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PERFORMANCE EVALUATION OF PORTFOLIOS WITH FUZZY RETURNS

Zhongbao Zhou1, Enming Chen1, Helu Xiao2,∗,
Tiantian Ren1 and Qianying Jin1

Abstract. The existing literature on DEA (Data Envelopment Analysis) for evaluating fuzzy portfolios
usually takes risk as an input and return as an output. This assumption is actually not congruent with
the real investment process, where the input is the initial wealth and the output is the corresponding
terminal wealth. As for the risk and return, which are essentially two indicators derived from the
terminal wealth, both should be regarded as outputs. In addition, few studies have employed the
diversification model (nonlinear DEA) to estimate the fuzzy portfolio efficiency (PE), despite the fact
that there are many studies available within the framework of classical probability theory. Further,
the relationship between DEA and diversification models needs to be defined. In this paper, we take
the initial wealth as an input, while the return and risk of terminal wealth are taken as desirable and
undesirable outputs, respectively. We construct different evaluation models under the fuzzy portfolio
framework. The relationships among the evaluation model based on a real frontier, the diversification
model and the DEA model are investigated. We show the convergence of the diversification and DEA
models under the fuzzy theory framework. Some simulations as well as empirical analysis are presented
to further verify the effectiveness of the proposed models. Finally, we check the robustness of the
evaluation results by using the bootstrap re-sampling approach.
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1. Introduction

Since Markowitz [29] proposed the mean-variance portfolio theory, the performance evaluation of portfolios
has been a hot research topic in the field of financial studies. There are now many portfolio efficiency evaluation
approaches, among which the most famous ones are the three classic indexes presented in Treynor [38], Sharpe
[36] and Jensen [20]. The above three indexes are all derived from the Capital Asset Pricing Model (CAPM).
However, there are many anomalies that cannot be explained by using the CAPM (single factor model), such
as the size of stocks for the fund holdings, book-to-market ratio and momentum characteristics. Therefore,
some researchers have turned to the construction of multi-factor models to deal with this dilemma, such as
Fama and French [17] and Carhart [10]. Although these multi-factor models can effectively compensate for some
weaknesses of earlier single-factor model, the exact number of chosen factors in these models always remains to
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be controversial with the evaluation results being more sensitive to factors. So far, there is no unified standard
for choosing factors. Moreover, these evaluation indexes do not consider the effect of market friction factors
existed in the practical investment process, such as transaction costs, taxes, trading volume and other friction
factors.

Motivated by the seminal work of Markowitz [29], some researchers have turned to using a frontier-based
approach to evaluate the portfolio performance recently. This approach uses the distance between the portfolio
being evaluated and its projection on the frontier as a measure of portfolio performance. As far as we know,
there are mainly two frontier-based approaches which are widely used to assess the portfolio performance. One
of them is the diversification model. Morey and Morey [32] first provided a diversification model under mean-
variance framework, where the variance and expected values of fund’s return were regarded as the input and
output, respectively. Under the mean-variance framework, Briec et al. [6] established another quadratic nonlinear
constrained DEA model, and the efficiency improvement function is introduced in this model. Joro and Na [21]
considered the effect of skewness on the portfolio performance, and then established a diversification model under
the mean-skewness-variance criterion. By incorporating the Joro and Na [21] mean-variance portfolio theory
and stochastic dominance theory, Lozano and Gutiérrez [28] constructed a diversification model with stochastic
dominance constraints. Lamb and Tee [23] developed a diversification model with multiple return measures and
consistent risk measures. Branda [2] extended the conclusion of Lamb and Tee [23] by replacing the consistent
risk measure with a general deviation measure. Branda [4] constructed several kinds of diversification models
while allowing inputs and outputs to be negative, by using the direction distance function measure. Among many
others, readers may refer to Briec et al. [7], Zhao et al. [43], Branda [3] and so on. Although the diversification
model can effectively diversify risk, its nonlinear restrictions lead to a failure in the large-scale computations.
Thus, some researchers have tried to use DEA to evaluate the portfolio performance. Murthi et al. [33] first
applied DEA into the performance evaluation of portfolios. Basso and Funari [1] used DEA approach to assess
fund performance where different risk indicators were regarded as input indicators. For more applications of
DEA approach in the performance evaluation of portfolios, readers may refer to Chen and Lin [12], Ding et al.
[15], Zhou et al. [46] and Zhou et al. [48] and so on. Compared with diversification model, DEA model is more
effective for large-scale computations, since it is essentially a linear programming approach. However, its role
in diversification has also been questioned by many researchers. To this problem, Liu et al. [27] systematically
investigated the theoretical justifications for applying DEA to estimating portfolio performance. These authors
have shown that the DEA frontier can converge to the portfolio frontier when adequate portfolio samples exist.

The above portfolio performance evaluation problems are mainly based on classic probability theory to discuss
the PE. To be more specific, the uncertainty is assumed to be a stochastic phenomenon (e.g., Huang et al. [19],
Cao et al. [9], Zhou et al. [45], Zhou et al. [47], Zhou et al. [49] and so on). However, there are vast fuzzy
phenomena in the financial market, and the role of fuzzy characteristic is very important in some situations
(e.g., Cao and Lai [8], Liu et al. [26], Zhou et al. [44], Liu and Zhang [25] and so on). For some portfolio
problems, the classic probability theory lacks flexibility to address the investor’s subjective intentions, while the
fuzzy theory can describe it effectively. In this situation, the fuzzy theory proposed by Zadeh [40] can address
the portfolio optimization problems with fuzzy returns. Zadeh [40] discussed this application of possibilistic
theory in portfolio optimization. Huang [18] adopted the fuzzy entropy as the risk measure, and then provided
two kinds of portfolio optimization models. Qin et al. [34] applied the fuzzy cross entropy measure to investigate
the portfolio optimization problem with fuzzy returns. Kamdem et al. [22] discussed a generalized portfolio
optimization problem under the framework of credibilistic mean-variance-skewness-semi-kurtosis. Zhang et al.
[44] extended the earlier work into a multi-period possibilistic mean-semivariance-entropy portfolio optimization
problem with a constraint on transaction costs. For more literatures, readers may refer to Liu and Liu [24], Zhang
and Zhang [41], Liu and Zhang [25] and Mehlawat [31].

Lately, some researchers have made some attempts to combine DEA into fuzzy portfolio optimization prob-
lems. Mashayekhi and Omrani [30] incorporated the DEA cross-efficiency into the Markowitz mean–variance
model, where the returns of risky assets were described as trapezoidal fuzzy numbers. Chen et al. [14] incorpo-
rated the mean-semivariance and DEA cross-efficiency models, and then proposed a multi-objective portfolio
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optimization model in a fuzzy environment. The above literature clearly aims to provide a novel investment
strategy that considers DEA cross-efficiencies, while not involving how to assess the performances of portfolios.

