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IMPROVED ENHANCED FRITZ JOHN CONDITION AND CONSTRAINTS
QUALIFICATIONS USING CONVEXIFICATORS

ABEKA KHARE AND TRILOKI NATH*

Abstract. In this paper, we use the concept of convexificators to derive enhanced Fritz John optimality
condition for nonsmooth optimization problems having equality, inequality and abstract set constraint,
where involved functions admit convexificators. This necessary optimality condition provides some more
information about the extremal point in terms of converging sequences towards it. Then we employ this
optimality condition to study enhanced Karush-Kuhn—Tucker (KKT) condition and to define associated
J*-pseudonormality and 0*-quasinormality concepts in terms of convexificators. Later, sufficiency for
0*-pseudonormality and some more results based on these concepts are investigated.
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1. INTRODUCTION

In this paper, we consider an optimization problem of the form:
(P) min f(z) st xz €,
where the feasible region €2 is
Q={z € C|hi(z)=0,...,hy(x) =0,91(x) <0,...,g4(x) <0}

Unless otherwise stated, throughout the paper we will proceed with the assumption that
foohi @ = 1,...,p), g5 = 1,...,¢9) : R™ — R are locally Lipschitz continuous functions and ad-
mit upper regular and upper semicontinuous convexificators at the point of interest. We also choose C as a
nonempty closed convex subset of R™.

For a smooth optimization problem with inequality constraints, the classical Fritz John necessary optimality
condition is well known, which has been proposed by Fritz John [14] in 1948. If C = R™, then this classical Fritz
John condition characterizes any local optimal solution z* in terms of the existence of scalars A7,..., A} and
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uo =0, .. ,uz > 0 not all zero such that

P q

0= WV ) + SN Vhi(e®) + 3 1 Vg (), (L1)
i=1 j=1

0=ypjgi(z"); Vi=1...,q (1.2)

Here, V represents the gradient of the corresponding functions and the equation (1.2) is called complementary
slackness condition or CS condition. After Fritz John, many researchers have extended this condition for various
problems such as Mangasarian and Fromovitz [17] for the smooth case having both equality and inequality
constraints. Bector et al. [1] extended this for the nonsmooth problem without an abstract set constraint.
Enhanced Fritz John optimality condition was first given by Hestenes [11] and improved by Bertsekas [2]
for the smooth case. Hestenes’ enhanced Fritz John condition is a refinement of classical Fritz John condition,
in which complementarity slackness (CS) conditions have been replaced by complementarity violation (CV)
conditions as given in Proposition 2.1(iv) of [3]. The enhanced Fritz John condition states about a local optimal
solution z* for C = R™, that there exist scalars Aj,..., A7 and pg > 0,...,u; > 0 not all zero satisfying
equation (1.1) and additionally, a sequential property, which says that: If the index set U J is nonempty, where
I ={i|\; # 0} and J = {j # 0[u] > 0}, then there is a sequence {z*} C C converging to x* such that for all k,

F@®) < f(a*), Ahi(a®) >0, Viel, pjgi(*)>0, Vjel (1.3)

Evidently, the CV conditions (1.3) proposed by Bertsekas are stronger than the classical CS conditions (1.2)
because if u7 > 0, then according to condition (1.3), the corresponding jth inequality constraint must be violated
arbitrarily close to «*, which shows that g;(z*) = 0, and that is the reason to call them complementarity violation
conditions or CV. Enhanced Fritz John condition further extended to the convex and nonconvex abstract set
constraints in [2—4].

For nonsmooth problems with no abstract set constraints, enhanced Fritz John condition was first studied
by Bector et al. [1] by using Clarke subdifferentials instead of the classical gradients. Later on, Ye and Zhang
[27] sharpened this work with Lipschitz assumptions for nonsmooth problem having an abstract set constraint.
The authors used limiting subdifferentials and limiting normal cone and provided some extra information about
the proximal subdifferentiability ([27], Thm. 1(iv)). The significance of this information lies in the fact that a
continuously differentiable function need not be proximal subdifferentiable, e.g. f(z) = —\a:|2/ 3 is continuously
differentiable at x = 0 but admits no proximal subdifferential at x = 0 (sufficient condition for a function to be
proximal subdifferentiable is C1*, i.e. the gradient of the function is locally Lipschitz). Hence, the condition of
Theorem 1(iv) from [27] is much stronger than that of Proposition 2.1 of [3].

Here, we are dealing with the same optimization problem but the abstract set constraint is convex as well.
We are generalizing the idea of Ye and Zhang [27] with a different substitute named convexificator, pioneered
by Demyanov [7] and developed by Jeyakumar and Luc [13]. The notion of convexificators emerged in the
development of various generalized subdifferentials and it provides both an upper convex and a lower concave
approximation to the concerned functions, so we can use it as a tool to handle those problems which do not fulfill
convexity requirements. Generally, convexificators are closed sets, but not necessarily bounded or convex. With
the assumption of locally bounded convexificator at a point, a continuous function becomes locally Lipschitz at
that point. For the calculus and more results on convexificators, which we have used in this paper, we refer to
[9,13]. A continuous function may admit several convexificators, so there is a need to know which will be the
minimal, whether it will be unique or not. To answer these questions Jeyakumar and Luc [13] proposed some
specific conditions in terms of the set of extreme points. The authors also showed that for a locally Lipschitz
function, the Clarke subdifferential [6], Michel-Penot [19], Ioffe [12], Mordukhovich [22] and Treiman [25] are also
convexificators and may contain the convex hull of some other convexificators. The authors [13] also introduced
an optimality condition for a nonsmooth problem in terms of convexificators, which we use as an initial tool to
establish our results.
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In this paper, we obtain results in terms of the convex hull of convexificators of involved functions, which
may be infinite whereas limiting subdifferential may be finite for the same function. Our result would be better
for those cases also, in the sense that optimality condition depends on the convex hull of few points of limiting
subdifferential, i.e. we do not need all the points of limiting subdifferential.

