
RAIRO-Oper. Res. 55 (2021) S167–S194 RAIRO Operations Research
https://doi.org/10.1051/ro/2019075 www.rairo-ro.org

NESTED BI-LEVEL METAHEURISTIC ALGORITHMS FOR CELLULAR
MANUFACTURING SYSTEMS CONSIDERING WORKERS’ INTEREST

Bardia Behnia1, Babak Shirazi1,∗, Iraj Mahdavi1

and Mohammad Mahdi Paydar2

Abstract. Due to the competitive nature of the market and the various products production require-
ments with short life cycles, cellular manufacturing systems have found a special role in manufacturing
environments. Creativity and innovation in products are the results of the mental effort of the workforces
in addition to machinery and parts allocation. Assignment of the workforce to cells based on the interest
and ability indices is a tactical decision while the cell formation is a strategic decision. To make the correct
decision, these two problems should be solved separately while considering their impacts on each other
classically. For this reason, a novel bi-level model is designed to make decentralized decisions. Because of
the importance of minimizing voids and exceptional element in the cellular manufacturing system, it is
considered as a leader at the first level and the assignment of human resources is considered as a follower
at the second level. To achieve product innovation and synergy among staff in the objective function at
the second level, increasing the worker’s interest in order to cooperate with each other is considered too.
Given the NP-Hard nature of cell formation and bi-level programming, nested bi-level genetic algorithm
and particle swarm optimization are developed to solve the mathematical model. Various test problems
have been solved by applying these two methods and validated results have been shown the efficiency of
the proposed model. Also, real experimental comparisons have been presented. These results in contrast
with previous works have been shown the minimum amount of computational time, cell load variation,
total intercellular movements, and total intracellular movements of this new method. These effects have
an important role in order to the improvement of cellular manufacturing behavior.
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1. Introduction

In the contemporary business environment, values change and the ability to adapt is very valuable. Nowadays,
in companies quests for efficiency, comprehensive quality, client satisfaction, and improved quality of working life,
manufacturers experience a variety of new forms. To improve their performance, manufacturers seek advantages
such as smaller size, more flexible operations, new and creative products. In the past, manufacturers addressed
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customer preferences by their large-scale production. This trend continued, perhaps due to the low diversity
of products. Today, however, due to the high level of customer expectations caused by increased consumers’
knowledge and awareness, customers will determine the product characteristics. For this reason and according
to the globalization trend and increased emphasis on customer requirements, significant changes have occurred
in the business environment and many manufacturers focus on customer-oriented production. Companies and
manufacturers seek to increase customer satisfaction, the number of loyal customers and competitive advan-
tages in the market with well-designed products based on customer desires. With the growth in the economy
and expansion of manufacturers, the companies tasks and the markets in which they operate are becoming
increasingly more complicated. Thus, the employees’ activities in these organizations must be specialized more
than ever, and experts in a company need to learn how to arrange team works. Another important issue is the
intense economic competition. In today’s economy, leaders in most industries often utilize large savings and
huge growth. In such circumstances, attaining the best employees’ performance has been very important, and
employees are expected to be more skilled in their respective fields. Therefore, a higher number of professional
constraints depend on the employees’ expertise and interest [1]. Nowadays, many manufacturing systems are
based on group technology. Parsing a manufacturing system to subsystems for lighter controlling and planning is
the main idea of group technology. The cellular manufacturing system is one of the most famous applications of
group technology [26]. The benefits of both job shop and flow shop appeared in a cellular manufacturing system.
In cellular manufacturing systems, the part family is a group of parts with the same processing requirements
and processed by various machines in a cell. Betterment of the production control, productivity, and decreased
setup times, material handling charges are awaited in a cellular manufacturing system [17, 19]. In designing a
cellular manufacturing system one of the first and important problems is the cell formation which known as
Part-Machine grouping problem. Minimizing parts movement between cells and in each cell, which known as
intercell and intracell movements are the main objectives of the cell formation problem. All equipments and
skills which required for a product should be located on a cell based on the cellular manufacturing policies. By
decreasing intercell and intracell movements, production costs cut. Moreover, the role of the worker in manu-
facturing systems cannot be refused. Nowadays both technical and human characteristics are considering for
continuous success and performance of cellular manufacturing system. Figure 1 has been shown the schema of
a cellular manufacturing system considering workers’ interest.

Many of the earliest researches on cellular manufacturing systems focused just on technical problems such
as part family grouping, cell balancing, and processing routes. Goncalves and Rezende [15] provided a method
with compounding a genetic algorithm and novel local algorithm to determine product family and machine
cell [15]. Albadawi et al. [2] provided a mathematical model with two phases for solving manufacturing cell
formation problem. Machine cells and part allocation to the cells respectively have been done in the first and
second phase [2]. Mahdavi et al. [24] proposed a mathematical model for the cell formation problem based
on the concept of using cells in cellular manufacturing systems. This model aimed to minimize the number of
voids and exceptional elements in the cells. They also planned an effective method for solving the mathematical
model based on the genetic algorithm [24]. Anvari et al. [3] developed a particle swarm optimization algorithm
(PSO) for minimizing voids and exceptional elements with determining machine group and the coefficient of
commensurate similarity [3]. Paydar et al. [25] proposed a mathematical model for specifying part families and
machine groups at the same time in the cell formation problem. Minimizing intracellular empty spaces and
exceptional elements at the same time are the main objectives of their model. The optimal number of cells is
determined by the model, and the number of manufacturing cells consideration as a decision variable is the
most important advantage of this model [25]. Elbenani et al. [13] proposed a local search method for solving
the cell formation problem in which each cell contains at least one machine and one part. Their proposed
method successively uses resonance strategy to optimize the answer locally, and destruction strategy for gaining
a new resolution from the previous answer [13]. Brown [8] tries to dilute the total cost in cellular manufactur-
ing systems through the number of similar machinery and minimizing intracellular movements. He developed
mathematical models by working on long-term bearable cell formation [8]. Moreover, some researches focused
on human factors in the cellular manufacturing problem. Fazakerley [14] studied group technology problems
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Figure 1. The schema for the cellular manufacturing system considering workers’ interest [6].

