dT 2
{1 + (t1 −B1)Ie} − Ie

(
dB1

dT

)2
}

+ 2Ie
dB1

dT
{1 + (t1 −B1)Ie}+ πD

]

.

Without loss of generality, we assume that J > 0. Given µ and t1, applying the Cambini and Martein [3] result in
concave fractional programming, we can prove that the retailer’s total annual profit TP(1.1.1.1(a))(µ, t1, T ) is a strictly
pseudo-concave function in T if J > 0. This implies that there exists a unique global optimal solution T ∗ such that
TP(1.1.1.1(a))(µ, t1, T ) is maximized.

Theorem 4.1. Given mark-up rate µ and the time at which inventory level is positive t1, if J > 0, then
TP(1.1.1.1(a))(µ, t1, T ) is a strictly pseudo-concave function in T , and there exists a unique solution T ∗.

Proof. See Appendices A and B. �

Corollary 4.2. Given the mark-up rate µ and the time at which inventory level is positive t1,

(i) W1 is increasing in T

(ii) B1 is decreasing in T and convex in T .

Proof. See in (A.1), (A.2), (A.6) and (A.7). �

Theorem 4.3. Given replenishment cycle time T , if L < 0,M < 0, and LM −K2 > 0, then TP(1.1.1.1(a))(µ, t1, T ) is a
strictly concave function in both µ and t1, and hence there exist a unique solution µ∗ and t∗1.

Proof. See Appendices C and D. �

Corollary 4.4. Given replenishment cycle time T,

(i) W1 is increasing in µ but decreasing in t1 and

(ii) B1 is increasing in and concave in both µ and t1.

Proof. It is clear from (C.24) to (C.27). �

Now, in a similar direction, we can prove the optimality for other cases also.
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Table 2. Values of parameters of different examples.

Example A($) c($) h($) π($) θ a b td Ie
(per
$/year)

IE
(per
$/year)

Ip
(per
$/year)

M
(year)

1. Ie < IE ≤ Ip 200 100 10 50 0.1 150 0.8 0.2 0.12 0.14 0.15 30/365
= 0.082

2. Ie ≤ Ip < IE 200 100 10 50 0.1 150 0.8 0.2 0.12 0.18 0.15 30/365
= 0.082

3. Ip < Ie < IE 200 100 10 50 0.1 150 0.8 0.2 0.18 0.2 0.15 30/365
= 0.082

5. Solution algorithm, numerical example, and sensitivity analysis

5.1. Solution algorithm

The procedure for finding the economic ordering policy in Section 1, i.e., (Ie < IE ≤ Ip) is as follows:

Step 1: For event E1, determineµ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E1 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.1.1.1.(a) (µ∗, t∗1, T ∗). Otherwise, go to step 2.

Step 2: For event E2, determineµ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1, and T ∗ are in E2 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.1.1.1.(b) (µ∗, t∗1, T ∗). Otherwise, go to step 3.

Step 3: For event E3, determineµ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E3 then calculate
TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.1.1.2 (µ∗, t∗1, T ∗). Otherwise, go to step 4.

Step 4: For event E4, determineµ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E4 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.1.2 (µ∗, t∗1, T ∗). Otherwise, go to step 5.

Step 5: For event E5, determineµ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E5 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.2 (µ∗, t∗1, T ∗). Otherwise, go to step 6.

Step 6: For event E6, determine µ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E6 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.3 (µ∗, t∗1, T ∗). Otherwise, go to step 7.

Step 7: For event E7, determine µ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E7 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.1.1.2 (µ∗, t∗1, T ∗). Otherwise, go to step 8.

Step 8: For event E8, determine µ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E8 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.1.2 (µ∗, t∗1, T ∗). Otherwise, go to step 9.

Step 9: For event E9, determine µ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E9 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.2 (µ∗, t∗1, T ∗). Otherwise, go to step 10.