In addition to this, we provide a piece of new information about the differentiability at every point of a
sequence converging towards the extremal point is given, where CV conditions hold. Further, we are generalizing
the notion of pseudonormality and quasinormality given by Bertsekas and Ozdaglar [3] and sharpened by Ye and
Zhang [27], as 0*-pseudonormality and 9*-quasinormality. We are using here convexificators instead of limiting
subdifferentials, which may be smaller than the limiting subdifferentials (see e.g. Example 2.9) in Sect. 2), so our
definitions are weaker than the classical notions and results are generalized. Later, by using these two definitions
some characterizations for the feasible set is also improved.

We are organizing our paper as follows. Section 2 is devoted to the basic concepts of nonsmooth analysis,
convexificators and the results that will be used in our paper. In Section 3, we will derive our main result improved
enhanced Fritz John condition using convexificators. The notion of 0*-pseudonormality and d*-quasinormality,
the relationship between these two and some other results related to them are presented in Section 4.

2. PRELIMINARIES

In this section, some background material related to nonsmooth analysis and convexificator has recalled,
which will be used later. Here, the definitions and results may seem to be concise but they are enough to fulfill
our need. For details we refer [8,9,13,16,26,27].

Some notations that will be used throughout the paper are as follows. Throughout the paper, we suppose
R = RU {—00,+c} is the extended real line. B[z*, €] is the closed ball centered at z* with radius e and
B is used to denote the closed unit ball. For any set S C R", S, intS,coS, ¢S are the closure, interior,
convex hull, closed convex hull of S respectively. The symbol ||.|| denotes the Euclidean norm. For a function
g:R" =R, g™(z) = max{0,g(z)}, here g* is a vector if max function is defined componentwise. For a
cone N, we denote N0 as its polar cone. limsup, ., f(z), liminf,_,, f(z), sup,cgn f(2) infyepn f(x) are the
Kuratowski—Painlevé upper(outer), lower(inner), supremum, infimum value of f over R™ respectively.

Here are some basic definitions of subdifferentials.

Definition 2.1. Let f : R" — RU {400} be a lower semicontinuous (l.s.c.) function and z¢ € domf := {z €
R"[f(z) < +oo}.

(i) The proximal subdifferential of f at ¢ is the set
O" f(xo) := {f € R"|Fo > 0,7 > 0s.t. f(z) > f(zo) + (&, z — x0) — 0|z — x0||2, Vx € B(xo,n)}.

If O™ f(xo) is nonempty at xg, then f is said to be proximal subdifferentiable at .
(ii) The Fréchet (regular) subdifferential of f at x is the set

(iii) The limiting (Mordukhovich or basic) subdifferential of f at x¢ is the set

df(xo) == {€ € R™ | 3z}, — ¢ and & — & with & € " f(z)},
={¢ €eR" | Jz, — xp and & — & with & € O™ f(xx)} .

(iv) The singular limiting (Mordukhovich) subdifferential of f at z¢ is the set

9% f(xo) == {€ € R™ | Fmy, — w0 and & — & with & € 0" f(ax), t | 0},
= {€ cR" | dxx — xo and tx&, — & with & € aﬂf(l‘k),tk i} O}.
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We have the following results for subdifferentials in the literature, see [21,23].

Proposition 2.2. (i) A function f : R™ — R is Lipschitz near xg and 0f(xo) = {C} if and only if [ is strictly
differentiable at xo and the gradient of f at xg is equal to C.
(i) If a function f:R™ — R is Lipschitz near xo with positive constant Ly, then

8f(x0) - LfB.
(iii) A lower semicontinuous function f: R™ — RU {+oo} is Lipschitz near xo if and only if 0 f(zq) = {0}.

Definition 2.3 (Tangent Cone). Let S be a nonempty subset of R™ and = € S. Then Contingent Cone 7g(x)
to S at x is defined as

Ts(z) = {v € R" |3 tx — 0 and vy — v such that = + txvx, € S},

and Polar of this cone is
TSO(J;) = {v € R" | (y,v) <0, VyeTs(x)}

Definition 2.4 (Normal Cones). ([8], Def. 4.2) Let S be a nonempty subset of R” and Z € S. Then the Fréchet
(regular) normal cone to S at T is given as

NE(z) = {UGR” lirrlsup<vj><0}7

, L
r—Z,xES Hl‘ - j” =

and the nonempty cone

Ns(z) = limsup N (Z) (2.1)

T—T

is called the limiting (Mordukhovich or basic) normal cone to S at Z.
The Fréchet normal cone to a set can also be expressed as the polar cone of the tangent cone, i.e.

N§ () = T3(),
and if NE'(z) = Ng(z) for all z € S, then set S is called regular.

Now we are presenting here some basic terms borrowed from Section 2 of [9] which are required to study
convexificators.