Along the aforementioned lines of research, we find that the most of portfolio evaluation models are developed
under the framework of classic probability theory. Furthermore, the existing fuzzy portfolio studies mainly focus
on portfolio optimization instead of portfolio evaluation. Although Chen et al. [13] presented three kinds of DEA
models to estimate the fuzzy PE, they still adopted the traditional input-output process (i.e., the risk was an
input and the return was an output). More importantly, they do not provide any theoretical foundation to
assure that the DEA is a solid method to estimate fuzzy PE. This motivates us to reinvestigate the performance
evaluation of portfolios with fuzzy returns. To this end, we redefine the input-output process in accordance with
the actual investment process. In this paper, we hold that both return and risk should be treated as outputs,
being that they are two derivative indicators from the terminal return of a portfolio. Under this input-output
process, we first define the fuzzy PE under the criterion of possibilistic mean-variance-entropy. Subsequent to
this, the evaluation model based on real frontier, the diversification model and the traditional DEA model are
developed by using directional distance function. This indicates that the diversification and DEA models can be
regarded as the nonlinear and linear estimations of the model based on the real frontier, respectively. We show
that the efficiencies derived from diversification and DEA models are both convergent on the real PE when the
size of portfolio sample size is large enough. We discuss the differences between the DEA model and diversification
model by using simulations. These results show that the difference in the convergence rates between traditional
DEA model and diversification model is not apparent. For the empirical analysis, we randomly select 50 open-
end funds from China fund market to check the feasibility of the above models. Furthermore, the bootstrap
re-sampling approach is used to verify the robustness of the above evaluation results.

The remainder of this paper is organized as follows. In Section 2, we introduce some related definitions
about fuzzy theory, and then derive the formulation of portfolio with fuzzy returns. In Section 3, we construct
three different portfolio evaluation models under the criterion of possibilistic mean-variance-entropy, and then
investigate the convergence property of the estimation of PE. We also check the feasibility of the proposed
models by some numerical simulations. In Section 4, we carry out an empirical study of the 50 open-end funds
from China fund market. Some concluding remarks are summarized in the end.

2. Portfolios with fuzzy returns

2.1. Basic definitions of fuzzy variables

According to the conclusions of, Vercher et al. [39], and Saeidifar and Pasha [35], we will introduce some
basic definitions of fuzzy variables in this section. The main conclusions are as follows.

Definition 2.1. Let R denote the set of all real numbers. A fuzzy number A is a fuzzy set of R with a
membership function µA(y) : R→ [0, 1], and A should satisfy the following conditions:

(1) µA(y) is upper semicontinuous and bounded;
(2) A is normal, ∃y0 ∈ R such that µA(y0) = 1;
(3) A is fuzzy convex, that is ∀y1, y2 ∈ R, λ ∈ [0, 1]

µA(λy1 + (1− λ)y2) ≥ min{µA(y1), µA(y2)};
(4) Let the γ-level set of A be [A]γ(0 ≤ γ ≤ 1), among which [A]γ satisfies the following conditions: [A]γ =
{y|y ∈ R, µA(y) ≥ γ}, and [A]γ can be rewritten as [A]γ = [α(γ), ᾱ(γ)], where α(γ) and ᾱ(γ) denote the
left point and right point of the γ-level of A, respectively.

From the above definitions, for a general LR-type fuzzy number A = (a, b, c, d), the membership function
µA(y) can be expressed as

µA(y) =


LA(y) y ∈ [a− c, a],
1 y ∈ [a, b],
RA(y) y ∈ [b, b+ d],
0 otherwise.

(2.1)
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Figure 1. The membership functions of different fuzzy numbers.

Here LA : [a − c, a] → [0, 1] and RA : [b, b + d] → [0, 1] denote the left and right points of µA(y), respe-
ctively, where LA is a monotone increasing and right-continuous real-valued function, and RA is a monotone
decreasing and left-continuous real-valued function. Therefore, the γ-level set of A can be rewritten as [A]γ =
[L−1
A (γ), R−1

A (γ)]. In the following, we will show the three common fuzzy numbers popularly used in the existing
literature: (i) if LA and RA are both linear functions, then A degenerates to the classic trapezoidal fuzzy number;
(ii) suppose that LA and RA are both linear functions, and a = b, then A is triangular fuzzy number; (iii) in
addition to condition (i), if c = d = 0, then A is interval fuzzy number. The above three situations are shown
in Figure 1.

Based on the definition of fuzzy number, we can define the possibilistic expected value, variance, covariance
and entropy of fuzzy number A. The main conclusions can be expressed as:

Definition 2.2. Let A be the fuzzy number with [A]γ = [α(γ), ᾱ(γ)], the possibilistic expected value and
variance can then be defined.

E(A) =
∫ 1

0

γ(α(γ) + ᾱ(γ))dγ, (2.2)

Var(A) =
∫ 1

0

γ
(
[E(A)− α(γ)]2 + [E(A)− ᾱ(γ)]2

)
dγ. (2.3)

Definition 2.3. For two arbitrary fuzzy numbers A and B, the γ-level sets of A and B are expressed as
[A]γ = [α(γ), ᾱ(γ)] and [B]γ = [β(γ), β̄(γ)], respectively. Then, the possibilistic covariance of A and B can be
defined.

Cov(A, B) =
∫ 1

0

γ
(
[E(A)− α(γ)][E(B)− β(γ)] + [E(A)− ᾱ(γ)][E(B)− β̄(γ)]

)
dγ. (2.4)

Definition 2.4. For an arbitrary fuzzy number A, the membership function µA(x) satisfies (2.1), the possi-
bilistic entropy of A can be defined.

H(A) = −
∫ +∞

−∞

[
µA(y)

2
ln
µA(y)

2
+
(

1− µA(y)
2

)
ln
(

1− µA(y)
2

)]
dy. (2.5)

2.2. The formulation of portfolio with fuzzy returns

In the following, we assume that the investor joins into the financial market with an initial capital w, and
the investor can invest it in n risky assets. Let ri denote the fuzzy return rate of the ith asset. In addition, let
xi be the investment amount invested in the ith asset. In this case, the investment opportunity set Φ can be
represented as

Φ =

{
n∑
i=1

xiri

∣∣∣∣∣
n∑
i=1

xi = w, i = 1, 2, . . . , n

}
(2.6)

Where w is the initial wealth.
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Note that if further assume no short-selling, we only need to add an extra constraint 0 ≤ xi ≤ w (i =
1, 2, . . . , n) into (2.6).

In this paper, we assume that fuzzy return ri = (ai, bi, ci, di) is a trapezoidal fuzzy number. Then the
membership function of ri can be expressed as

µri
(y) =


1− ai − y

ci
y ∈ [ai − ci, ai],

1 y ∈ [ai, bi],

1− y − bi
di

y ∈ [bi, bi + di],

0 otherwise.

(2.7)

For ∀i, j = 1, 2, . . . , n, the following conclusions can be derived.

