
RAIRO-Oper. Res. 55 (2021) S435–S460 RAIRO Operations Research
https://doi.org/10.1051/ro/2019101 www.rairo-ro.org

APPROACHES TO MULTIPLE ATTRIBUTE DECISION MAKING BASED ON
PICTURE 2-TUPLE LINGUISTIC POWER HAMY MEAN AGGREGATION

OPERATORS

Guiwu Wei1,∗, Jie Wang1, Hui Gao1, Jiang Wu2 and Cun Wei2

Abstract. In this paper, the multiple attribute decision making (MADM) problems are investi-
gated with picture 2-tuple linguistic information. Then, based on Hamy mean (HM) operator and
dual Hamy mean (DHM) operator, the power average and power geometric operations are utilized to
develop some picture 2-tuple linguistic power Hamy mean aggregation operators: picture 2-tuple lin-
guistic power weighted Hamy mean (P2TLPWHM) operator, picture 2-tuple linguistic power weighted
dual Hamy mean (P2TLPWDHM) operator, picture 2-tuple linguistic power ordered weighted Hamy
mean (P2TLPOWHM) operator, picture 2-tuple linguistic power ordered weighted dual Hamy mean
(P2TLPOWDHM) operator, picture 2-tuple linguistic power hybrid Hamy mean (P2TLPHHM) op-
erator and picture 2-tuple linguistic power hybrid dual Hamy mean (P2TLPHDHM) operator. The
prominent characteristic of these proposed operators are studied. Then, these operators are utilized
to develop some approaches to solve the picture 2-tuple linguistic multiple attribute decision making
problems. Finally, the proposed method is demonstrated through a practical example for enterprise
resource planning (ERP) system selection of how the proposed methods help us and is effective in
MADM problems.
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1. Introduction

Multiple attribute decision making (MADM) problems under linguistic environment are an interesting
research topic having received more and more attention during the last several years [1–7]. One of the well-known
linguistic information processing models is the 2-tuple linguistic computational model [8–14]. The fuzzy linguis-
tic approach has been applied successfully to many problems. However, there is a limitation of this approach
imposed by its information representation model and the computation methods used when fusion processes
are performed on linguistic values. This limitation is the loss of information caused by the need to express the
results in the initial expression domain that is discrete via an approximate process. Herrera and Martinez [10]
presented tools for overcoming this limitation, in which the linguistic information can be expressed by means of
2-tuples, which are composed by a linguistic term and a numeric value assessed in [−0.5, 0.5), this model allows
a continuous representation of the linguistic information on its domain, therefore, it can represent any counting
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of information obtained in a aggregation process. Herrera and Martinez [15] developed a procedure for combin-
ing numerical and linguistic information without loss of information in the transformation processes between
numerical and linguistic information, taking as base for representing the information the a-tuple fuzzy linguistic
representation model. Moreno et al. [16] presented a qualitative and user-oriented methodology for assessing
quality of health-related websites based on a 2-tuple fuzzy linguistic approach. Park et al. [17] developed some
new linguistic aggregation operators such as 2-tuple linguistic harmonic (2TLH) operator, 2-tuple linguistic
weighted harmonic (2TLWH) operator, 2-tuple linguistic ordered weighted harmonic (2TLOWH) operator and
2-tuple linguistic hybrid harmonic (2TLHH) operator, which can be utilized to aggregate preference information
taking the form of linguistic variables and then studied some desirable properties of the operators. Truck [18]
dealt with linguistic models that may prove useful for representing the information during decision making.
Qin and Liu [19] developed some 2-tuple linguistic aggregation operators based on Muirhead mean (MM) oper-
ator [20–23], which is combined with multiple attribute group decision making (MAGDM) and applied the
proposed MAGDM model for supplier selection under 2-tuple linguistic environment. Ju et al. [24] proposed
three 2-tuple linguistic aggregation operators called Shapley 2-tuple linguistic Choquet averaging operator,
Shapley 2-tuple linguistic Choquet geometric operator and generalized Shapley 2-tuple linguistic Choquet aver-
aging operator and discussed some properties of these operators, such as idempotency, monotonicity, boundary
and commutativity. Santos et al. [25] proposed a segmentation model based on the relationship with suppli-
ers capable of aggregating quantitative and qualitative criteria which Analytic Hierarchy Process (AHP) was
used to determine the relative importance of each criteria. Zhang and Su [26] proposed an approach based on
2-tuple fuzzy linguistic method to recommend tasks to the workers who would be capable of completing and
accept them. Ju et al. [27] extended the traditional MSM operator [28] to the single-valued neutrosophic interval
2-tuple linguistic environment, propose some novel aggregation operators, and develop a novel method to solve
multiple attribute group decision making (MAGDM) problems.

Recently, Cuong and Kreinovich [29] proposed picture fuzzy set (PFS) and studied the some basic operations
and properties of PFS. The PFS is characterized by three functions expressing the degree of membership, the
degree of neutral membership and the degree of non-membership. The only constraint is that the sum of the
three degrees must not exceed 1. Basically, PFS based models can be applied to situations requiring human
opinions involving more answers of types: yes, abstain, no, refusal, which can’t be accurately expressed in the
traditional FS and IFS. Singh [30] proposed correlation coefficients for picture fuzzy sets which considered the
degree of positive membership, degree of neutral membership, degree of negative membership and the degree
of refusal membership. Son [31] presented a novel distributed picture fuzzy clustering method on picture fuzzy
sets so-called DPFCM. Thong and Son [32] proposed a novel hybrid model between picture fuzzy clustering
and intuitionistic fuzzy recommender systems for medical diagnosis so-called HIFCF (Hybrid Intuitionistic
Fuzzy Collaborative Filtering). Son [33] proposed a generalized picture distance measure and integrated it to
a novel hierarchical picture fuzzy clustering method called Hierarchical Picture Clustering (HPC). Thong and
Son [34] defined a method called Automatic Picture Fuzzy Clustering (AFC-PFS) for determining the most
suitable number of clusters for FC-PFS which is a hybrid method between Particle Swarm Optimization (PSO)
and FC-PFS where combined solutions consisting of the number of clusters and equivalent clustering centers
and membership matrices are packed and optimized in PSO. Son and Thong [35] proposed two novel hybrid
forecast methods based on picture fuzzy clustering for weather nowcasting. Wei et al. [36] defined an extended
bidirectional projection method in picture fuzzy MAGDM for safety assessment of construction project.

Although, picture fuzzy set theory has been successfully applied in some areas, but there are situations in
real life which can’t be represented by picture fuzzy sets. Voting can be a good example of such situation as
the human voters may be divided into four groups of those who: vote for, abstain, refusal of voting. Basically,
picture fuzzy sets [29] based models may be adequate in situations when we face human opinions involving more
answers of the type: yes, abstain, no, refusal. However, all the above approaches are unsuitable to describe the
degree of positive membership, degree of neutral membership, degree of negative membership and degree of
refusal membership of an element to a linguistic label, which can reflect the decision maker’s confidence level
when they are making an evaluation. In order to overcome this limit, Wei [37] and Wei et al. [38] proposed the
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concept of picture 2-tuple linguistic set to solve this problem based on the picture fuzzy sets [29] and 2-tuple
linguistic information processing model [39]. Thus, how to aggregate these picture 2-tuple linguistic numbers
which take into account the information about the relationship between the values being fused is an interesting
topic. To solve this issue, in this paper, we shall develop some picture 2-tuple linguistic power aggregation
operators on the basis of the traditional Hamy mean operators [40–42]. In order to do so, the remainder of this
paper is set out as follows. In the next section, we introduce the concept of picture 2-tuple linguistic set on the
basis of the picture fuzzy set and 2-tuple linguistic information processing model. In Section 3, we propose some
picture 2-tuple linguistic power Hamy mean aggregation operators. In Section 4, we present some picture 2-tuple
linguistic power dual Hamy mean aggregation operators. In Section 5, based on these operators, we present some
approaches to MADM with picture 2-tuple linguistic information. In Section 6, we present a numerical example
for enterprise resource planning (ERP) system selection with picture 2-tuple linguistic information in order to
illustrate the method proposed in this paper. Section 7 concludes the paper with some remarks.

2. Preliminaries

In the following, we introduced some basic concepts related to 2-tuple linguistic term sets and picture fuzzy
sets.

2.1. Two-tuple linguistic term sets

Let S = {si|i = 1, 2, · · · , t} be a linguistic term set with odd cardinality. Any label, si represents a possible
value for a linguistic variable, and it should satisfy the following characteristics [43]:

(1) The set is ordered: si > sj , if i > j; (2) Max operator: max (si, sj) = si, if si ≥ sj ; (3) Min operator:
min (si, sj) = si, if si ≤ sj . For example, S can be defined as

S = {s1 = extremely poor, s2 = very poor, s3 = poor, s4 = medium,
s5 = good, s6 = very good, s7 = extremely good}.

Herrera and Martinez [10] developed the 2-tuple fuzzy linguistic representation model based on the concept
of symbolic translation. It is used for representing the linguistic assessment information by means of a 2-tuple
(si, αi), where si is a linguistic label from predefined linguistic term set S and αi is the value of symbolic
translation, and αi ∈ [−0.5, 0.5).

