RATIRO-Oper. Res. 54 (2020) 1835-1861 RAIRO Operations Research
https://doi.org/10.1051/ro/2019097 WWW.rairo-ro.org

DECENTRALIZED DECOMPOSITION ALGORITHMS FOR PEER-TO-PEER
LINEAR OPTIMIZATION

M. AsrLi AYDIN* AND Z. CANER TASKIN

Abstract. We propose Decentralized Benders Decomposition and Decentralized Dantzig—Wolfe De-
composition algorithms for large-scale block angular linear programming problems. Our methods allow
multiple peer decision makers to cooperate with the aim of solving the problem without the need of a
central coordination mechanism. Instead we achieve cooperation by partial information sharing across
a strongly connected communication network. Our main goal is to design decentralized solution ap-
proaches for decision makers who are unwilling to disclose their local data, but want to solve the global
problem collaboratively for mutual benefit. We prove that our proposed methods reach global optimality
in a finite number of iterations. We confirm our theoretical results with computational experiments.
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1. INTRODUCTION

The main motivation of this study is driven by some optimization problems that we have encountered in
practical applications of supply chain planning. Consider a manufacturer and a supplier within a supply chain.
The manufacturer purchases certain materials from the supplier and uses these materials in its manufacturing
processes. The supplier has its own resources, possibly produces other products and has other customer demands.
In a planning approach commonly used in the industry, the manufacturer first performs its planning to seek
an optimal allocation of its capacity to satisfy its customer demands, and identifies materials that it needs to
purchase from the supplier to execute this plan. These material requirements are then translated into purchase
orders and are passed to the supplier. Next, the supplier runs its own planning process to ensure that its
own capacity is used efficiently and its customer demands are satisfied on time with minimum cost. Linear
programming-based optimization models are commonly used in planning processes such as sales and operations
planning (S&OP) and aggregate production planning [17,22]. Thus, in many practically relevant cases planning
problems of the manufacturer and supplier can be formulated as linear programming problems, which are solved
by the individual entity in sequence. However, such a sequential approach has two main drawbacks: (i) the two
plans may be inconsistent in case the supplier has limited capacity so that it cannot satisfy the manufacturer’s
demand on time, and (ii) the overall plan generated sequentially may not yield the same quality as a plan that
would be generated if the manufacturer and the supplier cooperated to generate a plan simultaneously.
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FIGURE 1. Primal block angular structure [4].
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FIGURE 2. Structure and information exchange scheme for existing decomposition methods.

One possible approach that the manufacturer and the supplier can use to cooperate is to build a single
optimization problem that combines their variables, constraints and objective functions into a single problem,
and add constraints that ensure that the number of items shipped by the supplier is equal to the number of
items received by the manufacturer. Then, the resulting optimization problem represents a primal block angular
structure as shown in Figure 1.

Each block along the diagonal consists of local constraints of the manufacturer and the supplier associated
with their own operations. The set of uppermost complicating constraints is associated with inventory transfer
constraints plus any common capacity, material or budget constraints that link the interactions among the
entities. This approach is only applicable if the manufacturer and the supplier are completely transparent about
their data and optimization models, which might contain sensitive information such as profitability of products,
capacities and planning objectives. Therefore, this approach can only be used in practice if the manufacturer
and supplier belong to the same company.

A number of decomposition methods have been proposed in the literature to provide an efficient way for
solving linear problems in block angular structure [3,8,18]. These methods are based on the observation that,
without the complicating constraints, the overall problem can be partitioned into independent subproblems
associated with each block. Thus, instead of solving one large-scale linear optimization problem, the problem
is partitioned into several easier to solve subproblems. A solution set can be found by finding an independent
solution for each subproblem. However, this rarely gives a solution for the overall problem because of the
violation of complicating constraints. Hence a master problem is required to coordinate individual solutions of
subproblems for obtaining a system-wide optimal solution. Thus, each entity sends a proposal to the center as
a solution of its subproblem, then the center examines the proposals to obtain a global optimal solution by
solving the master problem. Figure 2 represents the structure and information flow in existing decomposition
methods.

Since some constraints and variables are maintained by the subproblems, decomposition methods reduce
the amount of information sharing between entities. However, such methods still require a master problem to
coordinate all subproblems. Thus, they are applicable in settings such as a multi-national firm consisting of
separate companies in different countries, which are aligned wvia a central coordination unit belonging to the
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FIGURE 3. Structure and information exchange scheme for proposed methods.

headquarters. However, such approaches are not directly applicable in settings where the collaborating entities
belong to independent companies since in this case it is not clear which entity would assume the role of the central
coordination unit. Thus, there is a need for a decentralized decision making mechanism that allows multiple
independent entities that are unwilling to share their private information but want to collaborate to solve the
global problem by partial information exchange. Our main goal in this paper is to design optimization-based
coordination mechanisms for linear programming problems in a peer-to-peer setting.

Decentralization approaches that exploit decomposition methods have attained significant attention recently.
The authors in [11] address a capacity planning problem where finite capacity of a single facility is allocated
among organizations to satisfy demand constraints. They propose Cooperative Interaction via Coupling Agents
algorithm based on Lagrangian Relaxation where the facility and organizations act as coupling agents. A hybrid
method especially for solving a cross-facility capacity allocation problem that combines Lagrangian relaxation
and immunity-inspired coordination scheme is proposed in [14]. A distributed simplex method allowing more
than two decision makers to solve linear programs is proposed in [9] that specifically addresses the security and
access control issues arising in distributed data mining environments. Two-Stage Distributed Simplex Algorithm
is proposed for block angular problems in a multi-agent setup in [5]. The algorithm solves the problem with
information exchange only among the agents while utilizing the column generation method. In [1], the authors
propose a decentralized coordination algorithm especially for sales and operations planning problems in supply
chain environments. Decision makers may play one of the two specific roles: an Informed Party or one of the
several Reporting Parties. The algorithm allows exchange of primal information among the parties.

In this paper, we propose two methods, Decentralized Benders Decomposition and Decentralized Dantzig—
Wolfe Decomposition for solving block angular linear programs (BALP). We exploit the special structure of
the problem to decompose it into a subproblem-local master problem pair for each decision maker, which
we call optimization agent (OA). We solve the overall problem collaboratively by allowing minimum required
information sharing among the OAs through peer-to peer communication. Figure 3 shows the structure and
information exchange scheme for our methods.

We prove the convergence of the proposed methods to a global optimal solution in a finite number of iterations
in case of the decision makers are tied to each other through a strongly connected communication network.

Main differences between our work and the existing literature can be summarized as follows. Different from
[11], our methods allow more than two decision makers to solve their problem collaboratively. Only partial
information sharing is required in both methods. The first one relies on sharing dual information while the second
one requires primal information sharing. Thus, we offer two choice of methods to the users with respect to the
type of information that they want to reveal. Our methods have no restriction on the number of complicating
constraints in the global problem unlike [1]. Our methods do not require a distinct role definitions for decision
makers as it is the case in [1,9]. The decision makers in our approaches are equal on hierarchy and task
assignment. Furthermore we prove the convergence of the proposed methods to the same optimal solution with
centralized methods in finite number of iterations while [1,11,14,19] state near-optimal solution.
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The rest of this paper is organized as follows. In Section 2 we introduce the block angular problem that
we address and we present notation for the communication network. In Section 3 we apply Classical Benders
Decomposition as a solution approach before we present Decentralized Benders Decomposition method. In
Section 4, we present Decentralized Dantzig—Wolfe Decomposition method. Section 5 presents experimental
results on two groups of test instances with a discussion. Finally, Section 6 concludes the paper with possible
future research directions. We provide correctness and convergence proofs of our proposed methods in appendices
for brevity.