Definition 2.5 (Dini Directional Derivatives). Let f : R® — R be an extended real valued function and let
x € R™ at which f is finite. Then Lower and Upper Dini derivatives of f at x in the direction v € R™ are defined
as

flz +tv) = f(z)

f7 (z;v) := lim inf

tl0 t )
f(x;v) := limsup f(CU-l-tv)—f(x).
7 t10 t

Definition 2.6 (Convexificators). Let f : R™ — R be an extended real valued function and let € R™ at which
f is finite. Then

(i) The function f is said to admit an upper convexificator (UCF) 0* f(x) at = if 9* f(z) C R™ is closed and
for every v € R",

[T (@v) < sup (§v).
£€0* f(=)
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(ii) The function f is said to admit a lower convexificator (LCF) 0, f(z) at x if 0, f(z) C R™ is closed and for
every v € R™,

T(xz;v) > inf , V).
friwv) 2 €ea*f(m)<€ )

(iii) f is said to admit a convexificator (CF) 9f f(z) at z if 95 f(x) is both an UCF and an LCF of f at z.
(iv) f is said to admit an upper regular convexificator (URCF) 0" f(x) at x if 9" f(z) is an UCF of f at z and
for every v € R",

ff(@v) = sup (€ 0).
§€0T f(=)

(v) f is said to admit a lower regular convexificator (LRCF) 9, f(z) at = if O, f(z) is a LCF of f at z and for
every v € R™,

“(z;v) = inf , V).
f (@) &e&f(ﬂ'f)<£ )
Remark 2.7. It is obvious from the definition that every URCF (LRCF) is UCF (LCF).
Now we need the following result from Propositions 2.2 and 2.3 of [26].

Proposition 2.8. (i) Let 07 f(x) be a convezificator of f at x, then a0k f(x) is a convexificator of af at x for
every a > 0.

(ii) Let f; : R™ — R, for i =1,2. Suppose that for each i = 1,2, 0% f;(z) is a convezificator of f; at x, then the
set OF f1(x) + 0% fa(x) is a convexificator of (f1 + f2) at x. Convezificator O f1(x) + 0F f2(x) may properly
contain another convexificator of f1 + fa.

The following example is from [26] which shows that 07 f1(x) + 9 f2(z) may contain another convexificator

of (f1 + f2).
Example 2.9. Let fi(,y) = [2| — [y,  fa(z,y) = |y| - |z|. Then
fl(xay)+f2(xay) = Oa

it is easy to verify that
and

hence,

9:(f1+ f2)(0,0) € 07 £1(0,0) + 07 f2(0,0).
Also, the limiting subdifferential of f; and fs is

2£1(0.0) = 9/2(0,0) = {(fl)T(‘f)T,(j)T,(})T}

and we must note that €69} f1(0,0) C €69 f1(0,0) with strict inclusion and 9f1(0,0) € €60} f1(0,0).

Now, some calculus rules and results for convexificators ([13], Rule 4.1, 4.2), which we use in this paper are
as follows

Lemma 2.10. Let 0* f(x),0.f(x) and 0 f(x) be UCF, LCF and CF of f : R® — R at x respectively and
f1:R" = R admits an URCF 0" f1(x) at x. Then
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(i
(ii
(iii
(iv

YA >0, A0*f(z) and N0, f(z) respectively are UCF and LCF of A\f at x.
YA <0, A0*f(x) and \O. f(x) respectively are LCF and UCF of \f at x.
YA eR, Xff(x) is a CF of \f at x.

O* f(x) + 9" f1(x) is an UCF of f + f1 at x.

— — — —

Remark 2.11. Since limiting subdifferential is also a convexificator, so there may be some convexificators
which are smaller than limiting subdifferential (see e.g. Example 2.9). For smaller convexificators we have
0% f(zo) C LyB directly by the use of Proposition 2.2(ii), otherwise we can have the following result.

Lemma 2.12. If a function f : R" — R is Lipschitz near x¢ with positive constant Ly and admits an upper
regular conveificator 0" f(xg), then 0" f(xo) C LsB.

Proof. Since function f is Lipschitz, we have

[f(z1) = flz2)] < Lgllwy — z2]],
LiB = {z eR"|z=Lsu and |lu|| <1 e ||z|| < Ls}

To achieve our goal, we have to show that ||¢|| < L for all £ € 0" f(zo).
Now, due to the admittance of upper regular convexificator by f, we have for every v € R"

f(xo,v) = sup (&), VoveR"
£€or f(x)
i.€. .
lim sup f(wo +tv) = flwo) = sup (§v), VoeR™ (2.2)
t10 ¢ ¢eo f(x)

Since we have by the properties of modulus function

f(zo +tv) — f(x0) | f(zo + tv) — f(0)|

lim sup < limsup
£10 t t10 |t]
. 1
= limsup — L¢||xo + tv — zo]
to [t
. 1
= limsup — L ¢|¢||v]
o [t
= Lylvl,
then involving (2.2) gives us
sup (§,v) | < Lyllvl], VoveR"
£eor f()
(&v) < Lyllvll,  VwveR", VEedf(z"), (2.3)

which implies that ||£|| < Ly. For, let £ € 0" f(x) is such that ||£|| > Ly, then taking v = & in equation (2.3),
we get

(&€ < Lylléll
= ||¢|| < Ly,

hence
0" f(x) C LyB.
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Since we know that most of the subdifferentials are convexificators and they often contain convex hull of
convexificator [13], therefore classical necessary optimality condition has also been introduced for nonsmooth
problems in terms of convexificators by replacing the classical gradient with the convex hull of convexificators
of concerned functions. Which is as follows.

Theorem 2.13 ([9], Thm. 3.6). Let S be a convex set and let xg € S be a minimum of a locally Lipschitz
function f over S. Let f admits an upper convezificator 0* f(xo) at xo. Then

0 € (9" f(x0)) + Ns (o),

where Ns(zo) denotes the normal cone to the convez set S at xg € S.

