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PRESERVATION TECHNOLOGY INVESTMENT, TRADE CREDIT AND
PARTIAL BACKORDERING MODEL FOR A NON-INSTANTANEOUS

DETERIORATING INVENTORY

Abu Hashan Md Mashud1, Hui-Ming Wee2,∗ and Chiao-Ven Huang2

Abstract. In a perfectly transparent and competitive market, suppliers must provide a competitive
pricing and service for their customers. The aim of this study is to provide an insight into how preser-
vation technology and credit financing could be used both to reduce the deterioration rate as well as to
provide flexible financing for retailers. The methodology is to optimize the cycle length, selling price,
the amount of preservation technology and credit financing using inventory theory. The result derived
is an optimal total profit per unit time for the system. Finally, using MATLAB 2017a, it is shown
graphically that the profit function is concave. The sensitivity analysis is illustrated using Lingo 17.
The study not only provides insights to business managers in making wise managerial decisions, it also
enables them to weigh the pro and con of implementing preservation technology and credit financing.
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1. Introduction

Inventory is defined as idle stocks in a supply chain. The management of inventory is critical factor in the day-
to-day operation of an enterprise, therefore a proper system to manage inventory is critical. One of the key factors
to consider in inventory modeling is deterioration. Deterioration is the evaporation, decay or damage of inventory.
Inventory has been the focus of many researches for over a century. Mishra [17] projected an inventory model for
controllable deterioration with time-varying demand and time-varying holding cost. Mishra [16] presented an
inventory model with controllable deterioration rate and time-dependent demand. Pandey et al. [22] established
an inventory model with negative exponential demand and probabilistic deterioration under backlogging. Nobil
et al. [20] developed a model for single machine lot scheduling problem for negative exponential deteriorating
items. Nobil et al. [21] projected a model for economic lot size problem for cleaner manufacturing system with
another interesting parameter warm-up period. A two-warehouse model with increasing demand under time-
varying deterioration is developed by Sett et al. [26]. Sarkar and Sarkar [25] developed an inventory model
with partial backlogging and stock dependent demand. Palanivel and Uthayakumar [24] presented an inventory
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Table 1. A comparison of the present study with the previous researches.

Authors Demand pattern Deterioration Preservation
technology

Shortages Trade credit

Dye and Hsieh [7] Constant Time-dependent Yes Partial Back-
ordering

No

Hsieh and Dye [10] Time-dependent Constant Yes No No
He and Huang [9] Price-dependent Constant Yes No No
Dye [6] Constant Non-instantaneous Yes Partial backo-

rdering
No

Zhang et al. [36] Price dependent Constant Yes No No
Liu et al. [13] Price dependent Constant Yes No No
Lu et al. [14] Price and stock

dependent
Constant No No No

Jaggi et al. [11] Price-dependent Non-instantaneous No Complete
backordering

Yes

Li et al. [12] Price-dependent Non-instantaneous Yes No No
Tiwari et al. [33] Price-dependent Non-instantaneous No Partial backo-

rdering
Yes

Mishra et al. [18] Price-dependent Constant Yes No Yes
This paper Price dependent Non-instantaneous Yes Partial backo-

rdering
Yes

model for imperfect items with stock dependent demand under permissible delay in payments. Shaikh et al. [28]
presented a model considering stock and price sensitive demand under fully backlogged shortages. Mashud
et al. [15] developed an inventory model for non-instantaneous inventory model with same demand. Nobil
et al. [19] developed an economic production quantity model with and without shortages for imperfect products.
Dey et al. [5] projected an inventory model considering price dependent demand with setup cost reduction.

In terms of preservation of products, Dye and Hsieh [7] developed an inventory model considering the invest-
ment in preservation technology. Dye [6] also developed a non-instantaneous deteriorating inventory model with
preservation technology. Singh et al. [29] developed an EOQ model for stock-dependent demand deteriorat-
ing items with preservation technology; while Yang et al. [35] introduced optimal dynamic trade credit and
preservation in their model.

Goyal [8] was one of the first researchers who developed an EOQ model under permissible delays in pay-
ments. Aggarwal and Jaggi [1] introduced an ordering policy for deteriorating items under permissible delays in
payments. Tsao and Sheen [34] considered deteriorating items inventory model with price and time-dependent
demand under permissible delays in payments. Pal [23] developed a production inventory model for imperfect
products with permissible delay in payments under shortages. Yang et al. [35] considered the preservation tech-
nology investment to control the deterioration for a time-dependent demand rate under trade credit policy.
Teng et al. [30] developed an EOQ model with trade credit financing for non-decreasing demand. Chen and
Teng [3] modified this model by introducing upstream and downstream trade credit policy in his time-varying
deteriorating model with cash flow. Lastly, Tiwari et al. [31, 32] developed a non-instantaneous deteriorating
inventory model considering inflation and trade credit policy in a two-warehouse environment. A comparison of
the present study with the previous researches is shown in Table 1.

The objective of this paper is to optimize the cycle length, selling price considering preservation technology.
Three numerical examples were used to illustrate the theory. Graphical representations are used to illustrate
the results.
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Table 2. Notations.

Notations Units Description

c $/order Purchasing cost per order
c1 $/unit Holding cost per unit
c2 $/unit Shortage cost per unit
c3 $/unit Lost sale cost per unit
A $/unit Replenishment cost per order
δ $/unit Backlogging parameter
θ Constant Deterioration rate
M Month Period of permissible delay in payments offered by the supplier
a All factors affecting price other than costs (e.g. income, fashion)
b The slope of the demand curve
Ie $/unit The rate of interest earned by the retailer
Ic $/unit The rate of interest payable by the supplier
R units Maximum shortage quantity per cycle
S units Initial inventory level
Q units Order size per cycle
X units Total inventory cost
t1 month The time point at which the deterioration starts
π(p, ξ, T ) $/month The total profit per unit time
Dependent Variable
t2 month The time point at which the shortages are allowed
Decision variables
p month Unit selling price
T month The total length of the inventory cycle
ξ $/unit Preservation technology cost

2. Notations and assumptions

The notations as seen in Table 2 followed by the assumptions in Section 2.1 were utilized to develop the
inventory models.

2.1. Assumptions

(1) The model considered a linear price-dependent demand pattern D(p) = a−bp (i.e. demand function depends
on price for a single deteriorating item).

(2) The considered deterioration rate θ(0 < θ � 1) is constant and depends on the stock amount.
(3) No replacement or repairs on deteriorating products were considered for the whole period.
(4) Lead-time is negligible and the replenishment rate is infinite.
(5) The total planning horizon considered in the inventory system is infinite.
(6) The relationship between the deterioration rate and the preservation technology investment parameter

always satisfies the conditions ∂m(ξ)
∂ξ < 0, ∂

2m(ξ)
∂ξ2 > 0. The research considered that m (ξ) = e−a1ξ; where

m (ξ) is the deterioration rate with the investment of preservation technology, θ is the deterioration rate
without the preservation technology investment, and a1 is the sensitive parameter of investment to the
deterioration rate which is similar as Mishra et al. [18] and He and Huang [9].

(7) The backlogging rate during the stock out period is considered as a variable dependent on the length of
waiting time for the next replenishment. Therefore, the backlogging rate for negative inventory is given by

1
1+δ(T−t) , where δ is a backlogging parameter, and (T − t) is the waiting time.
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Time

Inventory

Figure 1. Graphical presentation of inventory vs. time.

3. Mathematical formulations

Figure 1 shows the graphical demonstration of inventory vs. time wherein the inventory level at any time
interval between 0 ≤ t ≤ T is represented by I(t). It is important to present that the level of inventory I(t) was
portrayed due to demand in the period [0, t1] and it dropped to zero at t = t2 owing to the deterioration and
demand in the period [t1, t2]. Afterwards, shortages were permitted to take place and the total demand in the
period [t2, T ] is partially backordered.