2. PROBLEM STATEMENT AND NOTATION

2.1. Problem statement

The problem has N independent decision makers which we call optimization agents (OA). Each OA ¢ €
{1,2,..., N} has its own set of decision variables z;;’s for activity j € {1,2,...,n;}. OAs aim to minimize their
linear cost 2?21 ¢ijxij, where ¢;; € ® and x;; € R, while satisfying a block of local constraints given by (2.1c).
There is also a set of complicating constraints given by (2.1b) linking the interactions among the OAs. Hence,
the resulting problem has primal block angular structure.

BALP

N Uz
Minimize Z Z CijTi; (2.1a)

i=1 j=1
N n;
subject to Z Zafjxij >k Vk=1,2,....K (2.1b)
i=1 j=1
Lz
> bijai > 1 Vi=1,2,...,N (2.1¢)
j=1
2i; >0 Vi=1,2,....,N Yj=1,2....n (2.1d)

where afw bij, r® and [; are all in ®. Note that, the local constraint set given by (2.1c) may consist of more than
one equation. Furthermore, the number of local constraints does not necessary to equal to each other for all

OAs.

We may present an example of BALP as a supply chain problem that we address in Section 1. We use the
following description:

Indices

t=1,2,..., N : Entities (either manufacturer or supplier) in the supply chain network.
j=1,2,...,n; : Activities/operations associated with entity 4.

k=1,2,..., K : Common resources shared by the entities.

Parameters

¢i;j © unit cost for activity/operation j of entitiy i.
k. capacity of common resource k.

i © capacity of local resources of entity i.

a¥. : consumption rate of the common resource k for activity /operation j by entity i.

ij
b;; : consumption rate of local resources for activity /operation j by entity 1.

3

N

Decision variable

x;; : decision variable controlled by entity ¢ for activity/operation j.
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FIGURE 4. Some commonly used network topologies.

In this model, the system-wide objective is to minimize the total cost given by (2.1a). (2.1c) gives the blocks
of local constraints of manufacturer and the supplier associated with their own operations. (2.1b) gives the
complicating constraints associated with inventory transfer, common capacity, material or budget. Note that r*
values related to inventory transfer constraints are equal to zero to ensure that the number of items delivered
by the supplier is equal to the number of items received by the manufacturer.

2.2. Communication network

One possible approach for solving (2.1) is centralization where a center builds the problem as a whole,
announces the solution after solving it with Simplex Algorithm or Interior Point methods [6,13]. However, in
this work we propose decentralized decomposition methods to solve the problem without a central coordination
unit. Thus, individual OAs need to communicate and exchange information with each other in order to solve
the problem collaboratively.

We consider a directed graph, G(N,A), to model the communication network among N decision makers. In
this setting, OAs are the nodes of the graph and the arcs represent a communication link between two OAs. OA
t is called a neighbour of OA ¢ if there is an arc from OA i to OA t and N; C N denotes the set of neighbours
of OA 4. Note that communication between any two nodes may be uni-directional, i.e., if OA i is a neighbour
of OA t, it does not necessarily mean that OA ¢ is a neighbour of OA i. In order for the problem to reach global
optimality, any pair of the optimization agents should communicate to each other. OA i can communicate with
OA ¢ where t ¢ N; if there exists a path from node i to node ¢. Hence, we assume a strongly connected graph
for a communication network where there exists a path that goes from ¢ to ¢ for every pair of the nodes of the
graph.

There are several common communication network topologies in the literature. Figure 4 illustrates the topolo-
gies which we consider in our work. In Star Topology, there is a node in the middle and all other nodes are
directly connected to it. Connection among the nodes are achieved indirectly through the node in the middle.
In Ring Topology, nodes are connected in a closed loop configuration. While adjacent pairs of nodes are directly
connected, other nodes are connected indirectly through one or more intermediate nodes. In Mesh Topology,
each node is directly connected to all other nodes. We assume that the communication between any two nodes
is bi-directional.

3. DECENTRALIZED BENDERS DECOMPOSITION

Classical Benders Decomposition is equivalent to Dantzig-Wolfe decomposition applied to the dual of the
linear program in Primal Block Angular structure [20]. Thus, it can be best applied to the linear programs
in Dual Block Angular Structure [21]. Figure 5 shows dual block angular structure. Instead of complicating
constraints, there is a number of complicating variables that connects independent blocks.

In this section, first we describe an application of Classical Benders Decomposition to primal BALP. Then,
we propose Decentralized Benders Decomposition.
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3.1. Classical Benders Decomposition Applied to Primal BALP

We propose a reformulation of (2.1) that enables decomposing the complicating constraints in (2.1b) into
several subproblems. To this end, we introduce a new variable, ¥, denoting the share of OA i for k. Hence we
add a new set of constraints (3.1b) satisfying the sum of the shares is equal to the total available amount for
each k. Then, instead of each complicating constraint in (2.1b), the following set of constraints is introduced:

2?1:1 afjxij > rk Vi.
Hence, an equivalent formulation for (2.1) after decomposing the complicating constraints can be given as the
following:

N n;
Minimize ZZcijxij (3.1a)
i=1 j=1
N
subject to: er = rk Vk=1,2,...,K (3.1b)
i=1
S afa >rf Vi=1,2,...,N Vk=12... K (3.1c)
j=1
j=1
rf unrestricted Vi=1,2,..., N vk=1,2,..., K (3.1e)
2i; >0 Vi=1,2,...,N Vj=1,2,...,n,. (3.1f)

With this reformulation, (3.1) has a dual block angular structure, where r¥ are treated as complicating vari-

ables. Furthermore, note that (3.1c) can be treated as local constraints in addition to (3.1d). Assume that the
complicating variables are fixed to a given value, 7% while satisfying (3.1b). Then, the centralized problem in
(3.1) can be solved as N independent problems only in z;; variables. Given f'f values, the ith subproblem is
formulated as the following:
SPi(r})
n;
Minimize Z CijTij (3.2a)
j=1

n;
subject to: Zafjxij > ik Vk=1,2,..
j=1

> biwi; >l (3.2¢)
=1

LK (3.2b)



DECENTRALIZED DECOMPOSITION ALGORITHMS 1841

Note that (3.2) is a linear program for given #¥ values . If any one of the subproblems is unbounded for #¥, then
(3.1) is also unbounded. This implies the unboundedness of the centralized problem in (2.1). Hence, we assume
bounded subproblems. By introducing dual variables 7¥ associated with constraints (3.2b) and w; associated
with the constraint (3.2c¢), the dual subproblem can be formulated as the following:

Dual — SP;(F)