3. IMPROVED ENHANCED FRITZ JOHN NECESSARY OPTIMALITY CONDITION

The Fritz John condition is a necessary optimality condition, which has been established for the smooth case
and many analogous extensions have been made for cases of nonsmooth optimization problems. For nonsmooth
case gradient of the involved functions has been replaced by the generalized gradient, see Clarke [5]. Then
by using this generalized subdifferential concept, a lot of work has been done using several different types of
subdifferential objects ([6], Thm. 6.1.1 and [20]). Here we have focused on nonsmooth optimization problem
having equality, inequality and set constraint to establishing some of the results, which have already been
established in the literature, see [27].

The first theorem provides the enhanced Fritz John necessary optimality conditions in terms of convexificators.
Here, we replace the limiting subdifferentials of involved functions in Theorem 1 of [27] by their convexificators.
Although we have assumed all the involved functions to be locally Lipschitz and for this case limiting subdif-
ferential also becomes convexificators, but we must note that they are not the only convexificators, there may
be some other which can be smaller than limiting subdifferential, see Example 2.9. So for these convexificators,
the provided result is sharper than Theorem 1 of [27] in the sense that our result will rely on the convex hull
of fewer points than the limiting subdifferential. Therefore, to make our results fruitful and sharper than the
existing one, we are assuming that all the involved functions admit convexificators, which are smaller than their
limiting subdifferentials. For the otherwise case, applying the proposed result is not a smart way, because for
that situation using limiting subdifferentials will give more perfect optimality condition.

Here, Theorem 3.1(v) is an additional outcome in contrast to Theorem 1 of [27], it ensures the differentiability
of involved functions on a sequence converging at the optimal point and satisfying CV conditions. Hence, our
is an improved enhanced Fritz John condition.

Theorem 3.1. Let T be a local minimum of problem (P) and set C is closed and convex, where all the
involved functions admit upper regular and upper semicontinuous convezificators. Then there exist scalars
110, A1y -y Apy U1, - - -, [l Satisfying the following conditions:

(i) 0 € meo " f(z) + 37 _ 200" (Nihi)(T) + Y05 _ | f1;€00"g;(T) + Ne(T).

(i) g > 0 for all j = 0,1,...,q.

(iil) fi0, A1y---sAp, f1,-.-fig are not all equal to zero.

(iv) The complementary violation condition holds with prozimal subdifferentiability: If the index set I U J is
nonempty, where I = {i|\; # 0}, J = {j # 0|z; > 0}, then there exist a sequence {z*} C C converging to z
such that for all k, f(z*) < f(&), \ihi(2¥) > 0,Vi € I,1;9;(z%) > 0,Yj € J, and f,hi(i € I),g;(j € J) are
all prozimal subdifferentiable at z*.

(v) The complementary violation condition holds with differentiability also i.e. there
exist an another sequence {x"} C C converging to T and satisfying the same inequalities as by {x*} in
(iv) and f, hi(i € I), g;(j € J) are all differentiable at z™.
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Proof. Let T be a local minimum of problem (P). Then we can adopt a quadratic penalty function approach
originally given by McShane [18] and used by Bertsekas [3] and later by Ye and Zhang [27]. Firstly, we consider
a penalized problem for each & = 1, 2,...

(@)’ + 53 0@ + Hllo—all

(P min F*(z) = f(z) + gi .
x € _CmB%[:f,eL

s.t.

where ¢ > 0 is such that f(Z) < f(z) for all feasible x € B[Z,€]. Due to the compactness of C N B[z, €] and
by the Weierstrass theorem, problem (Pj) admits an optimal solution, say z*. Then

FF Ry < F* (), (3.1)
FER) Y ) + 53 (076 + et —all <) = f@). (3.2)

Here, f(z*) is bounded over z* € C N B[z, €], therefore we obtained from (3.2)
lim |hi(z®)| =0, i = 1,...,p,
k—o00
and klim |g;-r(xk)|:0, ji=1...,q,

hence, every limit point o of {2} is feasible and lie in Q. Further, from (3.2) it follows that

Fak) + gllet = Al < g@) vk (33)
by taking limit as k — oo, we get
Flzo) + gllo—7ll* < £(2). (34)
Here, since zy € €2 and lies in an e-neighbourhood of Z, therefore we have
f(@) < f(xo). (3.5)

Now, combining these two equations (3.4), and (3.5) we have
||£L'07i’|| =0 = x5 = 7.

Thus, the sequence {z*} converges to 7, it follows that z* is an interior point of the closed ball B[z, €] for all k
greater than some k.

Since z* is an optimal solution of (P;) and also is an interior point of B[Z, €], we have a necessary optimality
condition in terms of convexificators and normal cone at the optimal point, see Theorem 2.13. Although, this
condition is true for any convexificators, we are assuming admittance of upper regular, upper semicontinuous
convexificator at the concerned point for sharp results. Now by using Theorem 2.13 we get

0 € cod"Fk(zk) + Ne(xk),

0 € @ |onf@h) + 50U + 5D (g )+ gorllet —alR |+ Ae(eb)

Using basic calculus rules of closure and convex hull of a set gives

ES a2

i=1

0 € @ f(z*) + @0

N EER o ke Lok o2 k
+ co 5;8(93-@ ) +§8||x —Z||* + Ne(z¥).
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Here, we have the existence of multipliers

k k
af = Shi(a"), 8 = Sgf (") (3:6)
Then,
p I q
0 € @ f(z*) + @ Za’"(afhz(xk)) + co Z@’”( fg;“(xk)) + (2% —3) + Ne(2),
i=1 Li=1
) -
0 € @0 f(z*) + co Z&T(afhz(xk)) + co Z(’)r(ﬁfgj*(xk)) + (2F —2) + Ne(zh),
i=1 Lie’
where,