The following differential equations illustrate the inventory model:
Change in inventory level,

dI1 (t)
dt

= − (a− bp) 0 < t ≤ t1 (3.1)

with the initial and boundary conditions as I1(t) = S at t = 0.
The solution for equation (3.1) is as follows:

I1 (t) = S − (a− bp) t, 0 < t ≤ t1 (3.2)

and
dI2 (t)

dt
+ θm (ξ) I2 (t) = − (a− bp) t1 < t ≤ t2 (3.3)

with the boundary condition I2 (t) = 0 at t = t2, the solution for equation (3.3) is as follows:

I2 (t) =
(a− bp)
θm (ξ)

(
eθm(ξ)(t2−t) − 1

)
t1 < t ≤ t2 (3.4)

where I(t) is continuous at t = t1, hence I1 (t1) = I2 (t1) resulting in,

S = (a− bp) t1 +
(a− bp)
θm (ξ)

(
eθm(ξ)(t2−t1) − 1

)
. (3.5)
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At time, t = t2, the inventory level is zero. For t > t2, shortage occurs, the inventory level at any time t is
directed by the differential equation

dI3 (t)
dt

=
− (a− bp)

1 + δ (T − t)
t2 < t ≤ T (3.6)

with the boundary condition I3 (t) = 0 at t = t2, one has:

I3 (t) =
(a− bp)

δ
{log (1 + δ (T − t))− log (1 + δ (T − t2))} t2 < t ≤ T. (3.7)

The maximum amount of demand, which is the backlogged is given as follows:

R = −I3 (T ) =
(a− bp)

δ
{log (1 + δ (T − t2))} . (3.8)

Hence, the total order quantity per cycle is:

Q = S +R

= (a− bp) t1 +
(a− bp)
θm (ξ)

(
eθm(ξ)(t2−t1) − 1

)
+

(a− bp)
δ

{log(1 + δ(T − t2))} . (3.9)

The holding cost in the entire cycle is set as

IHC = c1

∫ t1

0

I1 (t) dt+ c1

∫ t2

t1

I2 (t) dt

= c1

[
St1 −

(a− bp)t21
2

− (a− bp)
θ2m (ξ)2

(
1− eθm(ξ)(t2−t1) + θm (ξ) (t2 − t1)

)]
. (3.10)

The backorder cost in the entire cycle is set as

BC = C2D
1
δ

[∫ T

t2

{log(1 + δ(T − t2))− log(1 + δ(T − t))}dt

]

= c2

[(
R+

D

δ
(T − t2)

)
− D

δ2
(1 + δ (T − t2)) log (1 + δ (T − t2))

]
. (3.11)

The opportunity cost due to lost sales in the entire cycle is specified in the form

LSC = c3

∫ T

t2

{
1− 1

1 + δ (T − t)

}
(a− bp) dt

=
c3 (a− bp)

δ
{δ (T − t2)− log (1 + δ (T − t2))} . (3.12)

The total purchase cost per cycle is given in the form

PC = cQ = c

[
(a− bp) t1 +

(a− bp)
θm (ξ)

(
eθm(ξ)(t2−t1) − 1

)
+

(a− bp)
δ

{log(1 + δ(T − t2))}
]
. (3.13)

The total sales revenue in the entire cycle is known in the form

SR = p

[
(a− bp) t2 +

(a− bp)
δ

{log(1 + δ(T − t2))}
]
. (3.14)
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The preservation technology cost in the entire cycle is

PTC = ξT. (3.15)

For the supplier, the period of permissible delay in payment offered (M) has different scenarios which are shown
as:

Scenario 1 0 < M ≤ t1.
Scenario 2 t1 < M ≤ t2.
Scenario 3 t2 < M ≤ T .
Equation (3.16) displays the interest earned bearing in mind scenario 1, when 0 < M ≤ t1.

IE1 = pIe

∫ t2

0

∫ t

0

(a− bp) dudt+
pIe (a− bp) t2

δ
log (1 + δ (T − t2))

=
pIe (a− bp) t22

2
+
pIe (a− bp) t2

δ
log (1 + δ (T − t2)) . (3.16)

The interest paid to the supplier for this case is

IC1 = cIc

∫ t1

M

I1 (t) dt+ cIc

∫ t2

t1

I2 (t) dt

= cIc

[
S (t1 −M)− (a− bp)

(
t21 −M2

)
2

]
− cIc (a− bp)

(θm (ξ))2
[(

1− eθm(ξ)(t2−t1)
)

+ θm (ξ) (t2 − t1)
]
. (3.17)

Therefore, the total profit is

π1 (p, ξ, T ) =
X

T
,

where
X = (SR−OC− PC− IHC− BC− LSC− PTC + IE1 − IC1)

= p

[
(a− bp) t2 +

(a− bp)
δ

{log(1 + δ(T − t2))}
]
−A

− c
[
(a− bp) t1 +

(a− bp)
θm (ξ)

(
eθm(ξ)(t2−t1) − 1

)
+

(a− bp)
δ

{log(1 + δ(T − t2))}
]

− c1

[
St1 −

(a− bp)t21
2

− (a− bp)
θ2m (ξ)2

(
1− eθm(ξ)(t2−t1) + θm (ξ) (t2 − t1)

)]

− c2
[(
R+

D

δ
(T − t2)

)
− D

δ2
(1 + δ (T − t2)) log (1 + δ (T − t2))

]
− c3 (a− bp)

δ

{
δ (T − t2)
− log (1 + δ (T − t2))

}
+
pIe (a− bp) t22

2
+
pIe (a− bp) t2

δ
log (1 + δ (T − t2))

− ξT − cIc

[
S (t1 −M)− (a− bp)

(
t21 −M2

)
2

]
+
cIc (a− bp)
(θm (ξ))2

[(
1− eθm(ξ)(t2−t1)

)
+ θm (ξ) (t2 − t1)

]
.

(3.18)
The corresponding optimization problem is as follows:

Problem 3.1. π1 (p, ξ, T ) = X
T , subject to constraints 0 < M ≤ t1.

For scenario 2, the interest earned is measured when t1 < M ≤ t2 as seen in equation (3.19).

IE2 = pIe

∫ t2

0

∫ t

0

(a− bp) dudt+
pIe (a− bp) t2

δ
log (1 + δ (T − t2))

=
pIe (a− bp) t22

2
+
pIe (a− bp) t2

δ
log (1 + δ (T − t2)) . (3.19)
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For this case, the interest paid to the supplier is

IC2 = cIc

∫ t2

M

I2 (t) dt

= cIc

[
(a− bp)

(θm (ξ))2
(

eθm(ξ)(t2−M) − 1
)
− (a− bp) (t2 −M)

θm (ξ)

]
· (3.20)

Hence, the total profit is

π2 (p, ξ, T ) =
X

T
,

where

X = (SR−OC− PC− IHC− BC− LSC− PTC + IE2 − IC2)

= p

[
(a− bp) t2 +

(a− bp)
δ

{log(1 + δ(T − t2))}
]
−A

− c
[
(a− bp) t1 +

(a− bp)
θm (ξ)

(
eθm(ξ)(t2−t1) − 1

)
+

(a− bp)
δ

{log(1 + δ(T − t2))}
]

− c1

[
St1 −

(a− bp)t21
2

− (a− bp)
θ2m (ξ)2

(
1− eθm(ξ)(t2−t1) + θm (ξ) (t2 − t1)

)]

− c2
[(
R+

D

δ
(T − t2)

)
− D

δ2
(1 + δ (T − t2)) log (1 + δ (T − t2))

]
− ξT c3 (a− bp)

δ
{δ (T − t2)− log (1 + δ (T − t2))}+

pIe (a− bp) t22
2

+
pIe (a− bp) t2

δ
log (1 + δ (T − t2))− cIc

[
(a− bp)

(θm (ξ))2
(

eθm(ξ)(t2−M) − 1
)

+
(a− bp) (t2 −M)

θm (ξ)

]
.

(3.21)

Thus, the corresponding optimization problem is as follows:

Problem 3.2. π2 (p, ξ, T ) = X
T , subject to constraints t1 < M ≤ t2.

For scenario 3, the interest earned is measured when t2 < M ≤ T as seen in equation (3.22).

IE3 = pIe

∫ t2

0

∫ t

0

(a− bp) dudt+
pIe (a− bp) t2

δ
log (1 + δ (T − t2))

=
pIe (a− bp) t22

2
+
pIe (a− bp) t2

δ
log (1 + δ (T − t2)) . (3.22)

For this case, the interest paid to the supplier is zero.

Therefore, the total profit is

π3 (p, ξ, T ) =
X

T
,
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where

X = (SR−OC− PC− IHC− BC− LSC− PTC + IE3)

= p

[
(a− bp) t2 +

(a− bp)
δ

{log(1 + δ(T − t2))}
]
−A

− c
[
(a− bp) t1 +

(a− bp)
θm (ξ)

(
eθm(ξ)(t2−t1) − 1

)
+

(a− bp)
δ

{log(1 + δ(T − t2))}
]

− c1

[
St1 −

(a− bp)t21
2

− (a− bp)
θ2m (ξ)2

(
1− eθm(ξ)(t2−t1) + θm (ξ) (t2 − t1)

)]

− c2
[(
R+

D

δ
(T − t2)

)
− D

δ2
(1 + δ (T − t2)) log (1 + δ (T − t2))

]
− c3 (a− bp)

δ

{
δ (T − t2)
log (1 + δ (T − t2))

}
− ξT +

pIe (a− bp) t22
2

+
pIe (a− bp) t2

δ
log (1 + δ (T − t2)) .