Step 10: For event E10, determine µ∗, t∗1 and T ∗ from equations (3.84) to (3.86). If µ∗, t∗1 and T ∗ are in E10 then
calculate TPd (µ∗, t∗1, T ∗) from (3.83), this gives TP(d)1.3 (µ∗, t∗1, T ∗). Otherwise, go to step 11.

Step 11: Terminate.

The optimal average profit for Case 1, TPd(1) (µ∗, t∗1, T ∗) is associated with maximum average profit per unit time
in getting in Step 1,. . . ,10. Similarly, for Sections 2 and 3, we get the optimal average profit TPd(2) (µ∗, t∗1, T ∗), and
TPd(3) (µ∗, t∗1, T ∗). The optimal solution of the inventory system is associated with the maximum average profits in all
sections. Hence, the optimal average profit of the system is given by

TPd(µ
∗, t∗1, T

∗) = max[TPd(1)(µ
∗, t∗1, T

∗),TPd(2)(µ
∗, t∗1, T

∗),TPd(3)(µ
∗, t∗1, T

∗)].

5.2. Numerical examples

The proposed model of the inventory system has been illustrated with the help of two hypothetical numerical examples,
and the corresponding data have been depicted in Table 2. Both the examples have been solved by using the proposed
algorithm to determine the optimal values of mark-up rate (µ), selling price (p), Breakeven point (Bi), cycle length (T ),
ordering quantity (Q) along with the optimal profit of the system for all the possible cases and sub-cases.

Using the proposed algorithm, the results are as follows:
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For Ie < IE ≤ Ip
µ∗ = 1.49, t∗1 = 0.76 year, T ∗ = 1.47 year, B∗ = 0.34 year, W ∗ = 3759.71, Q∗ = 46 units and Total profit = $1348.76
(Scenario 1.1.1.1.a)
For Ie ≤ IP < IE

µ∗ = 1.46, t∗1 = 0.87 year, T ∗ = 1.31 year, B∗ = 0.45 year, W ∗ = 3105.62, Q∗ = 71 units and Total profit = $1291.38
(Scenario 2.1.1.1.a)
For Ip < Ie < IE

µ∗ = 1.36, t∗1 = 0.082 year = M , T ∗ = 0.75 year, B∗ = 0.63 year, Q∗ = 46 units and Total profit = $1078.47
(Scenario 3.1)

5.3. Sensitivity analysis

In this subsection, we study the effects of changes in different parameters on the optimal policies. The results of these
analyses have been displayed in Table 3.

Following observation and insights have been drawn from Table 3, the following inferences can be made:

– One can easily observe from the Table 3, as the ordering cost (A) increases the optimal cycle length (T ), optimal
order quantity (Q) increases and there is a significant rise in selling price (p) resulting in the decrease of total optimal
profit (TP).

– If we increase the fuzziness (∆1) in the value of (a), the total profit (TP) increases whereas if there is an increase in
the fuzziness (∆2) of (b), the total profit (TP) decreases.

– It can be observed from Table 3 as the cost per unit (c) increases, the optimal cycle length (T ) and selling price
(p) increases, which results in a decrement of total optimal profit (TP). This reveals the natural trend of cost-profit
analysis.

– With the increase in the holding cost, i.e., (h), optimal cycle length (T ), optimal order quantity (Q) increases and
the selling price (p), the total optimal profit per unit time (TP) decreases but there is an increase in holding cost.

– From Table 3 it is visible that in all cases, as the length of credit period M increases, both optimal order quantity
(Q), optimal replenishment cycle time (T ) and total optimal profit per unit time (TP) increase. This suggests that
if the permissible delay period increases, then it help the retailer to prolong the payments to the supplier without
penalty, which indirectly reduces the costs incurred by the retailer, and eventually results in higher profits.

