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EQUILIBRIUM JOINING STRATEGIES IN THE SINGLE-SERVER CONSTANT
RETRIAL QUEUES WITH BERNOULLI VACATIONS

Ke Sun1 and Jinting Wang1,2,∗

Abstract. We consider the equilibrium joining strategies in an M/M/1 constant retrial queue with
Bernoulli vacations. There is no buffer in front of the server, thus an arriving customer will be served
immediately if the server is available, and blocked ones wait in a queue if the server is busy or under
vacation. The queue length information of orbit is observable to customers upon their arrivals. Then,
blocked customers decide whether to join the orbit or not based on a reward-cost structure and their
information level. After completing service, the server begins a vacation or remains available and it
becomes available again when a vacation ends. The available server seeks to serve the customer in
the head of the orbit queue. During the seeking process, an external arrival can interrupt it and
obtain service. Our goal is to explore equilibrium behavior of customers in two information cases,
fully observable case and almost observable case, which corresponding to whether blocked arrivals can
differentiate the state of unavailable server. We obtain the threshold strategies of blocked customers
in two information cases and provide numerical experiments to characterize the influence of different
parameters on the equilibrium joining strategies.
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1. Introduction

During the past decades, considerable efforts have been devoted to game-theoretic analysis in various queueing
systems. It was initiated by Naor [24] which explored equilibrium and social optimal strategies in an observable
M/M/1 queueing model and a reward-cost structure is used to reflect customers’ desire for service and unwill-
ingness to wait. Edelson and Hilderbrand [8] extended Naor’s model by assuming that arrivals do not have queue
length information. Since then, there exists an emerging tendency to derive joining strategies of customers in
different queueing systems from economic viewpoint, see Economou and Kanta [6], Burnetas and Economou [4]
and among others. Interested readers may refer to the monographs by Hassin and Haviv [13], Tian and Zhang
[25] and Hassin [12], they provided comprehensive studies and methodologies in various queueing systems.

As an important part of queueing theory, retrial queue has been extensively studied and it has wide applica-
tions in communication networks, cognitive radio networks and telephone switching systems. In retrial queues,
customers who find the server is not available upon arrivals are forced to leave the service area and decide
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whether to join a virtual space called orbit or not, then customers in the orbit repeat service requests after
random time until succeed. The pioneering work of retrial queues can be found in Cohen [5], Falin [9], Falin and
Templeton [10], among others. The constant retrial policy in queue was introduced by Fayolle [11], in which
a telephone exchange system was modelled as a retrial queue with FCFS (first-come first-served) discipline in
the orbit. Subsequently, more complicated queueing systems with this policy has been studied, see Artalejo [1],
Martin and Artalejo [23], Wang et al. [27], and among others. It is quite practical in real life, for example, in
communication protocols, the inter-retrial times are controlled by service center. Then, blocked customers may
leave their detailed contacts and available server seek customer in in orbit and provide service to the head of
the queue.

Besides, queueing systems with vacations have been extensively studied, and the earliest work on vacation
queue with Bernoulli scheme was presented by Keilson and Servi [14]. They focused on the system where a sever
begins a vacation directly if the system is empty after a service completion, but if there are still customers in
the system, it takes a vacation with probability q or continues to work with probability p (p = 1 − q). Once
a vacation ends, the server turns to busy if the queue is not empty; otherwise, it waits for new arrivals. This
discipline occurs frequently in real life, in which the server has to operate additional jobs after service such
as system maintenance, trouble-saving or just off-the-line periodically. We can find the related applications in
multitasking operating systems of computer networks, production and quality control problems, etc., see Kumar
and Madheswari [16], Kumar et al. [18], [19], Li et al. [21], and among others.

However, majority of works in vacation queues with retrial policy are devoted to performance analysis and
stochastic decomposition, and the game-theoretic analysis is few. The combination of Bernoulli vacation queues
with constant retrial policy in queueing analysis can be found in Kumar and Arivudainambi [15], Kumar
et al. [17] and Zhou [30]. Moreover, Kulkarni [20] introduced a single-server retrial queue and explored coop-
erative and noncooperative strategies for two types of customers. Economou and Kanta [7] studied an M/M/1
queue with constant retrial policy and derived customers’ equilibrium strategies as well as the social and profit
maximization problems. Wang and Zhang [26] investigated equilibrium and socially optimal joining strategies
in single-server retrial queue under differen information levels. To learn more equilibrium analysis of constant
retrial queue see, for example, Economou and Kanta [7], Zhang et al. [29] and Wang et al. [28]. Liu and Wang
[22] considered customers’ behavior in constant retrial queue with Bernoulli vacations discipline.

In this study, a single-server constant retrial queue with Bernoulli vacations is analyzed. For example, data
transmission is common in network service system, and often they were determined by Transmission Control
Protocol (TCP), see the related application in Avrachenkov and Yechiali [2] and [3]. The constant retrial
discipline in our paper is a subcase with buffer N = 1 in [2] and [3], that is, data in transmission which find
busy server will join and wait in a queue in the orbit, then the head of the data repeats service request with an
exponential rate θ. In addition, virus scanning is a necessary maintenance method to keep the function of the
system well, after each data processing, the server takes a vacation to do virus scanning with probability q and
resumed to be available with probability p (p = 1 − q). To the best of the authors’ knowledge, studies of the
equilibrium behavior of blocked customers in constant retrial queue with Bernoulli vacations do not yet exist
so far. Therefore, it is the aim of the present paper to study the strategic behavior of arrivals under different
levels of information, where the information refers to the state of unavailable server.

The rest of this paper is structured as follows. Section 2 briefly describes the model and gives some preliminary
notations. In Section 3, we derive the corresponding equilibrium threshold strategies of arrivals in the fully
observable case and the almost observable case. Section 4 presents some numerical examples to show the effect of
information and parameters on the customers’ equilibrium behavior, and finally, some conclusions are presented
in Section 5.

2. Model description

We consider a single-server constant retrial queue, where the server takes vacations with Bernoulli schedule
after each service. That is, after each service completion, the server continues to be available with probability



EQUILIBRIUM JOINING STRATEGIES IN THE SINGLE-SERVER CONSTANT S483

p and takes a vacation with probability q, where p+ q = 1 (we adopt p ∈ (0, 1) to rule out trivial cases). Each
vacation period is exponentially distributed with parameter γ, after vacation, the server becomes available.
Potential customers arrive in Poisson process with rate λ, and the service rate is exponentially distributed
with µ. Customers find available server upon arrivals get service immediately and there is no waiting space for
blocked arrivals (who find unavailable server, busy or under vacation). These blocked customers are forced to
leave the service area, and then decide whether to join an infinite retrial orbit by leaving their contact details or
not. The idle server seeks the head customer in the orbit with an exponential rate θ and provides service to him
if he was searched before an external arrival. Therefore, blocked customers in the orbit are served according to
FCFS (first-come first-served) discipline. Finally, we assume that the inter-arrival times, service times, vacation
times and retrial times are mutually independent.

We denote the system state by a pair (N(t), I(t)) at time t, where N(t) is the number of customers in the
orbit at time t, and I(t) represents the state of the server at time t (0: under vacation; 1: busy; 2: available). In
the fully observable case, arriving customers can observe both N(t) and I(t) whereas in the almost observable
case, blocked customers can only observe N(t). Accordingly, the stochastic process {(N(t), I(t)), t ≥ 0} is a two-
dimensional continuous time Markov chain with state space Ω = {0, 1, 2, . . .}× {0, 1, 2} and the main transition
rates are given for n = 0, 1, 2, . . . as follows:

p(n,i)(n+1,i) = λ, i = 0, 1; p(n,1)(n,2) = pµ;
p(n,1)(n,0) = qµ; p(n,2)(n,1) = λ;

p(n+1,2)(n,1) = θ; p(n,0)(n,2) = γ.

