
RAIRO-Oper. Res. 54 (2020) 307–323 RAIRO Operations Research
https://doi.org/10.1051/ro/2019088 www.rairo-ro.org

A THREE-AGENT SCHEDULING PROBLEM FOR MINIMIZING THE FLOW
TIME ON TWO MACHINES

Wen-Chiung Lee1 and Jen-Ya Wang2,∗

Abstract. This study introduces a two-machine three-agent scheduling problem. We aim to minimize
the total tardiness of jobs from agent 1 subject to that the maximum completion time of jobs from agent
2 cannot exceed a given limit and that two maintenance activities from agent 3 must be conducted
within two maintenance windows. Due to the NP-hardness of this problem, a genetic algorithm (named
GA+) is proposed to obtain approximate solutions. On the other hand, a branch-and-bound algorithm
(named B&B) is developed to generate the optimal solutions. When the problem size is small, we use
B&B to verify the solution quality of GA+. When the number of jobs is large, a relative deviation is
proposed to show the gap between GA+ and another ordinary genetic algorithm. Experimental results
show that the proposed genetic algorithm can generate approximate solutions by consuming reasonable
execution time.

Mathematics Subject Classification. 90C05, 90-08.

Received December 30, 2018. Accepted September 6, 2019.

1. Introduction

Multi-agent scheduling is of significant importance in the real word. As first indicated by Baker et al. [3], an
agent (e.g., R&D department) might necessarily complete its jobs before a given date, while another agent (e.g.,
sales department) could not afford any indemnification caused by any uncontrolled tardiness. Consequently, these
agents needed to learn how to share limited resources (e.g., machines or workers). It is clear that job scheduling
is an effective way to resolve the above issue. Multi-agent scheduling is therefore called for and deserves to be
studied in greater detail.

At the beginning of multi-agent scheduling, only two competing agents were considered. Even so, most of
such problems are NP-hard (e.g., [5,49,56]). Consequently, the issues of two-agent scheduling have been widely
and thoroughly discussed for decades. However, in the real world, the number of objectives and constraints
are far more than two. That is, two-agent models are too simple to represent the real world. If there are more
agents, we can make multi-agent scheduling more practical. For example, research [22,40,45] recently started to
discuss the issues of three-agent scheduling. Consequently, they considered three agents and made their models

Keywords. Multi-agent scheduling, maintenance scheduling, branch-and-bound algorithm, genetic algorithm, solution quality.

1 Department of Statistics, Feng Chia University, 40724 Taichung, Taiwan, R.O.C.
2 Department of Computer Science and Information Management, Hungkuang University, 43302 Taichung, Taiwan, R.O.C.
∗Corresponding author: jywang@sunrise.hk.edu.tw

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2020

https://doi.org/10.1051/ro/2019088
https://www.rairo-ro.org
mailto:jywang@sunrise.hk.edu.tw
https://www.edpsciences.org

308 W.-C. LEE AND J.-Y. WANG

more realistic but more complicated. For more recent information about multi-agent scheduling, we can refer
to [14,26,34,39,42,48,50].

Total tardiness is usually an important consideration for multi-agent scheduling. For example, Ahmadizar
et al. [2] proposed a two-agent scheduling problem in which the objective of agent 1 was to minimize his/her
earliness and tardiness at the same time. On the other hand, the other agent must keep his/her maximum
tardiness and earliness under a given limit. If a job from agent 1 was completed too early or too late, a penalty
would be inflicted upon the agent. Yang et al. [52] addressed a multi-agent scheduling problem in a cloud
computing environment. Agents competed for limited resources (e.g., processors) and intended to minimize the
total tardiness. They formulated this problem as an integer programming problem and developed a tabu search
method and a genetic algorithm to solve the problem near optimally. Wang et al. [47] also considered two-
agent scheduling on a single machine. They proposed nine different combinations of objectives, one being total
tardiness. In this study, the due date assignment technique was employed to achieve a lower total tardiness for
agent 1. In light of the above observation, we learn that total tardiness is an important indicator for evaluating a
production system. For more information about tardiness and competing agents, we can refer to related articles;
e.g., [8, 11,23–25,28,39,46,54].

At the same time, a maximum completion time might be requested by another agent. A maximum completion
time (or makespan) is a useful indicator to measure a scheduling model; e.g., inventory, productivity, or resource
deployment. Therefore, many exact or approximation algorithms are proposed to reduce the indicator for an
agent. For example, Torkashvand et al. [44] introduced a flowshop scheduling problem with two competing
agents. The objective of agent 1 was to minimize the makespan. Since such a problem was time-consuming, they
proposed a metaheuristic algorithm to generate approximate solutions. On the other hand, in [30], the authors
considered the makespan as a constraint of an agent in a flowshop scheduling problem. Unless the constraint was
satisfied, then the other agent would not minimize his/her objective. For more research on two-agent makespan
minimization, we can refer to [1, 9, 27,33,35].

On the other hand, an agent may shut down machines for maintenance during designated periods. In general,
maintenance activities are of two types, continuous (minor) maintenance and overhaul (major) maintenance, and
they should be inserted into ordinary jobs. In [42], minor cleaning activities made a single machine unavailable for
specified periods. One agent aimed to minimize the total deviation of completion times subject to these periods
of unavailability to perform the other agent’s cleaning activities. Due to the NP-hardness of this problem, they
employed a metaheuristic algorithm to solve this problem. Yu et al. [58] considered that major maintenance
is needed once a fixed number of jobs is completed. Since the behaviors of maintenance were modeled in a
simpler form, the problem could be solved in polynomial time. In [4], both major preventive maintenance (time-
based) and minor anomaly detection (condition-based) were considered. Because of the two kinds of maintenance
activities, this problem could not be solved with traditional approaches. That is, time-based and condition-based
maintenance needed to be treated as a whole. For more recent information about maintenance scheduling, please
refer to [13,16,31,37,41,43,51,53,60].

Total tardiness minimization is also an important topic for two-machine flowshop scheduling. Kim [19] devel-
oped some properties and a lower bound and proposed a branch-and-bound algorithm to minimize the total
tardiness on two flowshop machines. Pan et al. [36] considered different constraints and assumptions and also
employed the same technique to minimize the total tardiness on two flowshop machines. Schaller [38] aimed
to optimally solve a total tardiness minimization problem with different constraints on two flowshop machines.
Again, they proposed three useful dominance rules and a lower bound to enhance their branch-and-bound algo-
rithm. Since the constraints of the above problems are all different, they needed to tailor their own algorithms
to individual needs. For more recent studies about total tardiness minimization on two machines, readers can
refer to [10,15,17,20,29].

Among the above issues, only two are considered at a time. That is, a few studies, such as [21, 22, 40, 45],
considered three of them as a whole. For those three-agent scheduling problems, they considered a single machine
only. Therefore, we examine the idea of multiple competing agents in a two-machine flowshop environment. Since
total tardiness is directly relevant to customer satisfaction and business income, we set it as an objective. On

A THREE-AGENT SCHEDULING PROBLEM 309

the other hand, in most situations, some orders may have imposed deadlines, so we set maximum completion
time (i.e., makespan) as a constraint. Last of all, most machines require preventive maintenance, so two fixed
maintenance windows are considered as another constraint.

In this study, a three-agent flow-shop problem is introduced. This is because two agents cannot fulfill the
needs of the real world sufficiently. For example, research [6, 7] considered maximum tardiness and periodic
maintenance in a textile company. Without the flexibility of more agents, total completion time could not be
included in this model. Consequently, we choose a three-agent model to meet the requirements of the real
world. In our model, agent 1 aims to minimize the total tardiness of his/her own jobs subject to the constraints
that the maximum completion time of jobs from agent 2 is below a given limit and that the two machines
must be maintained within two specified periods. Due to the NP-hardness of the problem, we propose a genetic
algorithm to generate approximate solutions. Moreover, we develop a relative error bound to ensure the solution
quality of the proposed genetic algorithm. Compared with other metaheuristic algorithms (e.g., PSO), GA has
lower tendency for premature convergence and requires less density of search space [18]. Therefore, we develop a
genetic algorithm to generate approximate solutions. On the other hand, compared with other exact algorithms,
a branch-and-branch algorithm is relatively time-efficient if effective dominance rules and lower bounds are
proposed. Hence we develop a branch-and-branch algorithm to generate the optimal solutions for generating
the optimal solutions when the problem size is small.