Definition 2.1 (Herrera & Martinez [10]). Let β be the result of an aggregation of the indices of a set of labels
assessed in a linguistic term set S, i.e., the result of a symbolic aggregation operation, β ∈ [1, t], being t the
cardinality of S. Let i = round (β) and α = β − i be two values, such that, i ∈ [1, t] and α ∈ [−0.5, 0.5) then α
is called a symbolic translation.

Definition 2.2 (Herrera & Martinez [10]). Let S = {s1, s2, · · · , st} be a linguistic term set and β ∈ [1, t] is a
number value representing the aggregation result of linguistic symbolic. Then the function ∆ used to obtain the
2-tuple linguistic information equivalent to β is defined as:

∆ : [1, t]→ S × [−0.5, 0.5) , (2.1)

∆ (β) =
{
si, i = round (β)
α = β − i, α ∈ [−0.5, 0.5) , (2.2)

where round (.) is the usual round operation, si has the closest index label to β and α is the value of the
symbolic translation.
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Definition 2.3 (Herrera & Martinez [10]). Let S = {s1, s2, · · · , st} be a linguistic term set and (si, αi) be a
2-tuple. There is always a function ∆−1 can be defined, such that, from a 2-tuple (si, αi) it return its equivalent
numerical value β ∈ [1, t] ⊂ R, which is:

∆−1 : S × [−0.5, 0.5) → [1, t], (2.3)
∆−1 (si, α) = i+ α = β. (2.4)

From Definitions 2.1 to 2.2, we can conclude that the conversion of a linguistic term into a linguistic 2-tuple
consists of adding a value 0 as symbolic translation:

∆ (si) = (si, 0) . (2.5)

2.2. Picture fuzzy set

Although, intuitionistic fuzzy set theory [44–48] has been successfully applied in different areas, but there are
situations in real life which can’t be represented by intuitionistic fuzzy sets. Picture fuzzy sets [29] are extension
of intuitionistic fuzzy sets. Picture fuzzy set based models may be adequate in situations when we face human
opinions involving more answers of types: yes, abstain, no, refusal. It can be considered as a powerful tool
represent the uncertain information in the process of patterns recognition and cluster analysis.

Definition 2.4 (Cuong & Kreinovich [29]). A picture fuzzy set (PFS) A on the universe X is an object of the
form

A = {〈x, µA (x), ηA (x), νA (x)〉 |x ∈ X }, (2.6)

where µA (x) ∈ [0, 1] is called the “degree of positive membership of A”, ηA (x) ∈ [0, 1] is called the “degree of
neutral membership of A” and νA (x) ∈ [0, 1] is called the “degree of negative membership of A”, and µA (x),
ηA (x), νA (x) satisfy the following condition: 0 ≤ µA (x) + ηA (x) + νA (x) ≤ 1, ∀ x ∈ X. Then for x ∈ X,
πA (x) = 1− (µA (x) + ηA (x) + νA (x)) could be called the degree of refusal membership of x in A.

Cuong and Kreinovich [29] also defined some operations as follows:

Definition 2.5 (Cuong & Kreinovich [29]). Given two PFEs represented by A and B on universe X, the
inclusion, union, intersection and complement operations are defined as follows:

(1) A ⊆ B, if µA (x) ≤ µB (x), ηA (x) ≤ ηB (x) and νA (x) ≥ νB (x), ∀x ∈ X;
(2) A ∪B = {(x,max (µA (x), µB (x)),min (ηA (x), ηB (x)),min (νA (x), νB (x))) |x ∈ X };
(3) A ∩B = {(x,min (µA (x), µB (x)),max (ηA (x), ηB (x)),max (νA (x), νB (x))) |x ∈ X };
(4) Ā = {(x, νA (x), ηA (x), µA (x)) |x ∈ X }.

For convenience, we call α = (µα, ηα, να) a picture fuzzy number (PFN), where

µα ∈ [0, 1], ηα ∈ [0, 1], να ∈ [0, 1], µα + ηα + να ≤ 1.

Motivated by the operations of the intuitionistic fuzzy number [44] and according to Definition 2.5, in the
following, Wei [49] defined some operational laws of picture fuzzy number.

Definition 2.6 (Wei [49]). Let α = (µα, ηα, να) and β = (µβ , ηβ , νβ) be two picture fuzzy numbers, then

ᾱ = α= (να, ηα, µα) ;
α ∧ β = (min {µα, µβ},max {ηα, ηβ},max {να, νβ}) ;
α ∨ β = (max {µα, µβ},min {ηα, ηβ},min {να, νβ}) ;
α⊕ β = (µα + µβ − µαµβ , ηαηβ , νανβ) ;
α⊗ β = (µαµβ , ηα + ηβ − ηαηβ , να + νβ − νανβ) ;
λα =

(
1− (1− µα)λ , ηλα, ν

λ
α

)
;

αλ =
(
µλα, 1− (1− ηα)λ , 1− (1− να)λ

)
.

Based on the Definition 2.6, Wei [49] derived the following properties easily.
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Theorem 2.7. Let α = (µα, ηα, να) and β = (µβ , ηβ , νβ) be two picture fuzzy numbers, λ, λ1, λ2 > 0, then

(1) α⊕ β = β ⊕ α;
(2) α⊗ β = β ⊗ α;
(3) λ (α⊕ β) = λα⊕ λβ;
(4) (α⊗ β)λ = αλ ⊗ βλ;
(5) λ1α⊕ λ2α = (λ1 + λ2)α;
(6) αλ1 ⊗ αλ2 = α(λ1+λ2);
(7)

(
αλ1
)λ2 = αλ1λ2 .

2.3. Picture 2-tuple linguistic sets

In the following, Wei [37] and Wei et al. [38] proposed the concepts and basic operations of the picture
2-tuple linguistic sets on the basis of the picture fuzzy sets [29] and 2-tuple linguistic information processing
model [10,15].

Definition 2.8 (Wei [37]; Wei et al. [38]). A picture 2-tuple linguistic sets A in X is given

A =
{(
sθ(x), ρ

)
, (µA (x), ηA (x), νA (x)), x ∈ X

}
, (2.7)

where
(
sθ(x), ρ

)
∈ S, ρ ∈ [−0.5, 0.5), uA (x) ∈ [0, 1], ηA (x) ∈ [0, 1] and vA (x) ∈ [0, 1], with the condition

0 ≤ uA(x)+ηA (x)+vA(x) ≤ 1, ∀x ∈ X, sθ(a) ∈ S and ρ ∈ [−0.5, 0.5). The numbers µA (x), ηA (x), νA (x) repre-
sent, respectively, the degree of positive membership, degree of negative membership and degree of negative mem-
bership of the element x to linguistic variable

(
sθ(x), ρ

)
. Then for x ∈ X, πA (x) = 1−(µA (x) + ηA (x) + νA (x))

could be called the degree of refusal membership of the element x to linguistic variable
(
sθ(x), ρ

)
.

For convenience, Wei [37] called ã =
〈(
sθ(a), ρ

)
, (µα, ηα, να)

〉
a picture 2-tuple linguistic number (P2TLN),

where µα ∈ [0, 1], ηα ∈ [0, 1], να ∈ [0, 1], µα + ηα + να ≤ 1, sθ(a) ∈ S and ρ ∈ [−0.5, 0.5) .

Definition 2.9 (Wei [37]; Wei et al. [38]). Let ã =
〈(
sθ(a), ρ

)
, (µα, ηα, να)

〉
, a picture 2-tuple linguistic number

(P2TLN), a score function ã of a picture 2-tuple linguistic number can be represented as follows:

S (ã) = ∆
(

∆−1
(
sθ(a), ρ

)
· 1 + µα − να

2

)
, ∆−1 (S (ã)) ∈ [1, t]. (2.8)

Definition 2.10 (Wei [37]; Wei et al. [38]). Let ã =
〈(
sθ(a), ρ

)
, (µα, ηα, να)

〉
a picture 2-tuple linguistic number

(P2TLN), an accuracy function H of a picture 2-tuple linguistic number can be represented as follows:

H (ã) = ∆
(

∆−1
(
sθ(a), ρ

)
· µα + ηα + να

2

)
, ∆−1 (H (ã)) ∈ [1, t] , (2.9)

to evaluate the degree of accuracy of the picture 2-tuple linguistic number ã =
〈(
sθ(a), ρ

)
, (µα, ηα, να)

〉
, where

∆−1 (H (ã)) ∈ [1, t]. The larger the value of H (ã), the more the degree of accuracy of the picture 2-tuple
linguistic number a.

Based on the score function S and the accuracy function H, in the following, the order relation between two
picture 2-tuple linguistic numbers is defined as follows:

Definition 2.11 (Wei [37]; Wei et al. [38]). Let ã1 =
〈(
sθ(a1), ρ1

)
, (ua1 , ηa1 , va1)

〉
and ã2 =

〈(
sθ(a2) ,

ρ2), (ua2 , ηa2 , va2)〉 be two picture 2-tuple linguistic numbers, S (ã1) = ∆
(

∆−1
(
sθ(a1), ρ1

)
· 1+µα1−να1

2

)
and S (ã2) = ∆

(
∆−1

(
sθ(a2), ρ2

)
· 1+µα2−να2

2

)
be the scores of ã1 and ã2, respectively, and let H (ã1) =

∆
(

∆−1
(
sθ(a1), ρ1

)
· µα1+ηα1+να1

2

)
and H (ã2) = ∆

(
∆−1

(
sθ(a2), ρ2

)
· µα2+ηα2+να2

2

)
be the accuracy degrees of

ã1 and ã2, respectively, then if S (ã1) < S (ã2), then ã1 is smaller than ã2, denoted by ã1 < ã2; if S (ã1) = S (ã2),
then
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(1) if H (ã1) = H (ã2), then ã1 and ã2 represent the same information, denoted by ã1 = ã2;
(2) if H (ã1) < H (ã2), ã1 is smaller than ã2, denoted by ã1 < ã2.