We are interested in deriving blocked customers’ joining behavior under different information levels, where
the information refers to the specific state of an unavailable server (busy or vacation). To model this decision
process, we assume that a reward R will be received by each customer after service completion, also, a waiting
cost is accumulated at C per unit time before leaving the system (both in the orbit and the server). We consider
homogenous and risk neutral customers here, thus R and C are same for all customers, and they concentrate
on their own expected utilities based on a linear reward-cost structure (service reward minus waiting cost). In
addition, the join/balk decision is irrevocable, i.e., no customer can renege after joining the orbit and re-enter
after balking.

3. Equilibrium threshold strategies

In this section, we intend to investigate the existence of customers’ equilibrium strategies with threshold type
under two information cases. In any case, external arrivals can be served directly when server is available (I(t) =
2), thus we focus our research on unavailable server (I(t) = 0, 1). In the fully observable case, blocked customers
observe the number of customers in the orbit and the sate of unavailable server. We demonstrate that the pure
threshold strategy is specified by a pair (ne(0), ne(1)), where blocked customers join if N(I(t)) ≤ ne(I(t)) − 1
at t and balks otherwise. In the almost observable case, customers’ decisions depend only on N(t) they observe.
Thus there exists a single threshold ne, where arrivals join if N(t) ≤ ne−1 at t and balks otherwise. Besides, the
condition R− C

µ > 0 is necessary, or no customer will join the system even he can get service upon arrival. The
stationary distribution of the system under two information cases are studied and the corresponding equilibrium
joining behavior are given in the following.

3.1. Fully observable queue

In this case, blocked customers receive both the information of server’s state and the number of customers in
the orbit upon arrivals, and we demonstrate the existence and uniqueness of the pair thresholds (ne(0), ne(1)).
The corresponding transition rate diagram is shown in Figure 1.
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Figure 1. State transition diagram of constant retrial queue with Bernoulli vacations.

Theorem 3.1. In the fully observable M/M/1 constant retrial queue with Bernoulli vacations, there exists a
pair of thresholds strategy for blocked customers upon arrivals, where

(ne(0), ne(1)) =
(⌊

µθ(γR− pC)
(µγ + (qµ+ γ)(λ+ θ))C

⌋
,

⌊
θγ(µR− C)

(µγ + (qµ+ γ)(λ+ θ))C

⌋)
, (3.1)

and they all follow the strategy “join the orbit if N(I(t)) ≤ ne(I(t))− 1 and balks otherwise”.

Proof. We denote T (n, i) as the expected waiting time in the orbit, given that he is in the nth position and the
server state is i (n ≥ 1, i = 0, 1). Then we have the following equations:

T (1, 0) =
1
γ

+ T (1, 2),

T (1, 1) =
1
µ

+ pT (1, 2) + qT (1, 0),

T (1, 2) =
1

λ+ θ
+

λ

λ+ θ
T (1, 1),

T (n, 0) =
1
γ

+ T (n, 2), n = 2, 3, . . . ,

T (n, 1) =
1
µ

+ pT (n, 2) + qT (n, 0), n = 2, 3, . . . ,

T (n, 2) =
1

λ+ θ
+

λ

λ+ θ
T (n, 1) +

θ

λ+ θ
T (n− 1, 1), n = 2, 3, . . . .

Solving these equations by iteration, we obtain the general formulas of T (n, i):

T (n, 0) =
[µγ + (qµ+ γ)(λ+ θ)]n

µθγ
+
pµ− γ
µγ

, n = 1, 2, 3, . . . , (3.2)

T (n, 1) =
[µγ + (qµ+ γ)(λ+ θ)]n

µθγ
, n = 1, 2, 3, . . . , (3.3)

T (n, 2) =
[µγ + (qµ+ γ)(λ+ θ)])n

µθγ
− qµ+ γ

µγ
, n = 1, 2, 3, . . . . (3.4)

Based on the reward-cost structure, the expected net benefit of a blocked customer who decides to join is:

S(n, i) = R− C
(
T (n+ 1, i) +

1
µ

)
,

given that he observes system state (n, i) (n ≥ 0, i = 0, 1) upon arrival.
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If S(n, i) > 0, i.e., the reward for service completion exceeds the expected waiting cost, he prefers to join,
and if S(n, i) = 0, he is indifferent between joining and balking and balks directly if S(n, i) < 0. Combining
equations (3.2) and (3.3), the mean waiting time when he observes (n, i) is T (n + 1, i) + 1

µ (i = 0, 1) and it is
increasing in n, thus S(n, i) is monotonically decreasing in n.

Therefore, there exists unique threshold which satisfies the conditions S(n−1, i) ≥ 0 and S(n, i) < 0 for every
i = 0, 1, and we denote it as ne(I(t)). Blocked customer enters if N(I(t)) ≤ ne(I(t)) − 1 and balks otherwise,
which leads to the maximal number of customers in the orbit is ne(I(t)). Then, by solving S(n− 1, i) = 0 with
the help of equations (3.2) and (3.3), we immediately obtain the value of ne(I(t)) in (3.1). �

In almost all previous queueing literature with vacations, arriving customers prefer to join the busy server
than it is under vacations. However, this preference is not always found in our model by comparing the value
of ne(0) and ne(1) in (3.1). This is because that blocked arrivals join the orbit need to wait the server becomes
available (i = 2) and seeks them, they are more concerned about how long the server state turns to available.
Hence, we discuss the order of the two thresholds in state 0 and 1 and find that it depends on the transfer rate
from unavailable server to the available one.

Proposition 3.2. In the fully observable M/M/1 constant retrial queue with Bernoulli vacations, the thresholds
ne(0) and ne(1) have the following characteristics:

(I) If pµ ≤ γ, then ne(1) ≤ ne(0) ≤ ne(1) + 1;
(II) If pµ > γ, then ne(1) > ne(0);

(IIa) when A+B ≥ 0, we have ne(1)− ne(0) = 1,
(IIb) when A+B < 0, we have ne(1)− ne(0) ≥ 1.

The notations A,B are defined as A = θ(γ − pµ), B = µγ + (qµ+ γ)(λ+ θ).

Proof. From Theorem 3.1, we obtain the specific forms of ne(1), ne(0) and the following equation:

µθ(γR− pC)
(µγ + (qµ+ γ)(λ+ θ))C

− θγ(µR− C)
(µγ + (qµ+ γ)(λ+ θ))C

=
θ(γ − pµ)

µγ + (qµ+ γ)(λ+ θ)
·

We denote A = θ(γ− pµ), B = µγ+ (qµ+ γ)(λ+ θ) > 0, where A−B = −λ(qµ+ γ)−µ(θ+ γ) < 0. It followed
by the three cases below:

(1) If pµ < γ, then ne(0) ≥ ne(1) and 0 < A < B, then 0 < A
B < 1, ne(0)− ne(1) ∈ {0, 1};

(2) If pµ = γ, then A = 0 and A
B = 0, thus ne(0) = ne(1);

(3) If pµ > γ, then A < 0 < B and ne(0) < ne(1). When −1 ≤ A
B < 0, ne(1) − ne(0) = 1, while if A

B < −1,
then value of the difference between ne(1) and ne(0) is not less than 1.