2. Problem formulation

The three-agent two-machine flowshop problem is formulated as follows. There are n non-preemptive jobs
from three agents to be processed by two machines. For each job j, machine 1 first takes processing time p1

j and
then machine 2 takes processing time p2

j to process it respectively. Each machine processes only one job at a
time, and a job can be processed by each machine at most once. In addition, the position order of all the jobs
processed by machine 1 is the same as that by machine 2. Agent ag1 aims to minimize the total tardiness of
his/her n1 jobs and each is tagged with an individual due date dj for j = 1, 2, . . . , n1. Agent ag2 must complete
all his/her n2 jobs (numbered n1 +1, n1 +2, . . . , n1 +n2) before a limit M . Moreover, there are two maintenance
jobs from ag3; i.e., job n − 1 needs to be conducted within a maintenance window [a1

n−1, b
1
n−1] on machine 1

and job n needs to be conducted within [a2
n, b

2
n] on machine 2. For simplicity, let AGi denote the set of jobs

from agent agi for i = 1, 2, 3. Note that we have n = n1 + n2 + 2, p2
n−1 = 0, and p1

n = 0. For job j in schedule
π, let Cj(π) denote its completion time and Tj(π) = max{0, Cj(π) − dj} denote the tardiness if j ∈ AG1. For
simplicity, we use C1

j (π) to denote the time that machine 1 finishes job j. For each job j ∈ AG1 ∪ AG2, its
starting time on machine 2 cannot be earlier than C1

j (π). Under the above assumptions and constraints, the
problem can be presented as

min f(π) =
∑
j∈AG1

Tj(π) (2.1)

s.t. (2.2)
maxj∈AG2{Cj(π)} ≤M, (2.3)
C1
n−1(π) ∈ [a1

n−1 + p1
n−1, b

1
n−1], (2.4)

Cn(π) ∈ [a2
n + p2

n, b
2
n]. (2.5)

Figure 1 shows a problem instance. There are seven jobs, and AG1 = {1, 2, 3, 4}, AG2 = {5}, and AG3 =
{6, 7}, (i.e., n1 = 4, n2 = 1, n3 = 2) and n = 7. Let p1

j = 2, 1, 4, 5, 4, 2, 0, p2
j = 4, 1, 1, 1, 1, 0, 2, for j = 1, 2, . . . , 7,

and dj = 5, 5, 10, 15, for j ∈ AG1. Moreover, let M = 8, a1
6 = 8, b16 = 10, a2

7 = 9, and b27 = 13. Then,
for the schedule π = (1, 2, 5, 6, 7, 3, 4), the total tardiness is 13 (= 1 + 2 + 5 + 5). Note that the starting time
of maintenance activity 7 is not affected by maintenance activity 6. On the other hand, there might be idle
intervals due to the influences of maintenance window and flowshop.

310 W.-C. LEE AND J.-Y. WANG

1 1

6 6[8, 10]a b= =

Jobs on machine 1 1 2 5 6 3 4

Flow time 2 3 7 10 14 19

8M =
2 2

7 7[9, 13]a b= =

Jobs on machine 2 1 2 5 7 3 4

Flow time 6 7 8 11 15 20

Tardiness 1 2 5 5

Figure 1. A problem instance.

In general, such a scheduling problem with maintenance is NP-hard [55, 57, 59]. Even if only one single
machine needs to be maintained within a maintenance window, the problem is still NP-hard. Consequently,
some metaheuristic algorithms are required when the problem size is large.

3. Branch-and-bound algorithm

In this section, we develop an exact optimization algorithm to obtain the optimal schedules. First, several
dominance rules are derived. Then, a lower bound algorithm is proposed. Finally, a branch-and-bound algorithm
named B&B is proposed.

To derive dominance rules, we first let π = (α, j, i, β) and π′ = (α, i, j, β) be two schedules, where i and
j are two adjacent jobs, α is a determined partial sequence, and β is an undetermined partial sequence. For
convenience, let nβ be the number of jobs in β and t1α (t2α) be the completion time of the last job in α on
machine 1 (machine 2). To show that π′ dominates π, we need to ensure that either Cj(π′) ≤ Ci(π) and
Ti(π′) + Tj(π′) < Ti(π) + Tj(π) hold or Cj(π′) < Ci(π) and Ti(π′) + Tj(π′) ≤ Ti(π) + Tj(π) hold. The related
dominance rules are organized into 14 cases according to their completion times and tardinesses. Since their
proofs are similar, only the proof of the second dominance rule is given below.

Case 1. We consider that both jobs i and j are from ag1 and processed in time; i.e., i ∈ AG1, j ∈ AG1,
Ti(π′) = 0, Ti(π) = 0, Tj(π′) = 0, and Tj(π) = 0. If job j in π′ is always completed earlier than i in π and both
have zero tardiness, we let job i proceed job j.
Rule 1. If Cj(π′) < Ci(π), then π′ dominates π.

Case 2. We consider that both jobs are from ag1 and job j is tardy in both schedules; i.e., i ∈ AG1, j ∈ AG1,
Ti(π′) = 0, Ti(π) = 0, Tj(π′) > 0, and Tj(π) > 0. If job j in π′ is always completed earlier than i in π and will
not cause any extra tardiness, we let job i proceed job j.
Rule 2. If Cj(π′) < Ci(π) and Tj(π′) ≤ Tj(π), then π′ dominates π.

Proof. Since Cj(π′) < Ci(π), the starting time of the remaining jobs (i.e., β) of π′ is earlier than that of
π. That is,

∑
k∈β Tk(π′) ≤

∑
k∈β Tk(π) for both optimal sequences of β in π and π′. In addition, we have

Ti(π′) + Tj(π′) ≤ Tj(π) + Ti(π) and
∑
k∈α Tk(π′) =

∑
k∈α Tk(π). Therefore,

∑
k Tk(π′) ≤

∑
k Tk(π). The proof

is complete. �

Rule 3. If Cj(π′) ≤ Ci(π) and Tj(π′) < Tj(π), then π′ dominates π.
Case 3. We consider that both jobs are from ag1 and only job i is tardy in schedule π; i.e., i ∈ AG1, j ∈ AG1,

Ti(π′) = 0, Ti(π) > 0, Tj(π′) = 0, and Tj(π) = 0. If the tardiness of job i in π can be improved in π′ and job j
is always completed in time, we let job i proceed job j.
Rule 4. If Cj(π′) ≤ Ci(π), then π′ dominates π.

Case 4. We consider that both jobs are from ag1, job i is tardy in schedule π, and job j is tardy in schedule
π′; i.e., i ∈ AG1, j ∈ AG1, Ti(π′) = 0, Ti(π) > 0, Tj(π′) > 0, and Tj(π) = 0.
Rule 5. If Cj(π′) ≤ Ci(π) and Tj(π′) < Ti(π), then π′ dominates π.

A THREE-AGENT SCHEDULING PROBLEM 311

Rule 6. If Cj(π′) < Ci(π) and Tj(π′) ≤ Ti(π), then π′ dominates π.
Case 5. We consider that both jobs are from ag1, job i is tardy in schedule π, and job j is always tardy in

both schedules; i.e., i ∈ AG1, j ∈ AG1, Ti(π′) = 0, Ti(π) > 0, Tj(π′) > 0, and Tj(π) > 0. If job j in π′ can be
completed early and make no harm to the total tardiness, we let job i proceed job j.
Rule 7. If Cj(π′) ≤ Ci(π) and Tj(π′) < Ti(π) + Tj(π), then π′ dominates π.
Rule 8 . If Cj(π′) < Ci(π) and Tj(π′) ≤ Ti(π) + Tj(π), then π′ dominates π.

Case 6. We consider that both jobs are from ag1 and job i is always tardy in both schedules; i.e., i ∈ AG1,
j ∈ AG1, Ti(π′) > 0, Ti(π) > 0, Tj(π′) = 0, and Tj(π) = 0. If completion time is improved and tardiness
remains unchanged or vice versa, we let job i proceed job j.
Rule 9. If Cj(π′) ≤ Ci(π) and Ti(π′) < Ti(π), then π′ dominates π.
Rule 10. If Cj(π′) < Ci(π) and Ti(π′) ≤ Ti(π), then π′ dominates π.

Case 7. We consider that both jobs are from ag1, job i is always tardy, and job j is always tardy in schedule
π′; i.e., i ∈ AG1, j ∈ AG1, Ti(π′) > 0, Ti(π) > 0, Tj(π′) > 0, and Tj(π) = 0. If the interchange leads to either
a lower tardiness or completion time, we let job i proceed job j.
Rule 11. If Cj(π′) ≤ Ci(π) and Ti(π′) + Tj(π′) < Ti(π), then π′ dominates π.
Rule 12. If Cj(π′) < Ci(π) and Ti(π′) + Tj(π′) ≤ Ti(π), then π′ dominates π.