for human resources like loss of group feeling, vulnerability, and hesitancy [14]. Shafer et al. [30] studied about
cellular manufacturing system and its negative effect on worker’s manners and conceptions. They believed that
organizational commitment and job satisfaction cause derivation in cellular manufacturing systems [30]. Udo
and Ebiefung [33] studied about human factors and they’re relevant to the success of cellular manufacturing
system. According to their study, top management, training, and self-interest have an affirmative effect on man-
ufacturing and group technology efficiency and improvement [33]. Egilmez et al. [12] studied worker allocating
to various cells. They proposed a mathematical model based on the abilities of the workers for allocating the
worker to different cells with a random approach [12]. The nature of cellular manufacturing systems in man-
ufacturing products in mid-variety and mid-volume, the product mix variation is not too far-fetched. Bootaki
et al. [7] studied about configuring manufacturing cells when product mix variation occurs. The part-machine
incidence matrix should be changed because of product mix variation. They formulated the problem with two
different criteria which considered to workers’ relation together and each worker experts [7]. Sakhaii et al. [27]
considered decreasing the machinery moving costs, lack costs and worker cost. They resolved the problem in
a cellular manufacturing system with untrustworthy machinery using mixed integer programming model [27].
Azadeh et al. [4] proposed a mathematical model for the dynamic cellular manufacturing system. They repre-
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Table 1. Literature review of the cellular manufacturing system and workforces’ assignment.

Decision

Author(s) Movement Workforces CSL making NML Solution

cost assignment method method

Intra-cell Inter-cell Skill WLB Interest Stochastic CN DCN

Resende and 7 X 7 7 7 7 7 X 7 X GA

Goncalves [15]

Albadawi et al. [2] X 7 7 7 7 7 7 X 7 7 IP

Mahdavi et al. [24] X X 7 7 7 7 7 X 7 7 GA

Anvari et al. [3] X X 7 7 7 7 X X 7 X PSO

Paydar el al. [25] X X 7 7 7 7 X X 7 X Lingo

Elbenani et al. [13] X 7 7 7 7 7 7 X 7 X Hybrid GA

and LSA

Brown [8] 7 X 7 7 7 7 7 X 7 7 Lingo

Egilmez et al. [12] 7 7 X 7 7 X 7 X 7 7 Simulated

annealing

Bootaki et al. [7] 7 X X 7 X 7 7 X 7 X NSGA-II

Sakhaii et al. [27] X X X 7 7 7 X X 7 X MILP

Azadeh et al. [4] X X X X 7 7 X X 7 7 NSGA-II and

MOPSO

This paper X X X 7 X 7 X 7 X X NBL-GA and

NBL-PSO

Notes. CN: Centralized decision making, DCN: Decentralized decision making, WLB: Workload balancing, CSL: Cell
size limitation, NML: Number of Machine Limitation, IP: Integer programming, MILP: Mixed-integer linear program.

sented a multi-objective model by taking human factors which three objectives are considered in their model as
minimizing the total cost of the dynamic cellular manufacturing system, minimizing operators’ decision-making
inconsistency style and workload balancing of operators’ in cells. They solved nine test problems for verifying
and validating their proposed model [4]. A summary of past researches and the contribution of this work is
shown in Table 1. The purpose of cellular manufacturing problems is the best layout for the facilities. Planning
facilities can be centralized or decentralized. With various sizes of facilities and in centralized planning, manu-
facturing policies are designed in an integrated paradigm; but in decentralized cases, this activity could change
depending on the requirements and policies taken for different facilities even in one unit. Organizations should
adapt themselves to the changes of the environment regards the current dynamic and constantly changing busi-
ness environment and seek innovation and competitive advantages for survival. It is necessary to raise the sense
of collaboration and coordination between the workers to sustain an advanced and active formation. Workers’
optimize the group performance collaboration results in a more efficient and realistic exchange of knowledge
and consecutively. In this case, worker planning in cellular manufacturing should be focused on promoting
cooperation interactions between the staff. Thus, the optimal design of cells based on workers interests has
important role in improvement of cellular manufacturing behavior. The remainder of this paper is organized as
follows. Section 2 presents problem formulation; Section 3 develops a nested bi-level genetic algorithm (NBL-
GA); then in Section 4, nested bi-level particle swarm optimization algorithm (NBL-PSO) is provided in detail.
Individual solution representation has been considered in Section 5. Sections 6 and 7 discuss Taguchi’s experi-
mental design and computational results. Finally, conclusions and future research direction are listed in the last
section.

2. Problem formulation

In this section, for formulating the problem, a bi-level mathematical model designed to achieve an optimal
solution for worker planning in cellular manufacturing systems. A bi-level optimization problem defined as
follows:
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
Min

x∈Rn,y∈Rm
F (x, y)

subject to G(x, y) ≤ 0{
Min

y∈Rm
f(x, y)

subject to g(x, y) ≤ 0

F, f : Rn ×Rm → R

G, g : Rn ×Rm → Rp

F is the objective function of the upper-level, which known as a leader and f is the objective function of the
lower-level which known as a follower. G and g are respectively the sets of constraints of the upper-level and
the lower-level problems [32].

Since there are several objectives that are optimized at a different level, the possible use of multi-objective
optimization should be discussed here. What is the main difference between multi-objective and multi-level
optimizations? A multi-objective problem doesn’t quite optimize all objectives simultaneously; rather, it treats
all objectives as equally important and will give a trade-off curve or Pareto front. At some points of that curve,
a trade-off in favor of objective1 is made, at others, in favor of other objectives. All points along the curve are
feasible for the same set of constraints, and this set of constraints does not depend on either objective. While
multi-level programming cares about one objective (f(x)), and the optimum value of f(x) over a set constraints
and lower level model is obtained which happens to be defined using another optimization (the lower level
program). Here exactly one optimal solution, though perhaps many optimizers are searched [32].