Maximize Z Rk 4 Lw; (3.3a)
k=1
K

subject to: Z afjﬁf + bijw; < ¢ Vi=1,2,...,n; (3.3b)
k=1

>0 Vk=1,2,....K (3.3¢)

w; > 0. (3.3d)

Note that only the objective function depends on the values of #¥. If the feasible region in (3.3) is empty, then
for any 7 either (3.2) is unbounded or infeasible. Hence, we assume that the feasible region of dual subproblem

2
is non-empty. Thus, the extreme points of the feasible region in (3.3) can be enumerated as {(Z}k) }, where p is

an element of the set of extreme points, P;. Similarly, its extreme rays can be enumerated as {(Zj )T}7 where r
is an element of the set of extreme rays, R;. If dual subproblem is bounded, then there exists an extreme point,
p € P, that maximizes the objective function value #¥(7¥)P + [;w!. Otherwise, if the the dual subproblem is
unbounded, then there exists an extreme ray, r € R; such that #¥(7¥)” + [;w! > 0. In this second case, (3.2) is
infeasible. Thus, (3.3) can be reformulated as the following:

DSP; (7})

Minimize g¢; (3.4a)

K
subject to: fo(ﬂ'f)p +lwl<q peP (3.4b)

k=1

K
S HEH +lw; <0 reRr (3.4c)

k=1
q; unrestricted. (3.4d)

Constraints of type (3.4b) are called Benders optimality cuts, while constraints of type (3.4c) are called Benders
feasibility cuts. Then, (2.1) can be reformulated equivalently by using the Benders cuts:
MP

N
Zy p = Minimize ZQi (3.5a)
i=1
N
subject to: er =rk Vk=1,2,.... K (3.5b)
i=1
K
er(wf)p—i—liwfgqi pe PR Vi=1,2,...,N (3.5¢)
k=1
K
ok +lwf <0 reR;  Vi=12,...,N (3.5d)

>
Il
—
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q; unrestricted 3.5¢)

¥ unrestricted. (3.5f)

T

The number of Benders cuts in (3.5) is generally huge. Hence, Classical Benders Decomposition starts with a
Relaxed Master Problem (RMP) consisting of a subset of feasibility and optimality cuts. A center solves RMP
and announces the ff values. Each OA updates (3.3) with f‘f and solves to optimality to produce either a
feasibility or an optimality cut. Then, RMP is re-solved after the addition of the cuts. The algorithm terminates
if no new cut is generated. The convergence of Classical Benders decomposition in a finite number of iterations
follows since in each time a dual subproblem is solved, a unique Benders cut is generated associated with an
extreme point or an extreme ray. Since the sets of extreme points and extreme rays are finite, there are finitely
many feasibility or optimality cuts to be added. Efficiency of Classical Benders Decomposition is based on the
observation that the algorithm typically reaches optimality after adding a fraction of possible Benders cuts.

3.2. Decentralized Benders Decomposition algorithm

Classical Benders Decomposition requires a center to solve RMP. By Decentralized Benders Decomposition
method, our aim is to achieve complete removal of the center from the system. Thus, instead of solving a global
master problem by a center, we introduce a local copy of the relaxed master problem for each OA.

MP;

Minimize ¢; (3.6a)
N

subject to: » 1 =7y VE=1,2,.... K (3.6b)
=1

r¥ unrestricted  Vi=1,2,...,N Vk=1,2,..., K (3.6¢)

Note that initially (3.6) consists of linking constraints (3.1b), only. We also initialize a lower bound LB, for
q; which denotes the objective function value of the ith subproblem to ensure feasibility of local master problem
at initial iterations. To find an LB;, we solve a problem consisting of local constraints given by (3.2¢) only.

Algorithm 1: DECENTRALIZED BENDERS DECOMPOSITION (Dual — SP;(#¥), MP;, G = (N, A)).

Input: Dual — SP;(#F){ Dual subproblem for OA i}
Input: M P; {Local master problem for OA i}
Input: G =(N, A){Cut exchange network}
1 {rF denotes the share of r* for OA i}
2 {V denotes the visited neighbours list for finding a new cut}
3 {BC denotes the Benders cut}
4 fori=11to N do
5 repeat
6 Solve MP; — (rF)
7 V—g
8
9

BC «— GetCut(i,V,rF)
until BC' = Null

Algorithm 1 describes Decentralized Benders Decomposition algorithm. It starts with a pair of problems
Dual — SP;(7¥) — M P; for each OA and a strongly connected communication graph, G = (N,A). Each OA
solves its local master problem, M P;, and gets the rf values. Algorithm 1 utilizes GETCUT procedure, which
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Algorithm 2: GETCUT(t, V, rF).
Input: ¢ {Identity of OA}
Input: V {Visited Neighbours List}
Input: r¥ Vk=1,2,..., K {Share of r* for OA i}
Output: BC {Benders Feasibility or Optimality cut}
if t € V then
| return Null

V—Vu{t}
Update objective function of Dual — SP;(7F)
Solve Dual — SP;(#F) — GetStatus
if GetStatus = Optimal then
L BC «— Generate Benders optimality cut according to (3.4b)

else if GetStatus = Unbounded then
L BC «— Generate Benders feasibility cut according to (3.4c)

© W N0 o oA~ W N =

10 else
11 L BC «— Null

12 if BC = Null then
13 forall the n € N; do

14 BC — GerCut(n,V,rF)
15 if BC # Null then
16 L Break out of the ForAll loop

17 Add BC to M P;
18 return BC

looks for a cut from neighbours recursively, if there is no cut generated by the OA itself. Hence, Algorithm 1
keeps track of the visited OAs with the list, V. It terminates when no new cut is generated for any of the OAs.

Algorithm 2 gives the details of the GETCUT procedure. It is a recursive procedure that returns a Benders
cut, if it exists. First, the procedure adds ¢, the identity of the current OA, to the visited neighbours list, V,
to avoid visiting it more than once. Then the objective function of Dual — SPZ-(PII?) is updated with the given
7% values and it is solved. According to the solution status of Dual — SP;(#F), either a Benders feasibility
cut or a Benders optimality cut is generated. Otherwise, Algorithm 2 looks for a new cut recursively from all
neighbouring OAs until it finds a new cut. Here N; C N denotes the set of all neighbours of OA t. If a new cut
is generated then it is added to the local master problem of OA ¢. Algorithm 2 runs until all OAs are visited. A
flowchart of Algorithm 2 is shown in Figure 6. Note that, when a cut is generated by OA t with respect to OA
i’s allocations through GETCUT procedure, then all the OAs on the path connecting OAs i and ¢ adds that cut
to their local master problem by definition of GETCUT procedure.

Notice that the local master problem consists of only a subset of constraints initially. Hence at any iteration,
the optimal objective function value of the local master problem is a lower bound on objective function value of
(2.1). Also notice that the sum of objective function values of the subproblems is an upper bound for objective
function value of (2.1). The advantage of this feature is allowing termination before reaching global optimality
if lower and upper bounds are close enough.

Proposition 3.1. Decentralized Benders Decomposition yields an optimal solution for BALP (if one exists)
within a finite number of iterations if communication network is strongly connected.

Proof. See Appendix A.1. O
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F1GURE 6. Flowchart of GETCUT procedure given in Algorithm 2.