Motivated by the operations of the 2-tuple linguistic information [10,43] and Definition 2.5, in the following,
some operational laws of picture 2-tuple linguistic numbers are defined as follows.

Definition 2.12 (Wei [37]; Wei et al. [38]). Let ã1 =
〈(
sθ(a1), ρ1

)
, (ua1 , ηa1 , va1)

〉
and ã2 =

〈(
sθ(a2) ,

ρ2), (ua2 , ηa2 , va2)〉 be two picture 2-tuple linguistic numbers, then

ã1 ⊕ ã2 =
〈
∆
(
∆−1

(
sθ(a1), ρ1

)
+ ∆−1

(
sθ(a2), ρ2

))
,

(ua1 + ua2 − ua1ua2 , ηa1ηa2 , νa1νa2)〉;
ã1 ⊗ ã2 =

〈
∆
(
∆−1

(
sθ(a1), ρ1

)
·∆−1

(
sθ(a2), ρ2

))
,

(ua1ua2 , ηa1 + ηa2 − ηa1ηa2 , νa1 + νa2 − νa1νa2)〉;

λã1 =
〈
∆
(
λ∆−1

(
sθ(a1), ρ1

))
,
(

1− (1− ua1)λ , ηλa1
, νλa1

)〉
;

(ã1)λ =
〈

∆
((

∆−1
(
sθ(a1), ρ1

))λ)
,
(
uλa1

, 1− (1− ηa1)λ , 1− (1− νa1)λ
)〉
.

Based on the Definition 2.12, the following properties can be derived easily.

Theorem 2.13 (Wei [37]; Wei et al. [38]). For any two picture 2-tuple linguistic numbers ã1 =〈(
sθ(a1), ρ1

)
, (ua1 , ηa1 , va1)

〉
and ã2 =

〈(
sθ(a2), ρ2

)
, (ua2 , ηa2 , va2)

〉
, it can be proved the calculation rules shown

as follows:

(1) ã1 ⊕ ã2 = ã2 ⊕ ã1

(2) ã1 ⊗ ã2 = ã2 ⊗ ã1

(3) λ(ã1 ⊕ ã2) = λã1 ⊕ λã2, 0 ≤ λ ≤ 1
(4) λ1ã1 ⊕ λ2ã1 = (λ1 ⊕ λ2)ã1, 0 ≤ λ1, λ2, λ1 + λ2 ≤ 1
(5) ãλ1

1 ⊗ ã
λ2
1 = (ã1)λ1+λ2 , 0 ≤ λ1, λ2, λ1 + λ2 ≤ 1

(6) ãλ1
1 ⊗ ã

λ1
2 = (ã1 ⊗ ã2)λ1 , λ1 ≥ 0.

(7)
(
α̃λ1
)λ2 = α̃λ1λ2 .

2.4. HM operator

Definition 2.14 (Hara et al. [40]). The HM operator is defined as follows:

HM(k) (p̃1, p̃2, · · · , p̃n) =

∑
1≤i1<...<ik≤n

(
k∏
j=1

p̃ij

) 1
k

Ckn
, (2.10)

where k is a parameter and k = 1, 2, . . . , n, i1, i2, . . . , ik are k integer values taken from the set {1, 2, . . . , n} of
k integer values, Ckn denotes the binomial coefficient and Ckn = n!

k!(n−k)! ·

3. Picture 2-tuple linguistic power Hamy mean aggregation operators

Yager [50] developed a nonlinear weighted average aggregation operator called power average (PA) operator,
which can be defined as follows:

PA (a1, a2, · · · , an) =

n∑
i=1

(1 + T (ai)) ai
n∑
i=1

(1 + T (ai))
, (3.1)
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where T (ai) =
∑n

j=1
j 6=i

Sup (ai, aj), and Sup (a, b) is the support for a from b, which satisfies the following three

properties: (1) Sup (a, b) ∈ [0, 1]; (2) Sup (a, b) = Sup (b, a); (3) Sup (a, b) ≥ Sup (x, y), if |a− b| < |x− y|.
Obviously, the support (Sup) measure is essentially a similarity index. The more similar, the closer two values,
and the more they support each other.

In this section, we shall develop some Hamy mean aggregation operators with picture 2-tuple linguistic infor-
mation and power operation laws, such as picture 2-tuple linguistic power Hamy mean (P2TLPHM) operator,
picture 2-tuple linguistic power weighted Hamy mean (P2TLPWHM) operator, picture 2-tuple linguistic power
ordered weighted Hamy mean (P2TLPOWHM) operator and picture 2-tuple linguistic power hybrid Hamy
mean (P2TLPHHM) operator.

Definition 3.1. Let p̃j = 〈(rj , αj), (µj , ηj , νj)〉 (j = 1, 2, · · · , n) be a collection of picture 2-tuple linguistic
numbers. The picture 2-tuple linguistic power Hamy mean (P2TLPHM) operator is a mapping Pn → P such
that

P2TLPHM (p̃1, p̃2, · · · , p̃n) =

⊕
1≤i1<...<ik≤n

 k
⊗
j=1

 n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))
p̃ij

 1
k

Ckn
, (3.2)

where

T
(
p̃ij
)

=
n∑
j=1
j 6=t

Sup
(
p̃ij , p̃it

)
(3.3)

and Sup
(
p̃ij , p̃it

)
is the support for p̃ij from p̃it , with the conditions:

(1) Sup
(
p̃ij , p̃it

)
∈ [0, 1] ;

(2) Sup
(
p̃ij , p̃it

)
= Sup

(
p̃it , p̃ij

)
;

(3) Sup
(
p̃ij , p̃it

)
≥ Sup (p̃s, p̃t), if d

(
p̃ij , p̃it

)
< d (p̃s, p̃t), where d is a distance measure.

Based on the Definition 3.1 and Theorem 2.13, we can get the following result:

Theorem 3.2. The aggregated value by using P2TLPHM operator is also a picture 2-tuple linguistic numbers,
where

P2TLPHM (p̃1, p̃2, · · · , p̃n) =

⊕
1≤i1<...<ik≤n




k
⊗
j=1




n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

)) p̃ij









1
k

Ckn

= 〈∆


 1
Ckn

∑
1≤i1<...<ik≤n




k∏
j=1

n
(
1+T

(
p̃ij

))
∆−1(rj ,αj)

n∑

j=1

(
1+T

(
p̃ij

))





1
k



,



1−
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (1− µj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn

,
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (ηj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn

,

∏
1≤i1<...<ik≤n



1−
k∏
j=1



1− (νj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn



〉
(3.4)
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where

T
(
p̃ij
)

=
n∑
j=1
j 6=t

Sup
(
p̃ij , p̃it

)
(3.5)

Proof.

n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))
p̃ij = 〈∆

n(1+T(p̃ij ))∆−1(rj ,αj)
n∑
j=1

(1+T(p̃ij ))

,1− (1− µj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))
, (ηj)

n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))
, (νj)

n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

〉. (3.6)

Thus,

k
⊗
j=1

 n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))
p̃ij

 = 〈∆
 k∏
j=1

n(1+T(p̃ij ))∆(rj ,αj)
n∑
j=1

(1+T(p̃ij ))

, k∏
j=1

1− (1− µj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

, 1− k∏
j=1

1− (ηj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

, 1−
k∏
j=1

1− (νj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

〉.
(3.7)

Thereafter,

k
⊗
j=1



 n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

)) p̃ij





1
k

= 〈∆ k∏
j=1

n
(
1+T

(
p̃ij

))
∆−1(rj ,αj)

n∑

j=1

(
1+T

(
p̃ij

))





1
k

,




k∏
j=1



1− (1− µj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k

, 1−
k∏
j=1



1− (ηj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k

, 1−
k∏
j=1



1− (νj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k



〉.
(3.8)

Furthermore,

⊕
1≤i1<...<ik≤n

k
⊗
j=1



 n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

)) p̃ij





1
k

= 〈∆



∑

1≤i1<...<ik≤n




k∏
j=1

n
(
1+T

(
p̃ij

))
∆−1(rj ,αj)

n∑

j=1

(
1+T

(
p̃ij

))





1
k



,



1−
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (1− µj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k



,
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (ηj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k



,

∏
1≤i1<...<ik≤n



1−
k∏
j=1



1− (νj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k







〉.
(3.9)
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Therefore,

P2TLPHM (p̃1, p̃2, · · · , p̃n) =

⊕
1≤i1<...<ik≤n




k
⊗
j=1




n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

)) p̃ij









Ckn

1
k

= 〈∆


 1
Ckn

∑
1≤i1<...<ik≤n




k∏
j=1

n
(
1+T

(
p̃ij

))
∆−1(rj ,αj)

n∑

j=1

(
1+T

(
p̃ij

))