– It is observed from Table 3, as the fraction of deterioration rate (∆3) increases, there is significant decrease in total
optimal profit (TP) and increase in order quantity (Q) because a rise in deterioration rate (θ) causes an increase in
the cost of deteriorated units, which ultimately increase the total cost.

– From the Table 3 it is apparent that, with an increase in the value of non-deteriorating period (td), the cycle length (T ),
order quantity (Q) and total optimal profit (TP) increases. This indicates the positive impact of non-instantaneous
deteriorating items in inventory modelling. As the period for non-deterioration (td) increases, the deterioration cost
for items decreases, which accounts for larger profits for the company.

6. Conclusion and future research direction

In the earlier inventory models on inventory modelling under the conditions of permissible delay in payments, scholars
have assumed that the retailers have to settle their accounts at the end of the credit period, i.e., the supplier accepts only
full amount at the end of the credit period, which doesn’t fit the real circumstances. In reality, either the supplier may
accept the partial amount at the end of the credit period and unpaid balance subsequently or the full amount at a fixed
point of time after the expiry of the credit period, if the retailer finances the inventory from the supplier itself. This issue
motivated us to incorporate the above-mentioned realistic scenario. In the current paper, we incorporate the condition
in which, the supplier accepts the partial payment at the end of the credit period and the reaming amount after that
period under the term and condition. The main feature of the alternative trade credit approach is the extension of the
trade credit period by considering the above realistic possibilities.

In the current paper, we considered the interest earned (IE) on the fixed deposit amount, i.e., revenue generated by
fulfilling the shortage, balance amount, after settling the account is higher than that of usual interest rate (Ie). Hence, the
objective of this study is to determine the retailer’s optimal policies that maximize the total profit. Also, some theoretical
results are obtained, which shows that the optimal solution not only exists, it is unique also. The impact of the new
proposed credit policy is investigated on the optimality of the solution for the non-instantaneous deteriorating products.
The validation of the proposed model and its solution method is demonstrated through the numerical example. The
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Table 3. Sensitivity analysis with different parameters of the inventory system.

Parameters %change of parameters % change in
µ t1 T B Q Profit

A −20% −1.12 −21.07 −25.09 −28.62 −28.45 4.67
−10% −0.87 −15.54 −12.78 −14.34 −12.82 1.29

10% 0.83 21.18 27.18 26.95 14.81 −1.06
20% 1.57 37.61 39.23 33.61 25.31 −1.95

∆1 −20% −15.23 21.05 26.87 42.23 −35.08 −67.34
−10% −6.23 10.57 11.75 23.05 −15.69 −41.56

10% 6.13 −7.34 −9.23 −15.86 15.02 51.73
20% 12.53 −11.46 −12.45 −23.34 27.05 92.78

∆2 −20% 4.04 38.67 58.53 15.07 53.91 17.89
−10% 3.09 32.45 34.04 −23.09 32.76 13.57

10% −3.18 −31.83 −34.98 −33.11 −33.05 −13.90
20% −3.92 −37.97 −57.31 9.87 −50.61 −17.07

h −20% −0.14 4.76 6.48 7.47 7.23 3.72
−10% −0.08 2.48 3.54 3.58 3.47 1.53

10% 0.49 −2.36 −2.96 −3.08 −3.26 −1.71
20% 0.73 −4.73 −6.53 −5.87 −6.47 −3.21

c −20% 16.47 3.45 5.23 −28.51 32.72 51.87
−10% 7.42 2.45 2.57 −13.67 15.33 29.25

10% −5.83 −4.73 −2.34 13.26 −14.86 −32.84
20% −12.55 −6.39 −5.69 27.14 −35.56 −68.15

π −20% 13.46 12.36 19.64 9.71 31.38 2.89
−10% 9.25 5.46 9.58 6.83 16.22 1.47

10% −0.45 −9.31 −12.68 −5.14 −11.12 −1.28
20% −0.69 −13.68 −19.55 −6.60 −17.34 −2.31