4. DECENTRALIZED DANTZIG—-WOLFE DECOMPOSITION

Dantzig—Wolfe Decomposition requires a center for coordinating the information exchange between master
problem and subproblems. Hence it is not applicable for peer-to-peer optimization problems. In this section,
we describe Decentralized Dantzig—Wolfe Decomposition algorithm that allows decision makers to solve BALP
collaboratively without need of a center. Decentralized Dantzig—Wolfe Decomposition algorithm (Algorithm 3)
utilizes Phase I algorithm as described in [12] to ensure the feasibility of local master problem. If an initial local
master problem is established, Algorithm 3 calls Phase II algorithm (Algorithm 4). Otherwise, it terminates

since BALP is infeasible.

Algorithm 3: DECENTRALIZED DANTZIG-WOLFE DECOMPOSITION.

IsFeasible <—Phase I Algorithm
if IsFeasible then
L Phase IT Algorithm

else
L BALP is infeasible.

(S N
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4.1. Decentralized Dantzig—Wolfe Decomposition algorithm

We consider block angular linear programs given by (2.1). Without the complicating constraints in (2.1b),
the problem can be decomposed into N smaller subproblems each of which is associated with a block of local
constraints in (2.1c). By Minkowski’s Representation Theorem, any point z;; in the feasible region of subproblem
i can be expressed as sum of a convex combination of its extreme points and non-negative linear combination
of its extreme rays. For the sake of simplicity, we assume a bounded feasible region for subproblems. Hence, we
can formulate local master problem for OA i by using extreme points, 2 € P;, as the following:

MP;

Minimize Z Z CijT N} (4.1a)

j=1 p
subject to ZZ afjxfj)\f > ¥ Vk=1,2,...,K (4.1b)
Jj=1»p
P
AP >0 Vit € P, (4.1d)

Here P; denotes the set of extreme points of the subproblem i’s feasible region. To ensure feasibility of M P;, we
use Phase I method. Once we initialize local master problem M P;, we solve it by column generation method.
We decide whether a variable can be added to M P; with its corresponding column with respect to its reduced

cost:
n; K
RC: Z <Cij — Zwkafj) Ti5 — Wy, (42)
j=1 k=1
where 7, Vk =1,2,..., K and w; are dual variables associated with complicating constraints and convexity

constraint for (4.1), respectively. The most profitable variable to enter the master problem is the one having
the most negative reduced cost. Hence, we solve the following pricing subproblem:
SPZ (’/Tk, ’LUZ)

N, K
zsp, = Minimize g Cij — E ﬂ'kafj Tij — w; (4.3a)
k=1

j=1

subject to Zbijxij >1; (4.3b)
j=1
Tij ZO VJ:1,2,,77,1 (43C)

Assume that an optimal solution of SP;(mg,w;) is z7;. The column generated with respect to z7; is as the

ij
following:
T

. Lk 1 % K, *
C: E Cij Ty g a;;Ti E a;ry 1 (4.4)
i=1 =1 =1

where T is the transpose operator.

We describe Phase II algorithm in Algorithm 4. It starts with a pair of problems SP; (g, w;) — M P; for each
OA i € {1,2,...,N} and a strongly connected communication graph, G = (N,A). Here (7, w;) denotes the
dual variables of M P;, V denotes the visited neighbours list for finding a new column from the neighbours and
C denotes the column generated. Algorithm 4 utilizes recursive GETCOLUMN procedure to find a new column.
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Algorithm 4: PHASE IT ALGORITHM (SP;(mk, w;), MP;,G = {N, A}).

Input: SP;(m,w;) { Pricing Subproblem for OA i}
Input: M P; {Local master problem for OA i}
Input: G = {N, A} {Strongly connected digraph}

C — GetColumn(i, V, (7, w;))
until C = Null

1 fori=1 to N do

2 repeat

3 Solve MPiﬁ(mc,wi)
4 V—o

5

6

It terminates when no new column is generated for any of the OAs. Note that, since a center is lack in the
system, each OA get the solution by its own after running the steps (5) and (6).

Algorithm 5 gives the details of recursive GETCOLUMN procedure. Here (7, w;) denotes the dual variables of
MP;, V denotes the visited neighbours list for finding a new column from the neighbours and C' denotes the col-
umn generated. First GETCOLUMN procedure updates the visited neighbours list. Then it updates S Py (7, w;)
with dual variables of OA i to solve subproblem of OA ¢ where i # ¢. If reduced cost is negative for a variable,
then a new column is generated. Otherwise, Algorithm 5 looks for a new column recursively from neighbours.
Note that when a column is generated by OA ¢ for OA 4, then by definition of GETCOLUMN procedure, all the
OAs on the path connecting the OAs add that column. Algorithm 5 terminates when all neighbours are visited
(Fig. 7).

Algorithm 5: GETCOLUMN (¢, V, (mk, w;)).

Input: ¢ {Identity of OA}
Input: V' {Visited Neighbours List}
Input: (7, w;) {Dual variables of M P; }
Output: C' {New Column}
if t € V then

L return Null

V—Vuit}
Update objective function of SPq(mwg, w;)
Solve SPi(my,w:) — 25p,
RC « z5p, {RC denotes reduced cost in (4.2)}
if RC < 0 then
L Generate C according to (4.4)

else
forall the n € N; do
C «— GETCOLUMN(n, V, (7, w;))
if C' # Null then
L Break out of the For loop

© 0N A W N

I
W N = O

-
'

Add C to M P,
return C

[un
%]

Note that local master problem of an OA is initially formulated as (4.1) and it consists of a few columns.
Then the local master problem grows gradually by the addition of new columns including the ones coming from
the neighbours and becomes as the following:
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START
Given (t, V, m,, w;)

Is OA visited RETURN
before? Null
Update visited neighbours list, V
Update objective function of Sp,(m,, w;) Forall
P | Pl Wi Neighbours

Solve

Calculate Reduced Cost, RC

|
|

NO

IsSRC<0?

YES

Generate Column

Add Column to MP,

|

RETURN Column

FIGURE 7. Flowchart of GETCOLUMN procedure given in Algorithm 5.

MP;
N n;
Minimize Z Z Z cijat AP (4.5a)
i=1j=1 p
N n;
subject to Z Z Z a%mf)\f >k Vk=1,2,....K (4.5b)
i=1j=1 p
d =1 Vi=1,2,...,N (4.5¢)
p
A >0 Vil € P Vi=1,2,...,N. (4.5d)

At termination, optimal objective function value of any local master problem gives the optimal objective value
for the global problem. In the worst case, local master problem may eventually converge to the classical master
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problem of centralized approach. OA i can derive global optimal solution value of its own variables l’fjp " by using
the following equation:

@) = [ D> Al ], (4.6)

peb;

where P; denotes the set of extreme points which are used to generate columns in OA i’s local master problem.
Then optimal solution of the global problem is obtained by combining all OA’s individual global optimal
solutions.

Proposition 4.1. Decentralized Dantzig—Wolfe Decomposition yields an optimal solution for BALP (if one
exists) within a finite number of iterations if communication network is strongly connected.