1
k



,



1−
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (1− µj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn

,
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (ηj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn

,

∏
1≤i1<...<ik≤n



1−
k∏
j=1



1− (νj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn



〉.
(3.10)

Hence, (3.4) is kept. �

Definition 3.3. Let p̃j = 〈(rj , αj), (µj , ηj , νj)〉 (j = 1, 2, · · · , n) be a collection of picture 2-tuple linguistic
numbers, ω = (ω1, ω2, · · · , ωn)T be the weight vector of p̃j (j = 1, 2, · · · , n), and ωj > 0,

∑n
j=1 ωj = 1. The

picture 2-tuple linguistic power weighted Hamy mean (P2TLPWHM) operator is a mapping Pn → P such that

P2TLPWHM (p̃1, p̃2, · · · , p̃n) =

⊕
1≤i1<...<ik≤n

 k
⊗
j=1

 nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))
p̃ij


Ckn

1
k

, (3.11)

where

T
(
p̃ij
)

= ωi

n∑
j=1
j 6=t

Sup
(
p̃ij , p̃it

)
. (3.12)

Based on the Definition 3.3, Theorem 2.13 and mathematical induction on n, we can get the following result:

Theorem 3.4. The aggregated value by using P2TLPWHM operator is also a picture 2-tuple linguistic numbers,
where

P2TLPWHM (p̃1, p̃2, · · · , p̃n) =

⊕
1≤i1<...<ik≤n




k
⊗
j=1




nωj

(

1+T
(

p̃ij

))

n∑

j=1
ωj

(

1+T
(

p̃ij

)) p̃ij









Ckn

1
k

= 〈∆



1
Ckn

∑
1≤i1<...<ik≤n




k∏
j=1

nωj

(
1+T

(
p̃ij

))
∆−1(rj,αj)

n∑

j=1
ωj

(
1+T

(
p̃ij

))





1
k



,




1−

∏
1≤i1<...<ik≤n



1−
k∏
j=1



1− (1− µj)
nωj

(
1+T

(
p̃ij

))

n∑

j=1
ωj

(
1+T

(
p̃ij

))





1
k





1
Ckn

,
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (ηj)
nωj

(
1+T

(
p̃ij

))

n∑

j=1
ωj

(
1+T

(
p̃ij

))





1
k





1
Ckn

,

∏
1≤i1<...<ik≤n



1−
k∏
j=1



1− (νj)
nωj

(
1+T

(
p̃ij

))

n∑

j=1
ωj

(
1+T

(
p̃ij

))





1
k





1
Ckn



〉
(3.13)
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where ω = (ω1, ω2, · · · , ωn)T be the weight vector of p̃j (j = 1, 2, · · · , n), and ωj > 0,
n∑
j=1

ωj = 1.

It can be easily proved that the P2TLPWHM operator has the following properties.

Theorem 3.5 (Idempotency). If all p̃j (j = 1, 2, · · · , n) are equal, i.e. p̃j = p̃ for all j, then

P2TLPWHM (p̃1, p̃2, · · · , p̃n) = p̃. (3.14)

Theorem 3.6 (Boundedness). Let p̃j (j = 1, 2, · · · , n) be a collection of P2TLNs, and let

p̃− = min
j
p̃j , p̃+ = max

j
p̃j .

Then
p̃− ≤ P2TLPWHM (p̃1, p̃2, · · · , p̃n) ≤ p̃+. (3.15)

Theorem 3.7 (Monotonicity). Let p̃j (j = 1, 2, · · · , n) and p̃′j (j = 1, 2, · · · , n) be two set of P2TLNs, if p̃j ≤ p̃′j,
for all j, then

P2TLPWHM (p̃1, p̃2, · · · , p̃n) ≤ P2TLPWHM (p̃′1, p̃
′
2, · · · , p̃′n) . (3.16)

Further, we give a picture 2-tuple linguistic power ordered weighted Hamy mean (P2TLPOWHM) operator below.

Definition 3.8. Let p̃j= 〈(rj , αj), (µj , ηj , νj)〉 (j = 1, 2, · · · , n) be a collection of P2TLNs, the picture 2-tuple
linguistic power ordered weighted Hamy mean (P2TLPOWHM) operator of dimension n is a mapping
P2TLPOWHM: Pn → P , that has an associated weight vector w = (w1, w2, · · · , wn)T such that wj > 0

and
n∑
j=1

wj = 1. Furthermore,

P2TLPOWHM (p̃1, p̃2, · · · , p̃n) =

⊕
1≤i1<...<ik≤n




k
⊗
j=1




nwj

(
1+T

(
p̃
σ(ij)

))

n∑

j=1
ωj

(
1+T

(
p̃
σ(ij)

)) p̃σ(ij)









Ckn

1
k

= 〈∆
 1
Ckn

∑
1≤i1<...<ik≤n

 k∏
j=1

nwj
(

1+T
(
p̃σ(ij)

))
∆−1(rσ(j),ασ(j))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

1
k

,
1−

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
1− µσ(j)

) nωj
(

1+T
(
p̃σ(ij)

))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

1
k


1
Ckn

,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
ησ(j)

) nωj
(

1+T
(
p̃σ(ij)

))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

1
k


1
Ckn

,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
νσ(j)

) nωj
(

1+T
(
p̃σ(ij)

))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

1
k


1
Ckn

〉

(3.17)

where (σ (1), σ (2), · · · , σ (n)) is a permutation of (1, 2, · · · , n), such that p̃σ(ij−1) ≥ p̃σ(ij) for all j = 2, · · · , n,
wj (j = 1, 2, · · · , n) is collection of weights such that

wj = g

(
Rj
TV

)
− g

(
Rj−1

TV

)
, Rj =

j∑
i=1

Vσ(i), TV =
n∑
i=1

Vσ(i), Vσ(i) = 1 + T
(
p̃σ(ij)

)
(3.18)
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and T
(
p̃σ(ij)

)
denotes the support of the jth largest picture 2-tuple linguistic numbers T

(
p̃σ(ij)

)
by all the

other picture 2-tuple linguistic numbers, i.e.,

T
(
p̃σ(ij)

)
=

n∑
j=1
j 6=t

Sup
(
p̃σ(ij), p̃σ(it)

)
, (3.19)

where
n∑
j=1
j 6=t

Sup
(
p̃σ(ij), p̃σ(it)

)
indicates the support of jth largest picture 2-tuple linguistic number p̃σ(ij) for

the tth largest picture 2-tuple linguistic number p̃σ(it), and g: [0, 1] → [0, 1] is a basic unit-interval monotonic
(BUM) function, having the properties: g(0) = 0, g(1) = 1, and g(x) ≥ g(y), if x > y.

It can be easily proved that the P2TLPOWHM operator has the following properties.

Theorem 3.9 (Idempotency). If all p̃j (j = 1, 2, · · · , n) are equal, i.e. p̃j = p̃ for all j, then

P2TLPOWHM (p̃1, p̃2, · · · , p̃n) = p̃. (3.20)

Theorem 3.10 (Boundedness). Let p̃j (j = 1, 2, · · · , n) be a collection of P2TLNs, and let

p̃− = min
j
p̃j , p̃+ = max

j
p̃j .

Then

p̃− ≤ P2TLPOWHM (p̃1, p̃2, · · · , p̃n) ≤ p̃+. (3.21)

Theorem 3.11 (Monotonicity). Let p̃j (j = 1, 2, · · · , n) and p̃′j (j = 1, 2, · · · , n) be two set of P2TLNs, if p̃j ≤
p̃′j, for all j, then

P2TLPOWHM (p̃1, p̃2, · · · , p̃n) ≤ P2TLPOWHM (p̃′1, p̃
′
2, · · · , p̃′n) . (3.22)

Theorem 3.12 (Commutativity). Let p̃j (j = 1, 2, · · · , n) and p̃′j (j = 1, 2, · · · , n) be two set of P2TLNs, for all
j, then

P2TLOWHM (p̃1, p̃2, · · · , p̃n) = P2TLOWHM (p̃′1, p̃
′
2, · · · , p̃′n), (3.23)

where p̃′j (j = 1, 2, · · · , n) is any permutation of p̃j (j = 1, 2, · · · , n).