These three cases above can be summed up as two main situations in the Proposition 3.2. �

Based on Proposition 3.2, the order of ne(0) and ne(1) mainly depends on the difference between pµ and γ.
Hence we divide the stationary distribution analysis of the system into two parts according to the order of ne(0)
and ne(1), and conclude the results in the following two propositions.
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Figure 2. State transition diagram of the fully observable case when ne(0) < ne(1).

Proposition 3.3. In the fully observable M/M/1 constant retrial queue with Bernoulli vacations, when ne(0) <
ne(1), the stationary distribution (pf (n, i): (n, i) ∈ {0, 1, 2, . . . , ne} × {0, 1, 2}) are given as

pf (n, 0) = c̃1ρ
n
1 + c̃2ρ

n
2 + c̃3ρ

n
3 , n = 0, 1, . . . , ne(0)− 1, (3.5)

pf (n, 1) = ν̃1ρ
n
1 + ν̃2ρ

n
2 + ν̃3ρ

n
3 , n = 0, 1, . . . , ne(0)− 1, (3.6)

pf (n, 2) = ω̃1ρ
n
1 + ω̃2ρ

n
2 + ω̃3ρ

n
3 , n = 0, 1, . . . , ne(0)− 1, (3.7)

pf (ne(0), 0) =
λq(λ+ θ)

θγ
Ỹ +

λ2q + λθ

θγ
X̃, (3.8)

pf (ne(0), 1) =
λ(λ+ θ)
θµ

Ỹ +
λ2

θµ
X̃, (3.9)

pf (ne(0), 2) =
λ

θ
Ỹ +

λ

θ
X̃, (3.10)

pf (n, 0) =
qµ

γ

(
θµ

λ(λ+ θ)

)ne(0)−n(
λ(λ+ θ)
θµ

Ỹ +
λ2

θµ
X̃

)
, n = ne(0) + 1, . . . , ne(1) (3.11)

pf (n, 1) =
(

θµ

λ(λ+ θ)

)ne(0)−n(
λ(λ+ θ)
θµ

Ỹ +
λ2

θµ
X̃

)
, n = ne(0) + 1, . . . , ne(1), (3.12)

pf (n, 2) =
µ

λ+ θ

(
θµ

λ(λ+ θ)

)ne(0)−n(
λ(λ+ θ)
θµ

Ỹ +
λ2

θµ
X̃

)
, n = ne(0) + 1, . . . , ne(1) (3.13)

where

ν̃i =
(λ+ γ)ρi − λ

qµρi
c̃i, i = 1, 2, 3,

ω̃i =
(λ+ µ)ρi − λ
(λ+ θρi)ρi

ν̃i, i = 1, 2, 3,

a = − (λ+ µ)(λ+ γ)(λ+ θ)− λµ(λp+ γ) + λpθµ

µθ(λp+ γ)
,

b =
λ{(λ+ θ)(2λ+ µ+ γ)− λpµ}

µθ(λp+ γ)
,

c = − λ2(λ+ θ)
µθ(λp+ γ)

,

X̃ = c̃1ρ
ne(0)−1
1 + c̃2ρ

ne(0)−1
2 + c̃3ρ

ne(0)−1
3 ,

Ỹ = ν̃1ρ
ne(0)−1
1 + ν̃2ρ

ne(0)−1
2 + ν̃3ρ

ne(0)−1
3 .
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The coefficient c̃i (i = 1, 2, 3) were solved by using normalization condition and ρi (i = 1, 2, 3) are three roots of
equation x3 + ax2 + bx+ c = 0.

Proof. In this situation, the state transition diagram is shown in Figure 2, and the balance equations are
given as

(λ+ γ)pf (0, 0) = qµpf (0, 1), (3.14)

(λ+ γ)pf (n, 0) = λpf (n− 1, 0) + qµpf (n, 1), n = 1, 2, . . . , ne(0)− 1, (3.15)

γpf (ne(0), 0) = λpf (ne(0)− 1, 0) + qµpf (ne(0), 1), (3.16)

γpf (n, 0) = qµpf (n, 1), n = ne(0) + 1, . . . , ne(1), (3.17)

(λ+ µ)pf (0, 1) = λpf (0, 2) + θpf (1, 2), (3.18)

(λ+ µ)pf (n, 1) = λpf (n− 1, 1) + λpf (n, 2) + θpf (n+ 1, 2), n = 1, 2, . . . , ne(1)− 1, (3.19)

µpf (ne(1), 1) = λpf (ne(1)− 1, 1) + λpf (ne(1), 2), (3.20)

λpf (0, 2) = γpf (0, 0) + pµpf (0, 1), (3.21)

(λ+ θ)pf (n, 2) = γpf (n, 0) + pµpf (n, 1) n = 1, 2, . . . , ne(1). (3.22)

The stationary distribution {pf (n, i): (n, i) ∈ Ω} is the unique positive solution of the balance equations above.
Combining with (3.15), (3.19) and (3.22), we have that

− µθ(λp+ γ)pf (n+ 1, 0) + {(λ+ µ)(λ+ γ)(λ+ θ)− λµ(λp+ γ) + λpθµ}pf (n, 0)

− λ{(λ+ θ)(2λ+ µ+ γ)− λpµ}pf (n− 1, 0) + λ2(λ+ θ)pf (n− 2, 0) = 0, n = 2, . . . , ne(0)− 2, (3.23)

which is a three-order difference equation with solutions ρi (i = 1, 2, 3). Therefore, we can set

pf (n, 0) = c̃1ρ
n
1 + c̃2ρ

n
2 + c̃3ρ

n
3 , n = 0, 1, . . . , ne(0)− 1, (3.24)

where c̃i (i = 1, 2, 3) are undetermined constants we are going to explore next. By plugging (3.51) in (3.15), we
have that

pf (n, 1) = ν̃1ρ
n
1 + ν̃2ρ

n
2 + ν̃3ρ

n
3 , n = 1, 2, . . . , ne(0)− 1. (3.25)

Again, by plugging equations (3.51) and (3.25) in (3.22), we have

pf (n, 2) = ω̃1ρ
n
1 + ω̃2ρ

n
2 + ω̃3ρ

n
3 , n = 1, 2, . . . , ne(0)− 1. (3.26)

By ordering n = 1 in (3.19) and using (3.25) and (3.26), it is followed that:

pf (0, 1) = ν̃1 + ν̃2 + ν̃3. (3.27)

Then we have (3.6) by combining (3.25) and (3.27). In a similar way, ordering n = 1 and in (3.22), and from
the equations above, we get (3.7) with the help of (3.23) and (3.26). Then, by substituting (3.15) into (3.17),
we have

θµpf (n+ 1, 1)− (λ2 + λθ + µθ)pf (n, 1) + λ(λ+ θ)pf (n− 1, 1) = 0, n = ne(0) + 1, . . . , ne(1),

which can be considered as a homogeneous linear difference equation and the characteristic equation is