Proof. See Appendix A.2. |

5. NUMERICAL EXPERIMENTS

In this section, we apply Decentralized Benders Decomposition and Decentralized Dantzig—Wolfe Decomposi-
tion to solve randomly generated block angular linear problems and Multi-Commodity Network Flow problems.
We present test results with a discussion.

5.1. Test sets

We use two groups of problems to test the correctness and performance of the proposed methods. For the
first one, we generate random block angular linear problems by using the same strategy of the authors in [10].
According to this, the constraint matrix A; of the problems consists of non-negative random numbers in the
range [0,10] with density 30%. The objective function coefficients ¢; are generated from the range [10, 20] while
right hand side values are selected from [100, 500]. Table 1 presents the dimensions of randomly generated
problems in three sets. In the first set, problems has fixed size of 500 x 1000 while the number of OAs varies.
In the second set, each problem has twenty OAs with varying size. In the third set, the problems has varying
size with varying number of OAs, however each block has same size of 20 x 30.

The second group is Multi-commodity network flow (MCNF) problems that are one of the well-known problem
types representing primal block angular structure. We use random generator Mnetgen [2] for MCNF problems
that can be retrieved from [16]. These set of problems can be characterized by the number of nodes n and the
number of commodities k£ where n € {64,128,256} and k € {4,8,16,...,n}. For any pair of (n,k), Mnetgen
randomly generates twelve problems such that six of the problems are dense with m/n ~ 8 and the other six
problems are sparse with m/n a~ 3. Within each group of six problems, three problems are easy and the other
three problems are hard.

5.2. Results and discussion

In this section, we present computational results performed on test instances. We implemented proposed
algorithms with C# utilizing CPLEX 12.5 running on a Windows 10 PC with a 3.6 GHz CPU and 32 GBRAM.
We use Star, Ring and Mesh topologies in Figure 4 as strongly connected communication graph among OAs.
For Decentralized Benders Decomposition and Decentralized Dantzig—Wolfe Decomposition we allow equal run
time for each OA that sum up to two hours for each problem. Also we report the results of Classical Benders
Decomposition and Classical Dantzig—Wolfe Decomposition of as a benchmark. We find lower and upper bounds
on the objective function value if the algorithm does not converge to optimal solution within the allowed time
and report the gap percent.

For the first group of problems in Table 1, we generate five instances randomly for each problem type
and report the average as the result. Table 2 presents results for these problems on Decentralized Benders
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TABLE 1. Dimensions for randomly generated problems.

Instance  Number Number of variables Number of rows Number of Percent of

no of blocks in each block in each block constraints  complicating
constraints constraints
1 2 500 200 100 20%
2 5 100 80 100 20%
3 10 50 40 100 20%
4 20 25 20 100 20%
5 50 10 8 100 20%
6 20 10 4 20 20%
7 20 20 8 40 20%
8 20 30 12 60 20%
9 20 40 16 80 20%
10 20 50 20 100 20%
11 5 30 20 25 20%
12 10 30 20 50 20%
13 20 30 20 100 20%
14 40 30 20 200 20%

Decomposition. For the first set of problems, the size of the overall problem is fixed. Thus, subproblem size
becomes smaller as the number of OAs increases. However, Gap% increases with the number of OAs because
of allowing less time for each OA in a problem having more OAs. For the second set, we can observe the effect
of the subproblem size on convergence. Harder subproblems results in higher Gap%. For the third set, we can
observe the effect of the number of OAs since the subproblem size is fixed. Problem having more OAs need
more time to converge. Ring topology outperforms the others almost in all instances. Mesh topology results in
smaller Gap% than Star topology.

Table 3 presents results for first group of problems on Decentralized Dantzig—Wolfe Decomposition. Results
in the first set presents the effect of communication network. Convergence time in Star topology increases
first because time spent for communication is more than time spent for solving the subproblems. Convergence
time decreases whenever the subproblems becomes easy enough to solve. For Ring topology, convergence time
decreases because the subproblems are getting easier to solve. For Mesh topology, convergence time decreases
initially as the subproblems are getting easier to solve, however more OAs results in higher convergence time.
There is an increase in convergence time for the second set and the third set. However, the algorithm reacts more
to size of the subproblems than the number of agents for all topology types. While Ring topology outperforms
the others, Mesh topology converges faster than Star topology.

Tables 4 and 5 present results for Mnetgen instances for Decentralized Benders Decomposition. While eight
out of twelve M64.4.% problems converge to optimal solution, six out of twelve M64.8.* problems converge.
The results shows that there is not a clear dominance of any topology to the others. However, in most of the
problems Star topology has longer convergence time than the others Table 6 presents results for Centralized
Benders Decomposition. As expected, Centralized Benders Decomposition outperforms Decentralized Benders
Decomposition in all instences. The main reason for this is the existence of the center in Centralized Benders
Decomposition while it lacks in Decentralized Dantzig—Wolfe Decomposition. The center solves the problem only
once and announce the results to the others in Centralized Benders Decomposition, but in Decentralized Benders
Decomposition the problem is solved many times since each OA solves the problem by itself. Also, M64.4.5 and
M64.8.7 converge to optimum within allowed time while the best reported Gap% for this problems are %2
and %0.6, respectively for Decentralized Benders Decomposition. Centralized Benders Decomposition performs
better because we allow same amount of time for both methods to converge. While Decentralized Benders
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TABLE 3. Results for Decentralized Dantzig—Wolfe Decomposition on random set of Table 1.

Optimal STAR RING MESH
Instance :
o Obj.Fn. - -
value . . .
CPU Time(s) CPU Time(s) CPU Time(s)
1 292.73 36.29 36.47 37.02
2 776.96 37.02 19.98 21.65
3 1535.00 39.63 17.21 20.06
4 3066.16 30.42 11.86 16.58
5 7416.69 28.55 3.65 18.63
6 2170.44 1.58 0.38 1.06
7 2257.37 7.88 2.84 4.81
8 2406.45 38.84 15.62 19.67
9 2510.25 222.02 40.48 74.78
10 2498.82 611.71 38.91 142.01
11 732.75 0.49 0.22 0.30
12 1397.83 5.69 0.97 2.16
13 2950.30 61.75 4.84 18.49
14 5642.89 666.40 24.64 185.32

Decomposition allocates this time to each OA to solve its own problem, in Centralized Benders Decomposition,
the center uses whole allowed time by itself only to solve the problem.

Table 7 shows the results for MNetgen Instances for Decentralized Dantzig—Wolfe Decomposition. Decen-
tralized Dantzig—Wolfe Decomposition method converges to optimal solution under one second for M64.4.*
instances and within seconds for M64.8.* instances. Ring topology has the smallest convergence time for most
of the instances while results for Ring topology and Mesh topology are very close to each other. Star topology
requires more computational time for convergence than the others. Table 7 also shows the results for MNetgen
Instances for Centralized Dantzig—Wolfe Decomposition as a benchmark. The results support our assumption
that Centralized Dantzig—Wolfe Decomposition outperforms Decentralized Dantzig—Wolfe Decomposition for
similiar reasons that we explained for Centralized Benders Decomposition and Decentralized Benders Decom-
position.

We conclude this section with a summary of observations under the following headings.