Cell formation is a strategic decision and worker planning is a tactical decision. These two aspects cannot
be planned centrally, and decision making in this regard is decentralized. Aiming to make a decentralized and
integrated decision, a bi-level approach has been provided here. The desired goals of the optimization model are
voids and exceptional elements and workers’ assignment minimization. Two objective functions in two levels are
considered. The leader addresses a more important issue, which is reducing the number of voids and exceptional
elements. In the second level or follower, promoting a sense of synergy between the workers has been taken into
consideration to maintain an innovative and dynamic organization in the long term.

Sets
C = Number of cells.
M = Number of machine types.
P = Number of part types.
W = Number of workers.

Parameters
LMc = Lower bound of cell c in terms of the number of machine types;
LPc = Lower bound of cell c in terms of the number of part types;
LWc = Lower bound of cell c in terms of the number of workers;
UWc = Upper band of cell c in terms of the number of workers;

Apm =
{

1 if machine type m required for part type p,
0 otherwise

Bpmw =
{

1 if part type p can be processed on machine type m with worker w,
0 otherwise

Rww′ =
{

1 if worker w interested in working with worker w′,
0 otherwise.
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Decision variables

xmc =
{

1 if machine type m is assigned to cell c,
0 otherwise

ypc =
{

1 if part type p is assigned to cell c,
0 otherwise

zwc =
{

1 if worker w is assigned to cell c,
0 otherwise

dpmwc =
{

1 if part p is processed on machine type m with worker w in cell c,
0 otherwise.

Mathematical model

Leader level

Min =
C∑

c=1

[
P∑

p=1

M∑
m=1

W∑
w=1

ypcxmczwc −
P∑

p=1

M∑
m=1

W∑
w=1

ypcxmczwcdpmwc

]
(2.1)

+
P∑

p=1

C∑
c=1

M∑
m=1

W∑
w=1

[ypcxmc(1− zwc)dpmwc] (2.2)

+
P∑

p=1

C∑
c=1

M∑
m=1

W∑
w=1

[2× xmc(1− ypc)(1− zwc)dpmwc] (2.3)

+
P∑

p=1

C∑
c=1

M∑
m=1

W∑
w=1

[xmc(1− ypc)zwcdpmwc] (2.4)

The first term in the leader objective function, i.e. (2.1), the total number of voids minimization, the terms (2.2)–
(2.4) calculate the number of exceptional elements for parts which computed based on the status, availability
of corresponding worker and machine.

The constraints are:

M∑
m=1

xmc ≥ LMc ∀c; (2.5)

P∑
p=1

ypc ≥ LPc ∀c; (2.6)

dpmwc ≤ Bpmwxmc ∀p, m,w, c; (2.7)
C∑

c=1

W∑
w=1

dpmwc = Apm ∀p, m; (2.8)

C∑
c=1

ypc = 1 ∀p; (2.9)

xmc, ypc, zwc, dpmwc ∈ {0, 1} ∀p, m,w, c. (2.10)

In the lower-level objective function of this mathematical model and in each cell, we are looking for worker
interest maximization in order to work together. Inequality (2.5) controls the assignment of a minimum number
of machines to a cell. Inequality (2.6) controls the minimum number of parts which processed in each cell.



NESTED BI-LEVEL METAHEURISTIC ALGORITHMS S173

Inequality (2.7) ensures that when machine type m, is not in cell c, then dpmwc is equal to zero. Equation (2.8)
ensures that if the part p need to process by machine m, there is a cell and just one like c, which contains this
machine and worker w who work on it to process part p on this cell. Equation (2.9) ensures that a specific part
is assigned to one cell only. Finally, equation (2.10) suggests that xmc, ypc, zwc and dpmwc are binary decision
variables.

Follower level

Max =
W∑

w=1

W∑
w′=1

C∑
c=1

Rww′zwczw′c. (2.11)

The constraints are:

W∑
w=1

zwc ≥ LWc ∀c; (2.12)

W∑
w=1

zwc ≤ UWc ∀c; (2.13)

C∑
c=1

zwc = 1 ∀w; (2.14)

P∑
p=1

M∑
m=1

dpmwc ≥ zwc ∀w, c. (2.15)

In the follower objective as the second level, i.e. (2.11), we are looking for maximizing the interest of working
together between workers who work in a special cell. At this level of the mathematical model, constraints (2.12)
and (2.13) control the assignment of minimum and maximum workers to a cell. Equality (2.14) ensures that a
specific worker is assigned to one cell only. Equation (2.15) defined to ensure that if worker w assigned to cell c
there is at least one part like p in this cell which processed on machine type mby working the worker won that
machine. Cell formation problems classified as NP-hard problems [25]. Bi-level programming has an inherent
framework and even with contiguous variables in the linear model to solve strongly NP-hard problems [32].
Several solution techniques have been proposed for solving this kind of problems. The difficulty consideration
of multi-level programming, metaheuristic algorithms are the most useful suggested methods. Metaheuristic
algorithm classes can be arranged according to the type of strategies as shown in Figure 2.

For solving the proposed mathematical model, this paper developed nested approaches with genetic algorithm
(GA) and particle swarm optimization (PSO) algorithm which is explained in the next section.

3. Nested bi-level genetic algorithm (NBL-GA)

Genetic algorithm is common optimization tools for engineering problems which was introduced by John
Holland from the University of Michigan in 1975 [18]. Genetic algorithms are special types of evolutionary
algorithms that utilize biological anabolic techniques such as inheritance and mutation [26]. In fact, genetic
algorithms use the principles of Darwin’s natural selection to find the optimum formula for estimating or
matching patterns. Genetic algorithms are programming techniques that make use of genetic evolution as a
problem-solving scheme [29]. The problem to be solved is the input and the solutions are coded per a scheme
which is called the fitness function that evaluates every candidate. Two search operators are present in this
algorithm: Crossover and Mutation. Mutation creates a neighborhood based on the offspring while crossover
selects two solutions as the parents and creates two offspring solutions by combining them thus searching for
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Figure 2. Metaheuristics solving approach for bi-level mathematical models.

parent=_generate_parent()
pbest=get_fitness(parent)
display(pbest)

if compare_best_optimal(pbest,optimal):

return pbest

flag=true

gens=0

while flag:
offspring=_mutate(pbest,gens)

produce(offspring)

offbest=get_fitness(offspring)

if pbest>=offbest:

continue

display(offbest)
if compare_best_optimal(offbest,optimal):

return offbest

pbest=offbest

parent=offspring

gens=gens+1

Figure 3. The executable code of the genetic algorithm (with Python programming language).

the possibility space of the solution. The algorithm performs the focus and variety of metaheuristics phases
blindly in the solution space. The executable code of the genetic algorithm with the mentioned steps is as
follows (Fig. 3).