J = {je@,...q)g") >0}

By (3.6), ﬂj’? is a non-negative scalar, therefore using Lemma 2.10(i)

p
0 € @0"f(a*) + @ | > 0" (afhi(a¥))| + @ | > B (g7 (%) + (% —2) + Ne(2h). (3.7)
i=1 jeJ!
Let
P
o = 14D (e + (852
i=1 jeJ’
k 1 k 0‘? . k ﬁf .
.uO = (Sik’ Az = 67]{;7 7 :1a"'7pa ,LL] = 677] = 17"'aQ' (38)

Due to positivity of %, we can divide (3.7) by 6* and also using some calculus, we have for all k > k

0 € @ )] + Y @) + Y (g N + - 3) - M), (39

jeT’
since
P q
(1§)> + D AN + > (uh)? =1, (3.10)
i=1 =1
therefore this sequence {uf, A, ..., Ay, uf,. .., uf} is bounded, hence contains a subsequence converging to some

limit {fZo, A1,..., Ap, fI1, . .., fig}. Since h; is locally Lipschitz and by the Proposition 2.8, we have

C Ly, |\ — NiB + 9" [Nihi(a®)] (by Lem. 2.12)

and therefore,
00" (A\Fhy) (2%) C L, INF — N|B + @0"[Nihi ().
Similarly for f and g;, we have

colugd” f(a*)] C Lglug — mo|B + copd”[f (=),
e[k om (g;) (")) C Ly, |uk — 1;IB + @olz;0"g;(2")].
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Using these results, equation (3.9) yields

0 € 11pcod” f(x 20087 Aihi) Zu]coﬁg] )
JjeJ’
T Lo ldh =GB + — (2% —7) + Ne(a*
+( fiol + Lgjlng — B + = (2" —7) + Ne(a").

Ok

Since all the involved convexificators are upper semi continuous and by the definition of normal cone, taking
limit as kK — oo and the existence of jig, A;, [ yields result (i)

p q
0 € fwcod'f Z 200" (\;hi) () Z 9;(Z) + Ne(z). (3.11)

By the construction of p? in equation (3.8), we have ué‘? > 0 for all £k and j. Therefore ; > 0 for all
j = 1,...q, which is (ii). Similarly (3.10) ensures condition (iii).

Now, the existence of a sequence {x*} — 7 at which all the involved functions are proximal subdifferentiable,
i.e. property (iv) can be shown similarly as in Ye ([27], Thm. 1), and finally to prove (v) we use Lipschitz
continuity of involved functions. Firstly, it is easy to find a sequence {z"} in a similar manner which satisfies
following inequalities:

f(2") < f(2),

):Zhl(z") > 0, Vi e I,

/ijgj(z") > 0, Vi e J
Since f, h;, g; are locally Lipschitz and therefore differentiable almost everywhere (thanks to Rademacher’s
theorem). Hence, for each n > Ny we can find a sequence {z™!} C C at which f, h;, g; are differentiable and

P

Due to continuity, we have for sufficiently large [,
FM) < f(@),
Nhi(z"Y >0, Vi € I,
f79;(z"1) >0, Vj € J

For n > Ny, choose I, such that i1 < ... <1l,_1 <, and lim z™" = Z. Now we construct a sequence {z"}
as n—oo
" = z(n-ﬁ-No)»(ln-l‘No)7 Ny = 1,2

Then by combining preceding results for such sequence, we have {z"} C C and

lim 2" = 2, f(@") < f(&), Nhi(a") > 0, Viel, mg;z™) > 0, VjeJ,

n—oo
and f, h;(i € I), g;(j € J) are differentiable at . O

Remark 3.2. (1) Since convexificators may be smaller than limiting subdifferentials, our result is sharper than
Theorem 1 of [27] because it relies on the convex hull of potentially fewer points.
(2) Tt is important to note that the proof is similar to the proof of Theorem 1 in [27], but without employing
the Lemma 2.12, we can not conclude the condition (i) in Theorem 3.1.
Since a locally Lipschitz continuous function need not be differentiable, the condition (v) is important as
it provides information about a sequence at which all the involved functions are differentiable and where CV
conditions hold, which may be useful in further analysis.
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Remark 3.3. In the obtained equation (?3.11), it should be noted that multipliers associated to the equality
constraints are free, so we can not write \;0"h;(Z) instead of 9" (\;h;)(Z) directly. As already pointed out in
Proposition 2(ii) of [27], if we fix f to be the zero function, then we get d(—g)(Z) C —0g(Z) for the limiting
subdifferential case, but under the restriction that the Fréchet subdifferential of g is nonempty near the point
. Since limiting subdifferentials are also convexificators, so we can not say that 0"(A;h;)(¥) is contained in
X0 hi(Z).
Now, we illustrate the above Theorem 3.1 in the following example.
Example 3.4. Consider the mathematical program
min (21 +1)% + |ao

st.  — 2z + |z +|z2] < 0.
Clearly, (0,0) is the optimal solution of the above problem. Here

f(xl,acg) = (1'1 + 1)2 + |:L‘2|

9(x1,22) = =231 + [21] + |22

and
C = R2%

Then, both the functions admit upper regular, upper semicontinuous convexificators at (0, 0)

o 1(0.0) = {(f)T7 (21>T},
9"g(0,0) = {(:?)T, <_11>T}
s {(o2,) 1 0<eei)

T
coar<ug><o,o>={(E‘%ﬁ;ﬂﬁ) | 0<t<1}.

We can easily see that

If t = 0 then Theorem 3.1(i) holds for yg = 1 and p = % Infact, if we fix pg = 1, value of p depends upon
value of ¢, u varies from 1/2 < u < 3/2 whenever 0 < ¢ < 1.
1

We also have a sequence {(=!, 1)} where condition (iv) and (v) holds.