θµx2 − (λ2 + λθ + µθ)x+ λ(λ+ θ) = 0, n = ne(0) + 1, . . . , ne(1),

It has two roots, 1 and λ(λ+θ)
θµ , where the probability pf (n, 1) can be denoted by

pf (n, 1) = Ã1n + B̃

(
λ(λ+ θ)
θµ

)n
, n = ne(0) + 1, . . . , ne(1), (3.28)
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and Ã, B̃ in (3.28) are constants we have to solve. By calculation, we have that

pf (ne(1)− 1, 1) = Ã+ B̃(
λ(λ+ θ)
θµ

)ne(1)−1 =
θγ

λq(λ+ θ)
p(ne(1), 0),

pf (ne(1)− 2, 1) = Ã+ B̃(
λ(λ+ θ)
θµ

)ne(1)−2 =
θ2µγ

λ2q(λ+ θ)2
p(ne(1), 0),

we solved that Ã = 0 and this followed that pf (n, 1) = B̃(λ(λ+θ)
θµ )n, n = ne(0) + 1, . . . , ne(1). Then, by using

(3.17) and (3.22), we can denote pf (n, i), (i = 0, 1, 2) as

pf (n, 1) =
(

θµ

λ(λ+ θ)

)ne(0)−n+1

pf (ne(0) + 1, 1), n = ne(0) + 1, . . . , ne(1),

pf (n, 0) =
qµ

γ

(
θµ

λ(λ+ θ)

)ne(0)−n+1

pf (ne(0) + 1, 1), n = ne(0) + 1, . . . , ne(1),

pf (n, 2) =
µ

λ+ θ

(
θµ

λ(λ+ θ)

)ne(0)−n+1

pf (ne(0) + 1, 1), n = ne(0) + 1, . . . , ne(1).

To solve pf (ne(0) + 1, 1), setting n = ne(0) in (3.17), (3.22) and (3.19), then ordering n = ne(0) + 1 in (3.19),
we have that

γpf (ne(0), 0) = λpf (ne(0)− 1, 0) + qµpf (ne(0), 1), (3.29)

(λ+ µ)pf (ne(0), 1) = λpf (ne(0)− 1, 1) + λpf (ne(0), 2) + θpf (ne(0) + 1, 2), (3.30)

(λ+ θ)pf (ne(0), 2) = γpf (ne(0), 0) + pµpf (ne(0), 1), (3.31)

(λ+ µ)pf (ne(0) + 1, 1) = λpf (ne(0), 1) + λpf (ne(0) + 1, 2) + θpf (ne(0) + 2, 2). (3.32)

We denote pf (ne(0) + 1, 1) = g, then pf (ne(0) + 1, 0) = qµ
γ g and pf (ne(0) + 1, 2) = µ

λ+θg, pf (ne(0) + 2, 2) = λ
θ g.

By solving (3.29)–(3.32), we obtain

pf (ne(0), 0) =
λq(λ+ θ)

θγ
pf (ne(0)− 1, 1) +

λθ + λ2q

θγ
pf (ne(0)− 1, 0),

pf (ne(0), 1) =
λ(λ+ θ)
µθ

pf (ne(0)− 1, 1) +
λ2

µθ
p(fne(0)− 1, 0),

pf (ne(0), 2) =
λ

θ
pf (ne(0)− 1, 1) +

λ

θ
pf (ne(0)− 1, 0),

g = (
λ(λ+ θ)
µθ

)2pf (ne(0)− 1, 1) +
λ3(λ+ θ)
µ2θ2

pf (ne(0)− 1, 0).

Hence, the boundary probabilities pf (ne(0), i), i = 0, 1, 2 are derived. By putting (3.5)–(3.7) in equations (3.26),
(3.18) and (3.21), where

3∑
i=1

λc̃i
ρi

= 0, (3.33)

3∑
i=1

{
λ[(λ+ γ)ρi − λ]

qµρ2
i

}
c̃i = 0, (3.34)

3∑
i=1

{
(λ+ γ)ρi − λ

qµρi

[
λ(λ+ µ)ρi − λ2

(λ+ θρi)ρi
− pµ

]
− γ
}
c̃i = 0. (3.35)
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Figure 3. State transition diagram of the fully observable case when ne(0) > ne(1).

Table 1. Steady-probabilities pf (n, 1) for µ = 2.1, p = 0.6, γ = 1.5, λ = 1, θ = 1.5, ne(0) =
7, ne(0) = 8.

(i, n) 0 1 2 3 4 5 6 ne(0) ne(1)

i = 0 0.0050 0.0119 0.0196 0.0275 0.0354 0.0433 0.0511 0.0773 0.0227
i = 1 0.0169 0.0299 0.0412 0.0519 0.0622 0.0723 0.0823 0.0528 0.0293
i = 2 0.0115 0.0172 0.0232 0.0293 0.0354 0.0414 0.0474 0.0444 0.0176

Table 2. Steady-probabilities pf (n, 1) for µ = 2.1, p = 0.6, γ = 1.5, λ = 1, θ = 1.5, ne(1) =
12, ne(0) = 13.

(i, n) 0 1 2 3 4 5 6 7 8 9 10 11 ne(1) ne(0)

i = 0 0.0007 0.0017 0.0031 0.0048 0.0070 0.0097 0.0130 0.0172 0.0223 0.0288 0.0368 0.0437 0.0281 0.0237
i = 1 0.0020 0.0043 0.0072 0.0107 0.0150 0.0205 0.0272 0.0356 0.0460 0.0590 0.0652 0.0753 0.0282 0.0089
i = 2 0.0018 0.0033 0.0055 0.0083 0.0118 0.0161 0.0215 0.0282 0.0366 0.0470 0.0600 0.0644 0.0311 0.0187

The constants c̃i should be solved along with any two equations among (3.33)–(3.35) and the normalization

condition
2∑
i=0

ne(1)∑
n=0

pf (n, i) = 1. Finally, we summarize all the probabilities in (3.5)–(3.13). We also give some

numerical results in tabular below with the state probabilities obtained in Proposition 3.3, (see Tab. 1). �

In what follows, the case when ne(0) > ne(1) was considered and the stationary probabilities was summarized
in the following (see Tab. 2).

Proposition 3.4. In the fully observable M/M/1 constant retrial queue with Bernoulli vacations, when ne(0) >
ne(1), the stationary distribution (pf (n, i): (n, i) ∈ {0, 1, 2, . . . , ne} × {0, 1, 2}) are given as

pf (n, 0) = ĉ1ρ
n
1 + ĉ2ρ

n
2 + ĉ3ρ

n
3 , n = 0, 1, . . . , ne(1)− 1, (3.36)

pf (n, 1) = ν̂1ρ
n
1 + ν̂2ρ

n
2 + ν̂3ρ

n
3 , n = 0, 1, . . . , ne(1)− 1, (3.37)

pf (n, 2) = ω̂1ρ
n
1 + ω̂2ρ

n
2 + ω̂3ρ

n
3 , n = 0, 1, . . . , ne(1)− 1, (3.38)

pf (ne(1), 0) =
λ(λ+ θ − λp)
θ(λp+ γ)

X̂, (3.39)

pf (ne(1), 1) =
λ2(λ+ θ + γ)
µθ(λp+ γ)

X̂, (3.40)
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pf (ne(1), 2) =
λ

θ
X̂, (3.41)

pf (n, 0) = (
θ(λp+ γ)

λ(λ+ θ − λp)
)ne(1)−n−1X̂, n = ne(1) + 1, . . . , ne(0)− 1 (3.42)

pf (n, 1) =
λ(λ+ θ + γ)
µ(λ+ θ − λp)

(
θ(λp+ γ)