(3.23)

Thus, the corresponding optimization problem is as follows:

Problem 3.3. π3 (p, ξ, T ) = X
T , subject to constraints t2 < M ≤ T .

4. Optimal solutions and theoretical results

The profit function considers sales revenue, ordering cost, holding cost, purchasing cost, backordering cost,
lost sale cost, preservation technology cost, interest earned, and the interest payable. The average profit per
unit time for the retailer can be expressed as:

π(p, ξ, T ) =
1
T

[SR−OC− PC− IHC− BC− LSC− PTC + IE− IP] (4.1)

π(p, ξ, T ) =

π1(p, ξ, T ), when 0 < M ≤ t1
π2(p, ξ, T ), when t1 < M ≤ t2
π3(p, ξ, T ), when t2 < M ≤ T

. (4.2)

The total profit function π(p, ξ, T ) takes three branches function in which the maximum values of those three
branch functions will be the required solution.

From the above expression, some continuity relations will arise given as π1(p, ξ, T ) = π2(p, ξ, T ), which is
continuous at point t1 and π2(p, ξ, T ) = π3(p, ξ, T ), which is continuous at point t2.

Examining for the points (p, ξ, T ) directly, the maximum value of π(p, ξ, T ) is calculated by the local maximum
points or the boundary points of (p, ξ, T ), wherein it would be bounded within the valid ranges (i.e. 0 < M ≤
t1, t1 < M ≤ t2, t2 < M ≤ T ). The optimal form will be measured, (p∗, ξ∗, T ∗) such that π∗(p, ξ, T ) =
max

{
π∗ 1(p, ξ, T ), π∗ 2(p, ξ, T ), π∗ 3(p, ξ, T )

}
.

The optimal values of p, ξ and T which maximize the profit function π3 (p, ξ, T ) for the given data set are the
decision variables of the problem. The necessary conditions for maximizing the total profit function π3 (p, ξ, T )
can be attained by setting the first order derivatives with respect to decision variables equal to zero. Therefore,
the necessary conditions are:

∂π3 (p, ξ, T )
∂p

= 0,
∂π3 (p, ξ, T )

∂ξ
= 0 and

∂π3 (p, ξ, T )
∂T

= 0. (4.3)
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The first order derivatives of π3(p, ξ, T ) with respect to the decision variables p, ξ and T are

∂π3(p, ξ, T )
∂p

=
1
T



(a− 2bp)t2 + (a−2bp)
δ {log(1 + δ(T − t2))}

+ bc
[
t1 + 1

θm(ξ)

(
eθm(ξ)(t2−t1) − 1

)
+ 1

δ {log(1 + δ(T − t2))}
]

− c1
[

1
2bt

2
1 + b

θ2m(ξ)2

{
1− eθm(ξ)(t2−t1) + θm(ξ)(t2 − t1)

}]
− c2

[(
b
δ (t2 − T )

)
+ b

δ2 (1 + δ(T − t2)) log(1 + δ(T − t2))
]

+ c3b
δ {δ (T − t2)− log (1 + δ (T − t2))} − Ie(a−2bp)t22

2

+ Ie(a−2bp)t2
δ log (1 + δ (T − t2))



(4.4)

∂π3(p, ξ, T )
∂ξ

=
1
T


− ca1(a− bp)

[
eθm(ξ)(t2−t1)

θm(ξ) − eθm(ξ)(t2−t1)(t2 − t1)
]

− c1a1

−
2(a−bp)
θ2

1
m(ξ)2 −

(a−bp)
θ eθm(ξ)(t2−t1) + eθm(ξ)(t2−t1) 2

θ2
1

m(ξ)2

+ (a−bp)
θm(ξ) (t2 − t1)

− T

 (4.5)

and

∂π3

∂T
= − 1

T
π3(p, ξ, T ) +

1
T

[ (p−c)(a−bp)
1+δ(T−t2) + c2(a−bp)

δ log (1 + δ (T − t2))

− c3(a− bp)
[
1− 1

1+δ(T−t2)

]
+ pIe(a−bp)t2

1+δ(T−t2) − ξ

]
. (4.6)

Due to the high non-linearity of the profit function, the optimality of the equations could be demonstrated
mathematically from the objective functions by using the following corollaries and theorems.

Corollary 4.1. The objective function π3(p, ξ, T ) is maximum with respect to T when the decision variable p
and ξ are fixed and when 1

T
∂2X
∂T 2 + 2X

T 3 <
2
T 2

∂X
∂T (Appendix B).

Corollary 4.2. The objective function π3(p, ξ, T ) is maximum with respect to p when the decision variable T
and ξ are fixed and when δIet2(t2−4)

2Iet2+4 < log (1 + δ (T − t2)) (Appendix B).

To prove concavity, we use the theorems from Cambini and Martein [4] which is also used by Dye [6].

Lemma 4.3. If φ1(x) is non-negative, differentiable and (strictly) concave, and φ2(x) is positive, differentiable
and convex, then the real-value function χ(x) = φ1(x)

φ2(x)
, x ∈ R is (strictly) pseudo-concave.

Proof. See Cambini and Martein ([4], p. 245) for details. �

For any given p and T , applying Lemma 4.3, it could easily prove that the total profit π3(p, ξ, T ) is strictly
pseudo-concave in ξ. As a result, for any given p and T, there exists a unique global optimal solution ξ∗ such
that π3(p, ξ, T ) is maximized.

Theorem 4.4. The value of the objective function π3(p, ξ, T ) attains its global maximum with respect to ξ when
other parameters are fixed.
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Proof. We define the profit function as

φ1(ξ) =



p
[
(a− bp) t2 + (a−bp)

δ {log(1 + δ(T − t2))}
]
−A

− c
[
(a− bp) t1 + (a−bp)

θm(ξ)

(
eθm(ξ)(t2−t1) − 1

)
+ (a−bp)

δ {log(1 + δ(T − t2))}
]

− c1
[
St1 − (a−bp)t21

2 − (a−bp)
θ2m(ξ)2

(
1− eθm(ξ)(t2−t1) + θm (ξ) (t2 − t1)

)]
− c2

[(
R+ D

δ (T − t2)
)
− D

δ2 (1 + δ (T − t2)) log (1 + δ (T − t2))
]
− c3(a−bp)

δ

{
δ (T − t2)−
log (1 + δ (T − t2))

}
− ξT + pIe(a−bp)t22

2 + pIe(a−bp)t2
δ log (1 + δ (T − t2))


and φ2(ξ) = T > 0.

(4.7)
From the above equation, it is clear that φ2 (ξ) is non-negative, differentiable and (strictly) concave. We only
need to proof that φ1 (ξ) is positive, differentiable and convex. For any fixed p and T , the second order derivative
of the objective function π3(p, ξ, T ) with respect to the decision variables ξ is

φ′1(ξ) =


− c(a− bp)

[
eθm(ξ)(t2−t1) · a1e

−a1ξ

θm(ξ)2 −
a1e

−a1ξ

θm(ξ) · e
θm(ξ)(t2−t1)θ(t2 − t1)

]

− c1

[
− 2a1e

−a1ξ(a−bp)
θ2

1
m(ξ)3 −

(a−bp)a1e
−a1ξ

θm(ξ) eθm(ξ)(t2−t1)

+ eθm(ξ)(t2−t1) 2
θ2
a1e

−a1ξ

m(ξ)3 + (a−bp)a1e
−a1ξ

θm(ξ)2 (t2 − t1)

]
− T

 . (4.8)

Using the necessary condition ∂π3(p,ξ,T )
∂ξ = 0, equation (4.8) becomes

φ′′2 (ξ) =


c(a− bp)a2

1eθm(ξ)(t2−t1)(t2 − t1)
[
1− θ(t2 − t1)e−a1ξ

]
− c(a− bp)a1

eθm(ξ)(t2−t1)