E(ri) =
ai + bi

2
+
di − ci

6
, (2.8)

Var(ri) =
(
bi − ai

2
+
di + ci

6

)2

+
c2i
36

+
d2
i

36
, (2.9)

Cov(ri, rj) =
aiaj

4
+
bibj

4
+
cicj
18

+
didj
18
− ai

4

(
bj +

cj
3

+
dj
3

)
− bi

4

(
aj −

cj
3
− dj

3

)
− ci

12

(
aj − bj −

dj
3

)
− di

12

(
aj − bj −

cj
3

)
, (2.10)

H(ri) =
(ci + di)

2
− (bi − ai) ln 2. (2.11)

Then, we have

E

(
n∑
i=1

xiri

)
=

n∑
i=1

xiE(ri), (2.12)

Var

(
n∑
i=1

xiri

)
=

n∑
i=1

x2
iVar(ri) +

n∑
i=1

n∑
j=1, j 6=i

xixjCov(ri, rj), (2.13)

H

(
n∑
i=1

xiri

)
=

n∑
i=1

xi

[
(ci + di)

2
− (bi − ai) ln 2

]
. (2.14)

In the following, the possibilistic mean is regarded as the return measure, while the possibilistic variance and
entropy are treated as the risk measures. Based on (2.12)–(2.14), we will discuss the performance of portfolios
with fuzzy returns under the framework of possibilistic mean-variance-entropy.

3. Performance evaluation of portfolios with fuzzy returns

Suppose that there are m portfolios under evaluation. The fuzzy return of the jth portfolio is expressed as
Yj (Yj ∈ Φ, j = 1, 2, . . . ,m). The corresponding initial wealth of each portfolio is wj(j = 1, 2, . . . ,m). The mean,
variance and entropy under the fuzzy criterion are E(Yj), Var(Yj) and H(Yj), j = 1, 2, . . . ,m, respectively. The
majority of the existing literature treats the risk as an input and the return as an output in both diversification
and DEA models. However, as we explained earlier, the risk and return are indeed two indicators derived
from the terminal wealth of the portfolio. Based on the real investment process, we can present the following
investment possibility set Ψ.

Ψ(w, E, V, H) =
{

(w, E, V, H)
∣∣∣∣w can produce a return Y, which can be

measured by mean, variance and entropy.

}
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Figure 2. The input and output process of portfolio.

As shown in Figure 2a, it is clear that the real input is the investor’s initial wealth and the outputs are the
return and risk. Note that the return is a desirable output, while the risk is an undesirable one. Thus, for any
given initial wealth w, if the strongly free disposability is assumed, the portfolio possibility set P (w) can be
expressed as follows:

P (w) = {(E, V, H) |(w, E, V, H) ∈ Ψ}

=

(E, V, H)

∣∣∣∣∣∣∣∣∣∣
E ≤ E

(
n∑
i=1

xiri

)
, V ≥ Var

(
n∑
i=1

xiri

)
,

H ≥ H

(
n∑
i=1

xiri

)
,

n∑
i=1

xi = w, i = 1, 2, . . . , n.

 (3.1)

In real applications, the initial wealth is often unknown. However, it can always be rescaled to unity. The
terminal wealth is rescaled to the rate of return Y/w accordingly, as shown in Figure 2b. In the following, we
assume that the initial wealth w = 1. The portfolio possibility set (3.1) can be rewritten as

P =

(E, V, H)

∣∣∣∣∣∣∣∣∣∣
E ≤ E

(
n∑
i=1

xiri

)
, V ≥ Var

(
n∑
i=1

xiri

)
,

H ≥ H

(
n∑
i=1

xiri

)
,

n∑
i=1

xi = 1, i = 1, 2, . . . , n

 (3.2)

Where ri denote the fuzzy return rate of ith asset.
Note that (3.2) share the same formulation as that of the output possibility set. In the following, we only

discuss the PE under output orientation.

3.1. Portfolio performance evaluation based on the real frontier

In order to address the undesirable output (i.e., risk), we adopt the directional distance function measure to
assess the performance of portfolios. Based on the real frontier, for any given direction, we can calculate the PE
and the projection on the frontier for each portfolio, as shown in Figure 3.

According to the above projection approach, for each portfolio with fuzzy return Y0 ∈ Φ, the following
evaluation model can be derived by using the directional distance function measure

Dg(Y0) = sup {θ| (E(Y0) + θgE , Var(Y0)− θgV , H(Y0)− θg) ∈ P} . (3.3)
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Figure 3. The projection of portfolio for a given direction.

This can be rewritten as

θ1(Y0) = max θ

s.t.



E

(
n∑
i=1

xiri

)
≥ E(Y0) + θgE

Var

(
n∑
i=1

xiri

)
≤ Var(Y0)− θgV

H

(
n∑
i=1

xiri

)
≤ H(Y0)− θgH

n∑
i=1

xi = 1, i = 1, 2, . . . , n.

(3.4)

If all the mean, variance and entropy of portfolios are all positive, we can set the direction as gE = E(Y0),
gV = Var(Y0) and gH = H(Y0). Then, Model (3.4) is consistent with the radial one. If some negative data exists,
the direction can be set as gE = max

Y ∈Φ
E(Y ) − E(Y0), gV = Var(Y0) − min

Y ∈Φ
Var(Y ), gH = H(Y0) − min

Y ∈Φ
H(Y ),

suggested by and Branda [4].
Note that there exist many market friction factors in the practice of investment process, such as transaction

costs, taxes and trading volume constraints. In these cases, the real frontier is difficult to derive. It also limits
the application of Model (3.4) in the actual performance evaluation of portfolios.

3.2. Portfolio performance evaluation via diversification model

In real applications, the data for individual assets are more difficult to obtain than that for portfolios. For
example, it is easy to obtain the data for mutual funds, but it is difficult to know all the detailed underlying
assets of each mutual fund. In this situation, we cannot use Model (3.4) due to the lack of underlying asset
data.

Using the assumption of convexity, we can define a virtual fuzzy portfolio Y =
∑m
j=1 λjYj with conditions of

λj ≥ 0 (j = 1, ...,m) and
∑m
j=1 λj = 1. Motivated by the idea of diversification, we can directly construct the
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following portfolio probability set P1 by using these m portfolios under evaluation:

P1 =


(E, V, H)

∣∣∣∣∣∣∣∣∣∣∣∣

E ≤ E

 m∑
j=1

λjYj

 , V ≥ Var

 m∑
j=1

λjYj

 ,

H ≥ H

 m∑
j=1

λjYj

 ,

m∑
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,m.


(3.5)

Comparing (3.2) with (3.5), we can see that P1 is derived from existing portfolios, where the P is built based
on the underlying assets of the portfolios. Evidently, P1 is a subset of P ; that is, P1 can be regarded as a
nonlinear estimation of the portfolio probability set P .

Under the output orientation, for each portfolio being evaluated with a fuzzy return Y0 ∈ Φ, supposing
that (E(Y0) + θgE , Var(Y0)− θgV , H(Y0)− θg) ∈ P1, the diversification model with the directional distance
function measure is constructed as

θ2(Y0) = max θ

s.t.



E

 m∑
j=1

λjYj

 ≥ E(Y0) + θgE

Var

 m∑
j=1

λjYj

 ≤ Var(Y0)− θgV

H

 m∑
j=1

λjYj

 ≤ H(Y0)− θgH

m∑
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,m.