For the above example, we can see that the limiting subdifferentials of involved functions are

01(0,0) = {(f)T’(flf}’
29(0,0) {(_i’)Tv(ll)T’<13)T’<—}>T}'

It is clear that, the limiting subdifferential may be finite, whereas convex hull of convexificator is of course need
not be a finite set. In optimization, considering convex hull is natural. So when limiting subdifferential is bigger
than convexificator, our result would be better in the sense that the optimality condition rely on the convex
hull of few points compare to limiting subdifferential.

On the other hand, dropping the locally Lipschitz continuity we may lose condition (iv) and (v) in
Theorem 3.1.

and
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4. IMPROVED ENHANCED KK'T CONDITION

Now by the use of above Fritz John condition, we can derive enhanced KKT-condition by using the classical
approach in the literature, i.e. by making coefficient nonzero, associated to objective function in enhanced Fritz
John condition.

Definition 4.1. Let Z be a feasible point of the problem (P). Then improved enhanced KKT condition holds
at 7 if the improved Fritz John condition holds with gy = 1.

Theorem 4.2. Let T be a local minimum of the problem (P). Suppose there is no mnonzero wvector
(A ) € RP x RY such that

0 € Y @d" (\hi)(x) + Zﬂj@élrgj(f) + Ne(z), (4.1)

i=1

and the CV conditions defined in Theorem 3.1(iv) and (v) hold. Then the improved enhanced KKT condition
holds at .

Proof. 1f jip = 0, then according to Theorem 3.1 there exists a sequence (A, p1) which satisfies (4.1) and hence
it violates assumption. Therefore f7p must be nonzero and after a proper scaling of A, i the enhanced KKT
conditions holds. (]

Remark 4.3. In Example 3.4, we can see that only zero vector satisfies equation (4.1), i.e. improved enhanced
KKT condition also holds for Example 3.4.

Now with the help of Theorem 4.2, we are in a position to define some new terms and constraint qualifications
(CQ) associated with convexifictors, similar to the pseudonormality and quasinormality concepts [3] of the
smooth case. These CQs will play a significant role in exploring the behavior of concerned problem. It is
necessary to mention here that condition in Theorem 4.2 helps in defining these CQ but it may not be a
constraint qualification itself as it involves the objective function.

Definition 4.4. Let Z be a feasible solution of problem (P), Then

(i) z is said to satisfy NNAMCQ if there is no nonzero vector (A, u) € R? x R% such that condition (4.1) and
the CS holds: p;g;(z) =0, Vji=1,...,q.

(ii) Z is said to satisfy O*-pseudonormality (for the region (), if there is no vector (A, ) € R? x R and
no infeasible sequence {z'} C C (t = k,n) converging to Z such that condition (4.1) and the pseudo-
complementarity slackness condition (pseudo-CS) holds: if the index set I U J is nonempty for I = {i|\; #
0}, J = {j|p; > 0}, then for each ¢ (¢t = k, n)

b q
Do dihi(x') + ) nyg(at) >0,
=1

i=1

and h;(i € I),g;(j € J) are all proximal subdifferentiable (differentiable) at z* for each ¢ (t = k,n).

(iii) Z is said to satisfy 9*-quasinormality (for the region ), if there is no vector (A, u) € R?xR% and no infeasible
sequence {z'} C C (t = k,n) converging to Z such that condition (4.1) and the quasi-complementarity
slackness condition (quasi-CS) holds: if the index set I U J is nonempty for I = {i|\; # 0}, J = {j|u; >
0}, then for all i € I,j € J \hi(z") > 0 and pjg;(z') > 0 and h;(i € I),g;(j € J) are all proximal
subdifferentiable (differentiable) at x! for each t = k (t = n).

Remark 4.5. Due to the involvement of convexificators in equation (4.1), above definitions are different from
the Definition 5 of [27].
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In Proposition 3.1 of [3] Bertsekas and Ozadaglar employed some restrictions on constraints for a point to
be pseudonormal. They proved that any feasible point of a constraint region must be pseudonormal if equality
functions are linear and inequality functions are concave and smooth and there is no abstract set constraint.
Ye ([27], Prop. 3) extended it to the nonsmooth case, where all involved functions have limiting subdifferential.
Here, this paper is about such problems, where functions may admit more general objects called convexificators,
which includes limiting and many other subdifferentials frequently consisting in nonsmooth optimization, see
[9,13,16,26]. Hence our definition of 9*-pseudonormality and 9*-quasinormality is much weaker than that of
Ye and Zhang [27] or Bertsekas and Ozdaglar [3]. Here we have an enhanced result for any feasible point of
the problems including functions which admit convexificators, to be 0*-pseudonormal. We are presenting only
statement here, because the proof is similar to Proposition 3 of [27].

Proposition 4.6. Any feasible point of the problem (P) is 0*-pseudonormal under the restrictions that
C = R™, h; are linear and g; is concave.

Definition 4.7. Let Z be a point in the feasible region Q. A vector (A, 1) € RP xR is said to be §*-quasinormal
multiplier, if it satisfies the following weaker version of the improved enhanced KKT conditions

() 0 € mmdf(@) + SF_ a0 (uhi)(®) + X4 _ o0 g (@) + Ne(@).
(ii) There exist sequences {z*} and {z"} C C converging to Z such that the quasi-CS in Definition 4.4 holds.

Corollary 4.8. Let T be a local minimum of the problem (P). Then the weaker version of the improved en-
hanced KKT condition holds at T, provided that at T, NNAMCQ, or 0*-pseudonormality or 0*-quasinormality
1s satisfied.