From Definitions 3.3 to 3.8, we know that the P2TLPWHM operators only weights the picture 2-tuple linguistic
number itself, while the P2TLPOWHM operators weights the ordered positions of the picture 2-tuple linguistic
number instead of weighting the arguments itself. Therefore, the weights represent two different aspects in both
the P2TLPWHM and P2TLPOWHM operators. However, both the operators consider only one of them. To
solve this drawback, in the following we shall propose the picture 2-tuple linguistic power hybrid Hamy mean
(P2TLPHHM) operator.
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Definition 3.13. Let p̃j= 〈(rj , αj), (µj , ηj , νj)〉 (j = 1, 2, · · · , n) be a collection of P2TLNs. A picture 2-tuple
linguistic power hybrid Hamy mean (P2TLPHHM) operator is a mapping P2TLPHHM: Pn → P , such that

P2TLPHHM (p̃1, p̃2, · · · , p̃n) =

⊕
1≤i1<...<ik≤n




k
⊗
j=1




nwj

(
1+T

(
˙̃p
σ(ij)

))

n∑

j=1
wj

(
1+T

(
˙̃p
σ(ij)

)) ˙̃pσ(ij)









1
k

Ckn

= 〈∆
 1
Ckn

∑
1≤i1<...<ik≤n

 k∏
j=1

nwj
(

1+T
(

˙̃pσ(ij)

))
∆−1(ṙσ(j),α̇σ(j))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
k

 ,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
1− µ̇σ(j)

) nwj
(

1+T
(

˙̃pσ(ij)

))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
k


1
Ckn

,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
η̇σ(j)

) nwj
(

1+T
(

˙̃pσ(ij)

))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
k


1
Ckn

,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
ν̇σ(j)

) nwj
(

1+T
(

˙̃pσ(ij)

))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
k


1
Ckn

〉

(3.24)

where w = (w1, w2, · · · , wn) is the associated weighting vector, with wj ∈ [0, 1],
n∑
j=1

wj = 1, and ˙̃pσ(ij) is

the jth largest element of the picture 2-tuple linguistic arguments ˙̃pij
( ˙̃pij = (nωj) p̃ij , j = 1, 2, · · · , n

)
, ω =

(ω1, ω2, · · · , ωn) is the weighting vector of picture 2-tuple linguistic arguments p̃ij (j = 1, 2, · · · , n), with ωi ∈

[0, 1],
n∑
i=1

ωi = 1, and n is the balancing coefficient. And wj (j = 1, 2, · · · , n) is collection of weights such that

wj = g

(
Rj
TV

)
− g

(
Rj−1

TV

)
, Rj =

j∑
i=1

Vσ(i), TV =
n∑
i=1

Vσ(i), Vσ(i) = 1 + T
( ˙̃pσ(ij)

)
(3.25)

and T
( ˙̃pσ(ij)

)
denotes the support of the jth largest picture 2-tuple linguistic numbers T

( ˙̃pσ(ij)

)
by all the

other picture 2-tuple linguistic numbers, i.e.,

T
( ˙̃pσ(ij)

)
=

n∑
j=1
i6=t

Sup
( ˙̃pσ(ij),

˙̃pσ(it)

)
, (3.26)

where
∑n

j=1
i 6=t

Sup
( ˙̃pσ(ij),

˙̃pσ(it)

)
indicates the support of jth largest picture 2-tuple linguistic number ˙̃pσ(ij) for

the jth largest picture 2-tuple linguistic number ˙̃pσ(ij), and g: [0, 1] → [0, 1] is a basic unit-interval monotonic
(BUM) function, having the properties: g(0) = 0, g(1) = 1, and g(x) ≥ g(y), if x > y. Especially, if w =
(1/n, 1/n, · · · , 1/n), then P2TLPHHM is reduced to the picture 2-tuple linguistic power weighted Hamy mean
(P2TLPWHM) operator; if ω = (1/n, 1/n, · · · , 1/n)T , then P2TLPHHM is reduced to the picture 2-tuple
linguistic power ordered weighted Hamy mean (P2TLPOWHM) operator.
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4. Picture 2-tuple linguistic power geometric aggregation operators

Based on the PA operator [50] and geometric mean, in the following, Xu and Yager [51] further defined a
power geometric (PG) operator:

PG (a1, a2, · · · , an) =
n∏
i=1

a

1+T(ai)
n∑

i=1
(1+T(ai))

i . (4.1)

Obviously, the PA and PG operators are two nonlinear weighted aggregation tools, whose weighting vectors
depend upon the input values and allow values being aggregated to support and reinforce each other, that’s to
say, the closer ai and aj , the more similar they are, and the more they support each other.

Wu et al. [52] proposed the dual Hamy mean (DHM) operator.

Definition 4.1. The DHM operator is defined as follows:

DHM(k) (δ1, δ2, · · · , δn) =

 ∏
1≤i1<...<ik≤n


k∑
j=1

δij

k




1
Ckn

, (4.2)

where k is a parameter and k = 1, 2, . . . , n, i1, i2, . . . , ik are k integer values taken from the set {1, 2, . . . , n} of
k integer values, Ckn denotes the binomial coefficient and Ckn = n!

k!(n−k)! ·
In this section, we shall develop some dual Hamy mean aggregation operators with picture 2-tuple linguistic

information and power operation laws, such as picture 2-tuple linguistic power dual Hamy mean (P2TLPDHM)
operator, picture 2-tuple linguistic power weighted dual Hamy mean (P2TLPWDHM)) operator, picture 2-tuple
linguistic power ordered weighted dual Hamy mean (P2TLPOWDHM) operator and picture 2-tuple linguistic
power hybrid dual Hamy mean (P2TLPHDHM) operator.

Definition 4.2. Let p̃j= 〈(rj , αj), (µj , ηj , νj)〉 (j = 1, 2, · · · , n) be a collection of P2TLNs. The picture 2-tuple
linguistic power dual Hamy mean (P2TLPDHM) operator is a mapping Pn → P such that

P2TLPDHM(k) (p̃1, p̃2, · · · , p̃n) =

 ⊗
1≤i1<...<ik≤n

1
k

 k
⊕
j=1

(p̃ij) n
(
1 + T

(
p̃ij
))

n∑
j=1

(
1 + T

(
p̃ij
))





1
Ckn

, (4.3)

where

T
(
p̃ij
)

=
n∑
j=1
j 6=t

Sup
(
p̃ij , p̃it

)
(4.4)

and Sup
(
p̃ij , p̃it

)
is the support for p̃ij from p̃it , with the conditions:

(1) Sup
(
p̃ij , p̃it

)
∈ [0, 1] ;

(2) Sup
(
p̃ij , p̃it

)
= Sup

(
p̃it , p̃ij

)
;

(3) Sup
(
p̃ij , p̃it

)
≥ Sup (p̃s, p̃t), if d

(
p̃ij , p̃it

)
< d (p̃s, p̃t), where d is a distance measure.

Based on Definition 4.2 and Theorem 2.13, we can get the following result:
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Theorem 4.3. The aggregated value by using P2TLPDHM operator is also a picture 2-tuple linguistic numbers,
where

P2TLPDHM (p̃1, p̃2, · · · , p̃n) =



 ⊗
1≤i1<...<ik≤n



 1
k



 k
⊕
j=1



(p̃ij
) n

(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))

















1
Ckn

= 〈∆



∏

1≤i1<...<ik≤n



 1
k

k∑
j=1

(
∆−1 (rj , αj)

) n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
Ckn



,

∏
1≤i1<...<ik≤n



1−
k∏
j=1



1− (µj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn

, 1−
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (1− ηj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn

,

1−
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (1− νj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn



〉
(4.5)

where

T
(
p̃ij
)

=
n∑
j=1
j 6=t

Sup
(
p̃ij , p̃it

)
. (4.6)

Proof. (
p̃ij
) n(1+T(p̃ij ))

n∑
j=1

(1+T(p̃ij ))
= 〈∆

(∆−1 (rj , αj)
) n(1+T(p̃ij ))

n∑
j=1

(1+T(p̃ij ))

,(µj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))
, 1− (1− ηj)

n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))
, 1− (1− νj)

n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

〉 . (4.7)

Thus,

k
⊕
j=1

(p̃ij) n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

 = 〈∆
 k∑
j=1

(
∆−1 (rj , αj)

) n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

,1−
k∏
j=1

1− (µj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

, k∏
j=1

1− (1− ηj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

, k∏
j=1

1− (1− νj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

〉.
(4.8)

Thereafter,

1
k

 k
⊕
j=1

(p̃ij) n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

 = 〈∆
 1
k

k∑
j=1

(
∆−1 (rj , αj)

) n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

,1−
k∏
j=1

1− (µj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

1
k

,
k∏
j=1

1− (1− ηj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

1
k

,
k∏
j=1

1− (1− νj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))


1
k

〉.
(4.9)
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Furthermore,

⊗
1≤i1<...<ik≤n

 1
k

 k
⊕
j=1

(p̃ij) n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

 = 〈∆
 ∏

1≤i1<...<ik≤n

 1
k

k∑
j=1

(
∆−1 (rj , αj)

) n(1+T(p̃ij ))
n∑
j=1

(1+T (p̃ij ))

,
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1− (µj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

1
k

, 1− ∏
1≤i1<...<ik≤n

1−
k∏
j=1

1− (1− ηj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

1
k

,
1−

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1− (1− νj)
n(1+T(p̃ij ))
n∑
j=1

(1+T(p̃ij ))

1
k


〉

(4.10)
Therefore,

P2TLPDHM (p̃1, p̃2, · · · , p̃n) =



 ⊗
1≤i1<...<ik≤n



 1
k



 k
⊕
j=1



(p̃ij
) n

(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))

















1
Ckn

= 〈∆



∏

1≤i1<...<ik≤n



 1
k

k∑
j=1

(
∆−1 (rj , αj)

) n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
Ckn



,

∏
1≤i1<...<ik≤n



1−
k∏
j=1



1− (µj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn

, 1−
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (1− ηj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn

,

1−
∏

1≤i1<...<ik≤n



1−
k∏
j=1



1− (1− νj)
n
(
1+T

(
p̃ij

))

n∑

j=1

(
1+T

(
p̃ij

))





1
k





1
Ckn



〉.
(4.11)