(3.6)

As we can see that, Model (3.6) is derived by using the convex combination of the portfolio data rather than
that of the individual assets, which is the most significant difference between Models (3.4) and (3.6). In this
case, the friction information in the financial market is already contained in the portfolio data. Therefore, we
no longer need to consider the extra friction factors in the evaluation process. Additionally, the diversification
model remains to be the same form for investment situations with different market frictions. Most importantly,
Model (3.6) is a convex quadratic programming problem, and thus we can always find a global solution by using
existing optimization algorithms.

3.3. Portfolio performance evaluation via DEA model

Although Model (3.6) is a good approximation of the evaluation model based on the real frontier, it lacks
effectiveness in dealing with large-scale portfolio evaluation problems. Under the classic probability theory
framework, Branda [4] indicated that DEA approach can perform well when the portfolio samples are large
enough. In this section, we will show the conclusion of Liu et al. [27] is also valid for the portfolio evaluation
under the framework of fuzzy theory. Similarly, we suppose that there exist m portfolios under evaluation,
and their fuzzy expected return and risk can be calculated. Under the output orientation, by using the convex
combination of the outputs of portfolios rather than that of the fuzzy returns of portfolios, we can construct
the following portfolio probability set based on the BCC-DEA approach with three postulate assumptions of



PERFORMANCE EVALUATION OF PORTFOLIOS 1589

convexity, inefficiency and minimum extrapolation.

P2 =

(E, V, H)

∣∣∣∣∣∣∣∣∣∣
E ≤

m∑
j=1

λjE(Yj), V ≥
m∑
j=1

λjVar(Yj),

H ≥
m∑
j=1

λjH(Yj),
m∑
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,m.

 (3.7)

From P1 and P2, by using the convexity and concavity of the risk and return measures, we can conclude that

E

 m∑
j=1

λjYj

 =
m∑
j=1

λjE(Yj)

Var

 m∑
j=1

λjYj

 ≤ m∑
j=1

λjVar(Yj)

H

 m∑
j=1

λjYj

 ≤ m∑
j=1

λjH(Yj).

Obviously, P2 is a subset of P1. It indicates that P2 can be regarded as a linear estimation of P1. By using the
directional distance function measure under the output orientation, for each portfolio being evaluated Y0 ∈ Φ,
we assume (E(Y0) + θgE , Var(Y0)− θgV , H(Y0)− θg) ∈ P2. Then, the following DEA evaluation model can be
derived based on P2:

θ3(Y0) = max θ

s.t.



m∑
j=1

λjE(Yj) ≥ E(Y0) + θgE

m∑
j=1

λjVar(Yj) ≤ Var(Y0)− θgV
m∑
j=1

λjH(Yj) ≤ H(Y0)− θgH
m∑
j=1

λj = 1, 0 ≤ λj ≤ 1, i = 1, 2, . . . , m.

(3.8)

Evidently, Model (3.8) is a piece-wise linear approximation of diversification model (3.6). Similar to Model
(3.6), Model (3.8) can also provide an endogenous benchmark for every inefficient portfolio; however, the output
of the benchmark is a linear combination of the outputs of the portfolios under evaluation. Although Model
(3.8) does not take into account the diversification role and might also lead to an overestimation of efficiency
scores, it is a linear model which can effectively address the large-scale portfolio evaluation problems.

For the above three evaluation models, a portfolio is said to be efficient only when θi(Y0) = 0. Therefore, the
efficiency of portfolio being evaluated Y0 can be expressed as θi(Y0) = 1− θi(Y0), i = 1, 2, 3. Except assessing
the performance of portfolios/securities, the above three evaluation models can also provide some advices to
further make a better combination of portfolios and securities, e.g., the portfolios/securities with a high score
is normally a better choice for the underlying assets of portfolios.

3.4. Theoretical foundations of the proposed approaches: convergence property

According to the portfolio frontier F (V, H) = sup{E|(E, V, H) ∈ P} generated by Model (3.4), we can
conclude the following theorems.
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Theorem 3.1. The portfolio frontier F (V, H) generated by Model (3.4) is a concave function.

Proof. Let Ω = {x|
∑n
i=1 xi = 1, i = 1, 2, . . . , n}, f(x) = E(

∑n
i=1 xiri), g(x) = Var(

∑n
i=1 xiri) and h(x) =

H(
∑n
i=1 xiri). It is not difficult to find that Ω is a convex set, f(x) and h(x) are both linear function on

variable x, while g(x) is a quadratic convex function on x. For ∀ (E1, V1, H1) , (E2, V2, H2) ∈ P and ∀λ ∈ [0, 1],
∃x1, x2 ∈ Ω, the following conclusion always holds.

f(xj) ≥ Ej , g(xj) ≤ Vj , h(xj) ≤ Hj , j = 1, 2.

�

Due to the fact that λx1 + (1− λ)x2 ∈ Ω as well as both f(x) and h(x) are linear functions on x, then we
have

f(λx1 + (1− λ)x2) = λf(x1) + (1− λ)f(x2)
= λE1 + (1− λ)E2. (3.9)

h(λx1 + (1− λ)x2) = λh(x1) + (1− λ)h(x2)
= λH1 + (1− λ)H2. (3.10)

Similarly, we obtain that

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2)
≤ λV1 + (1− λ)V2. (3.11)

Then

λ (E1, V1, H1) + (1− λ) (E2, V2, H2)
= (λE1 + (1− λ)E2, λV1 + (1− λ)V2, λH1 + (1− λ)H2) ∈ P. (3.12)

Therefore, the portfolio probability set P is a convex set, in other words, F (V, H) = sup{E|(E, V, H) ∈ P}
is a concave function.

Theorem 3.2. For each portfolio with fuzzy return Y0 ∈ Φ, supposing the optimal values of Model (3.4), Model
(3.6) and Model (3.8) to be θ1(Y0), θ2(Y0) and θ3(Y0), respectively, we then have

θ1(Y0) ≥ θ2(Y0) ≥ θ3(Y0).

Proof. For ∀Y0 ∈ Φ, we can define the corresponding weight vector as x0 = (x0
1, x

0
2, . . . x

0
n)′, then we have

m∑
j=1

λjYj =
m∑
j=1

λj

(
n∑
i=1

xji ri

)
=

n∑
i=1

 m∑
j=1

λjx
j
i

 ri. (3.13)

Due to
m∑
j=1

λj = 1, 0 ≤ λj ≤ 1, j = 1, 2, . . . , m, we can obtain that

 m∑
j=1

λjx
j
1,

m∑
j=1

λjx
j
2, . . . ,

m∑
j=1

λjx
j
n

 ⊆ Ω. (3.14)

According to the convexity of possibilistic mean and concavities of variance and entropy, we have

maxE

(
n∑
i=1

xiri

)
≥ maxE

 m∑
j=1

λjYj

 = max
m∑
j=1

λjE(Yj), (3.15)
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Table 1. Statistical properties of the selected stocks.

