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SUSTAINABLE REVERSE LOGISTIC NETWORK DESIGN FOR END-OF-LIFE
USE-CASE STUDY

Suna Cinar∗

Abstract. Due to the increased interests in environmental issues along with stringent environmental
legislation and regulations, companies start taking a fresh look at the impact on their reverse logistic
activties on the environment. This paper is an example of the recovery of valuable material that can be
recycled/recovered or remanufactured at the end of product useful life by designing an effective reverse
logistics network. In this study, a mixed integer linear programming (MILP) model is proposed to deter-
mine a long-term strategy for end-of-life (EOL). The mathematical model not only takes into account
the minimization of system operating costs, but also considered minimization of carbon emissions re-
lated to the transportation and processing of used products. Therefore, the objective in this model was
to minimize the transportation and operating cost as well as minimizing environmental effects these
activities. The results of this study show the trade-off between the costs and carbon emissions, and cost
effectiveness for improving environmental performance, all of which have great practical implication on
decision-making of network configurations a reverse logistics system. The proposed model is validated
by examining a case study from wind turbine (WT) sector.
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1. Introduction

Due to increasing environmental concerns, resource reduction, landfill capacity reduction, stricter government
regulations, and global pressure to reduce carbon emissions, industries have started implementing end-of-life
strategies in their reverse logistics network. Because reverse logistics by definition includes processes such as
remanufacturing, refurbishment, recycling, reuse, and asset recovery, engaging in reverse logistics activities
guarantees companies a certain level of green. Through effective reverse logistics operations, companies can also
cut out inefficient returns processes that result in unnecessary transportation moves, helping to reduce carbon
emissions and improve air quality [31].

Consideration of carbon policies while optimizing supply chain operations has become vital as governments
and regulatory bodies throughout the world have implemented different carbon policies to reduce emissions of
greenhouse gasses, especially carbon-dioxide (CO2) emissions. The biggest international scheme for the trad-
ing of greenhouse gasses is European Union Trading Systems (EU-ETS), which was initiated in 2005, follows
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the “cap-and-trade” concept, where companies get an upper limit on emissions and beyond this limit, com-
panies are penalized. In 1997, the Kyoto Protocol to the United Nations Framework Convention on Climate
Change (UNFCCC) provided for carbon trading through three “flexible mechanisms” [40]. The Kyoto protocol
introduced three major mechanisms for carbon emissions reduction: namely carbon trading and joint imple-
mentation [9]. The first mechanism serves as an economic incentive for companies to reduce carbon emissions.
A central authority sets a limit (or CAP) on the permitted level of greenhouse gas emissions and allocates per-
mits/allowances that bestow the right to emit greenhouse gases below the current or expected level of emissions
[39]. The second and third mechanism allows countries to gain emission credits by financing emission reduction
projects in developing countries and allows specified countries to carry out emission reduction projects in other
countries to get emission credits [9].

As momentum builds to address climate change in every industry, the main objective of this study is to
extend the existing mixed-integer-linear- program (MILP) [10] for a reverse logistic network design problem
that is able to (1) consider both economic and environmental aspects to reduce the greenhouse gas emissions,
and to (2) investigate the impact of two most common carbon regulatory policies such as carbon credit and
carbon cap on reverse logistic operations in wind turbine (WT) industry.

In particular, there is a need for model-based research that extends and integrates current quantitative
models which focus on minimizing cost by including carbon-footprint criteria under different policy situations.
Therefore, the extended MILP model could then be used to understand how carbon emissions parameters affect
operational decisions. Such model could help policy makers to choose different policies related to reduction of
carbon emission such as using emission CAP and trade, taxes, etc.

This proposed model closes the research gap by contributing to the WT reverse logistic network literature in
the following ways:

– The proposed MILP model is applicable to any types of assets. The model is illustrated on WTs over a
finite horizon. Despite potential costs and benefits in optimally managing WTs, the literature does not
consider the different emissions reduction options, which has enormous implications for expected and costs
and environmental effects.

– Computational studies and detailed sensitivity analysis of the proposed MILP model are performed. The
impact of key cost drivers of recycling, and remanufacturing as well as considering different carbon emission
policies are analyzed to provide insights into an optimal reverse logistic network design for WT industry.

– The input data utilized in this study was gathered by employing various sources such as the literature and
the opinions of WT operators and manufacturers. Therefore, this paper also provides detailed cost and asset
replacement data to researchers and decision makers involved in WT industry.

– This paper provides a useful reference for wind farm operators involved in WT reverse logistic network
decision making and could also be utilized as a decision support tool to minimize the total cost while
considering reducing environmental effects.