Hence, (41) is kept. �

Definition 4.4. Let p̃j = 〈(rj , αj), (µj , ηj , νj)〉 (j = 1, 2, · · · , n) be a collection of P2TLNs, ω =
(ω1, ω2, · · · , ωn)T be the weight vector of p̃j (j = 1, 2, · · · , n), and ωj > 0,

∑n
j=1 ωj = 1. The picture 2-tuple

linguistic power weighted dual Hamy mean (P2TLPWDHM) operator is a mapping Pn → P such that

P2TLPWDHM(k) (p̃1, p̃2, · · · , p̃n) =

 ⊗
1≤i1<...<ik≤n

1
k

 k
⊕
j=1

(p̃ij) nωj
(
1 + T

(
p̃ij
))

n∑
j=1

ωj
(
1 + T

(
p̃ij
))





1
Ckn

, (4.12)

where

T
(
p̃ij
)

= ωj

n∑
j=1
j 6=t

Sup
(
p̃ij , p̃it

)
. (4.13)

Based on Definition 4.4, Theorem 2.13 and mathematical induction on n, we can get the following result:
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Theorem 4.5. The aggregated value by using P2TLPWDHM operator is also a picture 2-tuple linguistic num-
bers, where

P2TLPWDHM (p̃1, p̃2, · · · , p̃n) =

 ⊗
1≤i1<...<ik≤n

 1
k

 k
⊕
j=1

(p̃ij) nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
Ckn

〈∆
 ∏

1≤i1<...<ik≤n

 1
k

k∑
j=1

(
∆−1 (rj , αj)

) nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
Ckn

 ,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1− (µj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1− (1− ηj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1− (1− νj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

〉

(4.14)

where ω = (ω1, ω2, · · · , ωn)T be the weight vector of p̃ij (j = 1, 2, · · · , n), and ωj > 0,
∑n
j=1 ωj = 1.

It can be easily proved that the P2TLPWDHM operator has the following properties.

Theorem 4.6 (Idempotency). If all p̃j (j = 1, 2, · · · , n) are equal, i.e. p̃j = p̃ for all j, then

P2TLPWDHM (p̃1, p̃2, · · · , p̃n) = p̃. (4.15)

Theorem 4.7 (Boundedness). Let p̃j (j = 1, 2, · · · , n) be a collection of P2TLNs, and let

p̃− = min
j
p̃j , p̃+ = max

j
p̃j .

Then

p̃− ≤ P2TLPWDHM (p̃1, p̃2, · · · , p̃n) ≤ p̃+. (4.16)

Theorem 4.8 (Monotonicity). Let p̃j (j = 1, 2, · · · , n) and p̃′j (j = 1, 2, · · · , n) be two set of P2TLNs, if p̃j ≤ p̃′j,
for all j, then

P2TLPWDHM (p̃1, p̃2, · · · , p̃n) ≤ P2TLPWDHM (p̃′1, p̃
′
2, · · · , p̃′n) . (4.17)

Further, we give a picture 2-tuple linguistic power ordered weighted dual Hamy mean (P2TLPOWDHM) oper-
ator below:

Definition 4.9. Let p̃j= 〈(rj , αj), (µj , ηj , νj)〉 (j = 1, 2, · · · , n) be a collection of P2TLNs, the picture 2-tuple
linguistic power ordered weighted dual Hamy mean (P2TLPOWDHM) operator of dimension n is a mapping
P2TLPOWDHM: Pn → P , that has an associated weight vector w = (w1, w2, · · · , wn)T such that wj > 0 and
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j=1 wj = 1. Furthermore,

P2TLPOWDHM (p̃1, p̃2, · · · , p̃n) =

 ⊗
1≤i1<...<ik≤n

 1
k

 k
⊕
j=1

(p̃σ(ij)

) nwj
(

1+T
(
p̃σ(ij)

))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

 1
Ckn

= 〈∆
 ∏

1≤i1<...<ik≤n

 1
k

k∑
j=1

(
∆−1

(
rσ(j), ασ(j)

)) nwj
(

1+T
(
p̃σ(ij)

))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

 1
Ckn

 ,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
µσ(j)

) nwj
(

1+T
(
p̃σ(ij)

))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

 1
k


1
Ckn

,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
1− ησ(j)

) nwj
(

1+T
(
p̃σ(ij)

))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

 1
k


1
Ckn

,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
1− νσ(j)

) nwj
(

1+T
(
p̃σ(ij)

))

n∑
j=1

ωj
(

1+T
(
p̃σ(ij)

))

 1
k


1
Ckn

〉

(4.18)

where (σ (1), σ (2), · · · , σ (n)) is a permutation of (1, 2, · · · , n), such that p̃σ(ij−1) ≥ p̃σ(ij) for all j = 2, · · · , n,
wj (j = 1, 2, · · · , n) is collection of weights such that

wj = g

(
Rj
TV

)
− g

(
Rj−1

TV

)
, Rj =

j∑
i=1

Vσ(i), TV =
n∑
i=1

Vσ(i), Vσ(i) = 1 + T
(
p̃σ(ij)

)
(4.19)

and T
(
p̃σ(ij)

)
denotes the support of the jth largest picture 2-tuple linguistic numbers T

(
p̃σ(ij)

)
by all the

other picture 2-tuple linguistic numbers, i.e.,

T
(
p̃ij
)

=
n∑
j=1
j 6=t

Sup
(
p̃ij , p̃it

)
(4.20)

where
∑n

j=1
j 6=t

Sup
(
p̃ij , p̃it

)
indicates the support of jth largest picture 2-tuple linguistic number p̃σ(ij) for the tth

largest picture 2-tuple linguistic number p̃σ(it), and g: [0, 1] → [0, 1] is a basic unit-interval monotonic (BUM)
function, having the properties: g(0) = 0, g(1) = 1, and g(x) ≥ g(y), if x > y.

It can be easily proved that the P2TLPOWDHM operator has the following properties.

Theorem 4.10 (Idempotency). If all p̃j (j = 1, 2, · · · , n) are equal, i.e. p̃j = p̃ for all j, then

P2TLPOWDHM (p̃1, p̃2, · · · , p̃n) = p̃. (4.21)

Theorem 4.11 (Boundedness). Let p̃j (j = 1, 2, · · · , n) be a collection of P2TLNs, and let

p̃− = min
j
p̃j , p̃+ = max

j
p̃j .

Then
p̃− ≤ P2TLPOWDHM (p̃1, p̃2, · · · , p̃n) ≤ p̃+. (4.22)
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Theorem 4.12 (Monotonicity). Let p̃j (j = 1, 2, · · · , n) and p̃′j (j = 1, 2, · · · , n) be two set of P2TLNs, if p̃j ≤
p̃′j, for all j, then

P2TLPOWDHM (p̃1, p̃2, · · · , p̃n) ≤ P2TLPOWDHM (p̃′1, p̃
′
2, · · · , p̃′n) . (4.23)

Theorem 4.13 (Commutativity). Let p̃j (j = 1, 2, · · · , n) and p̃′j (j = 1, 2, · · · , n) be two set of P2TLNs, for all
j, then

P2TLPOWDHM (p̃1, p̃2, · · · , p̃n) = P2TLPOWDHM (p̃′1, p̃
′
2, · · · , p̃′n) , (4.24)

where p̃′j (j = 1, 2, · · · , n)is any permutation of p̃j (j = 1, 2, · · · , n).

From Definitions 4.4 to 4.9, we know that the P2TLPWDHM operators only weights the picture 2-tuple linguistic
number itself, while the P2TLPOWDHM operators weights the ordered positions of the picture 2-tuple linguistic
number instead of weighting the arguments itself. Therefore, the weights represent two different aspects in both
the P2TLPWDHM and P2TLPOWDHM operators. However, both the operators consider only one of them.
To solve this drawback, in the following we shall propose the picture 2-tuple linguistic power hybrid dual Hamy
mean (P2TLPHDHM) operator.

Definition 4.14. A picture 2-tuple linguistic power hybrid dual Hamy mean (P2TLPHDHM) operator is a
mapping P2TLPHDHM: Pn → P , such that

P2TLPHDHM (p̃1, p̃2, · · · , p̃n) =

 ⊗
1≤i1<...<ik≤n

 1
k

 k
⊕
j=1

( ˙̃pσ(ij)

) nwj
(

1+T
(

˙̃pσ(ij)

))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
Ckn

= 〈∆
 ∏

1≤i1<...<ik≤n

 1
k

k∑
j=1

(
∆−1

(
ṙσ(j), α̇σ(j)

)) nwj
(

1+T
(

˙̃pσ(ij)

))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
Ckn

 ,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
µ̇σ(j)

) nwj
(

1+T
(

˙̃pσ(ij)

))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
k


1
Ckn

,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
1− η̇σ(j)

) nwj
(

1+T
(

˙̃pσ(ij)

))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
k


1
Ckn

,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1−
(
1− ν̇σ(j)

) nwj
(

1+T
(

˙̃pσ(ij)

))

n∑
j=1

wj
(

1+T
(

˙̃pσ(ij)

))

 1
k


1
Ckn

〉

(4.25)

where w = (w1, w2, · · · , wn) is the associated weighting vector, with wj ∈ [0, 1],
∑n
j=1 wj = 1, and ˙̃pσ(ij) is

the jth largest element of the picture 2-tuple linguistic arguments ˙̃pij
( ˙̃pij =