Stock Sample Sample 5th 40th 60th 95th
mean variance percentile percentile percentile percentile

Sinopec 0.0044 0.0144 −0.1932 −0.0056 0.0227 0.2043
China unicom 0.0052 0.0161 −0.1583 −0.0227 0.0230 0.2008
China life insurance 0.0031 0.0161 −0.2380 −0.0193 0.0248 0.2012
Bank of China 0.0020 0.0061 −0.1333 −0.0130 0.0187 0.1140

min Var

(
n∑
i=1

xiri

)
≤ min Var

 m∑
j=1

λjYj

 ≤ min
m∑
j=1

λjVar(Yj), (3.16)

minH

(
n∑
i=1

xiri

)
≤ minH

(
m∑
i=1

λiYi

)
= min

m∑
i=1

λiH(Yi). (3.17)

Therefore, θ1(Y0) ≥ θ2(Y0) ≥ θ3(Y0), which completes the proof. �

Theorem 3.3. Suppose that there are m portfolios under evaluation, θ2(Y0) and θ3(Y0) both converge to θ1(Y0)
in probability when m→∞.

Proof. According to Theorem 3.1, we can find that the portfolio frontier F (V, H) generated by Model (3.4) is a
concave function. Using the same method in Liu et al. [27], we can prove that θ3(Y0)→P θ1(Y0) when m→∞.
In addition, due to θ1(Y0) ≥ θ2(Y0) ≥ θ3(Y0), θ2(Y0) also converges to θ1(Y0) in probability when m → ∞,
which completes the proof. �

3.5. Numerical example analysis

To check the feasibility and effectiveness of the proposed models, we select 4 stocks from China stock market:
Sinopec, China Unicom, China Life Insurance and Bank of China. The monthly return data from May 2007 to
May 2016 are used. The corresponding statistical properties are shown in Table 1.

Similar to Vercher et al. [39], we adopt the sample percentiles to approximate the cores and spreads of the
trapezoidal fuzzy returns on the assets. This estimation method is widely used in the fuzzy portfolio optimization
problem. For more details, readers may refer to Zhang et al. [44], Zhang and Zhang [41], Liu and Zhang [25]
and so on. For the ith asset, we let the interval [P40, P60] be the core [aj , bj ] of the fuzzy return rj , and the
quantities P40 − P5 and P95 − P60 be the left (cj) and right (dj) spreads, respectively, where j = 1, 2, . . . , n
and Pk be the kth percentile of the sample data. According to (2.12)–(2.14), we can calculate the corresponding
possibilistic mean, variance and entropy of the portfolio being evaluated.

We randomly generate different sizes (m = 200, 400, 600) of investment weights, and then calculate the
efficiencies and rankings by using Model (3.4), (3.6) and (3.8), respectively. Note that Models (3.4) and (3.6)
are solved by using the trust region reflective algorithm, while Model (3.8) is solved by using the simplex
algorithm. The main results are shown in Table 2.

Since the size of portfolios being evaluated is large, we only show the results of the first 15 portfolios in
Table 2. As shown in Table 2, we can easily find that the efficiencies of the diversification and DEA models are
gradually close to real values with the increase of sample size.

Table 3 shows the P -values of Wilcoxon rank-sum test of scores and rankings by different models. When m
choose different values, according to Panel A of Table 3, the Wilcoxon rank sum test accepts that the scores
between Models (3.4) and (3.6) and the ones between Models (3.4) and (3.8) have significant difference under
the significance level of 5%. However, the Wilcoxon rank sum test rejects the difference of the scores between
Models (3.6) and (3.8) under the significance level of 5%. This indicates that Models (3.6) and (3.8) are all
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Table 2. The efficiencies and rankings of different portfolios being evaluated.

Portfolio m = 200 m = 400 m = 600

Model (3.4) Model (3.6) Model (3.8) Model (3.4) Model (3.6) Model (3.8) Model (3.4) Model (3.6) Model (3.8)

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking

1 0.2033 151 0.2383 151 0.2383 151 0.2033 284 0.2383 379 0.2383 379 0.2033 430 0.2350 575 0.2371 573

2 0.1427 183 0.2567 183 0.2567 183 0.1427 349 0.2567 364 0.2567 365 0.1427 514 0.2553 548 0.2553 550

3 0.5390 73 0.7651 73 0.8008 73 0.5390 139 0.7651 71 0.7962 67 0.5390 209 0.7623 111 0.7947 108

4 0.3810 104 0.3837 104 0.3992 104 0.3810 196 0.3837 258 0.3940 254 0.3810 290 0.3818 386 0.3915 379

5 0.3502 107 0.5788 107 0.5963 107 0.3502 206 0.5762 149 0.5762 156 0.3502 309 0.5759 221 0.5761 229

6 0.6787 43 0.6795 43 0.7101 43 0.6787 91 0.6793 109 0.7096 105 0.6787 134 0.6790 161 0.7096 155

7 0.7142 35 0.7142 35 0.7425 35 0.7142 74 0.7142 96 0.7423 92 0.7142 113 0.7142 143 0.7423 138

8 0.2539 131 0.4483 131 0.4483 131 0.2539 244 0.4473 214 0.4473 222 0.2539 371 0.4472 317 0.4472 328

9 0.1246 194 0.2274 194 0.2274 194 0.1246 376 0.2274 389 0.2274 390 0.1246 550 0.2245 589 0.2245 591

10 0.6445 50 0.6445 50 0.7300 50 0.6445 100 0.6445 119 0.6760 116 0.6445 147 0.6445 180 0.6741 175

11 0.1518 180 0.3335 180 0.3335 180 0.1518 341 0.3329 297 0.3329 297 0.1518 503 0.3328 445 0.3328 448

12 0.8974 13 0.8974 13 1.0000 13 0.8974 29 0.8974 38 0.9358 36 0.8974 43 0.8974 56 0.9354 54

13 0.2367 140 0.3544 140 0.3544 140 0.2367 258 0.3541 280 0.3541 282 0.2367 392 0.3541 418 0.3541 423

14 0.2130 147 0.2453 147 0.2534 147 0.2130 275 0.2453 373 0.2521 370 0.2130 416 0.2450 563 0.2520 557

15 0.3780 105 0.4234 105 0.4322 105 0.3780 198 0.4230 234 0.4257 236 0.3780 292 0.4230 348 0.4257 352

consistent for this case, which means that the difference of convergence rate between traditional DEA model
and diversification model is not apparent. The above simulation results further verify the conclusion of Liu et al.
[27].

In addition, the investor might also concern these relative rankings in the actual evaluation process. As shown
in Panel B of Table 3, the Wilcoxon rank sum test rejects the difference of the rankings from Models (3.4), (3.6)
and (3.8) under the significance level of 5% regardless of what the number of portfolios being evaluated. That
is, the rankings of portfolios being evaluated derived by Models (3.4), (3.6) and (3.8) are coincident.

In order to distinguish the difference between the existing DEA model and the proposed DEA model in the
assessment of the performance of fuzzy portfolios, further simulations are given. To this end, we predominantly
compare our model with the one provided by Chen et al. [13]. Under the fuzzy mean-variance framework and
output orientation, we have the two following DEA models:

θ4(Y0) = max θ

s.t.



m∑
j=1

λjE(Yj) ≥ E(Y0) + θgE

m∑
j=1

λjVar(Yj) ≤ Var(Y0)

m∑
j=1

λj = 1, 0 ≤ λj ≤ 1, i = 1, 2, . . . , m.