The remainder of this paper is organized as follows. Section 2 presents athe literature review. A case study
that used for the model application is given in Section 3. A description of the problem is outlined in Section 4,
and the model notations, model assumptions, and models, which take the form of MILP, input parameters, and
experimental set-up are then presented in Sections 4.1–4.6 respectively. Section 5 presents the model results
and Section 6 provides a sensitivity analysis to provide interesting insights into the problem and demonstrate
its utility for answering key research questions. Finally, Section 7 summarizes the findings and conclusions with
recommendations for future research.

2. Literature review

In the last two decades, researchers have spent considerable effort studying how a reverse logistic can reduce
cost, and how to establish an effective and efficient reverse logistics structure for different industries, such as
automotive, electronics and recycling and reuse. Some of these studies conducted not only optimize the economic
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benefits of the well-designed reverse logistic network, but also optimize environmental performances of different
operations areas under different carbon policies [8, 13, 25, 27, 30, 45]. Some of these studies are summarized in
the following section.

A MILP model was formulated to find an optimal strategy for companies to meet their carbon CAP, while
minimizing costs by Diabat and Al-Salem [12]. Chaabane et al. [9] formulated a model of an aluminum firm and
examined the carbon emissions impact on designing a sustainable close-loop-supply-chain (CLSC) network based
on life-cycle-analysis (LCA) principles. They also evaluated the tradeoffs between economic and environmental
dimensions under various cost and strategies. Fahimnia et al. [16] evaluated the forward and reverse supply
chain influences on the carbon footprint using MILP model, where carbon emissions are demonstrated in terms
of dollar carbon cost. Benjaafar et al. [5] illustrated the impact of carbon emissions and introduced a series of
lot sizing models to be integrated into operations decisions and showed how significant emissions reductions
without increases in costs can be achieved by operational adjustments alone.

Bing et al. [6] presented a reverse supply chain network, which was applied on household plastic waste dis-
tributed from Europe to China. A network optimization problem was modelled by using an integer programing
approach, allowing the re-allocation of intermediate processing plants under emission trading restrictions. Emis-
sion trading restrictions were set on the processing plants in both Europe and China. Optimization results show
that global relocation of re-processors leads to both a reduction of total costs and total transportation emission.
With a given carbon cap, the model also showed the effective carbon price range. It was concluded that the
model results can give an insight into the feasibility of building a global reverse supply chain for household
plastic waste recycling.

Diabat and Al-Salem [12] addressed a joint location-inventory problem and extend it to account for the
reduction of carbon emissions. They also considered the uncertainty by including a new variable that reflects
the probability of different demand scenarios. Solved the problem, a genetic algorithm (GA) was developed.
Based on the model run, it was determined that the resulting model was high in complexity and required solving
within reasonable time.

Peng et al. [33] introduced a mixed integer linear programming formulation for modeling and solving a
multiperiod one-stage supply chain distribution network design problem. The model was aimed to minimize two
objectives, the total supply chain cost and the greenhouse gas emissions generated mainly by transportation
and warehousing operations. Two carbon emissions regulatory policies were investigated, the tax or carbon
credit and the carbon cap. Results demonstrated that for a certain range the carbon credit price incentivizes
the reduction of carbon emissions to the environment. On the other hand, modifying the carbon cap inside a
certain range could lead to significant reductions of carbon emissions while not significantly compromising the
total cost of the supply chain.

Purohit et al. [33] studied the inventory lot-sizing problem under non-stationary stochastic demand condition
with emission and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. Using
a MILP model, this study aimed to investigate the effects of emission parameters, product-and system-related
features on the supply chain performance through extensive computational experiments to cover general type
business settings and not a specific scenario. Results showed that cycle service level and demand coefficient of
variation have significant impacts on total cost and emission irrespective of level of demand variability while the
impact of product’s demand pattern is significant only at a lower level of demand variability. The results of the
study also show that increasing the value of carbon price reduces total cost, total emission and total inventory
and the scope of emission reduction by increasing carbon price is greater at higher levels of cycle service level
and demand coefficient of variation.

Yu and Solvang [44] provided an alternative approach to account both economic and environmental sustain-
ability of reverse logistics system. The result of the study showed the trade-off between the costs and carbon
emissions, cost effectiveness for improving environmental performance, and influences from resource utilization,
all of which have great practical implication on decision making of network configurations and transportation
planning of reverse logistics system.
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Rezaee et al. [36] presented a two-stage stochastic programming model to design a green supply chain in a
carbon trading environment. The proposed model was applied to a real world case study. It was found that the
supply chain configuration can be highly sensitive to the probability distribution of the carbon credit price. In
addition, it was observed that carbon price and budget availability for supply chain reconfiguration can both
have a positive but a nonlinear relationship with the greening of the supply chain.