Comparison of the methods

In Linear Programming case, Benders Decomposition is defined as Dantzig—Wolfe Decomposition applied to
the dual [7]. So, from theoretical point of view, Benders Decomposition and Dantzig—Wolfe Decomposition are
equivalent to each other. However, they may differ when looking at the computational side. Generally, Benders
decomposition is appropriate for problems with complicating variables, while Dantzig—Wolfe Decomposition is
suitable for problems with complicating constraints.

We observe the similar properties for Decentralized Benders Decomposition and Decentralized Dantzig—
Wolfe Decomposition. Experimental results show that Decentralized Dantzig—Wolfe Decomposition outperforms
Decentralized Benders Decomposition in all instances. The main reason for this is the problem structure. This
work is mainly focused on Linear Programming Problems with Primal Block Angular Structure. Recall that
this structure is characterized by complicating constraints linking the local constraints on the diagonal. To
apply Decentralized Benders Decomposition to this problem structure, we introduce a variable for each OA
for a single common resource. By this way, we convert the primal BALP problem to a dual one. However, the
complicating constraints in local master problem and local constraint set in each subproblem gets larger and
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TABLE 6. Results for Centralized Benders Decomposition for MNetgen Instances.

Optimal
Instance Obj.Fn.
no value LB UB Gap% CPU Time(s)
M64.4.1 290806.3 290806.3 290806.3 - 20.7
M64.4.2 336 019.9 336019.9 336019.9 - 5.3
M64.4.3 348 966.6 348 966.6 348 966.6 - 0.3
M64.4.4 412475.8 400 086 412683.8 3.05 7200
M64.4.5 390578.5 390578.5 390578.5 - 1279.3
M64.4.6 506 554.4 506 554.4 506 554.4 - 1
M64.4.7 147862.1 147862.1 147862.1 - 600.7
M64.4.8 165185.3 165185.3 165185.3 - 8.4
M64.4.9 192119.4 192119.4 192119.4 - 0.6
M64.4.10 167479.5 165710.0 167 668.6 1.16 7200
M64.4.11 193 238.4 192 338.7 207624.2 7.9 7200
M64.4.12 192400.1 192400.1 192400.1 - 24.5
M64.8.1 622 280.4 622280.4 622 280.4 - 41
M64.8.2 649767.0 649 767.0 649767.0 - 22.2
M64.8.3 750938.0 750938.0 750938.0 - 3.3
M64.8.4 761862.7 7379204 808421.5 9.2 7200
M64.8.5 753 927.6 728 018.8 783 858.5 7.4 7200
M64.8.6 929 066.8 929 066.8 929 066.8 - 549.7
M64.8.7 304 045.0 304045.0 304045.0 - 1829.2
M64.8.8 355699.7 355699.7 355699.7 - 365.3
M64.8.9 357649.1 357649.1 357649.1 - 4440.4
M64.8.10 361802.0 356 884.6 387304.7 8.4 7200
M64.8.11 418824 407130.6 534460.3 304 7200
M64.8.12 394051 381255.8 474594.2 23.6 7200

becomes computationally harder to solve. This results in worse experimental results when compared to the
Decentralized Dantzig—Wolfe Decomposition.

Size of blocks

We observe that the size of the blocks influences the performance of the methods. Larger block size results
in larger and harder to solve subproblems.

Number of blocks

We observe that as the number of blocks increase, the time until termination gets longer. This can be explained
mainly with the fact that each block is associated with an OA. Both methods solve the overall problem for each
OA before termination. Hence as the number of blocks increase, proposed methods solve the overall problem
for more times.

Another reason is the increase in the amount of communication among OAs. As the number of OAs increases,
each OA can have more neighbours. This results in having more communication rounds to get a cut or column.

Type of communication network

We can observe the effect of communication network on performance of the proposed methods while we
solve problems having larger size. When the problem size gets larger, Ring topology outperforms the other
topologies for Decentralized Dantzig—Wolfe decomposition. Mesh topology has quicker convergence than Star
topology almost in all instances. This result holds for Decentralized Benders Decomposition too. Although Mesh
topology outperforms Ring topology on small problems, for the larger problems Ring topology converges faster.
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TABLE 7. Results for Decentralized Dantzig-Wolfe Decomposition and Centralized
Dantzig—Wolfe Decomposition for MNetgen Instances.

Optimal Decentralized DW Centralized DW
Instance .

Obj.Fn.
no value STAR RING MESH
M64.4.1 290 806.3 0.081 0.053 0.058 0.024
M64.4.2 336019.9 0.082 0.071 0.071 0.021
M64.4.3 348 966.6 0.010 0.013 0.010 0.002
M64.4.4 412475.8 0.429 0.227 0.308 0.100
M64.4.5 390578.5 0.465 0.332 0.329 0.168
M64.4.6 506 554.4 0.036 0.028 0.039 0.011
M64.4.7 147862.1 0.231 0.146 0.169 0.057
M64.4.8 165185.3 0.182 0.098 0.105 0.060
M64.4.9 192119.4 0.018 0.015 0.017 0.003
M64.4.10 167479.5 0.619 0.433 0.446 0.162
M64.4.11 193238.4 0.274 0.215 0.222 0.069
M64.4.12 192400.1 0.123 0.074 0.085 0.032
M64.8.1 622 280.4 0.122 0.062 0.064 0.018
M64.8.2 649767.0 0.021 0.017 0.015 0.003
M64.8.3 750938.0 0.103 0.046 0.067 0.020
M64.8.4 761 862.7 1.020 0.345 0.538 0.134
M64.8.5 753927.6 2.799 0.850 1.206 0.380
M64.8.6 929 066.8 0.323 0.120 0.196 0.048
M64.8.7 304 045.0 7.645 2.997 4.174 0.977
M64.8.8 355699.7 0.585 0.226 0.330 0.074
M64.8.9 357649.1 1.067 0.417 0.542 0.152
M64.8.10 361 802.0 11.785 4.946 7.426 1.339
M64.8.11 418 824.0 13.789 4.392 6.261 1.855
M64.8.12 394 051.0 10.213 3.436 4.860 1.434
M128.32.1 11186573.8 320.685 21.224 115.798 9.944
M128.32.2 118663 936.6 342.258 22.965 115.491 9.980
M128.32.3 122476 676.8 143.936 12.030 58.701 4.158
M128.32.4 12715040.2 7094.051 355.515 2,403.788 187.800
M128.32.5 13582 810.6 5390.729 208.135 985.815 125.418
M128.32.6 14617437.1 337.414 27.348 127.854 9.513

The reason for this is the cut or column exchange strategy of the proposed methods. While OA i gets cut or
column from a neighbour ¢, both agents ¢ and ¢ adds that cut or column to its local master problem. Thus,
while getting a cut or column from a further neighbour, that cut or column is added to all OAs in the path
connecting two communicating OAs. In Ring topology, an OA i can reach any other OA ¢ indirectly. Since the
length of the path can be largest in Ring topology, any cut or column can be added to the local master of more
OAs at a time. This results in fast convergence rate.