θm(ξ)2

− c1a2
1

− 4(a−bp)
θ2

1
m(ξ)2 + (a− bp)eθm(ξ)(t2−t1)(t2 − t1)e−a1ξ + 4

θ2 eθm(ξ)(t2−t1) 1
m(ξ)2

+ 2
θ

1
m(ξ)eθm(ξ)(t2−t1)(t2 − t1) + (a− bp)(t2 − t1) 1

θm(ξ)



 (4.9)

φ′′2 (ξ) =

 ca
2
1(a− bp)eθm(ξ)(t2−t1)(t2 − t1)

[
1− e−a1ξ(1 + θ(t2 − t1))

]
− c(a− bp)a1

eθm(ξ)(t2−t1)

θm(ξ)2

− c1a2
1

[
4
θ2

1
m(ξ)2

(
eθm(ξ)(t2−t1) − (a− bp)

)
+ 1

θ
1

m(ξ) (t2 − t1)
(
2eθm(ξ)(t2−t1) + a− bp

)]
 . (4.10)

Now we need to prove φ′′2 (ξ) is less than zero: ca2
1(a− bp)eθm(ξ)(t2−t1)(t2 − t1)

[
1− e−a1ξ(1 + θ(t2 − t1))

]
− c(a− bp)a1

eθm(ξ)(t2−t1)

θm(ξ)2

− c1a2
1

[
4
θ2

1
m(ξ)2

(
eθm(ξ)(t2−t1) − (a− bp)

)
+ 1

θ
1

m(ξ) (t2 − t1)
(
2eθm(ξ)(t2−t1) + a− bp

)]
 < 0. (4.11)

This means,

⇒
[
ca2

1(a− bp)eθm(ξ)(t2−t1)(t2 − t1)
[
1− e−a1ξ(1 + θ(t2 − t1))

]]
< c(a− bp)a1

eθm(ξ)(t2−t1)

θm(ξ)2

+ c1a
2
1

[
4
θ2

1
m(ξ)2

(
eθm(ξ)(t2−t1) − (a− bp)

)
+ 1

θ
1

m(ξ) (t2 − t1)
(
2eθm(ξ)(t2−t1) + a− bp

)] (4.12)

⇒ a1(t2 − t1)θ(a− bp)m(ξ)2eθm(ξ)(t2−t1) [1−m(ξ) [1 + θ(t2 − t1)]]

<
[
eθm(ξ)(t2−t1)

[
(a− bp) + 4a1

θ

]
+m(ξ)(t2 − t1)

[
(a− bp) + 2eθm(ξ)(t2−t1)

]]
.

(4.13)
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To prove that
[
(a− bp) + 4a1

θ

]
and

[
(a− bp) + 2eθm(ξ)(t2−t1)

]
are greater than zero, consider that demand is

always positive and that deterioration lies between 0 to 1, the right-hand side of the equation mentioned above
will satisfy the equation above. From the equation, the right-hand side is greater than zero. If the left side is
less than zero, it satisfies the condition. That is

a1(t2 − t1)θ(a− bp)m(ξ)2eθm(ξ)(t2−t1) [1−m(ξ) [1 + θ(t2 − t1)]] < 0. (4.14)

Moreover, [1−m(ξ) [1 + θ(t2 − t1)]] < 0 as (t2 − t1) ≥ 0 and the deterioration is positive, the value of
θ(t2 − t1) is also positive. It could be written as [1−m(ξ) [1 + k1]] < 0. One can deduce that [1−m(ξ)k2] < 0,
since [1 + k1] = k2. The deterioration rate m (ξ) with the investment of preservation technology and hav-
ing the original deterioration from 0 to 1, the value of m(ξ)k2 is then positive. Therefore, a1(t2 − t1)θ(a −
bp)m(ξ)2eθm(ξ)(t2−t1) [1−m(ξ) [1 + θ(t2 − t1)]] < 0; thus completing the proof. �

Theorem 4.5. The value of the objective function π3(p, ξ, T ) attains its global maximum with respect to p when
other parameters are fixed.

Proof. The proof is omitted because it is similar to the proof of Theorem 4.4. �

Theorem 4.6. The value of the objective function π3 (p, ξ, T ) attains its global maximum with respect to T
when other parameters are fixed.

Proof. The proof is omitted because it is similar to the proof of Theorem 4.4. �

Theorem 4.7. The value of the objective function π3(p, ξ, T ) attains its global maximum with respect to p and
T when other parameters are fixed and hence there exists a unique maximum solution at (p∗, T ∗).

Proof. For convenience, let us define the profit function as

φ1(p, T ) =





p
[
(a− bp) t2 + (a−bp)

δ
{log(1 + δ(T − t2))}

]
−A

− c
[
(a− bp) t1 + (a−bp)

θm(ξ)

(
eθm(ξ)(t2−t1) − 1

)
+ (a−bp)

δ
{log(1 + δ(T − t2))}

]

− c1
[
St1 − (a−bp)t21

2
− (a−bp)

θ2m(ξ)2

(
1− eθm(ξ)(t2−t1) + θm (ξ) (t2 − t1)

)]

− c2
[(
R+ D

δ
(T − t2)

)
− D

δ2
(1 + δ (T − t2)) log (1 + δ (T − t2))

]
− c3(a−bp)

δ

{
δ (T − t2)
− log (1 + δ (T − t2))

}

− ξT +
pIe(a−bp)t22

2
+ pIe(a−bp)t2

δ
log (1 + δ (T − t2))





and φ2(p, T ) = T > 0.
(4.15)

From the results in Cambini and Martein ([4], p. 245), we prove that φ1(p, T ) is a differentiable, negative and
strictly joint concave function with respect to the decision variables p and T . To generate the Hessian matrix for
the function f1(P, T ), we calculate all the second-order partial derivatives with respect to the decision variables
p and T with a Hessian matrix for the function φ1(p, T )

∂2φ1(p, T )
∂p2

= −
[
2bt2 +

2b
δ
{log(1 + δ(T − t2))} − Iebt

2
2

2
+
Iebt2
δ

log (1 + δ (T − t2))
]

(4.16)

∂2φ1(p, T )
∂T 2

= − D

(1 + δ(T − t2))2
[δ (p− c) + c2δ + c2 (1 + δ (T − t2)) + c3δ + pδIet2] (4.17)

∂2φ1(p, T )
∂p∂T

=
[
b

δ
(1 + log (1 + δ (T − t2)) + c2) +

1
(1 + δ(T − t2))

(c2b+ b (c− p) + c3bδ(T − t2))

+ IeDt2 − pbIet2
]
. (4.18)
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Therefore, the Hessian matrix for the function φ1(p, T ) is

Hij =

 ∂2φ1
∂p2

∂2φ1
∂p∂T

∂2φ1
∂T∂p

∂2φ1
∂T 2

 . (4.19)

Now, considering the first principal minor:

|H11| =
∂2φ1(p, T )

∂p2
= −

[
2bt2 +

2b
δ
{log(1 + δ(T − t2))} − Iebt

2
2

2
+
Iebt2
δ

log (1 + δ (T − t2))
]
. (4.20)

It is clearly seen that the above |H11| is less than zero.
Then, to calculate Hessian matrix Hij we need to check the second principal minor

|H22| =
∂2φ1(p, T )

∂p2

∂2φ1(p, T )
∂T 2

− ∂2φ1(p, T )
∂p∂T

=
(

2bt2 +
2b
δ
{log(1 + δ(T − t2))} − Iebt

2
2

2
+
Iebt2
δ

log (1 + δ (T − t2)) ∗ D

(1 + δ(T − t2))2
(δ (p− c)

+ c2δ + c2 (1 + δ (T − t2)) + c3δ + pδIet2)
)
−
[
b

δ
(1 + log (1 + δ (T − t2)) + c2)

+
1

(1 + δ(T − t2))
(c2b+ b (c− p) + c3bδ(T − t2)) + IeDt2 − pbIet2)

]
(4.21)

=
1

(1 + δ(T − t2))




(

2bt2 − Iebt
2
2

2 +
(

2b
δ + Iebt2

δ

)
(log(1 + δ(T − t2)))

)
∗ D

(1+δ(T−t2)) (δ (p− c) + c2δ + c2 (1 + δ (T − t2)) + c3δ + pδIet2)


−
[
b
δ (1 + δ(T − t2)) (1 + log (1 + δ (T − t2)) + c2) + (c2b+ b (c− p)

+ c3bδ(T − t2)) + IeDt2 − pbIet2]


Since the lost sale cost is greater than the purchase cost of the products, one can conclude from the above
equation that without loss of generality the principal minor |H22| is always less than zero.