M −20% 0.06 0.87 1.43 1.34 −1.32 −1.07
−10% 0.03 0.42 0.74 0.67 −0.65 −0.63

10% −0.01 −0.56 −0.48 −0.71 0.57 0.51
20% −0.02 −1.03 −0.94 −1.47 0.99 1.05

∆3 −20% 0.08 9.23 10.17 7.47 −0.081 31.80
−10% 0.05 5.89 6.90 5.23 −0.078 23.53

10% −0.14 −12.45 −13.43 9.55 0.083 −46.40
20% −0.18 −17.45 −16.42 11.47 0.086 −58.29

td −20% −047 −24.73 −31.08 −23.62 −0.15 −18.04
−10% −0.53 −33.41 −33.93 −22.45 −0.12 −11.42

10% 0.61 35.67 36.02 21.33 0.12 13.51
20% 0.71 41.12 40.23 25.37 0.13 23.36

outcomes suggest significant importance of the proposed inventory model and its solution method to the retail managers
under real-world situations. Results demonstrate that it is essential for the managers to consider the inclusion of new
proposed credit policy significantly increases the net annual profit.

For future research, it would be interesting to extend the present model under two-level trade credit policy. The
model may also be explored for a two warehousing inventory system. Another possible direction may be developed by
integrating different forms of trade credit decisions in the present model. The study may be extended by considering the
effects of environmental impact during shipment. For future research, it would be interesting to study the present model
under different practical parameters like inflation, the multi-product case, and the multi-stage supply chain. The study
may be extended for different demand functions viz., price and time-dependent demand, etc. Furthermore, the learning
effect may be considered to achieve a more realistic scenario while developing an inventory model.
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Appendix A.

Given µ and t1, taking the first and second-order derivative of equations (3.10) and (3.12) with respect to T .

dW1

dT
= Dp (1 +MIE) > 0 (A.1)

d2W1

dT 2
= 0 (A.2)

dQ

dT
= D (A.3)

d2Q

dT 2
= 0 (A.4)

dp

dT
= 0, and

d2p

dT 2 = 0 (A.5)

dB1

dT
=

2 {Dc−Dp (1 +MIE)}
{2Dp− (cQ−W1) Ip}2

{2Dp+ (cQ−W1) Ip} < 0 (A.6)

d2B1

dT 2
=

2 {Dc−Dp (1 +MIE)}2

{2Dp− (cQ−W1) Ip}3
Ip {2Dp+ (cQ−W1) Ip} > 0 (A.7)

dA

dT
= 0, and

d2A

dT 2
= 0 (A.8)

dS1

dT
= 0, and

d2S1

dT 2
= 0 (A.9)

dHc

dT
= 0, and

d2Hc

dT 2
= 0 (A.10)

dSc

dT
= πD (T − t1) > 0, and

d2Sc

dT 2
= πD > 0. (A.11)

From (3.14), Let
y (T ) = D (t1 −B1) p {1 + (1/2) (t1 −B1) Ie} {1 + (T − t1)IE} −A−Hc− Sc

and g (T ) = T > 0.
Consequently, we have

q (T ) =
y (T )

g (T )
= TP1.1.1.1.(a) (µ, t1, T ) .

For given value of µ and t1, taking the first and second-order derivative of y(T ), we get

y′ (T ) = −DpdB1

dT
{1 + (1/2) (t1 −B1) Ie} {1 + (T − t1)IE}+D(t1 −B1)p

(
−(1/2)

dB1

dT
Ie

)
{1 + (T − t1)IE}

+D(t1 −B1)p {1 + (1/2) (t1 −B1) Ie} IE −
dA

dT
− dHc

dT
− dSc

dT
·

(A.12)

Using (A.8)–(A.11) in equation (A.12), we get

y′ (T ) = −DpdB1

dT
{1 + (T − t1)IE} {1 + (t1 −B1)Ie}+D(t1 −B1)pIE {1 + (1/2) (t1 −B1) Ie} − πD (T − t1) . (A.13)