Case 8. We consider that both jobs are from ag1 and they are always tardy; i.e., i ∈ AG1, j ∈ AG1,
Ti(π′) > 0, Ti(π) > 0, Tj(π′) > 0, and Tj(π) > 0. In this case, the rules are the same as those in Case 1.
Consequently, we omit them here.

Case 9. We consider that both jobs are from ag2; i.e., i ∈ AG2 and j ∈ AG2. If job j in π′can be completed
earlier than i in π or job j has a larger Id, we let job i proceed job j.
Rule 13. If Cj(π′) < Ci(π) and Cj(π′) ≤M , then π′ dominates π.
Rule 14. If Cj(π′) = Ci(π), Cj(π′) ≤M , and i < j, then π′ dominates π.

Case 10. We consider that jobs i and j are from different agents; i.e., i ∈ AG1 and j ∈ AG2. In this case,
we let a job from agent 2 be processed as late as possible.
Rule 15. If Cj(π′) ≤ Ci(π) and Cj(π′) ≤M , then π′ dominates π.

Case 11. We consider that jobs i and j are from different agents; i.e., i ∈ AG2 and j ∈ AG1. If the completion
time of a job from agent 2 exceeds the limit, this job can be advanced.
Rule 16. If Cj(π′) ≤ Ci(π), Ci(π) > M , and Ci(π′) ≤M , then π′ dominates π.

Case 12. We consider that job i is a maintenance job; i.e., i ∈ AG3 and j /∈ AG3. In this case, if a
maintenance activity i cannot be finished in time, we let maintenance activity proceed an ordinary job.
Rule 17. If i = n − 1 and j ∈ AG1 are processed by machine 1, Cj(π′) ≤ Ci(π), C1

i (π) > b1n−1, and
C1
i (π′) ≤ b1n−1, then π′ dominates π.

Rule 18. If i = n and j ∈ AG1 are processed by machine 2, Cj(π′) ≤ Ci(π), Ci(π) > b2n, and Ci(π′) ≤ b2n,
then π′ dominates π.
Rule 19. If i = n− 1 and j ∈ AG2 are processed by machine 1, Cj(π′) ≤ Ci(π), C1

i (π) > b1n−1, C1
i (π′) ≤ b1n−1,

and Cj(π′) ≤M , then π′ dominates π.
Rule 20. If i = n and j ∈ AG2 are processed by machine 2, Cj(π′) ≤ Ci(π), Ci(π) > b2n, Ci(π′) ≤ b2n, and
Cj(π′) ≤M , then π′ dominates π.

Case 13. We consider that job j is a maintenance job; i.e., i /∈ AG3 and j ∈ AG3. In this case, we perform
a maintenance activity as late as possible.
Rule 21. If j = n − 1 and i ∈ AG1 are processed by machine 1, Cj(π′) ≤ Ci(π), and C1

j (π′) ≤ b1n−1, then π′

dominates π.
Rule 22. If j = n and i ∈ AG1 are processed by machine 2, Cj(π′) ≤ Ci(π), and Cj(π′) ≤ b2n, then π′

dominates π.
Rule 23. If j = n − 1 and i ∈ AG2 are processed by machine 1, Cj(π′) ≤ Ci(π), Ci(π) > M , C1

j (π′) ≤ b1n−1,
and Ci(π′) ≤M , then π′ dominates π.
Rule 24. If j = n and i ∈ AG2 are processed by machine 2, Cj(π′) ≤ Ci(π), Ci(π) > M , Cj(π′) ≤ bn, and
Ci(π′) ≤M , then π′ dominates π.

312 W.-C. LEE AND J.-Y. WANG

Rule 25. If j = n− 1 and i ∈ AG2 are processed by machine 1, Cj(π′) ≤ Ci(π), t1α(π) < a1
n−1, C1

j (π′) ≤ b1n−1,
and Ci(π′) ≤M , then π′ dominates π.
Rule 26. If j = n and i ∈ AG2 are processed by machine 2, Cj(π′) ≤ Ci(π), t2α(π) < a2

n, C1
j (π′) ≤ b1n−1, and

Ci(π′) ≤M , then π′ dominates π.
Case 14. There are some other situations which do not belong to the above cases. We list these properties

as follows.
Rule 27. If i ∈ AG1, j ∈ AG1, p1

i = p1
j , p

2
i = p2

j , di = dj , and i < j, then π′ dominates π.
Rule 28. If i ∈ AG1, j ∈ AG1, p1

i = p1
j , p

2
i = p2

j , and di < dj , then π′ dominates π.
Rule 29. If i ∈ AG1, j ∈ AG1, p1

i < p1
j , p

2
i = p2

j , and di < dj , then π′ dominates π.
Rule 30. If i ∈ AG1, j ∈ AG1, p1

i = p1
j , p

2
i < p2

j , and di < dj , then π′ dominates π.
Figure 2 shows a simple lower bound. The main idea behind the proposed lower bound is job preemption.

Consider that the two machines fully parallel each other without any idle intervals. Then, the actual processing
time of a job in such an ideal environment can be regarded as half the sum of its processing times on two
machines. Therefore, we merge two processing times into one for each job and allocate the fabricated job to
a virtual single machine (Steps 1–4). First, the two maintenance activities are scheduled first if they have not
been scheduled in α yet. They are allocated to their respective maintenance windows as late as possible (Step
5). Then, For the nβ2 remaining jobs from ag2, we allocate them to the rear part of time interval [0,M] in a
preemptive way (Step 6). Finally, we sort the processing times and due dates of the nβ1 remaining jobs for ag1
in ascending order (Steps 7–8). Again, we allocate them to the schedule one by one in a preemptive way and
finally return the estimated lower bound (Steps 9–11).

With the dominance rules and the lower bound, we are able to start to design the branch-and-bound algorithm
(B&B) in a depth-first-search (DFS) manner. B&B includes the six major steps listed below. In Step 1, let B&B
start with an approximate schedule (π#) provided by GA+ (see the next section), and let it be the currently
optimal schedule π∗. Note that π# is organized to form a search tree and its root is at level 0. In the next two
steps, we can prune some unnecessary nodes by the dominance rules and the lower bound since they definitely
cannot achieve lower costs than the current one. In Step 4, if a leaf node is visited, evaluate its objective cost.
If the root-to-leaf schedule achieves lower cost, replace the currently optimal solution with the better one. In
Step 5, continue the search process in DFS order until all the remaining nodes are either visited or pruned. The
last step returns the final results.

(1) Initialization: let π∗ = π#, set c∗ = f(π∗), and start the search.
(2) Branching: for each node j at level k, construct the branches to the nodes at the next level k+1.
(3) Bounding: prune a subtree by applying the dominance rules and lower bound for the subtree rooted by

node j.
(4) Evaluation: for a leaf node, replace π∗ with this root-to-leaf schedule and reset c∗ if it achieves a lower

cost.
(5) Termination: recursively execute Steps 2–5 in DFS order until no more nodes can be visited.
(6) Output: if π∗ is infeasible, then set c∗ =∞. Return π∗ and c∗.

4. Genetic algorithm

For large problem instances, we propose a genetic algorithm to generate approximate schedules. For conve-
nience, we name it GA+. First, a greedy method is proposed to obtain a feasible solution. Second, a genetic
algorithm is proposed and start with the feasible solution. Finally, GA+ will generate an approximate solution
π#.

First, to enhance the solution quality of GA+, we propose a greedy method to generate a feasible initial
schedule and will add it into the initial population of GA+ later. The greedy method is shown in Figure 3. At
the beginning, the jobs from ag1 and ag2 are sorted respectively (i.e., Steps 1–2). We first satisfy constraints
(2.4) and (2.5) by allocating the maintenance activities in Steps 4–5. Then we schedule the jobs from ag2 as
late as possible in order to satisfy constraint (2.3) in Step 6. Next, the jobs from ag1 are scheduled one by one

A THREE-AGENT SCHEDULING PROBLEM 313

Algorithm LowerBound

INPUT

(,)α β : α is the determined part and β is the undetermined part

OUTPUT

LB : lower bound

//Reorganize the copies of the jobs in β and allocate the copies to a virtual single machine.