It is seen from the above manipulation that first principle minor is negative and second one is positive so
the Hessian matrix for φ1(p, T ) are negative, so the Hessian matrix is also treat as negative definite matrix.
Therefore, one can conclude that the function φ1(p, T ) is differentiable, and (strictly) concave function with
respect to the decision variables p and T . Likewise, the total profit function per unit time π3(p, ξ, T ) is pseudo-
concave with respect to decision variables p and T . Consequently, the objective function π3 (p, ξ, T ) attains its
global maximum value at the point (p∗, T ∗). �

Theorem 4.8. The value of the objective function π3(p, ξ, T ) attains its global maximum with respect to p and
ξ when other parameters are fixed and hence there exists a unique maximum solution at (p∗, ξ∗).

Proof. The proof is omitted because it is similar to the proof of Theorem 4.7 �

Theorem 4.9. The value of the objective function π3(p, ξ, T ) attains its global maximum with respect to ξ and
T when other parameters are fixed and hence there exists a unique maximum solution at (ξ∗, T ∗).

Proof. The proof is omitted because it is similar to the proof of Theorem 4.7 �
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5. Special cases of the proposed model

(i) When δ → ∞ (i.e. no shortages) then the proposed model here will become an EOQ model with no
shortages.

(ii) For the non-deterioration period t1 = 0 with t2 = 0 and δ → ∞, then the model is reduced to the
instantaneous EOQ model of Mishra et al. [18].

(iii) If δ → 0 then the proposed model will be reduce to an EOQ model of fully backlogged shortages.
(iv) Taking into account t2 = T and δ →∞, then the model becomes that of Zhang et al. [36], an instantaneous

deterioration with no shortages.
(v) If t1 = 0 and b = 0 (i.e. demand function is constant), then the proposed model is reduced to the model of

Dye and Hsieh [7].

6. Flowchart for the solution system

Yes

Yes

No

No

Compute , ,p T for Case-1

Compute , ,p T for Case-2

Compute , ,p T for Case-3

Start

Is

10 M t

Calculate

1 , ,p T

Yes

Is

1 2t M t

Calculate

2 , ,p T

Is

2t M T

Calculate 
3 , ,p T

End

Figure 2. Flowchart of the solution system.
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7. Numerical examples

The solution of the proposed inventory model is discussed in this part, specifically deteriorating products
like vegetables, fruit, sweets, etc. This is because in any season, the demand for this item increases linearly
depending on the selling price. Initially, no deterioration in the initial stage is considered as the items are of
high quality. After some time, deterioration begins, and the stocks deplete. To demonstrate the inventory model,
three numerical examples are given with different parameters as shown:

Example 1

Given: ordering cost is OC = $1500 per order, a = 300; b = 5, holding cost rates for inventory of different
items C1 = $5, backorder cost rate for inventory C2 = $5, lost sale cost for the inventory C3 = $27, purchase
cost of different item C = $8, a1 = $0.8 per unit, deterioration rate θ = 0.5, backlogging parameter for the
inventory is δ = 1.5, time after deterioration will start for the inventory t1 = 0.3, percentage of interest charged
Ic = $0.06 percentage of interest earned Ie = $0.12, and permissible delay period from supplier to retailers is
M = 0.1 yr.

Example 2

Given: Similar to example 1, the permissible delay period from the supplier to the retailers is M = 0.8 yr
instead of 0.1 yr.

Example 3

Given: Similar to example 1, the permissible delay period from the supplier to the retailers is M = 2.5 yr
instead of 0.1 yr (Tab. 3).

Therefore, a unique optimal solution is illustrated in Figures 3–5, showing that the profit function is concave.
To clarify the graph of “Total profit” vs. P vs. T , a two-dimensional graph of “Total profit” vs. P and “Total

profit” vs. T is provided as seen in Figures 6 and 7.

Example 4

In this example, consider the same parametric values for the inventory model of Dye and Hsieh [7] given that:

c2 = $4/per order; c = $20/per order; OC = $120/per order; p = $35/per order; c1 = $3/per order;
D = 1000; c3 = $5/perorder; t1 = 0; δ = 2; a1 = 0.01

and if one assumes that the trade credit period M = 0 and the interest earn is Ie = 0, the example is identical
with that of Dye and Hsieh [7], but shows an optimal value is $11908.4 compared with Dye’s $13919.3.

However, the trade credit period and interest earned should be: M = 3.2; Ie = 0.06;
Therefore, the optimal solution is T ∗ = 3.522897, p∗ = 35, ξ∗ = 89.16101, Π∗(p∗, ξ∗, T ∗) = 14076.86, and the

values of M to satisfy the condition must be t2 < M ≤ T .

Table 3. Results for each case of the inventory model.

Examples Results
Condition S R p ξ T πi (p, ξ, T )

1 0 < M ≤ t1 170.067 29.664 39.952 0.367 1.796 1184.30
2 t1 < M ≤ t2 94.304 32.355 37.913 0.269 1.167 1066.879
3 t2 < M ≤ T 258.123 32.648 40.963 0.453 2.50 1255.818
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Figure 3. Total profit function with respect to p and zi.

Figure 4. Total profit with respect to p and T .

Figure 5. Total profit function with respect to T and zi.

Observation

It is noted that when the interest earned is zero, the total profit is decreasing with the increase of trade credit
policy. Similarly, it happens when interest earned is Ie = 0.06 and 0.08.

From Table 4, it is seen that with the increase of trade credit period, the total cycle length will also increase.
Therefore, the retailer consequently needs to preserve products over that time. As a result, the retailer needs
to invest more money in preservation technology, which will decrease his total profit. It also noted that after a
certain period the facility of trade credit policy would become a burden for the retailer.
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Figure 6. Total profit with p.

Figure 7. Total profit with T .

Example 5

In this example, we consider the same parametric values for the inventory system of Zhang et al. [36], given
OC = k = $80/per order; a = α = 100; b = β = 5; c1 = h = $1/per order; a1 = γ = 0.05; c = $5/per order; θ =
0.5 with the trade credit period M = 0 and Interest earn Ie = 0.

The optimal solution is T ∗ = 1.585916, p∗ = 13.22326, ξ∗ = 12.19286, π∗(p∗, ξ∗, T ∗) = 166.7125. While the
value of Zhang et al. [36] is 153.8268 (Tab. 5).

Observation

When the values of interest earned are Ie = 0, 0.06, 0.08, it could be readily observed that with the increase of
trade credit period M the total profit would decrease. Like the trade, credit period and selling price increased.
This shows that the retailer would want to sell more products to increase the profit. However, with the increase
of total cycle length, the retailer needs more time to preserve products which will cost more money in the
investments of preservation technology in order to fully preserve the products.

For different types of deterioration, the following were considered

Case 1 Considering the Weibull distribution deterioration rate.
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Table 4. Computational values for different M and Ie.

M Ie t2 < M ≤ T p∗ ξ∗ T ∗ π∗

2.5 0 No 35.00 73.62892 2.532359 11162.31
0.06 No 35.00 79.20355 2.891557 13885.10
0.08 No 35.00 79.22611 2.894031 14816.65

3.2 0 Yes 35.00 83.20161 3.200000 10958.48
0.06 Yes 35.00 89.16101 3.522897 14076.86
0.08 Yes 35.00 90.71324 3.621504 15251.42

4.5 0 Yes 35.00 100.1261 4.50000 9769.280
0.06 Yes 35.00 103.4082 4.50000 13755.44
0.08 Yes 35.00 104.1227 4.50000 15177.86

26 0 Yes 35.00 – – Non-optimal
0.06 Yes 35.00 244.0023 26.0000 116.7840
0.08 Yes 35.00 255.4683 26.0000 1060.789

Table 5. Computational values for different M and Ie.

M Ie p∗ ξ∗ T ∗ π∗

0 0 13.22326 12.19286 1.585916 166.7125
2.5 0 13.65001 13.60593 2.500000 155.7524

0.06 13.39491 13.63798 2.500000 188.6056
0.08 13.31763 13.64722 2.500000 199.6978

3 0 13.89860 14.37439 3.000000 144.8509
0.06 13.57610 14.41559 3.000000 183.5771
0.08 13.48015 14.42709 3.000000 196.7103

Taking all the values (same as that of Example 3), except the deterioration rate, the Weibull distribution
deterioration is suitable to be used when there is a minimal life, t1(> 0). Considering a deterioration-free period
offered in the model, the details of which are available from the study of Begum et al. [2]. Taking the same
Weibull distribution deterioration rate of Shah et al. [27], θ(t) = αβ (t− γ)β−1

, but having the deterioration
free time to be (γ = t1), α and β are 0.04 and 2.4, respectively and γ is 0.3, the optimal solution is

T ∗ = 3.349560, p∗ = 42.56130, ξ∗ = 0.4622905, π∗(p∗, ξ∗, T ∗) = 1056.650.