Proof. Suppose 0*-quasinormality holds at Z. Also, if T is a local minimum, then according to Theorem 3.1,
there is a vector (g, A, ) for which condition (i) and (ii) of Definition 4.7 easily holds. Now, since quasi-CS
conditions hold for (A, ), therefore according to 0*-quasinormality, equation (4.1) does not holds for (A, ), it
means Lo can not be zero. Hence, weaker version of improved enhanced KKT condition holds at Z.

Since NNAMCQ and 9*-pseudonormality is stronger than 9*-quasinormality, i.e. same result holds under
these CQs. (]

Now it has already been established in [15] that NNAMCQ implies the boundedness of the set of all normal
multipliers. Later, Ye and Zhang [27] presented a similar result for the nonsmooth problem. The author has
shown that at any feasible point, the set of all quasinormal multiplier is bounded under the assumption that
the concerned point is quasinormal.

Here, we are dealing with the convexificators as a tool for generalized subdifferential, we extend this result
for the set of all 9*-quasinormal multipliers in terms of the convexificators.

Theorem 4.9. Let T be a feasible point for the problem (P). If 0*-quasinormality holds at T, then the set of
all 0* -quasinormal multipliers M(Z) is bounded.

Proof. Suppose, on contrary that M (Z) is unbounded. Then there is a sequence {(A\", ™)} € M(Z) such that
[|(A™, u™)|| — oo as n — oo. Then by the definition of 9*-quasinormal multiplier, for all n, there is a sequence
{xF} and {z!,} C C converging to Z, such that

0 € @0 f(z) + Y @0 (\'h)(z) + > pi'eod"g;(z) + Ne(z), (4.2)
i=1 j=1

I’L‘/;LZ()) vj = ]‘7""q7 (4'3)

Nohi(z™) >0, Vi € I", (m=k,1I) .
pigi(zy) >0, Vi e J", (m=kl) (4.5)



S284 A. KHARE AND T. NATH

hi(i € I™), gj(j € J")are proximal subdifferentiable at z¥ (and differentiable at z,), where I = {i | Al # 0}
and J" = {j | p} > 0}.

Let £ = qryamy and ¢7 =
(4.2) by ||(A™, u™)||, we obtain

H(/\ﬁiu)\\ and we can assume that (&7, u™) — (&, i), divide both sides of

0 ¢ Zcoar (E7hy)(Z) + Zq;%argj(:z) + Ne(2).

i=1

Now, taking limit as n — oo yields that
p —
0 € Z@@"(& )(Z) + cho@ g;(T) + Ne().
i=1
Since, we have
/’L?207 vj:17"'?q7

therefore,

Now we can construct index sets as
={il& #0y J={il¢ > 0}

then TUJ is nonempty and by equations (4.4) and (4.5) , there is some N such that for all n > N we must have

A{E(h’(ﬂj))”) >0, Viel", (m=kl),
or
Ehi(x™) >0, Vi el (m=kl),
similarly

ngj( m>0, VjedJ (m=kl.

Since h;(i € I"), g;(j € J") are proximal subdifferentiable at zk and differentiable at z!,, there exist some

scalars (&1,...,&,,C1,- -+, () not all zero and sequences {z¥}, {xn} C C that satisfies these relatlons but it is
violation of 9*-quasinormality at Z. Hence, our assumption is wrong, i.e. set of all 9*-quasinormal multipliers
M (Z) must be bounded. This completes the proof. O

By using the proof of our Theorem 3.1, we can also generalize a well-established result of Lemma 2 from [24]
to our problem. The following result characterizes a 0*-quasinormal vector in its neighbourhood.

Lemma 4.10. If a vector T € Q is 0*-quasinormal, then all the feasible vectors in its neighbourhood are 0*-
quasinormal.

We have studied yet 0*-quasinormality for a point and some characterization of the set of 0*-quasimultipliers,
so we may extend now an inclusion result of Proposition 1 from [24] to the concerned optimization problem.
Bertsekas and Ozdaglar represented a Fréchet normal cone in terms of a set of quasinormal multipliers for the
smooth case.
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Although this result also has been extended by Ye and Zhang ([27], Prop. 4) to the nonsmooth case, where
involved functions have limiting subdifferentials. The author modified this result for limiting normal cone in
terms of quasinormal multipliers. But the case where the function may admit generalized objects still remained.
Since we are using convexificators, so our result enhances that of Ye and Zhang [27], Ozdaglar and Bertsekas
[24] and Henrion ([10], Thm. 4.1). Here, we are giving a specific representation of the polar of the tangent cone
(or Fréchet normal cone) to the constraint region in terms of the set of 0*-quasinormal multipliers.

Theorem 4.11. Let T be 0*-quasinormal for 2, then

T3(@) € § D@0 (h)(@) + 3 et g,(a) + Ne(@) | () € M)

j=1

Proof. Step I. Let y be any point of 79(Z), then by Ozdaglar and Bertsekas ([24], Lem. 3), there exist a smooth
function F' with the property
_VF@) = v (46)

which achieves a strict global minimum over  at Z. This result can be reduced to —¢od*F(Z) = y due to the
smoothness of F.

Now similar to the proof of Theorem 3.1, we can use a quadratic penalty function approach for each
k= 1,2,...

min  F*(z) st. xz € CNB[z, €],
where v .
FH@) = F@) + 53 (@) + 53 (07 (@)

Since C N'B is compact, Therefore due to Weierstrass theorem, there is an optimal solution z* for the above
problem. i.e.