//i.e., obtain a new job (j) by merging two processing times of job j into one.-------------------

1) Let
i

nβ be the number of jobs in
iAG β for 1, 2,3i = ;

2) Set 1 2

() 0.5()
j j j

p p p= + and ()j j
d d= for 11,2,...,j nβ=

3) Set 1 2

() 0.5()
j j j

p p p= + for 21,2,...,j nβ=

4) Set 1

(1) 10.5
n n

p p− −= and 2

() 0.5
n n

p p=

//Schedule the maintenance activities from
3ag .--

5) Allocate jobs (n-1) and (n) to 1 1

1 1[,]
n n

a b− − and 2 2[,]
n n

a b respectively as late as possible

//Schedule the jobs from
2ag .--

6) Allocate the jobs from
2ag in a preemptive way such that ()max{ }

j
C M= ;

//Schedule the jobs from
1ag .--

7) Sort all the ()j
p 's in ascending order; i.e.,

1
(1) (2) ()

...
n

p p p β≤ ≤ ≤ ;

8) Sort all the ()j
d 's in ascending order; i.e.,

1
(1) (2) ()

...
n

d d d β≤ ≤ ≤ ;

9) Allocate the fabricated jobs owned by
1ag as early as possible in a preemptive way;

10) Compute the tardiness for each job owned by
1ag and record the accumulative value in LB .

11) Return the estimated lower bound LB .

Figure 2. The proposed lower bound.

in Step 7. Finally, a feasible chromosome (i.e., π+) is obtained in Step 8 or we may temporarily assume there
is no feasible chromosome in Step 9.

Second, a genetic algorithm (named GA+) is proposed and its details are shown in Figure 4. In the initial-
ization stage (i.e., Step 1), let the population size be N and generate N chromosomes (i.e., schedules) πi for
i = 1, 2, . . ., N , where each chromosome is a random permutation of numbers 1, 2, . . ., n. Moreover, we replace
the last chromosome with π+ obtained by the previous greedy method if any.

In the evaluation stage (Steps 4–5), we calculate the objective cost of each chromosome in the current
generation G. For each chromosome i, if some constraint is violated, a penalty 100n will be accumulatively
inflicted on its objective cost; i.e., f(πi). For simplicity, let gi = 1/(1+f(πi)) be the fitness for each chromosome
i. Meanwhile, let π# be the currently best chromosome and record its lowest objective cost.

In the selection stage (Step 10), the standard roulette wheel [22] is employed to choose a parent chromosome,
where the probability of selecting each chromosome i as a parent is qi =

√
gi/

∑N
k=1

√
gk. Like the Russian

roulette game, each chromosome i has a probability of qi to be chosen in the current generation. For each
chromosome i in the current generation, we designate it as a parent. On the other hand, we employ the standard
roulette wheel to choose some chromosome x to be another parent.

314 W.-C. LEE AND J.-Y. WANG

Algorithm Greedy

INPUT
1

j
p ,

2

j
p , M , 1 1

1 1[,]
n n

a b
− −

, 2 2[,]
n n

a b : a problem instance

OUTPUT

π
+ : a feasible schedule

//Schedule the jobs from
3ag .--

1) Sort the jobs in
1AG in ascending order of j

d

2) Sort the jobs in
2AG in ascending order of

1

j
p -

2

j
p

3) Let t be a time table that is divided into time slices on the two machines;

4) Allocate the maintenance activity 1n − to the rear part of 1 1

1 1[,]
n n

a b
− −

 in t for machine 1

5) Allocate the maintenance activity n to the rear part of 2 2[,]
n n

a b in t for machine 2

6) Allocate the jobs in
2AG one by one to the time slices backwards from time M in a non-

preemptive way;

7) Allocate the jobs in
1AG one by one to the time slices forwards from time 1 in a non-

preemptive way;

8) Transcribe the allocated time slices in t into a schedule π
+ ; i.e., a permutation of numbers 1,

2, …, n ;

9) If the time slices are not enough for the jobs in
2AG , then set c+

= ∞ ()c f π
+ +

= .

10) Return π
+

; else set

Figure 3. An initial schedule generated by a greedy method.

In the crossover stage (Step 11), the PMX crossover operation is conducted [12,22,32]. For each generation,
about RcrossoverN new chromosomes will be generated by crossover and about (1 − Rcrossover)N chromosomes
will directly survive into the next generation. Figure 5 shows how parent i crossovers with parent x; i.e., the
PMX crossover. First, two distinct positions are randomly chosen to form two work areas (i.e., shaded areas).
Then we exchange the genes in the areas. There might be duplicate genes in the two parent chromosomes. To
correct the errors, we need their corresponding mapping relationships such as Figure 5c. If some gene is duplicate
in a chromosome, we repeatedly replace it with its neighbor(s) in its corresponding mapping relationship set
until there is no duplicate gene in any chromosome.

In the mutation stage (Steps 12–14), we perform the extract-shift-insert mutation operation [22,26]. For each
generation, about RmutateN chromosomes are randomly chosen to mutate. For each chosen chromosome, two
positions are randomly selected to form a work area like the previous stage. We extract the leftmost gene in the
work area. Then we left shift the other genes in the work area. Finally, we insert the extracted gene back into
the rightmost position of the work area.

After the above four stages, a new generation is generated. The latter three stages will be repeated until
some stopping criterion is met. That is, GA+ will stop if it runs out of time or reaches the maximum generation
limit. Finally, an approximate chromosome (i.e., π#) is returned.

Lemma 4.1. The maximum idle time on machine 1 is less than 2 max{p1
j}, and the maximum idle time on

machine 2 is less than max{p1
j}+ max{p2

j}.

A THREE-AGENT SCHEDULING PROBLEM 315

Figure 4. The proposed genetic algorithm.

Proof. The main idea behind the lemma is to remove the influence of idle intervals and maintenance activities
on the two machines. Consider the two continuous time axes on the two machines. To allocate maintenance
activity n − 1 on machine 1, we may cause an idle interval of p1

n−1 on machine 2. Moreover, there might be
an extra idle interval before maintenance activity n − 1 on machine 1 whose length is less than max{p1

j} that
cannot be utilized by other jobs. Therefore, we remark two intervals of length max{p1

j} + p1
n−1 near a1

n−1 on
the two time axes respectively; i.e., max{p1

j}+ p1
n−1 ≤ 2 max{p1

j}. On the other hand, performing activity n on
machine 2 will not delay any jobs on machine 1. But it might lead to an extra idle interval before maintenance
activity n on machine 2 whose length is less than max{p1

j}+ max{p2
j} that cannot be utilized by other jobs. As

a result, we remark two intervals of length max{p1
j}+ max{p2

j} near a2
n on the two time axes respectively; i.e.,

max{p1
j}+ p2

n ≤ max{p1
j}+ max{p2

j}. �

316 W.-C. LEE AND J.-Y. WANG

Figure 5. An example of the PMX crossover operation.

The above lemma can help us to estimate the maximum idle time on each machine. Note that the time
difference between the two machines end their last jobs is not considered as idle time. This is because machine
1 has completed all its jobs and it can be shut down for other purposes (e.g., maintenance) instead of wasting
time and energy. Now we treat the two remaining time axes as two continuous axes and allocate jobs in AG1

and AG2 without the interference of maintenance activities. That is, if some job is allocated to some remarked
area, let it be. Its subsequent job needs to escape the remarked area and starts immediately after the remarked
area. The jobs in AG2 are first allocated at the bottoms of [0,M] on the two axes. Then all the jobs in AG1

are allocated in EDD order. The corresponding job schedule can be determined easily. The only difference to
the physical optimal schedule is that the two remarked time intervals might lead to some wasted idle time.
Consequently, the relative error bound is n1(3 max{p1

j}+ max{p2
j})/n.

5. Experimental results

Before conducting experiments, we list all the parameters used in the related experiments in Table 1. Param-
eter n (i.e., the total number of jobs from three agents) has been defined in Section 2, where n = n1 + n2 + n3.
We assume that parameters p1

j and p2
j follow a discrete uniform distribution DU(1, 100) and that parame-

ter dj follows a discrete uniform distribution DU(
∑

(p1
j + p2

j)(1− τ −R/2),
∑

(p1
j + p2

j)(1− τ +R/2)), where
τ and R are two control parameters. The smaller R is, the more centralized due dates we have; the larger τ
is, the earlier due dates we have. Parameter M follows a discrete uniform distribution DU(0, 10n). Moreover,
the related parameters regarding the genetic algorithm are the same as those defined in the previous section.
All the algorithms are implemented in Object Pascal and executed in a Windows 7 environment on an Intel
Core i7 3770@3.40 GHz with 8G RAM. Later, each experiment is controlled by the above parameters. For each
parameter setting, 50 instances are generated, and their experimental results are recorded and analyzed.