The following managerial insights would be obtained from the results (Tab. 6).

Observation 1

When the values of α and β are fixed, the profit increases with the increase of the non-deterioration period. It
is also observed that when the retailer gets more time to sell his products with a lower rate, the products would
get better profit due to lower deterioration period. This is because as the non-deterioration period increased
then the retailer does not need to invest more money in preservation technology to reduce deterioration.

Observation 2

When the values of α is fixed, increasing β and the non-deterioration period t1 will increase the total profit.
However, the total cycle time, as well as the selling price of the products will decrease with the increase of
non-deterioration period together with β.
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Table 6. Computational results for different values of α and β for fixed M = 3.2.

α β t1 p∗ ξ∗ T ∗ π∗

0.04 2.4 0.1 43.11616 0.7700489 3.868266 1083.132
0.3 42.96688 0.7057555 3.875276 1109.910
0.5 42.78921 0.6386975 3.886757 1142.537

0.04 2.6 0.1 42.04866 0.9092852 3.592346 1249.924
0.3 41.96194 0.8412425 3.622224 1270.096
0.5 41.84539 0.7709814 3.658458 1296.912

0.06 2.4 0.1 41.72899 0.8850493 3.411081 1288.146
0.3 41.61300 0.8155702 3.427674 1312.834
0.5 41.46695 0.7430020 3.449885 1344.411

0.06 2.6 0.1 40.86074 1.022808 3.200147 1430.049
0.3 40.80553 0.9492549 3.236880 1447.581
0.5 40.71807 0.8731135 3.280793 1472.921

Case 2 Considering variable deterioration rate.
Taking all the values (same as that of Example 3), except the deterioration rate; also taking the same time

varying deterioration rate of Dye and Hsieh [7] as θ(t) = 0.2 + 0.1t, and adapting it to the model shows that
the optimal solution is T ∗ = 3.00, p∗ = 41.86581, ξ∗ = 0.5119012, π∗(p∗, ξ∗, T ∗) = 1190.987.

8. Sensitivity analysis

Sensitivity analysis was executed on the optimal result for the given data set (example 3 from the numerical
example) in order to study the influence of under or overestimation of the inventory system factors on the optimal
values of the cycle length (T ∗), preservation cost (ξ∗), selling price (p∗), initial stock (S∗), maximum shortage
(R∗), along with the maximum profit (π∗) of the system. The percentage variations in the aforementioned
optimal values were taken as processes of sensitivity. The analysis was carried out by changing the key parameters
from −20% to +20%, one parameter at a time and keeping all other parameter fixed, the result shown in Table 7.

From Table 7, the following observations were found.

Observations 1

When the value of the parameters b, cp, c1, c2, c3, δ, M , decreases and the value of the parameters a, θ, t1, Ie
increases, the optimum total profit function π∗ decreases. It is observed that when the replenishment cost per
order increases, the values of ξ∗, p∗ will increase while the total profit π∗ decreases. The result is analogous
to the study of Zhang et al. [36]. This indicates that if the replenishment cost per order becomes higher, the
enterprise will try to lengthen the replenishment cycle as well as ordering more quantity; this will result in more
time to recover the cost of preservation technology. In order to increase profit, it is necessary for the enterprise
to increase the selling price of goods.

Observations 2

S∗ increases when the value of the parameters b, δ, t1, cp, c1 decreases and a, c2, c3, θ, Ie,M increases while
S∗ decreases. Moreover, there is no effect on S∗ if the value of the parameters OC, a1 changes. The retailer
would want to store more products when the cost of purchasing is available at a lower rate. Consequently, when
the manufacturer gives more significant trade credit period to retailers, the retailers would tend to increase the
product inventory in order to attract more buyers and sell more products.
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Table 7. Sensitivity analysis with respect to different parameters.

Parameter % Change % Change in
in parameters π∗ S∗ R∗ p∗ ξ∗ T ∗

b −20 82.35 15.62 −1.82 18.62 1.99 0
−10 35.94 7.6 −0.26 8.28 0.9 0
10 −28.43 −7.22 −0.84 −6.77 −0.92 0
20 −51.22 −14.1 −2.65 −12.42 −1.78 0

a −20 −78.32 −33.51 −22.8 −14.82 −1.7 0.72
−10 −42.87 −17.2 −10.89 −7.45 −1.01 0
10 50.35 17.58 9.78 7.45 0.9 0
20 108.2 35.47 18.6 14.9 1.7 0

Cp −20 9.3 4.6 4.19 −1.47 −15.95 0
−10 4.51 2.18 2.09 −0.72 −7.59 0
10 −4.27 −1.99 −2.09 0.69 6.95 0
20 −8.34 −3.82 −4.17 1.36 13.37 0

c1 −20 25.81 13.39 −15.54 −3.4 19.6 0
−10 12.27 6.57 −7.33 −1.64 9.4 0
10 −11.13 −6.29 6.51 1.53 −8.78 0
20 −21.23 −12.28 12.28 2.94 −17.06 0

c2 −20 0.22 −0.25 0 −0.06 −0.19 0
−10 0.11 −0.12 0 −0.03 −0.09 0
10 −0.11 0.12 0 0.03 0.09 0
20 −0.21 0.24 0 0.06 0.19 0

c3 −20 1.91 −2.21 10.07 −0.53 −1.69 0
−10 0.91 −1.04 4.79 −0.25 −0.8 0
10 −0.82 0.94 −4.36 0.22 0.72 0
20 −1.58 1.8 −8.36 0.42 1.38 0

a1 −20 0.04 0 0 0 25 0
−10 0.04 0 0 0 11.11 0
10 0 0 0 0 −9.09 0
20 0.1 0 0 0 −16.67 0

θ −20 −13.36 −9.69 2.27 1.98 −29.99 0
−10 −6.13 −4.56 1.02 0.9 −14.34 0
10 5.25 4.1 −0.83 −0.76 13.26 0
20 9.8 7.81 −1.5 −1.41 25.63 0

δ −20 3.44 −3.38 20.08 −0.67 −2.43 0
−10 1.57 −1.55 9.12 −0.31 −1.12 0
10 −1.34 1.33 −7.7 0.27 0.97 0
20 −2.49 2.48 −14.29 0.5 1.81 0

OC −20 9.55 0 0 0 0 0
−10 4.78 0 0 0 0 0
10 −4.78 0 0 0 0 0
20 −9.55 0 0 0 0 0

t1 −20 −2.67 0.75 −0.61 0.41 1.08 0
−10 −1.34 0.37 −0.3 0.21 0.55 0
10 1.35 −0.36 0.29 −0.21 −0.56 0
20 2.7 −0.7 0.57 −0.41 −1.12 0

Ie −20 −4.17 −1.36 1.2 0.31 −0.35 0
−10 −2.09 −0.67 0.6 0.15 −0.17 0
10 2.1 0.67 0.59 −0.15 0.17 0
20 4.2 1.33 1.18 −0.3 0.34 0
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Table 7. continued.

Parameter % Change % Change in
in parameters π∗ S∗ R∗ p∗ ξ∗ T ∗

M −20 2.28 −21.26 −12.52 −2.33 −13.29 −20
−10 1.64 −10.56 −6.23 −1.14 −6.59 −10
10 −2.34 10.35 6.13 1.11 6.47 10
20 −5.2 20.41 12.11 2.2 12.82 20

Observations 3

R∗ increases when the value of the parameters θ, Ie, δ, cp, c3 decreases and a, c1, b, t1,M increases while R∗

decreases. Moreover, there is no effect on R if the value of the parameters OC, a1, c2 changes. It is observed that
with the increase in δ, the amount of shortages decreases and when it approaches infinity, then there will be no
shortages. This means that the optimal value of R∗ will be zero. The amount of shortages increases when the
value of holding cost increases which is analogous to the study by Li et al. [12].

Observations 4

p∗ increases when the value of the parameters b, θ, a1, Ie, ct decreases and b, Ie, t1, θ increases while p∗

decreases. Moreover, there is no effect on p∗ if the value of the parameters OC, a1 changes, but there is a
proportional relationship between p∗ and the value of the parameters a, δ, cp, c2, c3, c1,M . However, when the
selling price increases, the retailer would tend to sell more products so that the total cycle time will be longer
and reduce the shortage in order to get maximum profit. When purchase cost increases, then optimal total profit
(π∗) and shortage (R∗) decreases together with is the increase in selling price. The result of which is analogous
to the study by Tiwari et al. [33].