Cut or column exchange strategy also affects the number of communication rounds among OAs. To give an
example, Figure 8 illustrates the total number of cuts/columns generated for solving Mnetgen M64.4.* instances
by Decentralized Benders Decomposition and Decentralized Dantzig—Wolfe Decomposition, respectively. We can
observe that the number of cuts or columns generated in Ring topology is less than the number of cuts/columns
generated in other topologies almost in all cases for both methods. The main reason for this is appending a
cut or column to the local master of all OAs in the path connecting two communicating OAs. In an iteration
a cut or column may be added local master problem of more OAs in Ring topology and this results in faster
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FIGURE 8. Communication rounds for Mnetgen M64.4.* Instances.

convergence. In most of the problems, Mesh topology generates fewer cuts or columns than Star topology, which
confirms the speed of convergence of these methods.

6. CONCLUSIONS AND FUTURE WORK

In this work, we propose Decentralized Benders Decomposition and Decentralized Dantzig—Wolfe Decompo-
sition for large-scale linear block angular problems. We remark that, our main goal is not competing with the
computational speed of a centralized algorithm. Instead, we primarily aim to propose decentralized solution
approaches for decision makers that are unwilling to disclose their local data, but want to solve the global
problem collaboratively in a peer-to-peer fashion.

From an organizational point of view, in Decentralized Benders Decomposition, local master problem shares
common resources among OAs. In return, each subproblem finds its best solution for given allocations and
generates a cut which includes implicit information of dual prices for common resources. On the other hand,
in Decentralized Dantzig—Wolfe Decomposition local master problem shares prices on common resources. In
return, each subproblem generates a column indicating explicit information that disclose optimal way of using
common resources in terms of cost, profit or specific proposal.

We prove that the proposed methods can reach global optimal solution in a finite number of iterations. We
confirm theoretical results with computational experiments on randomly generated test instances and also on
Multi-commodity Network Flow Problems. We observe that Decentralized Dantzig—Wolfe Decomposition shows
faster convergence rate than Decentralized Benders decomposition.

There are three main alternatives for multiple decision makers to solve an overall block angular linear op-
timization problem. The first one is the centralization approach, which converges to optimal solution rapidly
but requires a central coordination unit having full access to managerial information of all decision makers.
The second one is Decentralized Benders Decomposition, which requires revealing dual information however
has slower convergence rate. Finally, the third one is Decentralized Dantzig-Wolfe Decomposition, which has
faster convergence rate but requires revealing primal information. Thus, we propose two decentralized methods
for decision makers to make a choice with a trade-off between the degree of the information that they want to
disclose and the speed of the convergence time.

Decentralized methods for optimization problems are inherently suited to parallel or distributed computing
opportunity. Thus, as a future research direction, parallelization of proposed algorithms will be desirable. More-
over, we intend to explore decentralization in integer programs since decentralized decision making is rarely
applied to integer programs in the literature.

APPENDIX A.

A.1. Convergence proof for Decentralized Benders Decomposition

We give a formal proof for convergence of Decentralized Benders Decomposition for linear programs in three
parts. In the first part we show that there are finitely many cuts that can be generated. The second part shows
that each cut can be generated at most once. Finally, in the third part, we show that any violated cut is detected
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and added to the relaxed local master problem. Then, convergence of Decentralized Benders Decomposition for
linear programs follows.

PART I: There is a finite number of Benders Cuts that can be generated.
Proof of the first part is based on projection theory which will be assumed to fulfill conditions similar to
those utilized in the convergence analysis of Classical Benders Decomposition in [3]. First we state the following

theorem which defines the multipliers obtained by projecting out the x;; variables in (3.2) and also the projection
of the polyhedron.

Theorem A.1l. If

Pi = (.%',7“) e R x éRkl Zafja:ij > ’I“;c Vk = 1,2, .. .,K, Zbijmij > li (Al)

Jj=1 Jj=1

then projecting out the x;; variables from the system generates the nonnegative multipliers {(7F w;),Vk =
1,2,...,K} such that

ng

K n;
Jj=1

k=1j=1
Also the projection of the polyhedron is

proj,(P) = {r e R*xfrf >0 Vvk=12,... K}. (A.3)

Then we state two propositions which are adapted from [15] for BALP. One can relate the multipliers obtained
by projection and the extreme rays of the projection cone as a result of these propositions.

Proposition A.2. If P; is given in (A.1) then proj.(P;) is given in (A.3), where {(7¥,w;),Vk = 1,2,..., K}
are the extreme rays of the projection cone

K n; ng
C.(P) = (7T,w)|ZZak»7rk+Zbijwi:O,ﬂ'f20 Vk=1,2,....,K, w;>0,. (A.4)

15"
k=1j=1 j=1

Proposition A.3. If P; is given in (A.1) and {(7¥,w;),Vk = 1,2,..., K} are the multipliers that are generated
using projection, then the extreme rays of the projection cone in (A.4) are contained in this set of multipliers.

We omit the proof of Propositions A.2 and A.3 here. Refer to [15] for proof of generalized cases as Proposi-
tions 2.22 and 2.23, respectively.

Theorem A.1 states that the inequalities 7fr¥ > 0 Vk = 1,2,..., K that results from projecting out the
x;; variables from the system defines proj,.(P;). By Proposition A.2, proj,(P;) can also be generated by the
extreme rays of the projection cone C,(P;). Proposition A.3 defines the relationship between the multipliers
{(7F,w;),Vk =1,2,..., K} generated using projection and the extreme rays of C,.(P;). We use this relationship
to conclude that finite number of cuts are generated. Thus, we apply projection to BALP. The aggregate problem
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(3.1) can be equivalently stated as the following:

Minimize zg (A.5a)
N uz
subject to: 20 — Z Zcijzij Z 0 (A5b)
i=1 j=1
N
> b —rb=0 Vk=1,2,....K (A.5¢)
i=1
> afwy >k Vi=1,2,....N Vk=1,2,....K (A.5d)
j=1
Zbijﬂ% >1; Vi=1,2,...,N (A.5e)
j=1
zi; >0 Vi=1,2,....N ¥ji=1,2,...,n (A.5¢)
¥ unrestricted Vi=1,2,...,N vk=1,2,..., K. (A.5g)

Let us assign the multiplier ug to the constraint (A.5b) and the vector of multipliers 7, w, u to the constraints
(A.5d)—(A.5f), respectively. Using these multipliers, we project out the x;; variables. This gives the following:

Minimize zg (A.6a)
N

subject to: » rf =r" Vk=1,2,....K (A.6b)
i=1

ubzo > (7F)PrE 4+ wPl; Vi Vk Vp (A.6c)

¥ unrestricted Vi=1,2,...,N vVk=1,2,..., K. (A.6d)

k

Without loss of generality, multipliers (uy, ()P, w;?, (u;;)?) can be re-scaled. Assume ufj = 1 for p =

1,2,...,t,and u) =0 for p=1t+1,..., P. Hence the resulting problem is:

Minimize zg (A.7a)
N

subject to: er =7 Vk=1,2,...,K (A.7b)
i=1

20 > (7¥)Prk 4 w;Pl; Vi=1,2,....N Vk=1,2,.... K Vp=1,2,...,t (A.7c)

0> (7F)Prk 4 wiPl; Vi=1,2,...,.N Vk=12,...,K V¥p=t+1,....,P  (A.7d)

¥ unrestricted Vi=1,2,...,N vk=1,2,..., K. (A.7e)

From theory of projection, r* is an optimal solution to (A.7) if and only if there is an z* such that (z*,7*) is
an optimal solution to the aggregate problem. By Proposition A.3, the extreme rays of the projection cones

K
C.(P) = {(UO,T,’LU,U)| Zaijkﬂ'f +bjjw; +uij —uoci; =0 Vi=1,2,...,n, (uo, ™, w,u) > O} (A.8)
k=1
are contained in the set of multipliers
{(u, (7FP wiP, (ui)P)Vi = 1,2,...,n; YVk=1,2,....K VYp=1,2,...,P} (A.9)

generated by projection Vi = 1,2,..., N. By Proposition A.2, only the extreme rays of the projection cones
C.(P;) Vi=1,2,...,N are needed to generate constraints (A.7c¢) and (A.7d) which characterize the projection
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into r space. Therefore, we can conclude that the constraints (A.7¢) and (A.7d) are generated from the extreme
rays of the projection cones.