λ(λ+ θ − λp)
)ne(1)−n−1X̂, n = ne(1) + 1, . . . , ne(0)− 1, (3.43)

pf (n, 2) =
λp+ γ

λ+ θ − λp
(

θ(λp+ γ)
λ(λ+ θ − λp)

)ne(1)−n−1X̂, n = ne(1) + 1, . . . , ne(0)− 1, (3.44)

pf (ne(0), 0) =
λ(λ+ θ − λp)

θγ
(

θ(λp+ γ)
λ(λ+ θ − λp)

)ne(1)−ne(0)X̂, (3.45)

pf (ne(0), 1) =
λ2

θµ
(

θ(λp+ γ)
λ(λ+ θ − λp)

)ne(1)−ne(0)X̂, (3.46)

pf (ne(0), 2) =
λ

θ
(

θ(λp+ γ)
λ(λ+ θ − λp)

)ne(1)−ne(0)X̂, (3.47)

where

ν̂i =
(λ+ γ)ρi − λ

qµρi
ĉi, i = 1, 2, 3,

ω̂i =
(λ+ µ)ρi − λ
(λ+ θρi)ρi

ν̂i, i = 1, 2, 3,

a = − (λ+ µ)(λ+ γ)(λ+ θ)− λµ(λp+ γ) + λpθµ

µθ(λp+ γ)
,

b =
λ{(λ+ θ)(2λ+ µ+ γ)− λpµ}

µθ(λp+ γ)
,

c = − λ2(λ+ θ)
µθ(λp+ γ)

,

X̂ = ĉ1ρ
ne(1)−1
1 + ĉ2ρ

ne(1)−1
2 + ĉ3ρ

ne(1)−1
3 .

The coefficient ĉi (i = 1, 2, 3) were solved by using normalization condition and ρi (i = 1, 2, 3) are three roots of
equation x3 + ax2 + bx+ c = 0.

Proof. In this situation, the state transition diagram is shown in Figure 3, and the balance equations are given
as

(λ+ γ)pf (0, 0) = qµpf (0, 1), (3.48)

(λ+ γ)pf (n, 0) = λpf (n− 1, 0) + qµpf (n, 1), n = 1, 2, . . . , ne(0)− 1, (3.49)

γpf (ne(0), 0) = λpf (ne(0)− 1, 0) + qµpf (ne(0), 1), (3.50)

(λ+ µ)pf (0, 1) = λpf (0, 2) + θpf (1, 2), (3.51)

(λ+ µ)pf (n, 1) = λpf (n− 1, 1) + λpf (n, 2) + θpf (n+ 1, 2), n = 1, 2, . . . , ne(1)− 1, (3.52)

µpf (ne(1), 1) = λpf (ne(1)− 1, 1) + λpf (ne(1), 2) + θpf (ne(1) + 1, 2), (3.53)

µpf (n, 1) = λpf (n, 2) + θpf (n+ 1, 2), n = ne(1) + 1, . . . , ne(0)− 1, (3.54)

µpf (ne(0), 1) = λpf (ne(0), 2), (3.55)

λpf (0, 2) = γpf (0, 0) + pµpf (0, 1), (3.56)

(λ+ θ)pf (n, 2) = γpf (n, 0) + pµpf (n, 1), n = 1, 2, . . . , ne(0). (3.57)
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Also, the stationary distribution is the unique positive solution of the balance equations above. Similarly,
combining with (3.49), (3.52) and (3.57), we obtain

− µθ(λp+ γ)pf (n+ 1, 0) + {(λ+ µ)(λ+ γ)(λ+ θ)− λµ(λp+ γ) + λpθµ}pf (n, 0)

− λ{(λ+ θ)(2λ+ µ+ γ)− λpµ}pf (n− 1, 0) + λ2(λ+ θ)pf (n− 2, 0) = 0, n = 2, . . . , ne(1)− 2,

which is a three-order difference equation with solutions ρi (i = 1, 2, 3). Therefore, we can set

pf (n, 0) = ĉ1ρ
n
1 + ĉ2ρ

n
2 + ĉ3ρ

n
3 , n = 0, 1, . . . , ne(1)− 1,

where ĉi (i = 1, 2, 3) are undetermined constants we are going to explore next. Similar to method used in
Proposition 3.3, the form of pf (n, i), (i = 0, 1, 2, n = 0, 1, . . . , ne(1) − 1) are concluded in (3.36)–(3.38). Then,
combining (3.49), (3.54) and (3.57), we have

θ(λp+ γ)pf (n+ 1, 0)− ((λ+ θ)(λ+ γ)− λ(λp+ γ) + λθp)pf (n, 0) + λ(λq + θ)pf (n− 1, 0) = 0,
n = ne(1) + 1, . . . , ne(0)− 1,

which can be considered as a homogeneous linear difference equation and the characteristic equation is

θ(λp+ γ)x2 − ((λ+ θ)(λ+ γ)− λ(λp+ γ) + λθp)x+ λ(λq + θ) = 0, n = ne(1) + 1, . . . , ne(0)− 1. (3.58)

It has two roots, 1 and λ(λ+θ)−λ2p
θ(λp+γ) , where the probability pf (n, 0) can be denoted by

pf (n, 0) = Â1n + B̂

(
λ(λ+ θ)− λ2p

θ(λp+ γ)

)n
, n = ne(0) + 1, . . . , ne(1)− 1,

and Â, B̂ in (3.59) are undetermined constants that we have to solve. By using similar computing method in
Proposition 3.3, we also have that Â = 0 and then

pf (n, 0) = B̂

(
λ(λ+ θ)− λ2p

θ(λp+ γ)

)n
, n = ne(1) + 1, . . . , ne(0)− 1.

By using (3.26) and (3.31), we can denote pf (n, i), (i = 0, 1, 2) as

pf (n, 0) =
(

θ(λp+ γ)
λ(λ+ θ)− λ2p

)ne(1)−n+1

pf (ne(1) + 1, 0), n = ne(1) + 1, . . . , ne(0)− 1,

pf (n, 1) =
λ(λ+ θ + γ)
µ(λ+ θ − λp)

(
θ(λp+ γ)

λ(λ+ θ)− λ2p

)ne(1)−n+1

pf (ne(1) + 1, 0), n = ne(1) + 1, . . . , ne(0)− 1,

pf (n, 2) =
λp+ γ

λ+ θ − λp

(
θ(λp+ γ)

λ(λ+ θ)− λ2p

)ne(1)−n+1

pf (ne(1) + 1, 0), n = ne(1) + 1, . . . , ne(0)− 1.

By ordering n = ne(1) in (3.49), (3.54) and (3.57), and order n = ne(1) + 1 in (3.49), we have that

(λ+ γ)pf (ne(1), 0) = λpf (ne(1)− 1, 0) + qµpf (ne(1), 1),

(λ+ γ)pf (ne(1) + 1, 0) = λpf (ne(1), 0) + qµpf (ne(1) + 1, 1),

µpf (ne(1), 1) = λpf (ne(1), 2) + θpf (ne(1) + 1, 2),

(λ+ θ)pf (ne(1), 2) = γpf (ne(1), 0) + pµpf (ne(1), 1).
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We denote pf (ne(1) + 1, 1) = h and solved that

pf (ne(1), 0) =
λ(λ+ θ − λp)
θ(λp+ γ)

pf (ne(1)− 1, 0),

pf (ne(1), 1) =
λ2(λ+ θ + γ)
µθ(λp+ γ)

pf (ne(1)− 1, 0),

pf (ne(1), 2) =
λ

θ
pf (ne(1)− 1, 0),

h =
λ3(λ+ θ − λp)(λ+ θ + γ)

µθ2(λp+ γ)2
pf (ne(1)− 1, 0).