Observations 5

ξ∗ increases when the value of the parameters a, b t1, c1 increases and a, b t1, c1, increases while ξ∗ decreases.
Moreover, there is no effect on R if the value of the parameters OC changes, but there is a proportional rela-
tionship between p∗ and the value of the parameters a, δ, cp, c2, c3, Ie,M, θ. When the value of the simulation
coefficient a1 increases, then the value of preservation investment decreases. It is also observed that the invest-
ment on preservation technology lengthened the non-deterioration period and reduced the deterioration, which
is observed in the study by Li et al. [12].

Observations 6

T ∗ increases when the value of the parameters a, b decreases. Moreover, there is no effect on R when the
value of the parameters OC, a1, c2, c3, cp, c1, Ie, t1, θ, δ changes and there is a proportional relationship between
total cycle length and trade credit period. This means that when the retailer gets more trade credit period, the
retailer would lengthen the cycle length.

9. Conclusions and comments

In this study, we have derived a deteriorating inventory model with price dependent demand, partial back-
logging and trade credit considering preservation technology for perishable goods. It has been shown that the
investment in preservation technology has lengthened the freshness of goods. Furthermore, to increase compet-
itiveness, this model also takes into account of credit financing as a strategy that benefits retailers. We have
derived the optimal cycle length, optimal selling price and investments in preservation technology in order to
maximize the total profit. Numerical analysis is carried out to show the importance of preservation technology
investment and trade credit policy. Finally, with the help of MATLAB 2017a software, it is shown graphically
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that the profit function is concave, and sensitivity analysis is done using Lingo17. The study provides insight
for managers to make smart decisions especially in the scope of applying preservation technology and credit
financing. The main limitation in the study is the assumption of fixed trade-credit period. For future research,
this paper can be extended to consider some features such as probabilistic demand rate, variable trade-credit
period, variable deterioration rate, quantity discounts, and multiple products.

Appendix A.

From equation (3.9):

R = −I3 (T ) =
(a− bp)

δ
{log (1 + δ (T − t2))}

which implies that

t2 = T +
1
δ

(
1− eD

R
δ

)
(A.1)

which can be written in the form
t2 = T + f(D).

Now putting the value of t2 in equation (3.23) then it reduces to

π3 (p, ξ, T ) =
1
T



p
[
(a− bp) (T + f(D)) + (a−bp)

δ {log(1 + δ(T − T − f(D)))}
]
−A

− c
[
(a− bp) t1 + (a−bp)

θm(ξ)

(
eθm(ξ)(T+f(D)−t1) − 1

)
+ (a−bp)

δ {log(1 + δ(T − T − f(D)))}
]

− c1
[
St1 − (a−bp)t21

2 − (a−bp)
θ2m(ξ)2

(
1− eθm(ξ)(T+f(D)−t1) + θm (ξ) (T + f(D)− t1)

)]
− c2

[(
R+ D

δ (T − T − f(D))
)
− D

δ2 (1 + δ (T − T − f(D))) log (1 + δ (T − T − f(D)))
]

− c3(a−bp)
δ {δ (T − T − f(D))− log (1− δ (T − T − f(D)))}+ pIe(a−bp)(T+f(D))2

2

+ pIe(a−bp)(T+f(D))
δ log (1 + δ (T − T − f(D)))



=
1
T



p
[
(a− bp) (T + f(D)) + (a−bp)

δ {log(1− δf(D))}
]
−A

− c
[
(a− bp) t1 + (a−bp)

θm(ξ)

(
eθm(ξ)(T+f(D)−t1) − 1

)
+ (a−bp)

δ {log(1− δf(D))}
]

− c1
[
St1 − (a−bp)t21

2 − (a−bp)
θ2m(ξ)2

(
1− eθm(ξ)(T+f(D)−t1) + θm (ξ) (T + f(D)− t1)

)]
− c2

[(
R− D

δ (f(D))
)
− D

δ2 (1− δ (f(D))) {log(1− δf(D))}
]

− c3(a−bp)
δ {−δ (f(D))− {log (1− δf(D))}}+ pIe(a−bp)(T+f(D))2

2

+ pIe(a−bp)(T+f(D))
δ {log (1− δf(D))}


=

1
T
G(p, ξ, T ), since D = a− bp (A.2)
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Differentiate X with respect to ξ we have

SR = p

[
(a− bp)t2 +

(a− bp)
δ

{log(1 + δ(T − t2))}
]
,
∂SR
∂ξ

=
∂2SR
∂ξ

= 0

OC = A,
∂OC
∂ξ

= 0

PC = c

[
(a− bp)t1 +

(a− bp)
θm(ξ)

{
eθm(ξ)(t2−t1) − 1

}]
∂PC
∂ξ

= c(a− bp)
[
−eθm(ξ)(t2−t1) · 1

θm(ξ)2
· dm(ξ)

dξ
+

1
θm(ξ)

· eθm(ξ)(t2−t1)θ(t2 − t1) · dm(ξ)
dξ

]
= c(a− bp)a1

[
eθm(ξ)(t2−t1) · 1

θm(ξ)
− eθm(ξ)(t2−t1)(t2 − t1)

]
∂2PC
∂ξ2

= c(a− bp)a2
1eθm(ξ)(t2−t1)(t2 − t1)

[
1− θ(t2 − t1)e−a1ξ

]
− c(a− bp)a1

eθm(ξ)(t2−t1)

θm(ξ)2

BC = c2

(
R+

D

δ
(T − t2)

)
− D

δ2
(1 + δ (T − t2)) log (1 + δ (T − t2))

∂BC
∂ξ

=
∂2BC
∂ξ2

= 0

LSC =
c3 (a− bp)

δ
{δ (T − t2)− log (1 + δ (T − t2))} ⇒ ∂LSC

∂ξ
=
∂2LSC
∂ξ2

= 0

IE3 =
pIe (a− bp) t22

2
+
pIe (a− bp) t2

δ
log (1 + δ (T − t2)) ,

∂E1

∂ξ
=
∂2E1

∂ξ2
= 0

PTC = ξT ⇒ ∂PTC
∂ξ

= T and
∂2PTC
∂ξ2

= 0.

(A.3)

Differentiating X with respect to “p” shows

SR = p

[
(a− bp)t2 +

(a− bp)
δ

{log(1 + δ(T − t2))}
]
,

∂2SR
∂p2

=
[
−2bt2 −

2b
δ
{log(1 + δ(T − t2))}

] (A.4)

OC = A,
∂OC
∂p

=
∂2OC
∂p2

= 0

PC = cQ = c

[
(a− bp) t1 +

(a− bp)
θm (ξ)

(
eθm(ξ)(t2−t1) − 1

)
+

(a− bp)
δ

{log(1 + δ(T − t2))}
]

∂PC
∂p

= −bc
[
t1 +

1
θm (ξ)

(
eθm(ξ)(t2−t1) − 1

)
+

1
δ
{log(1 + δ(T − t2))}

]
⇒ ∂2PC

∂p2
= 0

(A.5)

IHC = c1

[
st1 −

(a− bp)t21
2

− (a− bp)
θ2m(ξ)2

{
1− eθm(ξ)(t2−t1) + θm(ξ)(t2 − t1)

}]
∂IHC
∂p

= c1

[
1
2
bt21 +

b

θ2m(ξ)2
{

1− eθm(ξ)(t2−t1) + θm(ξ)(t2 − t1)
}]
⇒ ∂2IHC

∂p2
= 0

BC = c2

[(
R+

a− bp
δ

(T − t2)
)
− a− bp

δ2
(1 + δ(T − t2)) log(1 + δ(T − t2))

]
∂BC
∂p

= c2

[(
b

δ
(t2 − T )

)
+

b

δ2
(1 + δ(T − t2)) log(1 + δ(T − t2))

]
⇒ ∂2BC

∂p2
= 0

(A.6)
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LSC =
c3 (a− bp)

δ
{δ (T − t2)− log (1 + δ (T − t2))}

∂LSC
∂p

= −c3b
δ
{δ (T − t2)− log (1 + δ (T − t2))} ⇒ ∂2LSC

∂p2
= 0

IE3 =
pIe (a− bp) t22

2
+
pIe (a− bp) t2

δ
log (1 + δ (T − t2))

∂E3

∂p
=
Ie (a− 2bp) t22

2
+
Ie (a− 2bp) t2

δ
log (1 + δ (T − t2))

∂2E3

∂p2
= −Iebt

2
2

2
− Iebt2

δ
log (1 + δ (T − t2)) .