The genetic algorithm, as one of the most well-known metaheuristic algorithms, can be molded into different
forms for various problems. Given that many researchers have utilized nested metaheuristic algorithms for solving
multi-level problems as accurate methods such as Karush–Kuhn–Tucker (KKT) [16, 21, 22, 32]. Therefore, this
type of algorithm was adopted for solving the two-level problem in this study. The nested bi-level genetic
algorithm executable code has been shown in Figure 4.
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(x,y,d)=_generate_parent_upper_level()

(z,d)=_generate_parent_lower_level()
pbest_upper_level=get_fitness_upper_level(x,y,d)

pbest_lower_level=get_fitness_lower_level(z,d)

if compare_best_optimal(pbest_upper_level,optimal_upper_level):

if compare_best_optimal(pbest_lower_level,optimal_lower_level):
return F1(pbest_upper_level,pbest_lower_level)

return F2(pbest_lower_level)
flag=true
gens=0

while flag:
pbestt_upper_level=_crossover(pbest_upper_level,gens)

offspring_upper=_mutate(pbestt_upper_level,gens)
produce(offspring_upper)

offbest_upper_level=get_fitness_upper_level(offspring_upper)
if pbest_upper_level>=offbest_upper_level:

continue

if compare_best_optimal(offbest_upper_level,optimal_upper_level):
co_evolve_lower_layer(offbest_upper_level)

pbestt_lower_level=_crossover(pbest_lower_level,gens)
offspring_lower=_mutate(pbestt_lower_level,gens)
produce(offspring_lower)

offbest_lower_level=get_fitness_lower_level(offspring_lower)
if pbest_lower_level>=offbest_lower_level:

continue
if compare_best_optimal(offbest_lower_level,optimal_lower_level):

co_evolve_lower_layer(offbest_upper_level)

return F1(offbest_upper_level)
return F2(pbest_lower_level)

pbest_upper_level=offbest_upper_level
pbest_lower_level=offbest_lower_level

(x,y,d)=offspring_upper
(d,z)=offspring_lower

gens=gens+1

Figure 4. The executable code of the NBL-GA (Customized genetic algorithm with Python
programming language).
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3.1. Operators

As illustrated in Figure 4, several crossover and mutation operators are developed in the related field. Here, a
single-point and double-point crossovers are selected and for mutation, three operators include swap, inversion,
and displacement are applied [5, 23,28].

3.2. Parent selection mechanism

Two stages in the development cycle are present in which competition occurs based on fitness, selecting
candidates for reproduction and selecting candidates to make it to the next generation. Selecting the parent is
to distinguish individuals based on their fitness, which means to permit better individuals to be parents for the
next generation. Selecting parent along with a reproduction selection mechanism improve the character of the
population. Parent selection is a possibility-based process in the genetic algorithm. Hence, candidates of higher
fitness are more probable to be selected as the parent. Nevertheless, lower fitness candidates have a lower but
a positive probability of being chosen. If the process was not possible-based, the search would have become
greedy and the algorithm could get trapped in local optimums. The roulette wheel is one of the most common
selection algorithms and in this paper has been used for parent selection.

4. Nested bi-level particle swarm optimization (NBL-PSO)

The particle swarm optimization (PSO) algorithm was proposed by Kennedy and Eberhart in 1995 [11]. This
is a search algorithm which is modeled based on the social behavior of bird flocks. This algorithm was first used
to discover the patterns governing the synchronous flight of birds with their sudden changes of the path and for
the optimum transformation of the flock, in which particles flow in the search space [9]. Dislocation of particles
in the search space is governed by the knowledge and experience of their own and their neighbors’. Therefore,
the status of the other masses of particles is effective on the search for one particle. The result of modeling
this social behavior is a search procedure in which particles tend to successful regions. Particles learn from one
another and approach their best neighbors based on the knowledge they acquire. The algorithm is established
along the principle that each particle adjusts its location in the search space considering the best location and
the best fix in its neighborhood. Finally, the pseudo code of the bi-level nested particle swarm algorithm is
presented in Figure 5.

4.1. Initial generation

There are several entities in the PSO algorithm that are called particles and are scattered in the search space
of the function. Each particle computes the target function in the position. Then, analyzing the information
about its current and previous locations along with data from one or more particles of the best population,
it picks out a way to go. A step of the algorithm ends as all the particles present in the population choose
a direction to go. These steps are repeated until the desirable solution is found. Each particle has a certain
competency which is calculated by a competency function. In the bird’s flock model, the closer particle to
the target in the search space has the higher competency. Moreover, each particle has a velocity directing
its migration. Particles continue their motion in the search space by following the current optimum particles,
as a group of PSO particles is randomly generated at the start and seek the optimum solution by renewing
generations. Particles are generated with random positions and velocities at the beginning of the algorithm
while in the subsequent steps, the placement and velocity of the particles are assigned considering the data from
the previous step.

4.2. Velocity updating

To move particles, there is a velocity operator. Particles are improved at each step based on two of the best
values. One is the best position that the particle has taken, which recorded as Pbest, and the other the best
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overall position that has been taken by a particle in the population, represented as Gbest. After determining the
best values, the velocity of each particle is updated using equation (4.1).