Now, taking the derivative of (A.13) with respect to T , we have

y′ (T ) = −

[

Dp

{

{1 + (T − t1)IE}

{
d2B1

dT 2 {1 + (t1 −B1) Ie} − Ie
(

dB1

dT

)2
}

+ 2Ie
dB1

dT
{1 + (t1 −B1) Ie}

}
+ πD

]
= −J. (A.14)

As a result, if J > 0 then y′(T ) < 0 and hence y (T ) is non-negative, differentiable and strictly concave. Thus if J > 0
then TP1.1.1.1.(a) (µ, t1, T ) is a strictly pseudo-concave function in T , and there exist a unique optimal solution.
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Appendix B.

The optimal replenishment cycle time T ∗

TP1.1.1.1.(a) (µ, t1, T ) =
y (T )

T
·

Hence, for the given value of µandt1, taking the first order derivative of TP1.1.1.1.(a)(µ, t1, T ) w.r.t T and setting the
result to zero, we get the necessary and sufficient condition to find T ∗ as follows:

dTP1.1.1.1.(a) (µ, t1, T )

dT
=
y′ (T )

T
− y (T )

T 2
= 0

⇒ y′ (T )T − y (T ) = 0.

(B.1)

Since J > 0 then necessary and sufficient condition for T ∗ is

⇒
[
−DpdB1

dT
{1 + (T − t1)IE} {1 + (t1 −B1)Ie}+D(t1 −B1)pIE {1 + (1/2) (t1 −B1) Ie} − πD (T − t1)

]
T

= D (t1 −B1) p {1 + (1/2) (t1 −B1) Ie} {1 + (T − t1)IE} −A−Hc− Sc.
(B.2)

Appendix C.

For any given value of T , taking the first and second order partial derivatives of equation (3.14) w.r.t µ and t1.

∂p

∂µ
= c,

∂2p

∂µ2
= 0 (C.1)

∂D

∂µ
= −b ∂p

∂µ
= −bc, ∂2D

∂µ2
= 0 (C.2)

dS1

dT
= 0,

d2S1

dT 2 = 0

∂S1

∂t1
=
D

θ2
eθ(t1−td),

∂2S1

∂t21
=
D

θ3
eθ(t1−td) (C.3)

∂Hc

∂t1
= h

{
(θtd + 1)

D

θ3
eθ(t1−td) − D

θ

}
(C.4)

∂2Hc

∂t21
= h (θtd + 1)

D

θ4
eθ(t1−td) (C.5)

∂Sc

∂t1
= −πD (T − t1) ,

∂2Sc

∂t21
= πD (C.6)

∂Q

∂T
= D,

∂2A

∂T 2
= 0 (C.7)

∂Q

∂t1
= D

{
−1 +

1

θ2
eθ(t1−td)

}
(C.8)

∂2Q

∂t21
=
D

θ3
eθ(t1−td) (C.9)

∂S1

∂µ
= −bc

{
td +

1

θ

(
eθ(t1−td) − 1

)}
(C.10)

∂2S1

∂µ2
= 0 (C.11)

∂Hc

∂µ
= h

{
∂S1

∂µ
td +

bc

2
t2d +

bc

θ

(
t1 − td +

1

θ

(
1− eθ(t1−td)

))}
(C.12)

∂2Hc

∂µ2
= 0 (C.13)
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∂Sc

∂µ
= −πbc (T − t1)2

2
(C.14)

∂2Sc

∂µ2
= 0 (C.15)

∂2S1

∂µ∂t1
= − bc

θ2

(
eθ(t1−td) − 1

)
(C.16)

∂2Hc

∂µ∂t1
= h

{
∂2S1

∂µ∂t1
td +

bc

θ

(
1− 1

θ2

(
1− eθ(t1−td)

))}
(C.17)

∂2Sc

∂µ∂t1
= πbc (T − t1) (C.18)

∂W1

∂µ
=

(
∂D

∂µ
p+D

∂p

∂µ

){
(T − t1) +M

{
1 + (T − t1) IE +

1

2
MIe

}}
.