Finally, the probability pf (ne(0), i), (i = 0, 1, 2) were solved by considering (3.50), (3.55) and (3.57). By putting
(3.36)–(3.38) in equations (3.48), (3.51) and (3.56), where

3∑
i=1

λĉi
ρi

= 0, (3.59)

3∑
i=1

{
λ[(λ+ γ)ρi − λ]

qµρ2
i

}
ĉi = 0, (3.60)

3∑
i=1

{
(λ+ γ)ρi − λ

qµρi

[
λ(λ+ µ)ρi − λ2

(λ+ θρi)ρi
− pµ

]
− γ
}
ĉi = 0. (3.61)

The constants ĉi should be solved along with any two equations among (3.59)–(3.61) and the normalization

condition
2∑
i=0

ne(0)∑
n=0

pf (n, i) = 1. Then we summarize all the probabilities in (3.36)–(3.47). We also give some

numerical results in tabular below with the state probabilities obtained in Proposition 3.4. �

– When ne(0) = ne(1), the state transition diagram of this case is the same as the almost observable case we
are going to discuss next, thus we omit the calculation process of the stationary distribution here.

Since the balking probabilities are pf (ne(1), 1)+
ne(1)∑

n=ne(0)

pf (n, 0) and pf (ne(0), 0)+
ne(0)∑

n=ne(1)

pf (n, 1) in the first

two cases respectively, the corresponding social benefits when all follow the pair of thresholds (ne(0), ne(1))
are given as

– If ne(0) < ne(1)

Sfsoc = λR

1− pf (ne(1), 1)−
ne(1)∑

n=ne(0)

pf (n, 0)

− C ne(1)∑
n=0

n(pf (n, 0) + pf (n, 1) + pf (n, 2)), (3.62)

where pf (n, i) (i = 0, 1, 2) in (3.62) are given by (3.26)–(3.22);
– If ne(0) > ne(1)

Sfsoc = λR

1− pf (ne(0), 0)−
ne(0)∑

n=ne(1)

pf (n, 1)

− C ne(0)∑
n=0

n(pf (n, 0) + pf (n, 1) + pf (n, 2)), (3.63)

where pf (n, i) (i = 0, 1, 2) in (3.63) are given by (3.48)–(3.57);
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– If ne(0) = ne(1) = n∗

Sfsoc = λR(1− pf (n∗, 1)− pf (n∗, 0))− C
n∗∑
n=0

n(pf (n, 0) + pf (n, 1) + pf (n, 2)), (3.64)

where pf (n, i) (i = 0, 1, 2) in (3.64) can be solved in the almost observable case.

3.2. Almost observable queue

Now we turn to the case where blocked customers can only observe the number of customers in the orbit
upon arrivals. The state transition diagram is depicted in Figure 4. We explore the corresponding equilibrium
strategy and investigate that it is a pure threshold strategy. Therefore, it is necessary to solve the stationary
distribution in this system when all blocked ones follow the given threshold strategy. The results are summarized
in the following (see Tab. 2).

Theorem 3.5. In the almost observable M/M/1 constant retrial queue with Bernoulli vacations, where all
blocked customers follow the strategy “joining the system if N(t) ≤ ne−1 and balking otherwise”, the stationary
distribution (pa(n, i): (n, i) ∈ {0, 1, 2, . . . , ne} × {0, 1, 2}) are given as

pa(n, 0) = c1ρ
n
1 + c2ρ

n
2 + c3ρ

n
3 , n = 0, 1, . . . , ne − 1, (3.65)

pa(n, 1) = ν1ρ
n
1 + ν2ρ

n
2 + ν3ρ

n
3 , n = 0, 1, . . . , ne − 1, (3.66)

pa(n, 2) = ω1ρ
n
1 + ω2ρ

n
2 + ω3ρ

n
3 , n = 0, 1, . . . , ne − 1, (3.67)

pa(ne, 0) =
λ

γ

[(
1 +

λq

θ

) 3∑
i=1

ciρ
ne−1
i +

(
q +

λq

θ

) 3∑
i=1

νiρ
ne−1

]
, (3.68)

pa(ne, 1) =
λ

θµ

[
λ

3∑
i=1

ciρ
ne−1
i + (λ+ θ)

3∑
i=1

νiρ
ne−1
i

]
, (3.69)

pa(ne, 2) =
λ

θ

[
3∑
i=1

ciρ
ne−1
i +

3∑
i=1

νiρ
ne−1
i

]
, (3.70)

where

νi =
(λ+ γ)ρi − λ

qµρi
ci, i = 1, 2, 3,

ωi =
(λ+ µ)ρi − λ
(λ+ θρi)ρi

νi, i = 1, 2, 3,

a = − (λ+ µ)(λ+ γ)(λ+ θ)− λµ(λp+ γ) + λpθµ

µθ(λp+ γ)
,

b =
λ{(λ+ θ)(2λ+ µ+ γ)− λpµ}

µθ(λp+ γ)
,

c = − λ2(λ+ θ)
µθ(λp+ γ)

·

The coefficient ci (i = 1, 2, 3) were solved by using normalization condition and ρi (i = 1, 2, 3) are three roots of
equation x3 + ax2 + bx+ c = 0.

Proof. According to Figure 4, the stationary distribution (p(n, i): (n, i) ∈ {0, 1, 2, . . . , ne}×{0, 1, 2}) were deter-
mined by balance equations:

(λ+ γ)pa(0, 0) = qµpa(0, 1), (3.71)
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Figure 4. Transition rate diagram of the almost observable case.

(λ+ γ)pa(n, 0) = λpa(n− 1, 0) + qµpa(n, 1), n = 1, 2, . . . , ne − 1, (3.72)
γpa(ne, 0) = λpa(ne − 1, 0) + qµpa(ne, 1), (3.73)

(λ+ µ)pa(0, 1) = λpa(0, 2) + θpa(1, 2), (3.74)
(λ+ µ)pa(n, 1) = λpa(n− 1, 1) + λpa(n, 2) + θpa(n+ 1, 2), n = 1, 2, . . . , ne − 1, (3.75)

µpa(ne, 1) = λpa(ne − 1, 1) + λpa(ne, 2), (3.76)
λpa(0, 2) = γpa(0, 0) + pµpa(0, 1), (3.77)

(λ+ θ)pa(n, 2) = γpa(n, 0) + pµpa(n, 1), n = 1, 2, . . . , ne. (3.78)

Combining with equations (3.72), (3.75) and (3.78), we get:

− µθ(λp+ γ)pa(n+ 1, 0) + {(λ+ µ)(λ+ γ)(λ+ θ)− λµ(λp+ γ) + λpθµ}pa(n, 0)
− λ{(λ+ θ)(2λ+ µ+ γ)− λpµ}pa(n− 1, 0) + λ2(λ+ θ)pa(n− 2, 0) = 0, n = 2, . . . , ne − 2,

which is a three-order difference equation with solutions ρi (i = 1, 2, 3). Therefore, we can set the stationary
probability of I(t) = 0 as

pa(n, 0) = c1ρ
n
1 + c2ρ

n
2 + c3ρ

n
3 , n = 0, 1, . . . , ne − 1, (3.79)

where ci (i = 1, 2, 3) are undetermined constants we are going to explore next. By plugging (3.79) in (3.72), we
get

pa(n, 1) = ν1ρ
n
1 + ν2ρ

n
2 + ν3ρ

n
3 , n = 1, 2, . . . , ne − 1. (3.80)