Vij(t + 1) = W × Vij(t) + c1r1j(t)[pij(t)− xij(t)] + c2r2j(t)[gj(t)− xij(t)] (4.1)

where:
W : Inertial weight, a control factor for exploration and exploitation.
For W ≥ 1, velocity gradually increases, the swarm scatters and the particles become unable to get back to
favorable regions (greater exploration for larger W ).
For W < 1, the velocity of the particles gradually decreases (greater exploitation for smaller W ).
V ij (t): Velocity of particle iin dimension j which prevents sudden changes in the motion of population.
Acceleration coefficients c1 and c2: determine how close the particle is to Pbest and Gbest.

Upper Level

Generate Initial Variables Vectors (X, Y, d)

Do

Check the Generated Vectors Feasibility
If Not Feasible

Correct Vectors
While the Feasibility Conditions Satisfied

Call Lower Level Function for calculating Z and F2

For each particle
Compute F1 using Z, X, Y, d

%%updating particle’s best fitness value%% 
If F1 is better than PBest

set current value as the new PBest

End For

%%updating population’s best fitness value%% 
Set GBest to the best fitness value of all particles
While the stopping criterion will be satisfied will be satisfied

Calculate the Particle Velocity according to equation (16)
Updating Particle Position according to equation (17)

Do

Check the Generated Vectors Feasibility
If Not Feasible

Correct Vectors
While the Feasibility Conditions Satisfied

Call Lower Level Function for calculating Z and F2

Compute F1 using Z, X, Y, d

update particle’s best fitness value (PBest)

Sort Ascending the population based on F1

update population’s best fitness value (GBest)

End While;
Print The best F1

*, F2
*, CPU Time

End.

Figure 5. Pseudo code of the NBL-PSO algorithm.
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…………………………………………………………………………

Lower Level

Generate Initializing Variable Vector Z

Do

Check the Generated Z Vector Feasibility
If Not Feasible

Correct Z Vector

While the Feasibility Conditions Satisfied
F2 Computation using (Z, d) 

%%updating particle’s best fitness value%% 
If F2 is better than PBest

set current value as the new PBest

End For

%%updating population’s best fitness value%% 

Set GBest to the best fitness value of all particles
While the stopping criterion will be satisfied will be satisfied

Calculate the Particle Velocity
Updating Particle Position

Do

Check the Generated Z Vector Feasibility
If Not Feasible

Correct Z Vector
While the Feasibility Conditions Satisfied
F2 Computation using (Z, d)

update particle’s best fitness value (PBest)
Sort Descending the population based on F2

update population’s best fitness value (GBest)
End While;
Provide F2

*, Z for Upper Level

End Lower Level;

Figure 5. Continued.

Accidental coefficients r1j and r2j: with uniform distribution in [0, 1].
Pij(t): The best position experienced by particle i in dimension j up to the time t (Pbest).
gj(t): The best overall position up to the moment t (Gbest).
xij(t): The current position of particle i in dimension j at the time t.

The right side of equation (4.1) is composed of three parts, the first of which is the current velocity of the
particle, the second and third parts are responsible for changing the velocity and directing of the particle. If we
do not consider the first part of the equation, velocities of particles are determined only considering the current
situation and the best conditions experienced by the particle and the population. Therefore, the best particle
is maintained in its place while the others run toward it. The convection of particles without the first part of
equation (4.1) is a process that gradually shrinks the search space, resulting in a local search around the best
particle. On the contrary, if only the first segment of equation (4.1) is considered, particles go on their way until
they reach the region boundary performing a somewhat overall search. The particles cooperate and exchange
information about their positions. The basic PSO cooperation is as follows:
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Figure 6. A sample step of each particle in the PSO algorithm.

– A particle has its own attributed neighborhoods.
– Particles are aware of their neighboring particles and utilize the position of the particle with the best match.
– The positions can be simply made use of adjusting velocity and consequently the location of the particle.

4.3. Position update

After updating the velocity of particles, the new location of each particle can be computed by the formula
(4.2).

xij(t + 1) = xij(t) + vij(t + 1) (4.2)

where xij(t) shows the current position of particle i in dimension j, xij(t + 1) the next position of particle i in
dimension j, and vij(t + 1) shows the next velocity of the position of pth article i in dimension j. Each particle
in search assumes a new velocity based on its previous velocity, its own best position, the overall best position,
and extends to the new position (Fig. 6).

The velocity and location of the particles are modified in such manner for each iteration until the optimum
solution is attained.

5. Individual solution representation

The primary construction of proposed chromosome for m = M , c = C, w = W and p = P is presented in
Figure 7, where the length of the upper level chromosome is equal to m + p and the length of the lower level
chromosome is equal to w and also each gene on the chromosome is filled by a random integer number between
[1, c]. For example, a related gene of m4 and cj = 3 show that the fourth machine could be allocated to the
third cell.

With the assumption that m = 5, k = 3, w = 9 and i = 4 the numerical chromosome is presented as Figure 8.
Tables 2–4 have been shown the NBL-GA algorithm details in a numeric sample respectively.
However, for some algorithms such as PSO that use the chromosome with continuous numbers, the compo-

sition of this array is done in two steps. In the beginning, each gene is filled by a random continuous number
between [1, k]. Then, after performing the various operators of the algorithm on this continuous chromosome,
the final version of the chromosome is obtained by rounding these continuous numbers. With the assumption
m = 5, k = 3 and i = 4 the numerical chromosomes are presented as Figure 9.

6. Proving proposed model using Taguchi’s experiment design

Taguchi method is applied to select the best value of each required parameter in metaheuristic algorithms.
This method was developed by Taguchi to select the best value of each parameter, instead of taking all possible
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Upper

Lower

Figure 7. The main structure of the proposed chromosome.

Figure 8. The numerical example of chromosome.

Table 2. Feasibility check in the upper and lower levels (m = 3, p = 2, w = 4, c = 3).

Infeasible

Chromosome
0 0 0 0 0 1 2 3 1 2 1 0 2 3 1

1 2 1 3 0 0 0 0 3 1 1 2

Check and 

repair

Cells have no machines and 

parts.

Workers are not in any cell. Machine 2 is not in any cell.

Repaired 

chromosome
3 1 2 1 3 1 2 3 1 2 1 3 2 3 1

1 2 1 3 2 1 3 1 3 1 1 2

Table 3. Cross-over of two chromosomes.