The experiments can be divided into four parts. First, we conduct pilot experiments to determine the default
settings for the following two genetic algorithms. Let GA denote the original genetic algorithms described in
the previous section and GA+ the improved genetic algorithm. For GA+, an initial chromosome obtained by
the greedy method shown in Figure 3 is added into the first generation. Moreover, for each following generation,
100 extra mutations are conducted on the currently best chromosome to test if GA+ can improve the solution
quality further. Now we observe how the crossover rate and mutation rate influence the solution quality and
execution speed. Figure 6 shows that GA+ always achieves satisfactory solution quality when Rcrossover = 0.8.
The relative error is defined as (c∗c)/n, where c means the objective cost obtained by a genetic algorithm and
c∗ means the optimal objective cost obtained by B&B. It is clear that the relative error is almost zero when
Rcrossover = 0.8. On the other hand, Figure 7 shows different run times for different mutation rates. In general,
Rmutate = 0.4 is a medium setting that will not cause much run time. Moreover, Rmutate = 0.4 can achieve
better diversity than other settings. Therefore, we let Rcrossover = 0.8 and Rmutate = 0.4 be the default settings
in the following experiments. Note that throughout this section, we let the population size N = 500 and force

A THREE-AGENT SCHEDULING PROBLEM 317

Table 1. The parameter settings.

Parameter Default value Range Meaning

n 12, 14, 50, 100 Number of jobs
ni Number of jobs agent agi
AGi Set of jobs from agent agi
p1
j 1, 2, . . . , 100 Processing time of job j on machine 1
p2
j 1, 2, . . . , 100 Processing time of job j on machine 2
dj Controlled by τ and R Due data of job j
τ 0.5 0.25, 0.5, 0.75 Control parameter for due date
R 0.5 0.25, 0.5, 0.75 Control parameter for due date
M Time limit for AG2

N 500 Population size
[a1
n−1, b

1
n−1] Maintenance window for job n− 1 on machine 1

[a2
n, b

2
n] Maintenance window for job n on machine 2

Rcrossover 0.8 Crossover rate
Rmutate 0.4 Mutation rate
Gstop 500 Stopping criterion (500 generations)
Tstop n Stopping criterion (run time in s)

Figure 6. The solution quality under different parameter settings.

a genetic algorithm to stop if no improvement can be made during the most recent 500 generations or the run
time exceeds n seconds.

Second, we compare the experimental results of the three algorithms to compare their solution qualities and
execution speeds. In Table 2, there are 12 jobs, and each run time is measured in seconds. For B&B, it will
take more run time even if we have only a few jobs from ag1; i.e., a small n1. In Table 3, B&B needs more run
time. For some instances with earlier due dates and fewer jobs from ag1, B&B even takes 1523.46 s to solve an
instance on average. Note that column NI denotes the number of insolvable instances (including the instances
that cannot be solved within a billion nodes). Note that there exist insolvable instances and they are viewed
as an inevitable side effect. It is intuitive to avoid generating such insolvable instances and hence experiments
can be easily and quickly conducted. However, it would be a dilemma. If we relax the control over parameter

318 W.-C. LEE AND J.-Y. WANG

Table 2. The comparison of two genetic algorithms for n = 12.

B&B GA GA+

Nodes Run time (s) Run time (s) Relative error Run time (s) Relative error

τ R n1 n2 n3 Mean Max Mean Max NI Mean Max Mean Max NI Mean Max Mean Max NI

0.25 0.25 2 8 2 1 406 509 3 270 131 0.26 8.41 18 0.08 1.95 0.00 0.00 18 0.08 1.95 0.00 0.00 18

0.50 2 754 718 8 738 727 1.27 21.51 22 0.24 2.00 0.00 0.00 22 0.23 1.97 0.00 0.00 22

0.75 3 553 109 11 994 857 4.48 31.68 18 0.69 2.01 0.16 5.17 18 0.63 2.00 0.00 0.00 18

0.50 0.25 5 160 770 22 464 774 9.41 53.71 20 1.41 2.47 0.21 5.83 20 1.52 3.10 0.19 5.83 20

0.50 3 929 191 13 046 208 7.50 34.18 20 1.24 2.22 0.06 1.83 20 1.30 3.79 0.00 0.00 20

0.75 4 929 805 20 992 406 10.14 52.79 18 1.37 2.50 0.00 0.00 18 1.37 2.47 0.71 22.17 18

0.75 0.25 5 869 905 16 372 320 16.20 37.82 16 2.01 2.37 0.00 0.00 17 2.08 3.43 1.25 42.42 16

0.50 5 935 143 21 911 955 16.04 52.96 14 1.99 3.18 2.00 33.17 19 2.00 3.42 1.88 33.17 19

0.25 0.25 4 6 2 1 059 505 1 869 570 0.14 4.01 22 0.09 1.95 0.00 0.00 22 0.09 1.98 0.00 0.00 22

0.50 690 561.2 1 579 418 0.00 0.00 13 0.03 0.11 0.00 0.00 13 0.03 0.08 0.00 0.00 13

0.75 1 280 589 4 247 374 1.52 11.62 12 0.60 2.06 0.00 0.00 12 0.60 2.01 0.00 0.00 12

0.50 0.25 1 842 132 5 738 034 5.01 14.74 19 1.79 5.26 0.00 0.00 19 1.72 2.61 0.03 0.92 19

0.50 1 441 829 5 694 842 3.93 14.01 18 1.70 2.23 0.56 16.75 20 1.68 2.34 0.56 16.75 20

0.75 2 136 742 4 362 513 4.66 10.98 21 1.69 2.39 0.68 18.58 21 1.61 2.26 0.03 1.00 21

0.75 0.25 2 939 509 15 294 346 8.59 34.55 19 2.04 2.53 0.99 20.25 19 2.06 2.81 0.50 10.17 19

0.50 1 846 843 3 907 621 5.97 11.69 15 2.12 3.09 0.93 31.00 16 2.07 2.68 0.93 31.00 16

0.25 0.25 6 4 2 1 144 676 2 769 898 0.00 0.00 19 0.02 0.03 0.00 0.00 19 0.02 0.05 0.00 0.00 19

0.50 707 962.1 1 612 775 0.00 0.00 18 0.02 0.05 0.00 0.00 18 0.02 0.03 0.00 0.00 18

0.75 1 138 247 3 481 313 0.28 9.06 17 0.08 1.95 0.00 0.00 17 0.07 1.95 0.00 0.00 17

0.50 0.25 1 747 465 4 045 193 3.14 10.39 18 1.24 3.40 0.03 0.92 18 1.14 2.11 0.22 6.33 18

0.50 1 698 313 4 425 703 2.88 10.62 20 1.16 2.23 0.00 0.00 20 1.15 2.08 0.12 3.58 20

0.75 1 603 418 5 117 513 4.12 12.76 19 1.73 3.12 0.76 14.50 19 1.70 2.39 0.29 9.08 19

0.75 0.25 1 756 205 3 982 071 4.96 11.01 16 2.35 5.77 2.10 28.08 16 2.21 3.56 1.03 28.08 16

0.50 2 186 424 4 798 205 6.11 12.22 14 2.26 3.68 0.24 4.25 14 2.18 3.99 1.68 40.75 14

Table 3. The comparison of two genetic algorithms n = 14.

B&B GA GA+

Nodes Run time (s) Run time (s) Relative error Run time (s) Relative error

τ R n1 n2 n3 Mean Max Mean Max NI Mean Max Mean Max NI Mean Max Mean Max NI

0.25 0.25 2 10 2 161 555 157 429 646 738 0.00 0.00 19 0.04 0.17 0.00 0.00 19 0.03 0.11 0.00 0.00 19

0.50 108 644 455 330 387 217 44.80 1025.43 22 0.21 2.34 0.00 0.00 22 0.22 2.67 0.00 0.00 22

0.75 186 554 762 502 642 192 211.78 1556.42 16 0.66 2.92 0.49 11.00 16 0.54 2.54 0.00 0.00 16

0.50 0.25 364 353 248 765 431 883 808.08 2086.19 30 1.64 2.53 0.14 2.86 30 1.70 2.76 0.73 14.14 30

0.50 325 079 429 901 632 617 633.81 2359.52 14 1.40 2.53 0.00 0.14 14 1.41 2.93 0.00 0.00 14

0.75 286 124 667 758v265 894 589.31 2122.25 19 1.50 3.95 0.03 0.86 19 1.56 4.27 1.00 30.29 19

0.75 0.25 564 989 920 966 770 005 1523.46 2878.92 20 2.19 2.57 1.97 30.86 22 2.17 4.45 1.72 30.86 22

0.50 415 168 680 922 175 068 1188.51 3107.57 21 2.16 2.48 0.03 0.71 24 2.18 2.56 1.43 35.64 24

0.25 0.25 4 8 2 47 614 114 254 502 623 6.20 126.78 17 0.05 0.16 0.00 0.00 19 0.04 0.08 0.00 0.00 19

0.50 80 570 465 330 770 072 64.96 878.10 23 0.21 2.29 0.00 0.00 23 0.21 2.33 0.00 0.00 23