(3.18)

θ5(Y0) = max θ

s.t.



m∑
j=1

λjE(Yj) ≥ E(Y0) + θgE

m∑
j=1

λjVar(Yj) ≤ Var(Y0)− θgV
m∑
j=1

λj = 1, 0 ≤ λj ≤ 1, i = 1, 2, . . . , m.

(3.19)

Model (3.18) is consonant with Chen et al. [13], in that it assumes the variance to be an output and the
return to be an input. However, Model (3.19) assumes that the fuzzy variance and return are both outputs,
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Table 3. P -values of Wilcoxon rank-sum test of evaluated results by different models.

Panel A: P -values of Wilcoxon rank-sum test of scores computed by different models

P -value m = 200 m = 400 m = 600
Models (3.4), (3.6) 0.0000 0.0000 0.0000
Models (3.4), (3.8) 0.0000 0.0000 0.0000
Models (3.6), (3.8) 0.3649∗∗ 0.5510∗∗ 0.4716∗∗

Panel B: P -values of Wilcoxon rank-sum test of rankings computed by different models
Models (3.4), (3.6) 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

Models (3.4), (3.8) 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

Models (3.6), (3.8) 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

Notes. ∗∗5% significance level.

Table 4. The efficiencies of different portfolios being evaluated.

Portfolio Score (m = 200) Score (m = 400) Score (m = 600)
Model (3.18) Model (3.19) Model (3.18) Model (3.19) Model (3.18) Model (3.19)

1 0.0756 0.1974 0.0756 0.1974 0.0726 0.1949
2 0.0009 0.1437 0.0009 0.1437 0.0009 0.1435
3 0.1535 0.2816 0.1535 0.2816 0.1522 0.2739
4 0.1372 0.2692 0.1372 0.2692 0.1370 0.2671
5 0.5028 0.6087 0.5028 0.6087 0.4974 0.6073
6 0.3266 0.4675 0.3266 0.4675 0.3179 0.4636
7 0.5175 0.6234 0.5175 0.6234 0.4961 0.6196
8 0.1456 0.2907 0.1456 0.2907 0.1403 0.2905
9 0.0008 0.1266 0.0008 0.1266 0.0008 0.1265
10 0.2731 0.3608 0.2731 0.3608 0.2712 0.3608
11 0.0016 0.2293 0.0016 0.2293 0.0016 0.2283
12 0.3531 0.4419 0.3531 0.4419 0.3515 0.4419
13 0.1025 0.2311 0.1025 0.2311 0.0985 0.2304
14 0.0685 0.1839 0.0685 0.1839 0.0661 0.1805
15 0.2325 0.3739 0.2325 0.3739 0.2312 0.3658

Table 5. P -values of Wilcoxon rank-sum test of scores computed by different models.

P -value m = 200 m = 400 m = 600

Models (3.18), (3.19) 0.0000 0.0000 0.0000

Notes. ∗∗5% significance level.

coinciding with the real investment process. By using the data provided in Table 1, we randomly generate m
portfolio weights, where the following simulations can be derived (note that we only present the first 15 results
in Table 4).

Table 5 shows the P -values of Wilcoxon rank-sum test of scores by Models (3.18) and (3.19). Clearly, we
can find that the Wilcoxon rank-sum test accepts that the scores of Models (3.18) and (3.19) are significantly
different under the significance level of 5%. This further indicates that the input-output process assumption
provided in this paper is more suitable when compared with the existing one presented in Chen et al. [13].
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4. Empirical study

According to the simulation results presented in Section 3.5, we can find that the diversification and DEA
models are both feasible and effective for evaluating the performance of portfolios with fuzzy returns. However,
the diversification model is more time-consuming than DEA model. In the following, we will apply these proposed
models to assess the performance of 50 open-end funds from China fund market. Based on the monthly net
asset values from May 2007 to May 2016, we can obtain the statistical properties of these data, as shown in
Table 6.

Since the investor does not know the composition of fund in the actual fund investment process, Model (3.4)
is not suitable for fund evaluation in this situation. In the following, we focus on applying the diversification
and DEA models. We can calculate the scores and rankings of funds with fuzzy returns by using Models (3.6)
and (3.8). The main results are shown in Table 7.

The Wilcoxon rank-sum test results of efficiencies are shown in Table 8. From Table 8, we can easily find
that the Wilcoxon rank-sum test rejects the difference of both the scores and rankings between Models (3.6)
and (3.8) under the significance level of 5%. The empirical results are coincident with the simulation results
presented in Section 4, which further indicate that the DEA approach can be used in the actual evaluation.

Since the observed data only represents a sample of possible realizations values, thus the estimations of fuzzy
returns may differ from the true but unknown one. In the following, we will discuss the robustness of the DEA
scores and rankings. To this end, we apply the bootstrap approach to achieve this goal. The bootstrap approach
mainly focuses on re-sampling the original data with unknown distribution of the returns. Similar to Branda [4],
we use the function datasample available in MATLAB to obtain the re-sample data. The bootstrap statistics
for scores and rankings are shown in Table 9.

Table 9 shows the bootstrap results based on the 125×50 observed data. We employ the datasample function
available in MATLAB to randomly generate B = 1000 group 1000 × 50 data as the check sample. In this
situation, we can derive the corresponding score θ̂bi (Y0) under the different sample group b and evaluation model
i, where i = 2, 3, b = 1, 2, . . . , B. Thus, the mean bootstrap score, estimated bias and standard error for
portfolios with fuzzy return Y0 are calculated as follows:

θ̂Bi (Y0) =
1
B

B∑
b=1

θ̂bi (Y0), (4.1)

biasBi (Y0) =
1
B

B∑
b=1

θ̂bi (Y0)− θi(Y0), (4.2)

s.e.Bi (Y0) =

√√√√ 1
B − 1

B∑
b=1

[θ̂bi (Y0)− θi(Y0)]2. (4.3)

Table 10 shows the P -values of Wilcoxon rank-sum test of rankings by using the bootstrap approach. Here, the
Wilcoxon rank-sum test rejects the difference between the new rankings based on mean bootstrap score and the
original ranking under the significance level of 5%, both for the diversification model and DEA model. Table 10
also indicates that the evaluation results by the diversification and DEA models have a good robustness.

5. Conclusion

This paper redefines the input-output process in accordance with the actual investment situation, where the
initial wealth is taken as an input, while the return and risk are taken as outputs. We first define the efficiencies
of portfolios with fuzzy returns under the criterion of possibilistic mean-variance-entropy, by using directional
distance function. We distinguish the difference among the model based on real frontier, the diversification
model and the DEA model. This indicates that the diversification and DEA models can be regarded as the
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Table 6. Statistical properties of the 50 Chinese funds.