Parent 1 3 1 2 1 3

1 2 1 3

Parent 2 1 3 2 3 1

3 1 1 2

Child 1 1 3 2 3 1

1 2 1 2

Child 2 3 1 2 1 3

3 1 1 3
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Table 4. Ranked chromosomes of the initial population.

Rank Chromosomes Fitness 

value

1 1 3 2 3 1 56

1 2 1 3

2 2 3 1 1 2 73

3 3 2 1

3 2 1 3 2 3 81

1 1 3 2

4 1 2 1 1 2 98

1 2 1 1

… … …

Figure 9. The numerical example of continuous chromosome.

experiments [31]. The problem in this study was a bi-level mathematical model, in which only the first-level
objective function is used for regulating parameters, based on the Kuo et al. [20]. Equation (6.1) calculates the
signal to noise metric and indicates how “Smaller-the-Better” select tuned parameters:

SN = −10 log
(∑n

i=1 Y 2

n

)
(6.1)

where n is the number of observations and Y is the observed data. In this paper, nine different test problems
designed for proving the proposed mathematical model which w, p, m, and c are defined as follows (Tab. 5).

The value of Apm, Bpmw and Rww′ are calculated randomly. The value of LMc, LPc, LWc, and UWc for all
cells are the same and assigned according to the Table 6.

Parameters of each algorithm and proposed values of Taguchi’s method are shown in Table 7.
For each test problem, a set of Taguchi experiments is performed. All the experiments for the NBL-GA and

the NBL-PSO algorithms on the first test problem are shown in Tables 8 and 9, respectively.
The best values of each parameter on each problem are obtained according to the SN diagram for the NBL-

GA (Fig. 10). The best value of each parameter in each problem is the parameter level with the highest SN
value. For example, 0.7 and 0.1 are the best values for Pc and Pm, on the first test problem respectively.

Likewise, the SN diagram for the nested particle swarm optimization algorithm is shown in Figure 11.
Because of the random nature of metaheuristics, each problem for 20 trials is run and the average of them is

used. After 6480 times running, 9×20 times for each problem with NBL-GA and 27×20 times for each problem
with the NBL-PSO algorithm the best value of parameters in each problem computed as follows (Tab. 10).
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Table 5. Problems specification.

Problem # Part type Machine type Cell number Workforce

1 5 5 2 9
2 8 10 3 12
3 9 7 3 10
4 10 15 4 18
5 15 12 3 14
6 18 11 3 15
7 20 12 4 15
8 25 15 4 20
9 30 20 4 20

Table 6. The value of LMc, LPc, LWc, and UWc.

Parameter Value

LMc 2
LPc 2
LWc 3
UWc 6

Table 7. Algorithm parameters range and defined levels.

Nested bi-level algorithms Parameters Parameter level
Level 1 Level 2 Level 3

NBL-GA

Pc 0.7 0.8 0.9
Pm 0.05 0.1 0.15
N -pop 100 150 200
Max iteration 100 200 300

NBL-PSO

C1 0.5 1 2
C2 0.5 1 2
W 0.5 0.75 1
N -pop 100 150 200
Max iteration 100 200 300

Table 8. The main solution for each Taguchi experiment for NBL-GA.

Experiment # Pc Pm N -pop Max iteration F1

1 0.7 0.05 100 100 48
2 0.7 0.10 150 200 50
3 0.7 0.15 200 300 48
4 0.8 0.05 150 300 50
5 0.8 0.10 200 100 52
6 0.8 0.15 100 200 53
7 0.9 0.05 200 200 50
8 0.9 0.10 100 300 52
9 0.9 0.15 150 100 51
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Table 9. The main solution for each Taguchi experiment for NBL-PSO.

Experiment # C1 C2 W N-pop Max iteration F1

1 0.5 0.5 0.50 100 100 54
2 0.5 0.5 0.50 100 200 53
3 0.5 0.5 0.50 100 300 51
4 0.5 1.0 0.75 150 100 52
5 0.5 1.0 0.75 150 200 53
6 0.5 1.0 0.75 150 300 52
7 0.5 2.0 1.00 200 100 52
8 0.5 2.0 1.00 200 200 50
9 0.5 2.0 1.00 200 300 52
10 1.0 0.5 0.75 200 100 51
11 1.0 0.5 0.75 200 200 51
12 1.0 0.5 0.75 200 300 48
13 1.0 1.0 1.00 100 100 48
14 1.0 1.0 1.00 100 200 50
15 1.0 1.0 1.00 100 300 51
16 1.0 2.0 0.50 150 100 51
17 1.0 2.0 0.50 150 200 51
18 1.0 2.0 0.50 150 300 51
19 2.0 0.5 1.00 150 100 52
20 2.0 0.5 1.00 150 200 52
21 2.0 0.5 1.00 150 300 51
22 2.0 1.0 0.50 200 100 51
23 2.0 1.0 0.50 200 200 50
24 2.0 1.0 0.50 200 300 51
25 2.0 2.0 0.75 100 100 50
26 2.0 2.0 0.75 100 200 51
27 2.0 2.0 0.75 100 300 51

7. Computational results

To solve the proposed bi-level programming model through the two meta-heuristics, the MATLAB software
is utilized. All program runs are made on a personal computer with Intel(R) Core (TM) i5-5200U CPU @2.20
GHz under Windows 10. Each test problem was solved using the NBL-GA and NBL-PSO algorithms according
to the best parameters based on Taguchi experiments for 20 trials and the average of them is used. For example,
the calculated response with the NBL-GA and NBL-PSO methods for F1 respectively are 104 and 109. As well
as the value of F2 for this test problem with NBL-GA and NBL-PSO are 37 and 39. In Figures 12 and 13, the
cell planning for the test problem no.2 with NBL-GA and NBL-PSO are shown respectively.

The computed values of the F1 and F2 for the test problem no.5 with the NBL-GA and NBL-PSO methods
are 206, 58 and 208, 59 respectively. Figures 14 and 15 are shown the cell planning for the test problem no.5
with NBL-GA and NBL-PSO.