0.75 67 339 664 183 609 280 47.24 537.22 16 0.38 2.42 0.07 2.50 16 0.40 2.47 0.01 0.43 16

0.50 0.25 84 544 593 630 910 696 231.78 1556.67 19 1.95 3.25 0.48 9.29 20 1.96 2.98 0.39 9.29 20

0.50 98 477 910 435 242 712 246.87 1148.89 12 1.71 3.64 0.02 0.57 18 1.78 4.56 0.25 5.64 19

0.75 81 234 423 231 203 878 237.01 728.18 18 1.74 3.82 0.00 0.00 20 1.76 3.46 0.00 0.00 20

0.75 0.25 234 695 072 824 904 514 741.51 2373.29 15 2.53 4.29 1.31 13.86 15 2.63 5.09 2.01 44.36 15

0.50 215 953 990 544 430 638 687.29 1618.01 21 2.66 5.15 1.63 17.79 21 2.62 4.15 1.12 16.00 21

0.25 0.25 6 6 2 24 382 440 84 968 824 0.00 0.00 17 0.03 0.09 0.00 0.00 17 0.03 0.09 0.00 0.00 17

0.50 32 035 743 52 606 235 0.00 0.00 10 0.03 0.08 0.00 0.00 10 0.03 0.11 0.00 0.00 10

0.75 46 658 039 166 235 088 22.61 436.27 12 0.29 2.53 0.00 0.07 12 0.29 2.56 0.00 0.07 12

0.50 0.25 66 418 346 181 927 545 130.37 507.66 25 1.18 2.62 0.73 18.36 25 1.20 2.57 0.81 18.36 25

0.50 60 791 040 184 787 024 161.79 511.12 17 1.68 3.56 0.36 12.00 17 1.72 3.42 0.45 12.00 17

0.75 74 681 787 284 213 314 193.19 786.09 13 1.90 4.06 0.64 15.50 14 1.95 4.57 0.04 1.50 14

0.75 0.25 72 162 950 220 022 172 234.66 637.19 7 2.59 4.17 1.70 18.57 7 2.65 3.74 1.71 28.64 7

0.50 130 016 373 988 834 987 387.02 2509.15 15 2.79 4.79 3.53 39.29 16 2.71 4.45 3.88 31.07 16

A THREE-AGENT SCHEDULING PROBLEM 319

Figure 7. The execution efficiency under different parameter settings.

settings, problem instances will be easy and can be solved in a short time; nevertheless, the discrimination
between different algorithms will be vague. On the other hand, if we insist on generating fair and comprehensive
problem instances, some instances may be difficult or even insolvable; however, these difficult instances are useful
to test the abilities of metaheuristic algorithms. Consequently, we require retaining these difficult instances to
evaluate metaheuristic algorithms and reluctantly tolerate this side effect. Especially when the problem size is
large, the requirement becomes more obvious. In Tables 2 and 3, the run times of GA+ and GA are similar.
Unlike B&B, the run times of both genetic algorithms increase slightly when the problem size increases. On
the other hand, GA+ usually outperforms GA in terms of solution quality. This happens because GA+ utilizes
a feasible chromosome at the beginning. Moreover, the solution quality is slightly decreasing when we have a
large n1 and a large τ . It means that GA+ takes more trials to locate the global optimums if there are more
jobs from ag1 and all of them have earlier due dates.

Third, two experiments are conducted to observe the performance of metaheuristic algorithms when the
problem size is large. Since B&B cannot provide the optimal solutions when the problem size is large, we
compare the two genetic algorithms only. Tables 4 and 5 show the performance of both genetic algorithms. The
relative deviation is defined as (c − l)/c, where c means the objective cost obtained by two genetic algorithms
and l means the proposed lower bound. If c = 0 and l = 0, we let the relative deviation be 0. On the other hand,
for the case l = 0 and c 6= 0, the relative deviation is denoted by “–”. Again, for the difficult instances (i.e., large
n1 or large τ), both algorithms can take the predefined maximum run time (i.e., n seconds) only, where n is the
number of jobs. As shown in the two tables, in general, GA+ leaves fewer instances insolvable and outperforms
GA in terms of solution quality. Therefore, GA+ achieves better stability. This is because GA+ has a feasible
solution at the beginning of evolution. If the mutation rate and crossover rate are specified properly, GA+ is
taught to obtain another better solution if any. Therefore, the final objective cost is very likely to be lower than
the initial one. Conversely, GA has no such safety mechanisms and its solution quality is naturally uncertain.

Fourth, Figure 8 shows the results of sensitivity analyses on different parameters. When we adjust the
magnitude of a parameter from -15% to 15%, the default values of other parameters are n = 12, n1 = 6,
M = 0.75

∑
j∈AG1

(p1
j + p2

j), τ = 0.5, and R = 0.5. For each setting, we conduct 50 random trials. There might
be some insolvable instances for each setting; i.e., constraints are too strict. For processing time, it is the only
parameter that varies positively. The objective cost increases quickly if pj increases. Conversely, if we relax the
parameter of due date (dj), we have a larger freedom to schedule jobs and thus have lower objective costs. On

320 W.-C. LEE AND J.-Y. WANG

Table 4. The comparison of two genetic algorithms for n = 50.

GA GA+

Run time (s) Relative deviation Run time (s) Relative deviation
τ R n1 n2 n3 Mean Max Mean Max NI Mean Max Mean Max NI

0.25 0.25 10 38 2 0.82 3.31 0.000 0.000 6 0.85 3.56 0.000 0.000 6
0.50 0.79 4.03 0.000 0.000 3 0.69 2.53 0.000 0.000 3
0.75 1.77 11.65 0.071 – 8 1.89 14.02 0.093 – 7

0.50 0.25 6.54 25.96 0.409 – 6 6.42 20.25 0.409 – 6
0.50 8.76 28.03 0.614 – 3 9.87 26.55 0.614 – 3
0.75 8.43 27.52 0.497 – 4 7.59 21.84 0.497 – 4

0.75 0.25 14.52 36.47 0.746 – 2 15.16 30.48 0.730 – 2
0.50 17.81 36.16 0.871 – 2 17.46 43.32 0.868 – 2

0.25 0.25 20 28 2 1.68 4.54 0.000 0.000 4 1.71 4.60 0.000 0.000 4
0.50 1.51 3.68 0.000 0.000 6 1.42 5.54 0.000 0.000 6
0.75 1.98 10.39 0.000 0.000 1 1.76 5.87 0.000 0.000 1

0.50 0.25 2.52 17.14 0.043 – 3 2.38 17.36 0.043 – 3
0.50 10.88 34.68 0.522 – 4 10.87 41.68 0.489 – 3
0.75 15.68 39.06 0.694 – 3 13.31 38.38 0.694 – 3

0.75 0.25 32.66 50.05 0.501 0.708 4 33.75 50.03 0.473 0.687 4
0.50 36.90 50.05 0.772 – 2 36.11 50.03 0.751 – 2

0.25 0.25 30 18 2 1.35 2.89 0.000 0.000 1 1.31 2.70 0.000 0.000 1
0.50 1.36 3.53 0.000 0.000 2 1.27 2.68 0.000 0.000 2
0.75 1.34 2.36 0.000 0.000 3 1.34 2.65 0.000 0.000 3

0.50 0.25 1.68 3.04 0.000 0.000 5 1.58 2.59 0.000 0.000 5
0.50 2.85 22.40 0.061 – 1 2.83 17.75 0.061 – 1
0.75 12.89 38.86 0.617 – 3 11.73 33.82 0.617 – 3

0.75 0.25 40.92 50.05 0.526 0.767 2 43.79 50.05 0.499 0.760 2
0.50 42.96 50.05 0.808 – 0 44.22 50.05 0.788 – 1

the other hand, it is interesting that objective cost varies insignificantly with maintenance window size (bi− ai)
and completion time limit (M). Although M does not affect objective cost greatly, a large value of M implies
fewer insolvable instances (i.e., NI). It is also another kind of positive influence on objective cost. Moreover,
larger maintenance windows do not imply lower objective costs. Therefore, we can set b1n−1−a1

n−1 = 2p1
n−1 and

b2n−a2
n = 2p2

n to schedule jobs; i.e., it is wide enough. It is helpful for us to determine the widths of maintenance
windows.