Xu et al. [43] proposed a MILP method along with robust optimization to develop the model, which is
validated using a sample case study of e-waste management. The model results showed that using a robust
model by taking the complex interactions characterizing global reverse supply chain networks into account,
which can create a better global-reverse-supply-chain (GRSC). The effect of uncertainties and carbon constraints
on decisions to reduce costs and emissions were also shown.

Fang et al. [16] incorporated reverse logistics into production routing problems and investigated the reduction
of carbon emissions under carbon cap-and-trade. A MILP model was proposed for the production routing
problem with reverse logistics by considering simultaneous pickups and deliveries in vehicle routing subproblems.
To solve this problem, a branch-and-cut guided search algorithm based on adaptation of known valid inequalities
was proposed. Computational results showed that emission levels and operational costs of production, inventory
holding, fuel consumption, and drivers were the main performance indicators.

Alkhayyal and Gupta [1] addressed the design of reverse supply chain under the three common regulatory
policies, strict carbon caps, carbon tax, and carbon cap-and-trade. The model proposed can be used for designing
and analyzing a reverse supply chain in a carbon trading environment, and optimize not only costs but also
emissions in the supply chain operations. The model results showed that carbon tax emissions, particularly
at higher taxes, affects transportation operations, which results in reduced transportation costs and emissions;
whereas, the higher the carbon tax is, the lower emissions. It was concluded that applying an emissions cap
combined with a carbon tax slightly increased total supply chain costs, but yielded a greener design.

Anvar et al. [2] developed a MILP to determine the amount of carbon emitted in a two-echelon supply chain
in which one supplier delivers a single product to a group of retailers and attempts are made to integrate and
coordinate its different members. The objective of this research was to minimize the costs of transportation and
those engendered by material handling and inventory holding activities as well as to reduce carbon emissions
throughout the supply chain. According to the results obtained, the supplier would opt for lower carbon vehicle
types if replenishment timing, distances between members of the supply chain, the rate of carbon tax or the
amount of retailers increases.

Ghosh et al. [19] developed an unconstrained mixed integer non-linear programming (MINLP) problem to
find the optimal production rate, order quantity, number of shipments and reorder point while minimizing the
total-expected-cost (TEC) of a two-echelon integrated supply chain with stochastic demand. Emissions from all
the major sources such as production, inventory and transportation have been taken into consideration. It was
assumed that the emission from production is a function of production rate, and emission from transportation
depends on the payload and vehicle type. The aim of the proposed model to help organizations to reduce cost
and emissions, and regulatory bodies to decide proper tax rate on carbon emissions.

Bottani and Casella [7] investigated the issue of minimizing the environmental burden of a real CLSC,
consisting of a pallet provider, a manufacturer and several retailers. A simulation model was developed under
Microsoft Excel to reproduce the flow of returnable transport items (RTIs) to compute the corresponding
environmental impact. The results of the study showed that the asset retrieving operations contribute to the
environmental impact of the system to the greatest extent due to a quite relevant distance between Company A
and its customers. Conversely, emissions due to the purchase of new assets contributed to the total environmental
impact of the system to a very limited extent. The results were expected to provide practical indications to
logistics and supply chain managers, to minimize the environmental performance of the system.

In the literature, a significant number of studies focus on the RLND specially, facility location, production
planning, green logistic, and end-of life use for different industries, such as automotive, electronics and recycling
and reuse. On the other hand, to the best of our knowledge very little research has been done regarding WT
end of life options under the cap and credit policy. This paper is going to address this gap by considering the
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uncertain recycling quality and quantity for modelling the low-carbon EOL management under these policies.
Based on the environmental and economic factors, the supply chain would greatly benefit if the carbon emissions
concept integrated into the whole reverse logistics network process. By doing so, the WT supply chain would
become environmentally more responsible by recycling, reusing, or remanufacturing the WT. Therefore, we
propose a model that can be used for designing and analyzing a reverse supply chain in a carbon trading
environment, and optimize not only costs but also emissions in the supply chain operations. In addition. In this
model, we propose to investigate the impact of the two most comman carbon regulatıry policies such as carbon
emission cap and carbon tax on reverse logistic operations.

3. Case study wind turbine and carbon emissions

Due to the increased awareness of environmental issues and more restrictive environmental regulations, renew-
able energy sources such as wind, solar, hydro, and geothermal are becoming more popular. The main driver
for interest in WTs is to produce electrical power with very low CO2 emissions, which is one of the largest
contributors of greenhouse gas emissions, the insidious cause of climate change [18].