To compare the obtained solutions, the objective functions at the first level and second level, and CPU
Time and the normalized deviation (ND) value were calculated as shown in Table 11. To calculate ND for each
algorithm, the following equation was applied.

ND =

∣∣F best
1,i − F ∗1,i

∣∣
F best

1,i

+

∣∣F best
2,i − F ∗2,i

∣∣
F best

2,i

(7.1)
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Figure 10. The SN diagram for the NBL-GA.

Figure 11. The SN diagram for the NBL-PSO.
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Table 10. The best-tuned parameters for each problem.

Problem # NBL-GA NBL-PSO
Pc Pm N-pop Max iteration C1 C2 W N-pop Max iteration

1 0.7 0.05 200 300 1 1 1 200 300
2 0.9 0.15 200 200 1 1 0.75 150 200
3 0.8 0.05 150 300 1 2 0.75 200 300
4 0.8 0.15 150 300 1 0.5 1 100 300
5 0.7 0.1 200 300 1 2 0.75 200 300
6 0.8 0.1 200 300 0.5 2 0.75 150 300
7 0.8 0.15 200 300 2 1 1 150 200
8 0.9 0.15 200 300 1 2 1 100 300
9 0.9 0.05 200 300 0.5 2 0.75 200 200

Figure 12. The cell planning for test problem no.2 with NBL-GA.

Figure 13. The cell planning for test problem no.2 with NBL-PSO.
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Figure 14. The cell planning for test problem no.5 with NBL-GA.

Figure 15. The cell planning for test problem no.5 with NBL-PSO.

Table 11. The result and normalized deviations of each problem and each algorithm.

Problem NBL-GA NBL-PSO
number Normalized CPU Time F1 F2 Normalized CPU time F1 F2

deviation deviation

1 0.094 1282.76 50 29 0.020 918.96 51 32
2 0.051 4683.89 104 37 0.048 1903.51 109 39
3 0.000 3178.04 76 27 0.092 2639.73 83 27
4 0.094 16 200.32 202 58 0.059 6445.97 214 64
5 0.051 13 102.40 206 56 0.010 4666.56 208 59
6 0.050 17 408.70 232 57 0.013 5473.56 235 60
7 0.100 28 563.38 214 45 0.051 11 602.76 225 50
8 0.012 64 989.63 352 80 0.139 17 780.23 401 81
9 0.080 97 783.29 434 81 0.062 37 506.48 461 88
Ave. 0.0591 0.0550
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Figure 16. The normalized deviation for the NBL-GA and NBL-PSO in test problems.
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Figure 17. The running CPU times for the NBL-GA and NBL-PSO in test problems.

F best
1,i and F best

1,i are the best answer between NBL-GA and NBL-PSO algorithms output for the leader and the
follower objective functions in ith problem respectively. F ∗1,i and F ∗2,i are the values of objective functions for
each algorithm in the ith problem.

For better comparability, the normalized deviation values calculated for each problem and each solving method
are presented in Figure 16. Based on the average normalized deviation, the results obtained from NBL-PSO
have a lower deviation. However, in small-size problems, NBL-GA has less deviation than NBL-PSO.

The CPU time for each test problem is presented in Figure 17. Examining CPU time shows that when the
problem size increases, the runtime ratio using NBL-GA will have more growth than NBL-PSO. Based on ND



S188 B. BEHNIA ET AL.

0

70

140

210

280

350

420

490

1 2 3 4 5 6 7 8 9

The Values of Leader Level 

NBL-GA PSO

Figure 18. The values of the upper level in NBL-GA and NBL-PSO comparison.
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Figure 19. The values of the lower level in NBL-GA and NBL-PSO comparison.

and CPU time indices, in the medium to large-size problems, the NBL-PSO method is more efficient than
NBL-GA.

The obtained values of the leader and follower levels in NBL-GA and NBL-PSO have been compared in
Figures 18 and 19.

In the upper level, the solutions which have been obtained from NBL-GA are much better than the solutions
obtained by NBL-PSO. Nevertheless, at the lower level, the results which have been obtained from NBL-PSO
are better than NBL-GA. Moreover, to compare these metaheuristics more carefully, ANOVA test was utilized
with a 95% confidence level. Generally, applying ANOVA to compare metaheuristics’ performance is common
in the literature such as [6, 10, 28]. To this end, it was used for nine tests in Table 8 based on three criteria
including F1, F2, and CPU time. Finally, the mean and standard deviation of each algorithm for the nine tests
and all criteria were reported in Table 12. Also, the other details of one-way ANOVA are illustrated in Table 13.
As shown in Table 12, the significant difference was observed between the two offered meta-heuristics based on
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Table 12. The mean and standard deviation for each algorithm in nine tests.

Metric ↓ F1 ↑ F2 ↓CPU Time
GA PSO GA PSO GA PSO

Mean 207.8 220.8 52.22 55.56 27466 9882
StDev 125.3 137.3 19.78 20.85 32754 11 637

Table 13. The results of ANOVA.

Criteria Source DF SS MS F-statistic P-value Test results

F1

Factor 1 761 760.5 0.04 0.837 Null hypothesis is
not rejected

Error 16 276 585 17 286.6
Total 17 277 346 –

F2

Factor 1 50.00 50.00 0.12 0.732 Null hypothesis is
not rejected

Error 16 6607.78 412.99
Total 17 6657.78 –

CPU time

Factor 1 1 391 363 014 1 391 363 014 2.30 0.149 Null hypothesis is
not rejected

Error 16 9 665 957 023 604 122 314
Total 17 11 057 320 036 –

F1, F2, and CPU time. For example, the GA algorithm was the better than PSO in terms of F1 (a minimization
criterion) in both of Mean and StDev metrics which this significant difference is shown in Figure 20a. Likewise,
the PSO algorithm was the better than GA in term of F2 (a maximization criterion) in Mean metric which this
significant difference is shown in Figure 20b. Also, the PSO algorithm was the better than GA in term of CPU
time (a minimization criterion) in both of Mean and StDev metrics which this significant difference is shown in
Figure 20c. Finally, since in term of F2 and CPU time, the PSO was better than GA (two criteria among three
criteria), thus, the PSO as the best algorithm is reported.