6. Conclusion

This study investigates a three-agent flowshop problem on two machines. Agent 1 aims to minimize its total
tardiness subject to the constraints that the maximum completion time of agent 2’s jobs cannot exceed a
fixed limit and that agent 3 must complete its two maintenance activities within two maintenance windows. A
branch-and-bound algorithm (B&B) and an improved genetic algorithm (GA+) are proposed. In general, due
to the nature of a genetic algorithm (i.e., random walk), the solution quality is usually unstable. In this study,
consequently, we hybridize a feasible chromosome into the initial population. That is, we reduce the adverse
influence of the solutions randomly generated in the initial population. As shown in these experiments, the
maximum mean of relative errors can be reduced to 3.88 or lower when the problem size is small. It implies
that hybridizing a feasible solution is helpful to improve the solution quality of GA+.

However, when the problem size is large, it is difficult to obtain the optimal solutions for evaluating the
performance of GA+. Consequently, we propose a relative deviation to show the gap between GA+ and another

A THREE-AGENT SCHEDULING PROBLEM 321

Table 5. The comparison of two genetic algorithms for n = 100.

GA GA+

Run time (s) Relative deviation Run time (s) Relative deviation

τ R n1 n2 n3 Mean Max Mean Max NI Mean Max Mean Max NI

0.25 0.25 20 78 2 7.18 37.39 0.000 0.000 2 7.79 50.78 0.000 0.000 2
0.50 6.49 32.36 0.000 0.000 2 6.07 23.62 0.000 0.000 2

0.75 8.87 53.54 0.063 – 2 8.91 47.00 0.063 – 2

0.50 0.25 31.81 100.06 0.435 – 5 28.80 90.61 0.435 – 4
0.50 33.68 100.04 0.550 – 1 34.57 100.09 0.529 – 1

0.75 33.82 100.06 0.445 – 1 30.88 100.03 0.446 – 1

0.75 0.25 76.41 100.08 0.684 – 2 76.76 100.09 0.658 – 2
0.50 79.60 100.09 0.805 – 0 79.93 100.08 0.785 – 0

0.25 0.25 40 58 2 14.68 42.07 0.000 0.000 4 13.91 37.74 0.000 0.000 3

0.50 16.25 50.55 0.000 0.000 2 13.85 44.21 0.000 0.000 2
0.75 15.64 40.54 0.000 0.000 1 15.12 38.11 0.000 0.000 1

0.50 0.25 17.00 44.46 0.000 0.000 3 15.66 33.99 0.000 0.000 4

0.50 44.63 100.08 0.500 – 0 42.85 100.08 0.500 – 0
0.75 62.34 100.08 0.608 – 2 60.66 100.08 0.607 – 2

0.75 0.25 99.87 100.09 0.493 0.641 13 100.04 100.08 0.432 0.618 9
0.50 100.04 100.08 0.817 0.996 11 100.04 100.09 0.773 0.993 9

0.25 0.25 60 38 2 11.51 20.56 0.000 0.000 1 11.36 24.09 0.000 0.000 1

0.50 11.91 27.94 0.000 0.000 1 11.22 19.02 0.000 0.000 1
0.75 12.31 30.97 0.000 0.000 0 10.74 21.15 0.000 0.000 0

0.50 0.25 12.88 27.07 0.000 0.000 2 11.86 19.91 0.000 0.000 2

0.50 15.02 22.59 0.000 0.000 4 14.33 22.40 0.000 0.000 4
0.75 58.44 100.09 0.617 – 2 56.50 100.08 0.626 – 2

0.75 0.25 100.04 100.08 0.481 0.611 26 100.05 100.08 0.435 0.575 15

0.50 100.05 100.09 0.832 – 21 100.05 100.09 0.778 – 16

0

50

100

150

200

250

-1
5
%

-1
0
%

-5
%

0
%

5
%

1
0
%

1
5
%

O
b

je
c
ti

v
e
 C

o
st

Percent Increase

pj

dj

bi-ai

M

Figure 8. The effects of input parameters on the objective cost.

322 W.-C. LEE AND J.-Y. WANG

ordinary genetic algorithm. Moreover, when we generate large and difficult problem instances, some insolvable
instances will emerge. It is also worthwhile to explore how to generate adequate instances as well as avoid
insolvable instances. In the future, we design a more powerful lower bound or a more efficient crossover operator
to deal with these difficult instances.

Acknowledgements. This study was supported under Contract NSC 103-2221-E-035-075-MY3. The authors thank the
anonymous reviewers for their valuable comments and suggestions to improve the quality of this study.

References

[1] A. Agnetis, G. de Pascale and D. Pacciarelli, A Lagrangian approach to single-machine scheduling problems with two competing
agents. J. Scheduling 12 (2009) 401–415.

[2] F. Ahmadizar and J. Eteghadipour, Single-machine earliness-tardiness scheduling with two competing agents and idle time.
Eng. Optim. 49 (2017) 499–512.

[3] K.R. Baker and J.C. Smith, A multiple-criterion model for machine scheduling. J. Scheduling 6 (2003) 7–16.

[4] S. Bouzidi-Hassini, F.B.S. Tayeb, F. Marmier and M. Rabahi, Considering human resource constraints for real joint production
and maintenance schedules. Comput. Ind. Eng. 90 (2015) 197–211.

[5] X.L. Cao, W.H. Wu, W.H. Wu and C.C. Wu, Some two-agent single-machine scheduling problems to minimize minmax and
minsum of completion times. Oper. Res. 18 (2018) 293–314.

[6] W.J. Chen, Scheduling of jobs and maintenance in a textile company. Int. J. Adv. Manuf. Technol. 31 (2007) 737–742.

[7] W.J. Chen, Scheduling with dependent setups and maintenance in a textile company. Comput. Ind. Eng. 57 (2009) 867–873.

[8] T.C.E. Cheng, C.Y. Liu, W.C. Lee, M. Ji, Two-agent single-machine scheduling to minimize the weighted sum of the agents’
objective functions. Comput. Ind. Eng. 78 (2014) 66–73.

[9] M.B. Cheng, P.R. Tadikamalla, J. Shang and B.X. Zhang, Two-machine flow shop scheduling with deteriorating jobs: mini-
mizing the weighted sum of makespan and total completion time. J. Oper. Res. Soc. 66 (2015) 709–719.

[10] S.R. Cheng, Y.Q. Yin, C.H. Wen, W.C. Lin, C.C. Wu and J. Liu, A two-machine flowshop scheduling problem with precedence
constraint on two jobs. Soft Comput. 21 (2017) 2091–2103.

[11] S. Gawiejnowicz, W.C. Lee, C.L. Lin and C.C. Wu, Single-machine scheduling of proportionally deteriorating jobs by two
agents. J. Oper. Res. Soc. 62 (2011) 1983–1991.

[12] D.E. Goldberg and R. Lingle, Alleles, loci and the traveling salesman problem. In: Proceedings of an International Conference
on Genetic Algorithms and Their Application, Hillsdale, NJ, USA (1985).

[13] L. Grigoriu and D. Briskorn, Scheduling jobs and maintenance activities subject to job-dependent machine deteriorations.
J. Scheduling 20 (2017) 183–197.

[14] M.Z. Gu, J.W. Gu and X.W. Lu, An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines.
J. Scheduling 21 (2018) 483–492.

[15] M. Haouari and M. Kharbeche, An assignment-based lower bound for a class of two-machine flow shop problems. Comput.
Oper. Res. 40 (2013) 1693–1699.

[16] R. Jamshidi and M.M.S. Esfahani, Reliability-based maintenance and job scheduling for identical parallel machines. Int. J.
Prod. Res. 53 (2015) 1216–1227.

[17] B. Jeong and Y.D. Kim, Minimizing total tardiness in a two-machine re-entrant flowshop with sequence-dependent setup times,
Comput. Oper. Res., 47 (2014), 72-80.

[18] V. Kachitvichyanukul, Comparison of three evolutionary algorithms: GA, PSO, and DE. Ind. Eng. Manage. Syst. 11 (2012)
215–223.

[19] Y.D. Kim, A new branch and bound algorithm for minimizing mean tardiness in 2-machine flowshops. Comput. Oper. Res. 20
(1993) 391–401.

[20] J.Y. Lee and Y.D. Kim, A branch and bound algorithm to minimize total tardiness of jobs in a two identical-parallel-machine
scheduling problem with a machine availability constraint. J. Oper. Res. Soc. 66 (2015) 1542–1554.

[21] W.C. Lee and J.Y. Wang, A scheduling problem with three competing agents. Comput. Oper. Res. 51 (2014) 208–217.

[22] W.C. Lee and J.Y. Wang, A three-agent scheduling problem for minimizing the makespan on a single machine. Comput. Ind.
Eng. 106 (2017) 147–160.

[23] W.C. Lee and C.C. Wu, Minimizing the total flow time and the tardiness in a two-machine flow shop. Int. J. Syst. Sci. 32
(2001) 365–373.