Fund Sample Sample 5th 40th 60th 95th

mean variance percentile percentile percentile percentile

000001 0.0055 0.0083 −0.1538 −0.0037 0.0233 0.1500

020001 0.0085 0.0134 −0.1448 −0.0010 0.0345 0.1710

040001 0.0054 0.0098 −0.1048 −0.0013 0.0293 0.1450

050001 0.0023 0.0084 −0.1233 0.0008 0.0271 0.1233

070003 0.0037 0.0066 −0.1335 −0.0063 0.0246 0.1209

090001 0.0055 0.0108 −0.1409 0.0034 0.0313 0.1391

100020 0.0090 0.0126 −0.1447 0.0058 0.0328 0.1581

110003 0.0070 0.0112 −0.1481 −0.0094 0.0229 0.1808

151001 0.0101 0.0090 −0.1517 0.0066 0.0302 0.1421

160105 0.0053 0.0090 −0.1498 0.0027 0.0296 0.1483

160505 0.0099 0.0092 −0.1328 −0.0006 0.0336 0.1389

160605 0.0076 0.0111 −0.1607 −0.0040 0.0345 0.1729

160706 0.0050 0.0108 −0.1841 −0.0070 0.0298 0.1696

161604 0.0078 0.0091 −0.1718 −0.0049 0.0339 0.1514

161706 0.0090 0.0109 −0.1594 −0.0012 0.0289 0.1551

161903 0.0037 0.0094 −0.1509 −0.0072 0.0288 0.1484

162102 0.0054 0.0083 −0.1503 −0.0050 0.0274 0.1482

162201 0.0069 0.0100 −0.1690 0.0077 0.0380 0.1420

162202 0.0085 0.0113 −0.1557 −0.0001 0.0352 0.1484

162605 0.0053 0.0112 −0.1760 0.0033 0.0343 0.1574

162703 0.0069 0.0121 −0.2064 −0.0032 0.0300 0.1706

163503 0.0005 0.0110 −0.1785 −0.0101 0.0301 0.1278

180003 0.0034 0.0090 −0.1607 −0.0110 0.0253 0.1599

200002 0.0106 0.0122 −0.1522 −0.0021 0.0364 0.1673

210001 0.0056 0.0079 −0.1588 0.0006 0.0262 0.1215

213002 0.0032 0.0125 −0.1873 −0.0042 0.0352 0.1531

217001 0.0004 0.0110 −0.1359 0.0052 0.0298 0.1329

233001 0.0039 0.0088 −0.1398 −0.0038 0.0170 0.1373

240001 0.0111 0.0088 −0.1427 0.0017 0.0312 0.1297

240004 0.0104 0.0125 −0.1862 0.0079 0.0412 0.1626

240005 0.0032 0.0133 −0.1548 0.0070 0.0334 0.1546

257020 0.0076 0.0097 −0.1985 0.0009 0.0263 0.1546

260101 0.0101 0.0085 −0.1422 0.0065 0.0344 0.1398

260104 0.0162 0.0088 −0.1611 0.0065 0.0434 0.1822

270005 0.0088 0.0126 −0.1507 −0.0024 0.0282 0.1627

288002 0.0162 0.0086 −0.1280 −0.0027 0.0394 0.1553

310328 0.0022 0.0104 −0.1889 −0.0062 0.0372 0.1459

320003 0.0071 0.0096 −0.1537 0.0039 0.0360 0.1473

360001 0.0098 0.0115 −0.1609 0.0008 0.0357 0.1568

377010 0.0143 0.0108 −0.1695 0.0003 0.0356 0.1666

398001 0.0019 0.0139 −0.2242 −0.0025 0.0340 0.1359

460001 0.0005 0.0120 −0.1748 −0.0012 0.0331 0.1479

481001 −0.0008 0.0135 −0.1750 −0.0077 0.0346 0.1501

510050 0.0125 0.0094 −0.1465 −0.0085 0.0316 0.1852

510081 0.0067 0.0090 −0.1836 −0.0086 0.0340 0.1455

519001 0.0119 0.0106 −0.1287 0.0012 0.0361 0.1618

519005 0.0013 0.0097 −0.1814 −0.0069 0.0317 0.1402

519180 0.0048 0.0109 −0.1906 −0.0081 0.0309 0.1732

519688 0.0025 0.0110 −0.1563 −0.0106 0.0321 0.1533

519996 0.0051 0.0112 −0.1895 0.0001 0.0227 0.1738
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Table 7. The scores and rankings of the 50 Chinese funds.

Fund Model (3.6) Model (3.8)
Score Rank Score Rank

000001 0.1108 16 0.1125 16
020001 0.0866 24 0.0870 25
040001 1.0000 1 1.0000 1
050001 1.0000 1 1.0000 1
070003 0.4374 3 0.4488 3
090001 0.1732 8 0.1769 8
100020 0.1190 15 0.1203 15
110003 0.0779 28 0.0781 28
151001 0.1373 11 0.1400 11
160105 0.1224 14 0.1243 14
160505 0.1837 7 0.1872 7
160605 0.0650 37 0.0654 37
160706 0.0518 47 0.0523 47
161604 0.0675 34 0.0684 33
161706 0.0890 23 0.0901 23
161903 0.1009 20 0.1023 20
162102 0.1091 17 0.1107 17
162201 0.0856 25 0.0871 24
162202 0.0930 22 0.0943 22
162605 0.0669 35 0.0678 35
162703 0.0426 50 0.0430 50
163503 0.0746 31 0.0761 31
180003 0.0758 30 0.0766 30
200002 0.0769 29 0.0774 29
210001 0.1514 10 0.1559 10
213002 0.0546 45 0.0553 45
217001 0.2640 4 0.2717 4
233001 0.2379 5 0.2444 5
240001 0.1861 6 0.1910 6
240004 0.0547 44 0.0554 44
240005 0.1028 19 0.1042 19
257020 0.0556 42 0.0564 42
260101 0.1634 9 0.1668 9
260104 0.0606 40 0.0609 40
270005 0.0938 21 0.0946 21
288002 0.1279 13 0.1286 13
310328 0.0540 46 0.0548 46
320003 0.1030 18 0.1046 18
360001 0.0790 26 0.0799 26
377010 0.0637 38 0.0643 38
398001 0.0428 49 0.0435 49
460001 0.0708 32 0.0719 32
481001 0.0626 39 0.0634 39
510050 0.0683 33 0.0683 34
510081 0.0584 41 0.0592 41
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Table 7. (Continued).

Fund Model (3.6) Model (3.8)
Score Rank Score Rank

519001 0.1352 12 0.1357 12
519005 0.0656 36 0.0667 36
519180 0.0462 48 0.0466 48
519688 0.0782 27 0.0791 27
519996 0.0551 43 0.0556 43

Table 8. P -values of Wilcoxon rank-sum test of efficiencies by different models.

Panel A: P -values of Wilcoxon rank-sum test of scores computed by different models

P -value Model (3.6) Model (3.8)
Model (3.6) 1.0000∗∗ 0.7907∗∗

Model (3.8) 0.7907∗∗ 1.0000∗∗

Panel B: P -values of Wilcoxon rank-sum test of rankings computed by different models
Model (3.6) 1.0000∗∗ 1.0000∗∗

Model (3.8) 1.0000∗∗ 1.0000∗∗

Notes. ∗∗5% significance level.

Table 9. Bootstrap statistics for scores and rankings derived by different models.