(
p̃ij
)nωj

, j = 1, 2, · · · , n
)
, ω =

(ω1, ω2, · · · , ωn) is the weighting vector of picture 2-tuple linguistic arguments p̃ij (j = 1, 2, · · · , n), with ωj ∈
[0, 1],

∑n
j=1 ωj = 1, and n is the balancing coefficient. And wj (j = 1, 2, · · · , n) is collection of weights such that

wj = g

(
Rj
TV

)
− g

(
Rj−1

TV

)
, Rj =

j∑
i=1

Vσ(i), TV =
n∑
i=1

Vσ(i), Vσ(i) = 1 + T
( ˙̃pσ(ij)

)
(4.26)



MADM PROBLEMS UNDER LINGUISTIC AGGREGATION OPERATORS S453

and T
( ˙̃pσ(ij)

)
denotes the support of the jth largest picture 2-tuple linguistic numbers T

( ˙̃pσ(ij)

)
by all the

other picture 2-tuple linguistic numbers, i.e.,

T
( ˙̃pσ(ij)

)
=

n∑
j=1
j 6=t

Sup
( ˙̃pσ(ij),

˙̃pσ(it)

)
(4.27)

where
∑n

j=1
j 6=t

Sup
( ˙̃pσ(ij),

˙̃pσ(it)

)
indicates the support of jth largest picture 2-tuple linguistic number ˙̃pσ(ij) for

the tth largest picture 2-tuple linguistic number ˙̃pσ(it), and g: [0, 1] → [0, 1] is a basic unit-interval monotonic
(BUM) function, having the properties: g(0) = 0, g(1) = 1, and g(x) ≥ g(y), if x > y. Especially, if w =
(1/n, 1/n, · · · , 1/n)T , then P2TLPHDHM is reduced to the picture 2-tuple linguistic power weighted dual Hamy
mean (P2TLPWDHM) operator; if ω = (1/n, 1/n, · · · , 1/n), then P2TLPHDHM is reduced to the picture 2-
tuple linguistic power ordered weighted dual Hamy mean (P2TLPOWDHM) operator.

5. Approaches to multiple attribute decision making with picture 2-tuple
linguistic information

Based the P2TLPWHM (P2TLPWDHM) operators, in this section, we shall propose the MADM model
with picture 2-tuple linguistic information. Let A = {A1, A2, · · · , Am} be a discrete set of alternatives, and
G = {G1, G2, · · · , Gn} be the set of attributes, ω = (ω1, ω2, · · · , ωn) is the weighting vector of the attribute
Gj (j = 1, 2, · · · , n), where ωj ∈ [0, 1],

∑n
j=1 ωj = 1. Suppose that P̃ = (p̃ij)m×n = 〈(sij , ρij), (µij , ηij , νij)〉m×n

is the picture 2-tuple linguistic decision matrix, where r̃ij take the form of the picture 2-tuple linguistic numbers,
and µij indicates the degree of positive membership that the alternative Ai satisfies the attribute Gj given by
the decision maker, ηij indicates the degree of neutral membership that the alternative Ai doesn’t satisfy the
attribute Gj , νij indicates the degree that the alternative Ai doesn’t satisfy the attribute Gj given by the
decision maker, µij ∈ [0, 1], ηij ∈ [0, 1] νij ∈ [0, 1], µij + ηij + νij ≤ 1, πij = 1 − (µij + ηij + νij), sij ∈ S,
ρij ∈ [−0.5, 0.5), i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

In the following, we apply the P2TLPWHM (P2TLPWDHM) operator to the MADM problems with hesitant
fuzzy information.

Step 1. Calculate the supports:

Sup (p̃ij , p̃ik) = 1− d (p̃ij , p̃ik), j, k = 1, 2, · · · , n. (5.1)

which satisfies the support conditions (1)–(3) in Section 3. Here, without loss of generality, we calculate
d (p̃ij , p̃ik) with the normalized Hamming distance [9]:

d (p̃ij , p̃ik) =

∣∣∆−1 (sij , ρij)−∆−1 (sik, ρik)
∣∣

t
· (|µij − µik|+ |ηij − ηik|+ |νij − νik|)

2
j, k = 1, 2, · · · , n. (5.2)

Step 2. Utilize the weights ωj (j = 1, 2, · · · , n) of the attribute Gj (j = 1, 2, · · · , n) to calculate the weighted
support T (p̃ij) of the P2TLN p̃ij by the other P2TLN p̃ik (k = 1, 2, · · · , n, k 6= j):

T (p̃ij) =
n∑
k=1
k 6=j

ωjSup (p̃ij , p̃ik) (5.3)

and calculate the weight ξij (j = 1, 2, · · · , n) associated with the P2TLN p̃ij (i = 1, 2, · · · ,m, j = 1, 2, · · · , n):

ξij =
nωj (1 + T (p̃ij))
n∑
j=1

ωj (1 + T (p̃ij))
, i = 1, 2, · · · ,m, j = 1, 2, · · · , n. (5.4)
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where ξij ≥ 0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n, and
∑n
j=1 ξij = 1, i = 1, 2, · · · ,m.

Step 3. We utilize the decision information given in matrix P̃ , and the P2TLPWHM operator

P2TLPWHM (p̃1, p̃2, · · · , p̃n)

=

⊕
1≤i1<...<ik≤n




k
⊗
j=1




nωj(1+T(p̃ij ))
n∑

j=1
ωj(1+T(p̃ij ))

p̃ij









Ckn

1
k

= 〈∆
 1
Ckn

∑
1≤i1<...<ik≤n

 k∏
j=1

nωj(1+T(p̃ij ))∆−1(rj ,αj)
n∑
j=1

ωj(1+T(p̃ij ))

 1
k

 ,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1− (1− µj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1− (ηj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

,

∏
1≤i1<...<ik≤n

1−
k∏
j=1

1− (νj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

〉

(5.5)

or
P2TLPWDHM (p̃1, p̃2, · · · , p̃n)

=

 ⊗
1≤i1<...<ik≤n

 1
k

 k
⊕
j=1

(p̃ij) nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
Ckn

= 〈∆
 ∏

1≤i1<...<ik≤n

 1
k

k∑
j=1

(
∆−1 (rj , αj)

) nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
Ckn

,
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1− (µj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1− (1− ηj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

,

1−
∏

1≤i1<...<ik≤n

1−
k∏
j=1

1− (1− νj)
nωj(1+T(p̃ij ))
n∑
j=1

ωj(1+T(p̃ij ))

 1
k


1
Ckn

〉

(5.6)

to derive the overall preference values p̃i (i = 1, 2, · · · ,m) of the alternative Ai.
Step 4. Calculate the scores S (p̃i) (i = 1, 2, · · · ,m) of the overall picture 2-tuple linguistic numbers
p̃i (i = 1, 2, · · · ,m)to rank all the alternatives Ai (i = 1, 2, · · · ,m) and then to select the best one(s). If there is
no difference between two scores S (p̃i) and S (p̃j), then we need to calculate the accuracy degrees H (p̃i) and
H (p̃j) of the overall picture 2-tuple linguistic numbers p̃i and p̃j , respectively, and then rank the alternatives
Ai and Aj in accordance with the accuracy degrees H (p̃i) and H (p̃j).
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Table 1. The picture 2-tuple linguistic decision matrix.

G1 G2

A1 <(S3, 0), (0.43, 0.23, 0.19)> <(S2, 0), (0.35, 0.12, 0.17)>
A2 <(S4, 0), (0.63, 0.12, 0.18)> <(S3, 0), (0.46, 0.24, 0.12)>
A3 <(S2, 0), (0.71, 0.13, 0.12)> <(S1, 0), (0.57, 0.12, 0.15)>
A4 <(S5, 0), (0.65, 0.12, 0.15)> <(S4, 0), (0.74, 0.07, 0.12)>
A5 <(S1, 0), (0.70, 0.15, 0.12)> <(S2, 0), (0.55, 0.12, 0.13)>

G3 G4
A1 <(S1, 0), (0.42, 0.35, 0.18)> <(S4, 0), (0.37, 0.12, 0.16)>
A2 <(S2, 0), (0.53, 0.12, 0.14)> <(S2, 0), (0.54, 0.16, 0.18)>
A3 <(S3, 0), (0.64, 0.15, 0.16)> <(S1, 0), (0.48, 0.13, 0.16)>
A4 <(S5, 0), (0.67, 0.09, 0.15)> <(S5, 0), (0.78, 0.04, 0.05)>
A5 <(S4, 0), (0.47, 0.22, 0.13)> <(S3, 0), (0.67, 0.15, 0.17)>

Step 5. Rank all the alternatives Ai (i = 1, 2, · · · ,m) and select the best one(s) in accordance with
S (p̃i) (i = 1, 2, · · · ,m).
Step 6. End.

6. Numerical example and comparative analysis

6.1. Numerical example

In this section, we utilize a practical MADM problem to illustrate the application of the developed approaches.
Suppose an organization plans to implement enterprise resource planning (ERP) system. The first step is to
form a project team that consists of chief information officer (CIO) and two senior representatives from user
departments. By collecting all possible information about ERP vendors and systems, project term choose five
potential ERP systems Ai (i = 1, 2, · · · , 5) as candidates. The company employs some external professional
organizations (or experts) to aid this decision-making. The project team selects four attributes to evaluate
the alternatives: (1) function and technology G1, (2) strategic fitness G2, (3) vendor’s ability G3, (4) vendor’s
reputation G4.