[24] W.C. Lee, S.K. Chen and C.C. Wu, Branch-and-bound and simulated annealing algorithms for a two-agent scheduling problem.
Expert Syst. App. 37 (2010) 6594–6601.

[25] W.C. Lee, Y.H. Chung and M.C. Hu, Genetic algorithms for a two-agent single-machine problem with release time. Appl. Soft
Comput. 12 (2012) 3580–3589.

[26] W.C. Lee, J.Y. Wang and H.W. Su, Algorithms for single-machine scheduling to minimize the total tardiness with learning
effects and two competing agents. Concurrent Eng.-Res. App. 23 (2015) 13–26.

[27] W.C. Lee, J.Y. Wang and M.C. Lin, A branch-and-bound algorithm for minimizing the total weighted completion time on
parallel identical machines with two competing agents. Knowl.-Based Syst. 105 (2016) 68–82.

A THREE-AGENT SCHEDULING PROBLEM 323

[28] D.M. Lei, Variable neighborhood search for two-agent flow shop scheduling problem. Comput. Ind. Eng. 80 (2015) 125–131.
[29] B.M.T. Lin, F.J. Hwang and J.N.D. Gupta, Two-machine flowshop scheduling with three-operation jobs subject to a fixed job

sequence. J. Scheduling 20 (2017) 293–302.
[30] P. Liu, N. Yi, X.Y. Zhou and H. Gong, Scheduling two agents with sum-of-processing-times-based deterioration on a single

machine. Appl. Math. Comput. 219 (2013) 8848–8855.
[31] M. Liu, S.J. Wang, C.B. Chu and F. Chu, An improved exact algorithm for single-machine scheduling to minimise the number

of tardy jobs with periodic maintenance. Int. J. Prod. Res. 54 (2016) 3591–3602.
[32] E.G. Lopez and M. O’Neill, On the effects of locality in a permutation problem: the Sudoku puzzle. In: IEEE Symposium on

Computational Intelligence and Games. Milano, Italy (2009) 80–87.
[33] S.A. Mansouri and E. Aktas, Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem.

J. Oper. Res. Soc. 67 (2016) 1382–1394.
[34] B. Mor and G. Mosheiov, Minimizing maximum cost on a single machine with two competing agents and job rejection.

J. Oper. Res. Soc. 67 (2016) 1524–1531.
[35] Y.D. Ni and Z.J. Zhao, Two-agent scheduling problem under fuzzy environment. J. Intell. Manuf. 28 (2017) 739–748.
[36] J.C.H. Pan, J.S. Chen and C.M. Chao, Minimizing tardiness in a two-machine flow-shop. Comput. Oper. Res. 29 (2002)

869–885.
[37] K. Rustogi and V.A. Strusevich, Single machine scheduling with time-dependent linear deterioration and rate-modifying

maintenance, J. Oper. Res. Soc. 66 (2015) 500–515.
[38] J. Schaller, Note on minimizing total tardiness in a two-machine flowshop. Comput. Oper. Res. 32 (2005) 3273–3281.
[39] D. Shabtay, O. Dover and M. Kaspi, Single-machine two-agent scheduling involving a just-in-time criterion. Int. J. Prod. Res.

53 (2015) 2590–2604.
[40] Y.R. Shiau, W.C. Lee, Y.S. Kung and J.Y. Wang, A lower bound for minimizing the total completion time of a three-agent

scheduling problem. Inf. Sci. 340 (2016) 305–320.
[41] J.M.P. Siopa, J.E.S. Garcao and J.M.E. Silva, Component redundancy allocation in optimal cost preventive maintenance

scheduling. J. Oper. Res. Soc. 66 (2015) 925–935.
[42] L.H. Su and H.M. Wang, Minimizing total absolute deviation of job completion times on a single machine with cleaning

activities. Comput. Ind. Eng. 103 (2017) 242–249.
[43] K. Thornblad, A.B. Stromberg, M. Patriksson and T. Almgren, Scheduling optimisation of a real flexible job shop including

fixture availability and preventive maintenance. Eur. J. Ind. Eng. 9 (2015) 126–145.
[44] M. Torkashvand, B. Naderi and S.A. Hosseini, Modelling and scheduling multi-objective flow shop problems with interfering

jobs. Appl. Soft Comput. 54 (2017) 221–228.
[45] J.Y. Wang, A branch-and-bound algorithm for minimizing the total tardiness of a three-agent scheduling problem considering

the overlap effect and environmental protection. IEEE Access 7 (2019) 5106–5123.
[46] J.Y. Wang, Minimizing the total weighted tardiness of overlapping jobs on parallel machines with a learning effect. J. Oper.

Res. Soc. Accepted (2019) https://doi.org/10.1080/01605682.2019.1590511.
[47] D.J. Wang, Y.Q. Yin, J.Y. Xu, W.H. Wu, S.R. Cheng and C.C. Wu, Some due date determination scheduling problems with

two agents on a single machine. Int. J. Prod. Econ. 168 (2015) 81–90.
[48] J.Q. Wang, G.Q. Fan, Y.Q. Zhang, C.W. Zhang and J.Y.T. Leung, Two-agent scheduling on a single parallel-batching machine

with equal processing time and non-identical job sizes. Eur. J. Oper. Res. 258 (2017) 478–490.
[49] D.J. Wang, Y.Q. Yin, W.H. Wu, W.H. Wu, C.C. Wu and P.H. Hsu, A two-agent single-machine scheduling problem to minimize

the total cost with release dates. Soft Comput. 21 (2017) 805–816.
[50] W.H. Wu, Y.Q. Yin, T.C.E. Cheng, W.C. Lin, J.C. Chen, S.Y. Luo and C.C. Wu, A combined approach for two-agent

scheduling with sum-of-processing-times-based learning effect. J. Oper. Res. Soc. 68 (2017) 111–120.
[51] Z.J. Xu and D.H. Xu, Single-machine scheduling with preemptive jobs and workload-dependent maintenance durations. Oper.

Res. 15 (2015) 423–436.
[52] C.N. Yang, B.M.T. Lin, F.J. Hwang and M.C. Wang, Acquisition planning and scheduling of computing resources. Comput.

Oper. Res. 76 (2016) 167–182.
[53] J.F. Ye and H.M. Ma, Multiobjective joint optimization of production scheduling and maintenance planning in the flexible

job-shop problem. Math. Probl. Eng. 2015 (2015) 725460.
[54] Y.Q. Yin, C.C. Wu, W.H. Wu, C.J. Hsu and W.H. Wu, A branch-and-bound procedure for a single-machine earliness scheduling

problem with two agents. Appl. Soft Comput. 13 (2013) 1042–1054.
[55] Y.Q. Yin, D.S. Ye and G.C. Zhang, Single machine batch scheduling to minimize the sum of total flow time and batch delivery

cost with an unavailability interval. Inf. Sci. 274 (2014) 310–322.
[56] Y.Q. Yin, Y. Wang, T.C.E. Cheng, D.J. Wang and C.C. Wu, Two-agent single-machine scheduling to minimize the batch

delivery cost. Comput. Ind. Eng. 92 (2016) 16–30.
[57] A.J. Yu and J. Seif, Minimizing tardiness and maintenance costs in flow shop scheduling by a lower-bound-based GA. Comput.

Ind. Eng. 97 (2016) 26–40.
[58] X.Y. Yu, Y.L. Zhang, D.H. Xu and Y.Q. Yin, Single machine scheduling problem with two synergetic agents and piece-rate

maintenance. Appl. Math. Modell. 37 (2013) 1390–1399.
[59] F. Zammori, M. Braglia and D. Castellano, Harmony search algorithm for single-machine scheduling problem with planned

maintenance. Comput. Ind. Eng. 76 (2014) 333–346.
[60] X.G. Zhang, Y.Q. Yin and C.C. Wu, Scheduling with non-decreasing deterioration jobs and variable maintenance activities on

a single machine. Eng. Optim. 49 (2017) 84–97.

https://doi.org/10.1080/01605682.2019.1590511

	Introduction
	Problem formulation
	Branch-and-bound algorithm
	Rule 1.
	Rule 2.
	Rule 3.
	Rule 4.
	Rule 5.
	Rule 6.
	Rule 7.
	Rule 8
	Rule 9.
	Rule 10.
	Rule 11.
	Rule 12.
	Rule 13.
	Rule 14.
	Rule 15.
	Rule 16.
	Rule 17.
	Rule 18.
	Rule 19.
	Rule 20.
	Rule 21.
	Rule 22.
	Rule 23.
	Rule 24.
	Rule 25.
	Rule 26.
	Rule 27.
	Rule 28.
	Rule 29.
	Rule 30.

	Genetic algorithm
	Experimental results
	Conclusion
	References