(A.7)

Differentiating X with respect to “T” shows

SR = p

[
(a− bp)t2 +

(a− bp)
δ

{log(1 + δ(T − t2))}
]

∂SR
∂T

=
p(a− bp)

(1 + δ(T − t2)
; OC = A,

∂OC
∂T

= 0
(A.8)

PC = c

[
(a− bp)t1 +

(a− bp)
θm(ξ)

{
eθm(ξ)(t2−t1) − 1

}]
∂PC
∂T

=
c(a− bp)

(1 + δ(T − t2)

(A.9)

IHC = c1

[
st1 −

(a− bp)t21
2

− (a− bp)
θ2m(ξ)2

{
1− eθm(ξ)(t2−t1) + θm(ξ)(t2 − t1)

}]
,
∂IHC
∂T

= 0

BC =
c2(a− bp)

δ
(1 + δ(T − t2)(T − t2) + c2

a− bp
δ2

[(1 + δ(T − t2) {log(1 + δ(T − t2))− 1}+ 1]

∂BC
∂T

=
c2(a− bp)(1 + 2δ(T − t2))

δ
− c2

a− bp
δ

[1 + {log(1 + δ(T − t2))− 1}]

LSC =
c3 (a− bp)

δ
{δ (T − t2)− log (1 + δ (T − t2))} (A.10)

∂LSC
∂T

= c3 (a− bp)
[
1− 1

(1 + δ (T − t2))

]
IE3 =

pIe (a− bp) t22
2

+
pIe (a− bp) t2

δ
log (1 + δ (T − t2))⇒ ∂E3

∂T
=

pIe (a− bp) t2

(1 + δ (T − t2))

PTC = ξT,⇒ ∂PTC
∂T

= ξ.

Appendix B.

Proof of Corollary 4.1

The objective function is

π3 (p, ξ, T ) =
X

T
· (B.1)
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Differentiating the equation (B.1) with respect to T ,

∂π3 (p, ξ, T )
∂T

=
T ∂X
∂T −X
T 2

· (B.2)

Differentiating the equation (B.2) with respect to T ,

∂2π3 (p, ξ, T )
∂T 2

=
T 2
{
∂X
∂T + T ∂2X

∂T 2 − ∂X
∂T

}
− 2T

{
T ∂X
∂T −X

}
T 3

=
T 2 ∂2X

∂T 2 − 2T ∂X
∂T + 2X

T 3
· (B.3)

From equation (B.3) we observed that
∂2π3 (p, ξ, T )

∂T 2
< 0,

which means

T 2 ∂2X
∂T 2 − 2T ∂X

∂T + 2X
T 3

< 0,⇒ 1
T

∂2X

∂T 2
− 2
T 2

∂X

∂T
+

2X
T 3

< 0

⇒ 1
T

∂2X

∂T 2
+

2X
T 3

<
2
T 2

∂X

∂T
· (B.4)

Proof of Corollary 4.2

For any fixed ξ and T , the second order derivative of the objective function π3(p, ξ, T ) with respect to the
decision variables p is

∂2π3(p, ξ, T )
∂p2

= − 1
T

[
2bt2 +

2b
δ
{log(1 + δ(T − t2))} − Iebt

2
2

2
+
Iebt2
δ

log (1 + δ (T − t2))
]
< 0 (B.5)

which implies that,
[
2bt2 + 2b

δ {log(1 + δ(T − t2))} − Iebt
2
2

2 + Iebt2
δ log (1 + δ (T − t2))

]
> 0, since T is the total

cycle length
⇒ 4t2 +

(
4
δ

+
2Iet2
δ

)
log (1 + δ (T − t2)) > Iet

2
2

⇒
(

4
δ

+
2Iet2
δ

)
log (1 + δ (T − t2)) > Iet

2
2 − 4t2

⇒ log (1 + δ (T − t2)) >
Ieδ(t2 − 4)t2

2Iet2 + 4
W.

(B.6)

Now the mixed derivatives with respect to the decision variables

∂2π3(p, ξ, T )
∂ξ∂p

=
1
T

a1bc
[

eθm(ξ)(t2−t1)

θm(ξ) + eθm(ξ)(t2−t1)(t2 − t1)
]

− c1a1

[
2b
θ2

1
m(ξ)2 + 1

θ eθm(ξ)(t2−t1) − b
θm(ξ) (t2 − t1)

]


∂2π3(p, ξ, T )
∂ξ∂T

= − 1
T 2


−ca1(a− bp)

[
eθm(ξ)(t2−t1)

θm(ξ) − eθm(ξ)(t2−t1)(t2 − t1)
]

− c1a1

[
− 2(a−bp)

θ2
1

m(ξ)2 −
(a−bp)
θ eθm(ξ)(t2−t1) + eθm(ξ)(t2−t1) 2

θ2
1

m(ξ)2

+ (a−bp)
θm(ξ) (t2 − t1)

]
− 1


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∂2π3(p, ξ, T )
∂p∂ξ

=
1
T

a1bc
[

1
θm(ξ)

(
eθm(ξ)(t2−t1) − 1

)
− eθm(ξ)(t2−t1)(t2 − t1)

]
− c1ba1

[
2

θ2m(ξ)2

{
1− eθm(ξ)(t2−t1) + θm(ξ)(t2 − t1)

}
+ (t2−t1)

θm(ξ)

{
eθm(ξ)(t2−t1) − 1

}]


∂2π3(p, ξ, T )
∂p∂T

= − 1
T 2



(a− 2bp)t2 + (a−2bp)
δ {log(1 + δ(T − t2))}+ bc

[
t1 + 1

θm(ξ)

(
eθm(ξ)(t2−t1) − 1

)
+ 1
δ {log(1 + δ(T − t2))}

]

− c1
[

1
2bt

2
1 + b

θ2m(ξ)2

{
1− eθm(ξ)(t2−t1) + θm(ξ)(t2 − t1)

}]
− c2

[(
b
δ (t2 − T )

)
+ b

δ2 (1 + δ(T − t2)) log(1 + δ(T − t2))
]

+ c3b
δ {δ (T − t2)− log (1 + δ (T − t2))} − Ie(a−2bp)t22

2

+ Ie(a−2bp)t2
δ log (1 + δ (T − t2))



+
1
T


(a−2bp)

1+δ(T−t2) + bc
[

1
1+δ(T−t2)

]
− c2

[(
− b
δ

)
+ b

δ log(1 + δ(T − t2)) + δ
]

+ c3b
{

1− 1
1+δ(T−t2)

}
+ Ie(a−2bp)t2

1+δ(T−t2)

 (B.7)

∂2π3(p, ξ, T )
∂T∂p

= − 1
T



(a− 2bp)t2 + (a−2bp)
δ {log(1 + δ(T − t2))}

+ bc
[
t1 + 1

θm(ξ)

(
eθm(ξ)(t2−t1) − 1

)
+ 1

δ {log(1 + δ(T − t2))}
]

− c1
[

1
2bt

2
1 + b

θ2m(ξ)2

{
1− eθm(ξ)(t2−t1) + θm(ξ)(t2 − t1)

}]
− c2

[(
b
δ (t2 − T )

)
+ b

δ2 (1 + δ(T − t2)) log(1 + δ(T − t2))
]

+ c3b
δ {δ (T − t2)− log (1 + δ (T − t2))} − Ie(a−2bp)t22

2

+ Ie(a−2bp)t2
δ log (1 + δ (T − t2))



+
1
T


a+bc−2bp
1+δ(T−t2) −

c2b
δ log (1 + δ (T − t2))

− c3b
[
1− 1

1+δ(T−t2)

]
− Ie(a−2bp)t2

1+δ(T−t2)



∂2π3(p, ξ, T )
∂T∂ξ

= − 1
T


− ca1(a− bp)

[
eθm(ξ)(t2−t1)

θm(ξ) − eθm(ξ)(t2−t1)(t2 − t1)
]

− c1a1

−
2(a−bp)
θ2

1
m(ξ)2 −

(a−bp)
θ eθm(ξ)(t2−t1) + eθm(ξ)(t2−t1) 2

θ2
1

m(ξ)2

+ (a−bp)
θm(ξ) (t2 − t1)



 . (B.8)
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