PR < FRE) = F()
P ) + 53 (M) < F@)

i=1 j=1

Now due to the boundedness of F(2*) and by using the same approach as in Theorem 3.1, we conclude that
this sequence {2*} converges to Z and 2* is an interior point of B[z, €] for all k greater than some k.
Now, by the Theorem 3.1,

0 € @d" FF(zF) + Ne(zF),

p q
0 € @d"F(a*) + > @d"(\fhi)(a®) + Y b @0"g;(a*) + Ne(ah),
i=1

j=1
hence,
q
—w0"F(a*) € Y @0 (Mhi)(a") + Y pk @07g; (%) + Ne(aF). (4.7)
i=1 j=1

There also exist sequences {z%"} and {z%*} C C converges to Z such that , for all k

Mehi(adm™y >0, Vi e I*, (m=rs),
phgi(@bmy >0, Vi e Jb (m=rs),
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and h; (i € I¥), g; (j € J*) are proximal subdifferentiable (differentiable) at =% (at 2%*), where
I*={i| A7 # 0},
k_ g,k
JP=A{j|n; > 0}

Step II. Now to show that the sequence {\¥} and {,ué“} is bounded, on contrary assume that this sequence is
unbounded. Then denote

k q

O =1+ Y00+ Y ()
i=1 j=1

Ak .
g = S Yi=1..p,
and
ik
Cjk = 6727 \V/j = 17 q

Then by equation (4.7), we have

I F) Zwar(ifhmxk) 30 B0 (g,)(e4) + A,

gk ok ok
i=1 j=1
—co@r "(ekh ! ke k k
— € Zco@ (€Fn) (%) + ZCjcoE) gi (") + Ne(z").
j=1
Since the sequence {Ef,...,f;f,d“,...,(g} is bounded, we may assume that it converges to {&1,...,&p,

C1,.--,¢;} # 0ask — oo. Then taking limit in the last inclusion yields that
q
0 € 2008 (&:hy) Z co0"g;(x z®) + Ne(zh),

where C_j > 0forallj = 1,2,...,q and 5_1,...,51,741,...7{,1 are not all zero.
Now, let i € I* = {i + & # 0},since &8 — & # 0ask — oo, therefore £&¥ # 0, and has the same
sign as ¢; for sufficiently large [. Consequently, we have

ehi(z®™) >0, (m=r,s)
= &hi(z®™) >0, V sufficiently large k and m, (m =1, s),

similarly for j € J* = {j|{; > 0}, we have
C_jgj(xk’m) >0, (m=ms),
also similar to the proof of Theorem 3.1, using density theorem we can find subsequences
{abre} c{zP"}c ¢
and ({z%**} C {a%*} C C) converging to T as k — oo such that for all sufficiently large k, we have

Ehi(a® ™) >0, Vi e I, (m=r,s),
(jgj(xk’mk)>0, VjeJ, (m=rs),
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and h;(zb™), (i € I%), g;j(@®™), (5 € J*) (hi(xF**), (i € I%), gj(a®**), (j € J*)) are proximal
subdifferentiable at %" (dlfferentlable at z°+). But this violates the 9*- quasinormality at Z, hence the
sequence {\¥, ..., )\’;, ... ,,uq} must be bounded.

Step III. Now without loss of generality, we assume that (AF¥,..., /\’;,u’f, . ,,u’;) converges to (A1,...,Ap,
Uiy, Hg) as k — oo and since F' is smooth, it admits a continuous convexificator, then taking limit in (4.7)
we have
—cod"F(z Zco@r (Aihi)(Z) + Zu]coa g;(Z) + Ne(2)
Jj=1
= y € Zco@ (Aihy) Zu]coﬁ 9;(Z) + Ne(@),
=1 Jj=1
hence,
P
73(z) Z )(Z) + choa 9;(Z) + Ne(@) | (A p) € M(z)
=1 J 1

Similar to step II, for sets I = {i | \; # 0} and J = {j | p; > 0}, we can find subsequences
{xk“} C {l‘k’r} c C,

and

{x’”’“} C {xkg} c C,
converging to T and satisfying the inequalities same in step II and proximal subdifferentiability and differentia-
bility notions hold respectively. (Il

Remark 4.12. If Q is regular, then the result is true for limiting normal cone instead of Fréchet normal cone
and again we can say that this result is sharper than Proposition 4 of [27], because it provides a set for limiting
normal cone to be contained in, which is sharper than established in the literature.

From Theorems 4.11 and 2.13, The improved enhanced KKT condition can be sharpened for the case, where
the objective function is Fréchet differentiable, since the minimal convexificator in this case is the gradient of
the function.

Corollary 4.13. Suppose T is a local minimizer of the problem (P ) with Fréchet differentiable objective function
at T. If T satisfies one of the NNAMCQ, 0*-Pseudonormality or 0*-Quasinormality, then the improved version
of enhanced KKT condition holds with

co 0" f(x) = {Vf(@)}.

5. CONCLUSION

In this paper, we have used convexificators in place of limiting subdifferentials to study a mathematical pro-
gram involving equality, inequality and an abstract set constraint under locally Lipschitz assumption. Although
limiting subdifferential of a locally Lipschitz continuous function becomes convexificator, but there may be
some other convexificators smaller than limiting subdifferential. Significance of our results can be seen for those
convexificators.

Due to the involvement of convexificators, the obtained result becomes sharper, because our result does not
depend on the whole limiting subdifferential, but the convex hull of some few points of it to check the necessary
optimality condition. we have also analyzed the pseudonormality and the quasinormality in terms of convexifi-
cators as 9*-pseudonormality and 9*-quasinormality, which are sharper than the previously established in the
literature. Later we have generalized some results from [27] by using 0*-pseudonormality and 9*-quasinormality,
which are stronger than [27].
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