Fund Model (3.6) Model (3.8)
Original Estimated Standard Ranking Original Estimated Standard Ranking
score bias error (Original) score bias error (Original)

000001 0.1108 0.1237 0.1775 23 (16) 0.1125 0.1250 0.1803 23 (16)
020001 0.0866 0.2289 0.2263 14 (24) 0.0870 0.2310 0.2280 14 (25)
040001 1.0000 −0.0563 0.2225 1 (1) 1.0000 −0.0549 0.2204 1 (1)
050001 1.0000 −0.2255 0.3441 2 (1) 1.0000 −0.2174 0.3411 2 (1)
070003 0.4374 0.1673 0.3646 3 (3) 0.4488 0.1596 0.3643 3 (3)
090001 0.1732 0.1544 0.2121 12 (8) 0.1769 0.1550 0.2148 12 (8)
100020 0.1190 0.1578 0.1723 17 (15) 0.1203 0.1601 0.1750 17 (15)
110003 0.0779 0.3142 0.3473 8 (28) 0.0781 0.3166 0.3480 8 (28)
151001 0.1373 0.1091 0.1505 20 (11) 0.1400 0.1095 0.1525 20 (11)
160105 0.1224 0.1071 0.1366 25 (14) 0.1243 0.1080 0.1385 25 (14)
160505 0.1837 0.2620 0.2847 6 (7) 0.1872 0.2615 0.2857 6 (7)
160605 0.0650 0.1480 0.1512 27 (37) 0.0654 0.1492 0.1524 28 (37)
160706 0.0518 0.0997 0.1010 42 (47) 0.0523 0.1004 0.1020 42 (47)
161604 0.0675 0.1035 0.1006 35 (34) 0.0684 0.1037 0.1011 35 (33)
161706 0.0890 0.0978 0.1134 32 (23) 0.0901 0.0988 0.1149 32 (23)
161903 0.1009 0.1359 0.1424 21 (20) 0.1023 0.1368 0.1439 21 (20)
162102 0.1091 0.1271 0.1419 22 (17) 0.1107 0.1278 0.1432 22 (17)
162201 0.0856 0.0812 0.0971 37 (25) 0.0871 0.0814 0.0981 37 (24)
162202 0.0930 0.1212 0.1233 26 (22) 0.0943 0.1219 0.1245 26 (22)
162605 0.0669 0.0935 0.1010 38 (35) 0.0678 0.0943 0.1024 38 (35)
162703 0.0426 0.0692 0.0667 49 (50) 0.0430 0.0699 0.0676 49 (50)
163503 0.0746 0.0828 0.0947 39 (31) 0.0761 0.0824 0.0952 39 (31)
180003 0.0758 0.1198 0.1159 31 (30) 0.0766 0.1206 0.1170 31 (30)
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Table 9. (Continued).

Fund Model (3.6) Model (3.8)
Original Estimated Standard Ranking Original Estimated Standard Ranking
score bias error (Original) score bias error (Original)

200002 0.0769 0.1794 0.1993 19 (29) 0.0774 0.1806 0.2006 19 (29)
210001 0.1514 0.0788 0.1398 24 (10) 0.1559 0.0772 0.1410 24 (10)
213002 0.0546 0.0759 0.0755 46 (45) 0.0553 0.0761 0.0761 46 (45)
217001 0.2640 0.1011 0.2377 9 (4) 0.2717 0.0991 0.2406 9 (4)
233001 0.2379 0.0999 0.2517 11 (5) 0.2444 0.0981 0.2545 10 (5)
240001 0.1861 0.0992 0.1640 16 (6) 0.1910 0.0977 0.1655 16 (6)
240004 0.0547 0.0990 0.1000 41 (44) 0.0554 0.0998 0.1012 41 (44)
240005 0.1028 0.1039 0.1250 29 (19) 0.1042 0.1049 0.1267 29 (19)
257020 0.0556 0.0642 0.0719 48 (42) 0.0564 0.0648 0.0729 48 (42)
260101 0.1634 0.1335 0.1857 15 (9) 0.1668 0.1341 0.1889 15 (9)
260104 0.0606 0.2781 0.3183 10 (40) 0.0609 0.2794 0.3184 11 (40)
270005 0.0938 0.1679 0.1899 18 (21) 0.0946 0.1701 0.1920 18 (21)
288002 0.1279 0.4593 0.3519 4 (13) 0.1286 0.4594 0.3517 4 (13)
310328 0.0540 0.0850 0.0869 44 (46) 0.0548 0.0850 0.0871 44 (46)
320003 0.1030 0.1098 0.1228 28 (18) 0.1046 0.1104 0.1241 27 (18)
360001 0.0790 0.1202 0.1260 30 (26) 0.0799 0.1210 0.1273 30 (26)
377010 0.0637 0.1050 0.1018 36 (38) 0.0643 0.1058 0.1028 36 (38)
398001 0.0428 0.0511 0.0616 50 (49) 0.0435 0.0511 0.0619 50 (49)
460001 0.0708 0.0856 0.0934 40 (32) 0.0719 0.0859 0.0943 40 (32)
481001 0.0626 0.1100 0.1028 34 (39) 0.0634 0.1102 0.1033 34 (39)
510050 0.0683 0.3706 0.3517 7 (33) 0.0683 0.3731 0.3522 7 (34)
510081 0.0584 0.1194 0.1285 33 (41) 0.0592 0.1197 0.1291 33 (41)
519001 0.1352 0.3960 0.3619 5 (12) 0.1357 0.3989 0.3627 5 (12)
519005 0.0656 0.0851 0.0890 43 (36) 0.0667 0.0851 0.0896 43 (36)
519180 0.0462 0.0840 0.0763 47 (48) 0.0466 0.0847 0.0770 47 (48)
519688 0.0782 0.2445 0.2824 13 (27) 0.0791 0.2445 0.2823 13 (27)
519996 0.0551 0.0766 0.0795 45 (43) 0.0556 0.0778 0.0809 45 (43)

Table 10. P -values of Wilcoxon rank-sum test of rankings computed by different models.

P -value
Model (3.6) Model (3.6) Model (3.8) Model (3.8)
(Bootstrap) (Original) (Bootstrap) (Original)

Model (3.6) (Bootstrap) 1.0000∗∗ 0.9972∗∗ 1.0000∗∗ 0.9972∗∗

Model (3.6) (Original) 0.9972∗∗ 1.0000∗∗ 0.9972∗∗ 1.0000∗∗

Model (3.8) (Bootstrap) 1.0000∗∗ 0.9972∗∗ 1.0000∗∗ 0.9972∗∗

Model (3.8) (Original) 0.9972∗∗ 1.0000∗∗ 0.9972∗∗ 1.0000∗∗

Notes. ∗∗5% significance level.

nonlinear and linear estimations of the model based on real frontier, respectively. We show that the portfolio
efficiencies derived from diversification and DEA models can both converge to the real one when the portfolio
samples are large enough. We also select 50 Chinese funds to check the feasibility and effectiveness of the DEA
and diversification models. These results show that the difference of convergence rates between DEA model and
diversification model is not apparent. Finally, the analysis by using the bootstrap re-sampling approach further
validates the robustness of the performance evaluation results based on the proposed models.
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