Again, by plugging equations (3.79) and (3.80) in (3.78), we have

pa(n, 2) = ω1ρ
n
1 + ω2ρ

n
2 + ω3ρ

n
3 , n = 1, 2, . . . , ne − 1. (3.81)

By ordering n = 1 in (3.72) and using (3.80) and (3.81), it is followed that:

pa(0, 1) = ν1 + ν2 + ν3. (3.82)

Then the general formula of pa(n, 1) in (3.66) is obtained by combining with (3.80) and the above equation.
Similarly, when ordering n = 1 in (3.78), we get (3.67) with the help of equations (3.79) and (3.81). The results
(3.68)–(3.70) are derived by using (3.65)–(3.67) based on equations (3.73), (3.76) and (3.78). In addition, the
following equations were calculated by putting (3.65)–(3.67) in equations (3.71), (3.74) and (3.77), where
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Table 3. Steady-probabilities for µ = 1.2, p = 0.8, γ = 1.5, λ = 0.5, θ = 1.5, ne = 11.

pa(n, i) 0 1 2 4 5 6 7 8 9 10 11

i = 0 0.0028 0.0052 0.0069 0.0080 0.0088 0.0092 0.0095 0.0097 0.0098 0.0099 0.0099
i = 1 0.0234 0.0278 0.0368 0.0473 0.0562 0.0585 0.0599 0.0609 0.0615 0.0618 0.0621
i = 2 0.0193 0.0234 0.0280 0.0313 0.0335 0.0350 0.0359 0.0365 0.0369 0.0371 0.0372

3∑
i=1

λci
ρi

= 0, (3.83)

3∑
i=1

{
λ[(λ+ γ)ρi − λ]

qµρ2
i

}
ci = 0, (3.84)

3∑
i=1

{
(λ+ γ)ρi − λ

qµρi

[
λ(λ+ µ)ρi − λ2

(λ+ θρi)ρi
− pµ

]
− γ
}
ci = 0. (3.85)

The constants ci (i = 1, 2, 3) should be solved along with any two equations among (3.83)–(3.85) and the

normalization condition
2∑
i=0

ne∑
n=0

pa(n, i) = 1. Some numerical results in tabular below with the state probabilities

of this case are shown in Table 3. �

We then proceed to the expected utility of a joining customer when he observes n customers ahead of him in
the orbit.

Proposition 3.6. In the almost observable M/M/1 constant retrial queue with Bernoulli vacations, blocked
customers all follow the threshold strategy “join the system if N(t) ≤ ne− 1 and balks otherwise at time t”. The
utility of a joining customer when he observes n customers in the orbit is given by

S(n) = R− C

 [µγ + (qµ+ γ)(λ+ θ)](n+ 1)
µθγ

+
(pµ− γ)

3∑
i=1

ciρ
n
i

µγ
3∑
i=1

(ci + νi)ρni

+
1
µ

 , n = 0, . . . , ne − 1, (3.86)

S(ne) = R− C
(

[µγ + (qµ+ γ)(λ+ θ)](ne + 1)
µθγ

+
(pµ− γ)pa(ne, 0)

µγ(pa(ne, 0) + pa(ne, 1))
+

1
µ

)
, (3.87)

where pa(ne, 0), pa(ne, 1) are given by Theorem 3.5.

Proof. The expected net benefit of a joining blocked customer when there are n customers before him upon
arrival is

S(n) = R− C
(
T (n+ 1) +

1
µ

)
, (3.88)

where T (n+ 1) = E[S|N− = n] is his mean sojourn time in the orbit given that he observes n customers upon
arrival. We denote Pr(I− = i|N− = n) as the conditional probability that the state is i (i = 0, 1) if he observes
n customers in the orbit upon his arrival. Conditioning on the state of server upon his arrival and taking (3.2)
and (3.3) into account, we obtain:

T (n+ 1) = T (n+ 1, 1)Pr(I− = 1|N− = n) + T (n+ 1, 0)Pr(I− = 0|N− = n)

= T (n+ 1, 1) +
pµ− γ
µγ

× Pr(I− = 0|N− = n),
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where T (n+ 1, 1) is given by (3.3), and

Pr(I− = 0|N− = n) =
pa(n, 0)

pa(n, 0) + pa(n, 1)
, n = 0, 1, . . . , ne.

Combining with the stationary probabilities obtained in Theorem 3.5, we get Pr(I− = 0|N− = n) (n =
0, 1, . . . , ne). Hence, we have

T (n+ 1) =
[µγ + (qµ+ γ)(λ+ θ)](n+ 1)

µθγ
+

(pµ− γ)
3∑
i=1

ciρ
n
i

µγ
3∑
i=1

(ci + νi)ρni

, n = 0, 1, . . . , ne − 1, (3.89)

T (ne + 1) =
[µγ + (qµ+ γ)(λ+ θ)](ne + 1)

µθγ
+

(pµ− γ)pa(ne, 0)
µγ(pa(ne, 0) + pa(ne, 1))

, (3.90)

where probabilities pa(ne, 0), pa(ne, 1) and pa(ne, 2) have been given in equations (3.68)–(3.70). Therefore,
the corresponding expected benefit in equations (3.86) and (3.87) are given by plugging (3.89) and (3.90)
in (3.88). �

What’s more, if S(0) < 0, no blocked customer enters the system even if there is no customer in the orbit.
So we might assume that S(0) > 0, then the equilibrium threshold strategy in the almost observable case was
summarized as follows.

Theorem 3.7. Define the functions f1(n) and f2(n) by

f1(n) = R− C


[µγ + (qµ+ γ)(λ+ θ)](n+ 1)

µθγ
+

1
µ

+
(pµ− γ)

3∑
i=1

ciρ
n
i

µγ
3∑
i=1

(ci + νi)ρni

 , n = 0, 1, . . . , (3.91)

f2(n) = R− C
{

[µγ + (qµ+ γ)(λ+ θ)](n+ 1)
µθγ

+
1
µ

+
(pµ− γ) ((λq + θ)Φ1 + (λ+ θ)qΦ2)

((λq + θ)µ+ λγ)γΦ1 + (λ+ θ)(qµ+ γ)γΦ2

}
, (3.92)

n = 0, 1, . . . ,

where Φ1 =
3∑
i=1

ciρ
n−1
i and Φ2 =

3∑
i=1

νiρ
n−1
i .

By definition, we have that f1(n) = S(n), (n = 0, 1, . . . , ne − 1) and f2(ne) = S(ne). In addition, S(n) is
decreasing in n and this indicates that f1(n) > f2(n), where n = 0, 1, · · · .