Proposition A.4. If the multipliers in (A.9) are the extreme rays of the projection cone in (A.8) scaled so
that uf =1, forp=1,2,...,t and uh =0, forp=t+1,2,..., P, then ((zF)P, (w;)?), forp=1,2,...,t are the
extreme points of the polyhedron

K
{(vawi)zaijkﬂf+bijwi < cij, (7, wi) > 0 Vj=1727--~7”z} (A.10)
k=1
and ((7F)P, (w;)P), forp=1t+1,2,..., P are the extreme rays of the associated recession cone
K
{(wf,wi)Zaijkwf—kbijwiSO,(Wf,wi)EO Vj=1,27...,n2}. (All)
k=1

If all the constraints associated with the extreme rays are generated, then (A.7) becomes full master problem.
Since solving full master problem is not practical, a relaxed master problem having a subset of the constraints
(A.7c) and(A.7d) is solved. If there is a constraint that violates the relaxed master problem’s solution, then
that constraint is added to the relaxed master. By Proposition A.4, one can find a constraint that violates the
relaxed master problem by solving the following subproblem:

K
Maximize Zﬁfwf + Lw; (A.12a)
k=1
K
subject to: Zafjwf + bijw; < ¢y Vi=1,2,...,n; (A.12b)
k=1
™ >0 Vi=1,2,...,.N Vk=1,2,...,K (A.12¢)
w; >0 Vi=1,2,...,N. (A.12d)

Assume 7 is a feasible solution to the relaxed master problem with objective function value z. If (7, w;) is
an optimal solution to the subproblem and z5 < ffﬂf + l;w; then add the constraint Z > ffﬂ'z" + l;w; to the
relaxed master problem. If the subproblem is unbounded, then there exists an extreme ray (7, w) in the recession
cone such that #¥7% + [;w; > 0. In this case, add the constraint #¥7¥ 4 ;w; < 0 to the relaxed master problem.
Therefore, there is only one constraint associated with each extreme ray or extreme point. Since number of
extreme rays and extreme points is finite, one can conclude that the number of cuts that can be generated is
also finite.

PART II: A new cut is generated at each iteration.
Proposition A.5. At each iteration, the constraint added to the relaxed master problem is unique.

Proof. We proved that each cut generated by the subproblem is associated with either an extreme ray or an
extreme point. When a new cut is generated and added to the relaxed master problem, then relaxed master
problem excludes the associated extreme ray or extreme point in the solution set for subsequent iterations.
Hence each cut can be generated and added to the relaxed master at most once. (I

PART III: Any violated cut can be detected and added to any local master problem.

Proposition A.6. Decentralized Benders Decomposition yields an optimal solution for BALP (if one exists)
within a finite number of iterations if communication network is strongly connected.



1860 M.A. AYDIN AND Z.C. TASKIN

Proof. Assume that the cut exchange network is strongly connected. Then, by definition of strong connectivity,
there exist a directed path between any pair of the nodes. Hence any cut generated by any node can reach all
the nodes in the graph along the directed path via recursive GETCUT procedure. In other words, Benders Cut
generated by any one of the OAs can be added to relaxed local master of any other OA. Decentralized Benders
Decomposition algorithm terminates when no new cut is generated for any one of OAs. Hence the convergence
of Decentralized Benders Decomposition to the global optimal solution in a finite number of iterations follows
from having finite number of cuts, each of which is generated and added at most once to any OA’s local master
problem. O

A.2. Convergence proof for Decentralized Dantzig—Wolfe Decomposition

We prove the finite convergence of Decentralized Dantzig—Wolfe decomposition in three parts. In the first part
we show that there are finitely many columns that can be generated. The second part shows that each column
can be generated at most once. Finally, in the third part, we show that when a new column is generated, it can
be added to any relaxed local master problem. Then, convergence of Decentralized Benders Decomposition for
linear programs follows.

PART I: There are finitely many columns to be generated.

Proposition A.7. The number of columns that can be generated in Decentralized Dantzig—Wolfe Decomposition
Algorithm is finite.

Proof. Let S; = {x;j] Z?;l bijxi; > l;} denotes the feasible region of ith pricing subproblem (SP;). Then S;
has finitely many extreme points and extreme rays since it is a polyhedron and any point can be expressed
as sum of a convex combination of extreme points and a non-negative linear combination of extreme rays by
Minkowski’s Representation theorem. For a (SP;) having bounded feasible region, optimal solution is at one of
its extreme points since it is an linear programming problem. A new column can be generated with respect to
any optimal solution is given by (4.4). Hence, each extreme point is associated with exactly one column. For a
(SP;) having unbounded feasible region, the solution attains at one of the extreme rays. Hence, similar results
holds for an extreme ray. Therefore, finiteness of the number of columns follows. O

PART II: A new column is generated at each iteration.
Proposition A.8. Decentralized Dantzig—Wolfe Decomposition yields an unique column at each iteration.

Proof. Local master problem for OA i given in (4.1) is a linear programming problem. Thus, one can calculate
reduced cost of any variable x;; by (4.2). Since M P; is a minimization problem, at optimality, the reduced cost
of any variable is non-negative. A variable having negative reduced cost may improve the objective function
value of M P; if it enters the basis. Pricing subproblem (SP;) searches for the variable having most negative
reduced cost and adds associated column to the M P;. Hence if a column has already added to the M P;, pricing
subproblem cannot generate the same column again since its reduced cost is non-negative. Therefore, each
column can be generated and added to the any local relaxed master problem at most once. O

PART III: If a new column is generated, then it can be added to any local master problem.

Proposition A.9. Decentralized Dantzig—Wolfe Decomposition yields an optimal solution for BALP (if one
exists) within a finite number of iterations if communication network is strongly connected.

Proof. Assume a strongly connected communication network for exchanging columns among OAs. Thus, any
column generated by any OA can be added to relaxed local master of any other OA in the network along the
directed path via recursive GETCOLUMN procedure. Decentralized Dantzig—Wolfe Decomposition algorithm ter-
minates when there is no variable having negative reduced cost for any one of OAs. Therefore, finite convergence
of Decentralized Dantzig—Wolfe Decomposition Algorithm for BALP follows from Propositions A.7 and A.8. O
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