7.1. Proposed method validation: comparison with other research

In order to proposed method validation, this paper has been used another related research (e.g., reference
[4]). In the mentioned research, the authors presented an appropriate method for improved dynamic cellular
manufacturing by considering human factors. We have been defined the same condition as this reference too.
The particular parameters settings for validating the proposed method have been shown in Table 14.

Also, other validation characteristics have been presented in Table 15.
Based on defined different problems as illustrated in Table 15, the results are shown in following Tables 16–18.
Also, the comparison of this paper and the mentioned research using computational time based on different

generation number has been presented in Figure 21.
As these results show, the proposed method of this paper, has a better result in problems with large size.

Hence, the computational time is in normal status than other techniques such as mentioned reference.

8. Conclusion

Improvement of product quality combined with the reduction of production costs is always considered as
an important issue in cellular manufacturing systems. Due to customers’ requirements and market pull, man-
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(a)

(c)

(b)

Figure 20. The interval plots of F1, F2, and CPU time vs two algorithms.

Table 14. Parameters settings.

Genetic algorithm

Coss over operator Single-point
Chromosome length Equal to the number of machines,

parts, and workers
Maximum cell numbers 4
Size of population 25
Mutation probability 0.012
Number of iterations 2500
Number of runs 10

PSO algorithm

C1 0.5
C2 0.5
W 0.5
Size of population 25
Number of iterations 2500
Number of runs 10



NESTED BI-LEVEL METAHEURISTIC ALGORITHMS S191

Table 15. Cases characteristics for validation.

Problem Approach Size (Machine*Part) # cells

[4] NSG II 5*7, 8*20 4
[4] MOPSO 5*7, 8*20 4
This Paper NSB-GA 5*7, 8*20 4
This Paper NSB-PSO 5*7, 8*20 4

Table 16. Results (size (5*7)).

Number of Number of
Problem Approach Machines in each cell intercellular intracellular

I II III IV movement movement

[4] NSG II M1,M3 M2 M5 M4 7 10
[4] MOPSO M2,M4,M1 – – M5 12 19
This Paper NSB-GA M2,M5 M1 – M3,M4 6 9
This Paper NSB-PSO M1 M2,M3 M4 M5 5 7

Table 17. Results (size (8*20)).

Number of Number of
Problem Approach Machines in each cell intercellular intracellular

I II III IV movement movement

[4] NSG II M2,M3 M4,M6 M7 M8 6 10
[4] MOPSO M7,M8,M1 M2 M3,M4,M5 M6 9 13
This Paper NSB-GA M1,M2 M3 M5 M4,M6,M7,M8 5 9
This Paper NSB-PSO M1,M2 M3,M4 M5,M6 M7,M8 3 4

Table 18. Total results.

Problem Approach Size Total number Total number Maximum Computational
(machine* of intercellular of intracellular cell load time in
part) movements movements variation (%) seconds

[4] NSG II 5*7 7 10 11% 154
[4] NSG II 8*20 6 10 10% 200
[4] MOPSO 5*7 12 19 9% 169
[4] MOPSO 8*20 9 13 7% 170
This Paper NSB-GA 5*7 6 9 8% 160
This Paper NSB-GA 8*20 5 9 9% 180
This Paper NSB-PSO 5*7 5 7 5% 145
This Paper NSB-PSO 8*20 3 4 2% 120
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Figure 21. Comparison based on computational time.

ufacturers need to produce new and innovative products for their survival in the market. Issues consideration
such as manufacturing technology and machinery layout can be a guarantee for improvement of the cost and
quality of products. But the human resource has a decisive role in invention and creativity in the final product.
The more important issue is staff planning and their interest to cooperate and collaborate with each other.
Development and transfer of knowledge among employees will take place when they have the right relationships
with each other. This cooperation can bring innovation and creativity in products. Most problems in the cellular
manufacturing systems have considered strategic problems such as determining the optimal facility layout with
the aim of reducing the voids and exceptional elements, optimal production routing, etc. In this paper, the
assignment of human resources is considered to increase the level of cooperation between employees in addition
to the reduction of voids and exceptional elements. Increasing the interest of staff is a tactical decision while
facility layout is a strategic decision. A decentralized bi-level programming approach has been considered to
solve such a problem. At the first level, priority is given to the reduction of voids and exceptional elements. At
the second level, the assignment of the workforce in the cells is considered.

Since the proposed model was bi-level programming, thus the nested version of GA and PSO algorithms
has been developed to solve the problem. Nine test problems were examined using these algorithms according
to the best parameters achieved by Taguchi experiments. The leader level objective, follower level objective,
CPU time and ND indices are considered to compare the obtained solutions. Based on the computational
results, in small-size problems, NBL-GA has less deviation than NBL-PSO and in the medium to large-size
problems, the NBL-PSO method is more efficient than NBL-GA. Also, to compare these metaheuristics more
carefully, ANOVA test was utilized with a 95% confidence level. Finally, the mean and standard deviation of
each algorithm for the nine tests and all criteria were reported, which the significant difference was observed
between the two offered meta-heuristics based on F1, F2, and CPU time. Lastly, since in term of F2 and CPU
time, the PSO was better than GA (two criteria among three criteria), thus, the PSO as the best algorithm is
reported.

The validation of the proposed method has been compared by different criteria such as computational time,
cell load variation, total intercellular movements, and total intracellular movements too. These results have been
shown that the usage of the PSO algorithm is better for large-size problems. In the design of this cell, the total
cellular movements have been decreased which causes maximization in lead time and workers performance (with
a decrease of workers fatigue). Also, maximum cell load variation is in the best value. In this case, an increase
in product uncertainty level could be managed in better situations. Thus, the high interest level of workers for
working in cellular manufacturing through the design of this cell which has significant effects in improvement of
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dynamic cellular manufacturing is the main contribution of this study. To develop the model in the future, other
uncertain factors could be included in the first level. Also, this framework can be performed in a real-world case
study and several heuristics can be developed to compare with metaheuristics.
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