Then there exists non-negative integers upper bound nU and lower bound nL (nL ≤ nU ) which satisfy

f1(0) > f1(1) > · · · > f1(nU − 1) > 0, f1(nU ) ≤ 0, (3.93)

and
f2(nL − 1) > 0, f2(nU ) < f2(nU − 1) < · · · < f2(nL + 1) < f2(nL) ≤ 0, (3.94)

or
0 ≥ f2(0) > · · · > f2(nU − 2) > f2(nU − 1) > f2(nU ). (3.95)

In the almost observable M/M/1 constant retrial queue with Bernoulli vacations, blocked customers follow the
pure threshold strategy “join if N(t) ≤ ne−1 and balks otherwise at time t”. Moreover, the equilibrium threshold
ne ∈ {nL, nL + 1, . . . , nU}.
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Proof. Since we have assumed the basic condition S(0) > 0 and f1(n) decreases in n, f1(0) > 0 and lim
n→∞

f1(n) =

−∞ are founded. If nU is the first subscript of the sequence of non-positive values of {f1(n), n = 0, 1, . . .}, the
condition (3.93) holds. Recall that f1(n) > f2(n), (n = 0, 1, . . .), thus the inequality f2(nU ) < f1(nU ) ≤ 0 is
established. Starting from the subscript nU then towards to 0, and we let f2(nL−1) be the first positive term of
f2(n), that is, the condition (3.94) holds. Otherwise, the values of f2(n), (n = 0, 1, . . . , nU ) are all non-positive,
and this is equivalent to (3.95).

Now the existence of equilibrium threshold strategy is found in the almost observable case. We consider a
tagged customer while all others follow the same threshold strategy “join the system if N(t) ≤ ne− 1 and balks
otherwise at time t when find unavailable server” for the fixed ne ∈ {nL, nL + 1, . . . , nU}.

– If the tagged one observes n (≤ ne − 1) customers ahead of him in the orbit, the expected benefit of joining
is f1(n) > 0 and he prefers to join the system.

– If he observes ne customers in the orbit and decides to join, the expected benefit of him is f2(ne) ≤ 0 by
equations (3.88), (3.92), (3.94) and (3.95), so in this case he prefers to balk.

�

The social benefits per unit time when all blocked customers follow the pure threshold strategy ne is

Sasoc = λR(1− pa(ne, 1)− pa(ne, 0))− C
ne∑
n=0

npa(n),

where
pa(n) = pa(n, 1) + pa(n, 0) + pa(n, 2), n = 1, 2, . . . , ne,

and pa(n, i) are determined by Theorem 3.5.

Remark 3.8. The results in Theorem 3.7 provide a searching method to identify the equilibrium strategy in
the almost observable case. Firstly, starting from 0 to search for the first negative term in {f1(n), 0, 1, . . .}, then
denote the subscript of it as nU (upper equilibrium threshold). Besides, we compute f2(n) from nU to 0 until
finding the first positive term of the sequences, that is nL (lower equilibrium threshold).

Remark 3.9. We prove a “Follow the crowd” (FTC) situation in this system where the joining decision of an
individual is increasing with the one adopted by the others in the almost observable case. In our model, we
denote the expected joining benefit of a customer under threshold ne and observes n customers before him in
the orbit is Sne

(n). Now we assume that the others adopt the threshold ne + 1, the expected benefit Sne+1(n)
is the same as Sne(n) for n = 0, 1, . . . , ne − 1 but Sne+1(ne) > Sne(ne). That is to say, a blocked customer is
more likely to join if the others follow a higher threshold, i.e., he follows the others’ behavior.

4. Numerical examples

In this section, we explore the effects of several parameters on customers’ equilibrium strategies in different
information levels by numerical scenarios. We show the sensitivity of equilibrium thresholds with respect to
the main parameters: θ, γ, µ and p. Besides, it is obvious that these joining thresholds are increasing in service
reward R and decreasing in unit waiting cost C. Hence in all applications, we set R = 25 and C = 1.

Figures 5–8 show the variation tendency of ne(0), ne(1) in the fully observable case. More concretely, in
Figure 5, we observe that both the thresholds ne(0) and ne(1) are non decreasing functions of retrial rate θ.
This is because customers in the orbit are more likely to be searched by available server with a higher retrial
rate. The order ne(0) ≤ ne(1) is found here due to the fact that pµ > γ in our parameter setting, and this is
corresponding with the result in Proposition 3.2. Figure 6 shows the thresholds with respect to vacation rate γ
and blocked customers prefer to join the system with a larger vacation rate γ, since the server can be available
with a larger proportion of time and seek them. Moreover, the value of the difference ne(0)− ne(1) is negative
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Figure 5. Thresholds in the fully observable case vs. θ for λ = 1, µ = 3, γ = 0.5, p = 0.8.
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Figure 6. Thresholds in the fully observable case vs. γ for λ = 0.5, µ = 1.2, θ = 1.5, p = 0.8.
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Figure 7. Thresholds in the fully observable case vs. µ for λ = 1, θ = 1.5, γ = 1.5, p = 0.6.
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Figure 8. Thresholds in the fully observable case vs. p for λ = 1, µ = 1.5, γ = 1, θ = 1.5.
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Figure 9. The value of nU , nL in the almost observable case with respect to θ, λ = 1, µ =
3, γ = 0.5, p = 0.8.
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Figure 10. The value of nU , nL in the almost observable case with respect to γ, λ = 0.5, µ =
1.2, θ = 1.5, p = 0.8.
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Figure 11. The value of nU , nL in the almost observable case with respect to µ, λ = 1, θ =
1.5, γ = 1.5, p = 0.6.
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Figure 12. The value of nU , nL in the almost observable case with respect to p, λ = 1, µ =
1.5, γ = 1, θ = 1.5.

first and then be positive which can be explained by Proposition 3.2. With the increasing of γ, the server under
vacation is more likely to be available than a busy server, thus arrivals prefer to join the system when I(t) = 0
later. The numerical examples shown in Figure 7 indicates that customers’ joining willingness increase in service
rate µ. For a relatively small µ which satisfies pµ ≤ γ, we have ne(0) ≥ ne(1), to the contrary, ne(0) < ne(1)
for a larger µ. Finally, in Figure 8, the thresholds vary with the parameter p (the probability that the server
remains available after a service completion). Similarly, customers in the orbit are more likely be searched with
a larger p and the order of the two thresholds can be also explained by Proposition 3.2.

Figures 9–12 show the variation tendency of the upper and lower bounds of the threshold ne: nU and nL
in the almost observable case. In all figures, we observe that nL ≤ nU . By comparing the thresholds under
two information cases with same parameters, we find that the thresholds in the almost observable case in the
middle range of the two thresholds in the fully observable case. That is to say, min{ne(0), ne(1)} ≤ nL ≤ nU ≤
max{ne(0), ne(1)} holds in our model. What’s more, the variation tendency can be explained similarly with
these in the fully observable case.



EQUILIBRIUM JOINING STRATEGIES IN THE SINGLE-SERVER CONSTANT S501

5. Conclusions

In this paper, we analyzed blocked customers’ equilibrium joining behavior in a single-server constant retrial
queue with Bernoulli vacations, where arrivals can observe the number of customers in the orbit. The blocked
customers in the orbit was searched by the server according to their arrivals order when the server is idle.
Accordingly, we obtained the threshold equilibrium strategies of blocked customers in different information
levels. In the majority of queueing studies with vacations, customers are more willing to join the system when
server is busy than it is under vacation, while in this paper, there exists a trade-off between the two states
due to the existence of Bernoulli schedule. We found that they only care about the server’s transfer rate of
being available. To the best of authors’ knowledge, this is the first work that studies customers’ equilibrium
behavior in constant retrial queueing systems with Bernoulli vacations based on game theory. The influences of
some important parameters on the equilibrium thresholds has been investigated extensively. In the future, the
equilibrium analysis could be extended to more general situations with Bernoulli schedule, such as the M/G/1
retrial queueing system, a same model with finite buffer in the orbit, or a similar model but with a general
searching time distribution.
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