Using equations (C.1) and (C.2), we get

∂W1

∂µ
= (−pbc+Dc)

{
(T − t1) +M

{
1 + (T − t1) IE +

1

2
MIe

}}
> 0 (C.19)

∂2W1

∂µ2
= −2bc2

{
(T − t1) +M

{
1 + (T − t1) IE +

1

2
MIe

}}
(C.20)

∂2W1

∂µ∂t1
= −{1 +MIe} {Dc− pbc} (C.21)

∂W1

∂t1
= −Dp {1 +MIe} < 0 (C.22)

∂2W1

∂t21
= 0 (C.23)

∂B1

∂µ
=

{
2c2pT {(cQ−W1) (Ip − 1)− 2Dp}+ 2 ∂W1

∂µ
{2 (cQ−W1) Ip −Dp}+ 4c (cQ−W1) (pb+D)

}

(2Dp− (cQ−W1) Ip)
2

= X > 0 (C.24)

∂B1

∂t1
=

−4Dp ∂W1
∂t1

(2Dp− (cQ−W1) Ip)
2 > 0 (C.25)

∂2B1

∂t21
=
−4Dp ∂

2W1
∂t21
{2Dp− (cQ−W1) Ip − Ip}

(2Dp− (cQ−W1) Ip)
3 · (C.26)

Similarly

∂2B1

∂µ2
< 0 (C.27)

∂2B1

∂t1∂µ
=

4bcp ∂W1
∂t1

+ 4cD ∂W1
∂t1

+ 4Dp ∂
2W1
∂t1∂µ

(2Dp− (cQ−W1) Ip)
2 +

8Dp ∂W1
∂t1

{
−2bcp+ 2cD − c ∂Q

∂µ
Ip + ∂W1

∂t1
Ip
}

(2Dp− (cQ−W1) Ip)
3 > 0. (C.28)

From q (x) = y(x)
g(x)

.

Let

Z (µ, t1) = D (t1 −B1) p {1 + (1/2) (t1 −B1) Ie} {1 + (T − t1)IE} −A−Hc− Sc. (C.29)

Consequently, for given T , we have

TP1.1.1.1.(a) (µ, t1, T ) =
Z (µ, t1)

T
· (C.30)
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Taking the first-order and second-order partial derivatives of Z (µ, t1), and simplifying terms, we get

∂Z (µ, t1)

∂µ
=





{
−bc (t1 −B1) p+D

(
t1 −

∂B1

∂µ

)
p+D (t1 −B1) c

}

{
1 +

(
1

2

)
(t1 −B1) Ie

}
− 1

2
D (t1 −B1) pIe

∂B1

∂µ



 {1 + (T − t1)IE} −
∂Hc

∂µ
− ∂Sc

∂µ
· (C.31)

∂2Z (µ, t1)

∂µ2
=





{
bc
∂B1

∂µ
p− bc2 (t1 −B1)− bc

(
t1 −

∂B1

∂µ

)
p−D∂2B1

∂µ2
p+D

(
t1 −

∂B1

∂µ

)
c− bc2 (t1 −B1)−Dc∂B1

∂µ

}

{
1 +

1

2
(t1 −B1) Ie

}
−
{
−bc (t1 −B1) p+D

(
t1 −

∂B1

∂µ

)
p+D (t1 −B1) c

}
∂B1

∂µ
Ie

+
1

2
bc (t1 −B1) pIe

∂B1

∂µ
+

1

2
D

(
∂B1

∂µ

)2

pIe −
1

2
D (t1 −B1) cIe

∂B1

∂µ
− 1

2
D (t1 −B1) pIe

∂2B1

∂µ2





× {1 + (T − t1) IE} = L (C.32)