The five possible ERP systems Ai (i = 1, 2, · · · , 5) are to be evaluated using the picture 2-tuple linguistic num-
bers by the decision makers under the above four attributes (whose weighting vector is ω = (0.2, 0.1, 0.3, 0.4)),
and construct the following matrix R̃ = (r̃ij)5×4 is shown in Table 1.

In the following, in order to select the most desirable ERP systems, we utilize the P2TLPWA (P2TLPWG)
operator to develop an approach to MADM problems with picture 2-tuple linguistic information, which can be
described as following.
Step 1. Utilize (5.1)–(5.4) to calculate the weight ξij (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4) associated with the P2TLN
p̃ij (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4), which are contained in the matrix R̃ = (r̃ij)5×4 which is shown in Table 1.

In the following, in order to select the most desirable ERP systems, we utilize the P2TLPWA (P2TLPWG)
operator to develop an approach to MADM problems with picture 2-tuple linguistic information, which can be
described as following.

Step 1 utilize (5.1)–(5.4) to calculate the weight ξij (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4) associated with the P2TLN
p̃ij (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4), which are contained in the matrix R̃ = (r̃ij)5×4 which is shown as following:

ξ =


0.8570 0.4534 1.1864 1.5032
0.8409 0.4445 1.2043 1.5103
0.8483 0.4498 1.1971 1.5047
0.8475 0.4443 1.2011 1.5071
0.8413 0.4489 1.1902 1.5195


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Table 2. The aggregating results of the ERP systems by the P2TLPWHM (P2TLPWDHM)
operators.

P2TLPWHM P2TLPWDHM
A1 {(S2, 0.21), (0.885, 0.082, 0.059)} {(S3, −0.21), (0.121, 0.927, 0.895)}
A2 {(S2, 0.44), (0.904, 0.038, 0.057)} {(S2, 0.47), (0.152, 0.860, 0.909)}
A3 {(S2, −0.44), (0.912, 0.047, 0.047)} {(S2, −0.23), (0.155, 0.907, 0.890)}
A4 {(S5, −0.48), (0.902, 0.029, 0.039)} {(S6, −0.39), (0.106, 0.945, 0.928)}
A5 {(S2, 0.26), (0.904, 0.060, 0.045)} {(S3, −0.04), (0.140, 0.909, 0.896)}

Table 3. The score functions of the ERP systems.

P2TLPWHM P2TLPWDHM
A1 (S2, 0.02) (S0,0.31)
A2 (S2, 0.26) (S0, 0.30)
A3 (S1, 0.45) (S0, 0.23)
A4 (S4, 0.21) (S0, 0.49)
A5 (S2, 0.10) (S0, 0.36)

Table 4. Ordering of the ERP systems.

Ordering
P2TLPWHM A4 > A2 > A5 > A1 > A3

P2TLPWDHM A4 > A5 > A1 > A2 > A3

Step 2. According to ξ and Table 1, aggregate all picture 2-tuple linguistic numbers r̃ij (j = 1, 2, · · · , n) by
using the P2TLPWHM (P2TLPWDHM) operator to derive the overall picture 2-tuple linguistic numbers
p̃i (i = 1, 2, 3, 4, 5) of the alternative Ai. The aggregating results are shown in Table 2 (Let k = 2).
Step 3. According to the aggregating results shown in Table 2 and the score functions of the ERP systems are
shown in Table 3.
Step 4. According to the score functions shown in Table 3 and the comparison formula of score functions,
the ordering of the ERP systems are shown in Table 4. Note that “>” means “preferred to”. As we can see,
depending on the aggregation operators used, the ordering of the ERP systems is the same, and the best ERP
system is A4.

6.2. Sensitive Analysis

In order to show the effects on the ranking results by changing parameters of k in the P2TLPWHM
(P2TLPWDHM) operators, the results are shown in Tables 5 and 6. It can be seen that: (1) different aggregation
operators can result in different results; (2) different values of parameter have some influence on the results.
In real MADM problems, the decision makers can choose the different aggregation operators and parameter
according to decision makers’ personal preference.

6.3. Comparative analysis

Then, we compare the proposed method with picture 2-tuple linguistic weighted average (P2TLWA) operator
and picture 2-tuple linguistic weighted geometric (P2TLWG) operator [38]. The comparative results are listed
in Table 7.
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Table 5. Ranking results for different parameters values with P2TLPWHM operator.

s(A1) s(A2) s(A3) s(A4) s(A5) Ordering
k = 1 (S2, −0.37) (S2, −0.24) (S1, 0.31) (S4, −0.03) (S2, 0.04) A4 >A5 >A2 >A1 >A3

k = 2 (S1, 0.28) (S2, −0.38) (S1, 0.08) (S3, 0.41) (S2, −0.42) A4 >A2 >A5 >A1 >A3

k = 3 (S1, 0.18) (S2, −0.44) (S1, 0.00) (S3, 0.22) (S1, 0.42) A4 >A2 >A5 >A1 >A3

k = 4 (S1, 0.13) (S2, −0.47) (S1, −0.04) (S3, 0.13) (S1, 0.35) A4 >A2 >A5 >A1 >A3

Table 6. Ranking results for different parameters values with P2TLPWDHM operator.

s(A1) s(A2) s(A3) s(A4) s(A5) Ordering
k = 1 (S1, 0.41) (S2, −0.33) (S1, 0.15) (S4, −0.09) (S2, −0.2) A4 >A5 >A2 >A1 >A3

k = 2 (S2, −0.24) (S2, −0.24) (S1, 0.31) (S5, −0.44) (S2, 0.21) A4 >A5 >A2 >A1 >A3

k = 3 (S2, −0.05) (S2, −0.21) (S1, 0.38) (S5, −0.20) (S2, 0.38) A4 >A5 >A1 >A2 >A3

k = 4 (S1, 0.43) (S1, −0.10) (S1, −0.38) (S2, −0.38) (S1, 0.06) A4 >A1 >A5 >A2 >A3

Table 7. Ordering of the ERP systems.

Ordering
P2TLWA A4 > A5 > A2 > A1 > A3

P2TLWG A4 > A5 > A2 > A1 > A3

From above, we can get the same best alternative to show the practicality and effectiveness of the proposed
methods. However, P2TLWA operator and P2TLWG operator don’t consider the information about the rela-
tionship between arguments being aggregated, and thus cannot eliminate the influence of unfair arguments on
decision result. Our proposed P2TLPWHM and P2TLPWDHM operators consider the relationship among the
arguments.

Deng et al. [53] proposed some Hamy mean operators with 2-tuple linguistic Pythagorean fuzzy numbers.
But, these operators can only deal with linguistic membership, but these operators can’t deal with the picture 2-
tuple linguistic numbers (P2TLNs); however, the P2TLPWHM (P2TLPWDHM) operators which are proposed
can deal with the picture 2-tuple linguistic numbers (P2TLNs).

And Li et al. [54] proposed some Hamy mean operators for Pythagorean Fuzzy numbers and these operators
can only deal with both membership and non-membership are non-negative real numbers, but these operators
can’t deal with the picture 2-tuple linguistic numbers (P2TLNs), however, the P2TLPWHM (P2TLPWDHM)
operators which are proposed can deal with the picture 2-tuple linguistic numbers (P2TLNs).

7. Conclusion

This paper conducts a research on investigating the MADM problems with P2TLNs and performs a practical
example of application. The strengths of the approach lie in the following points.

(1) Based on Hamy mean (HM) and dual Hamy mean (DHM) operator, we utilize power average and power geo-
metric operations to develop some picture 2-tuple linguistic power Hamy mean aggregation operators: pic-
ture 2-tuple linguistic power weighted Hamy mean (P2TLPWHM) operator, picture 2-tuple linguistic power
weighted dual Hamy mean (P2TLPWDHM) operator, picture 2-tuple linguistic power ordered weighted
Hamy mean (P2TLPOWHM) operator, picture 2-tuple linguistic power ordered weighted dual Hamy mean
(P2TLPOWDHM) operator, picture 2-tuple linguistic power hybrid Hamy mean (P2TLPHHM) operator
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and picture 2-tuple linguistic power hybrid dual Hamy mean (P2TLPHDHM) operator. The prominent
characteristic of these proposed operators are studied.

(2) Then, we have utilized these operators to develop some approaches to solve the picture 2-tuple linguistic
MADM problems.

(3) A practical example for enterprise resource planning (ERP) system selection is given to verify the developed
approach and a comparative analysis is applied to demonstrate its practicality and effectiveness.

(4) It is totally possible for industry managers to employ the proposed approach to solve other similar evaluation
problems or other investment decision making problems.

Finally, we assure several directions for future studies as follows.

(1) The application of the proposed power aggregating operators of P2TLSs needs to be explored in the other
uncertain decision making [55–61] and many other fields domains’ applications [62–69].

(2) In this work, we ignore the interrelationships among the attributes. Researchers and scholars can devote
themselves to improve these methods and models in future work to overcome this defect.

(3) The proposed methods and models don’t take into account the influence of DMs’ psychological behavioral
characteristics. In the future, Researchers and scholars can introduce the psychological behavior of DMs
into the proposed methods [70,71].
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