∂2Z (µ, t1)

∂µ∂t1
=





{{
−bcp−Dp ∂

2B1

∂µ∂t1
+Dc

}{
1 +

1

2
(t1 −B1) Ie

}
+

{
−bc (t1 −B1) p+Dp

(
t1 −

∂B1

∂µ

)
+D (t1 −B1) c

}}

{
1

2

(
1− ∂B1

∂t1

)
Ie

}
− 1

2
D

(
1− ∂B1

∂t1

)
pIe

∂B1

∂µ
− 1

2
D (1− t1) pIe

∂B1

∂µ∂t1





× {1 + (T − t1)IE} −
∂2Hc

∂µ∂t1
− ∂2Sc

∂µ∂t1
= K (C.33)

∂Z (µ, t1)

∂t1
=










Dp

(
1− ∂B1

∂t1

)
{1 + (t1 −B1) Ie} {1 + (T − t1)IE}

+Dp (t1 −B1) IE

{
1 +

1

2
(t1 −B1) Ie

}








−
∂Hc

∂t1
− ∂Sc

∂t1
(C.34)

∂2Z (µ, t1)

∂t21
=





−Dp∂
2B1

∂t21
{1 + (t1 −B1) Ie} {1 + (T − t1) IE}+Dp

(
1− ∂B1

∂t1

)2

Ie {1 + (T − t1) IE}

−Dp
(

1− ∂B1

∂t1

)
Ie {1 + (t1 −B1) Ie} IE −Dp

(
1− ∂B1

∂t1

)
IE

{
1 +

1

2
(t1 −B1) Ie

}

−Dp
2

(t1 −B1) IE

(
1− ∂B1

∂t1

)
Ie




− ∂2Hc

∂t21
− ∂2Sc

∂t21
= M.

(C.35)

If L < 0,M < 0 and LM −K2 > 0, then the Hessian Matrix associate with Z (µ, t1) is negative definite.

H =





∂2Z (µ, t1)

∂µ2

∂2Z (µ, t1)

∂µ∂t1
∂2Z (µ, t1)

∂t1∂µ

∂2Z (µ, t1)

∂t21



 =

[
L K
K M

]
. (C.36)

Consequently, for any given value of T , L < 0, M < 0 and LM −K2 > 0, then TP1.1.1.1.(a) (µ, t1, T ) is strictly concave
function in µ and t1. Hence there exist a unique optimal solution.
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Appendix D.

For any given T , substitute (C.4), (C.6), (C.22) and (C.25) into (C.34) and setting the result to zero, we get the
necessary and sufficient condition for t∗1 as follows:










Dp

(
1− 4D2p2 {1 +MIe}

(2Dp− (cQ−W1) Ip)
2

)
{1 + (t1 −B1) Ie} {1 + (T − t1)IE}

+Dp (t1 −B1) IE

{
1 +

1

2
(t1 −B1) Ie

}










− h
{
D

θ3
(θtd + 1) eθ(t1−td) − D

θ

}
− πD (T − t1) = 0. (D.1)

Similarly, substituting (C.12), (C.14), (C.19) and (C.24) into (C.31) and setting the result to zero, we have the necessary
and sufficient condition of µ∗ as follows:




{−bc (t1 −B1) p+D (t1 −X) p+D (t1 −B1) c}{

1 +

(
1

2

)
(t1 −B1) Ie

}
− 1

2
D (t1 −B1) pIeX



 {1 + (T − t1)IE}

− h
{
−bc

{
td +

1

θ

(
eθ(t1−td) − 1

)}
td +

bc

2
t2d +

bc

θ

(
t1 − td +

1

θ

(
1− eθ(t1−td)

))}
− πbc (T − t1)2

2
= 0. (D.2)
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[41] A.A. Taleizadeh, S. Tavakoli and L.A. San-José, A lot sizing model with advance payment and planned backordering. Ann.

Oper. Res. 271 (2018) 1001–1022.
[42] S. Tavakoli and A.A. Taleizadeh, An EOQ model for decaying item with full advanced payment and conditional discount. Ann.

Oper. Res. 259 (2017) 415–436.
[43] J.T. Teng, On the economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 53 (2002)

915–918.
[44] J.T. Teng, Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad credit customers. Int.

J. Prod. Econ. 119 (2009) 415–423.
[45] J.T. Teng, I.P. Krommyda, K. Skouri and K.R. Lou, A comprehensive extension of optimal ordering policy for stock-dependent

demand under progressive payment scheme. Eur. J. Oper. Res. 215 (2011) 97–104.
[46] J.T. Teng, J. Min and Q. Pan, Economic order quantity model with trade credit financing for non-decreasing demand. Omega.

Int. J. Manage. Sci. 40 (2012) 328–335.
[47] S. Tiwari, L.E. Cárdenas-Barrón, A. Khanna and C.K. Jaggi, Impact of trade credit and inflation on retailer’s ordering policies

for non-instantaneous deteriorating items in a two-warehouse environment. Int. J. Prod. Econ. 176 (2016) 154–169.
[48] Y.C. Tsao, Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in

payments. Int. J. Syst. Sci. 47 (2016) 572–585.
[49] J. Wu, F.B. Al-khateeb, J.T. Teng and L.E. Cárdenas-Barrón, Inventory models for deteriorating items with maximum lifetime

under downstream partial trade credits to credit-risk customers by discounted cash-flow analysis. Int. J. Prod. Econ. 171 (2016)
105–115.

[50] K.S. Wu, L.Y. Ouyang and C.T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock-
dependent demand and partial backlogging. Int. J. Prod. Econ. 101 (2006) 369–384.

[51] K.S. Wu, L.Y. Ouyang and C.T. Yang, Coordinating replenishment and pricing policies for non-instantaneous deteriorating
items with price-sensitive demand. Int. J. Syst. Sci. 40 (2009) 1273–1281.

[52] J.S. Yao and H.M. Lee, Fuzzy inventory with backorder for fuzzy order quantity. Inf. Sci. 93 (1996) 283–319.


	Introduction and literature review
	Our contribution

	Notations and assumptions
	Notations
	Assumptions

	Mathematical model formulation
	Crisp model
	Inventory levels
	Retailer's profit components
	Interest earned, interest paid and total profit
	Case 1: Ie <IE Ip
	Subcase 1.1: 0<Mtd <T
	Subcase 1.1.1: W1 <Qc
	Scenario 1.1.1.1:

	Scenario 1.1.1.1.(a): When the rest amount is paid continuously up to breakeven point bold0mu mumu B1B1B1B1B1B1 (say) after M
	Scenario 1.1.1.1.(b): When the rest amount paid at a breakeven point bold0mu mumu B2B2B2B2B2B2 (say) after M
	Scenario 1.1.1.2: When full payment is to be made at the breakeven point bold0mu mumu B3B3B3B3B3B3 (say) after M
	Subcase 1.1.2: W1 Qc
	Case 1.2: td <Mt1
	Case 1.4: TM
	Subcase 2.1: 0<Mtd 
	Subcase 2.1.1: W1 <Qc
	Subcase 2.1.2: W1 Qc
	Subcase 2.2: td <Mt1
	Subcase 2.3: t1 <MT
	Subcase 3: Ip Ie <IE
	Subcase 3.1: MT
	Subcase 3.2: T<M

	The proposed fuzzy model

	Theoretical results and theorems for the optimal solution
	Solution algorithm, numerical example, and sensitivity analysis
	Solution algorithm
	Numerical examples
	Sensitivity analysis

	Conclusion and future research direction
	
	
	
	
	References