Based on the environmental and economic factors, the supply chain would greatly benefit if a reverse logistics
network was integrated into the whole supply chain process. By doing so, the WT supply chain would become
environmentally more responsible by recycling, reusing, or remanufacturing the WTs reached their end-of-life
(EOL) use. In addition, there is a possibility of economic gain from recycling and remanufacturing. Recovery
of products and parts can be good alternatives to manufacturing new products and parts and virgin resources
[17, 28]. It is clear that an effective reverse logistics for WTs can generate direct gains by reducing the use of
raw materials, adding value with recovery, reducing disposal costs, recycling to save landfill space and energy,
and reducing CO2 emissions, in turn providing a more sustainable supply chain.

Life expectancy for WTs is about 20 years [21, 32]. Due to increasing demand of using wind energy as a
renewable energy source, at some point, many WTs will reach the end of their service life. Thus, a sustainable
process that can be used when WTs reach the end of their service life is needed in order to maximize the
environmental and economic benefits of wind energy and to minimize the environmental impact. In addition,
because of the growing demand for energy in developing countries, and the interest in renewable energy sources,
i.e., wind energy, which provides a sustainable and environmentally friendly power supply, remanufacturing of
EOL WTs could be helpful to satisfy this growing need for power. Most of these developing countries may not
be able to afford brand new WTs as a source of renewable energy. Therefore, providing used refurbished WTs
in these locations offers several benefits, such as lower capital investment, shorter project duration, reduction
of CO2 emissions, and a contribution to sustainable development [23].

Several studies discussed the reduction in CO2 by comparing different alternatives for treatment and replace-
ment of old WTs. The highest amount of CO2 emissions for energy generation from WTs was found to be in the
material production phase, which is 60%–64% of total emissions, and the next was in WT production. Trans-
portation, disassembly, and renovation/maintenance contributes only 2%–3% of CO2 emissions [38]. Skrainka
[41] analyzed the environmental impact of remanufacturing WTs and concluded that remanufacturing of the
component inside the nacelle has a smaller impact on the environment than manufacturing new components.
Arvesen and Hertwich [3] assessed the life-cycle environmental impacts of wind power and estimated that the
EOL phase of WTs reduces emissions, decreasing greenhouse gas emissions by 19%. Turbine 100 kWA produced
the majority of its emissions from manufacture, 30.6 tCO2eq (51%) and 28.7 tCO2eq (47%) from installation;
transportation accounted for 1.18 tCO2eq (2%). For the 100 kWB turbine, an installation made up the majority
of emissions, 79.1 tCO2eq (59%); manufacturing accounted for 54 tCO2eq (41%), and transportation accounted
for 0.4 [42].

The study, completed by Ghenai [18] shows the benefits of recycling parts of the WTs at the end life of
their useful life, producing less CO2 than the landfilling process. It can be seen that the dominant phase that
is consuming more energy and producing more CO2 emissions is the material phase and primary material
production of the WT parts. More energy is consumed and high amount of CO2 is released into the atmosphere
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Table 1. CO2 emissions at different phase of WTs.

Phase CO2 (kg) References

Remanufacturing 1.2546E+006 (%50 of manufacturing emissions) [1]
Recycling 107 669.7209 (%20% of manufacturing emissions) [1]
Landfilling 13 095.7080 [1]
Transportation 62 g CO2/tonne-km [2]
Total 1.4054E+006

Notes. [1] Ghenai [18]. Life cycle analysis of wind turbine. Ocean and Mechanical Engineering Department, Florida
Atlantic University. http://cdn.intechopen.com/pdfs/29930.pdf. [2] ECTA [14]. Guidelines for Measuring and
Managing CO2 Emission from Freight Transport Operations. https://www.ecta.com/resources/Documents/Best%

20Practices%20Guidelines/guideline_for_measuring_and_managing_co2.pdf.

during these two phases. If all materials are sent to the landfill at the WT end of life, then 2.18 E+011 J of
energy (1.1% of total energy) is needed to process these materials, and 13 095.71 Kg of CO2 (0.9% increase
of total CO2) are released to the atmosphere. If WT material is recycled at the EOL, then a total energy of
6.85E+012 J (54.8% of total energy) is recovered. A net reduction of CO2 emissions by 495 917.28 Kg (55.4% of
total CO2) is obtained by recycling the WT material [18].

The average CO2-emission factor recommended by McKinnon for road transport operations is 62 g
CO2/tonne-km. This value is based on an average load factor of 80% of the maximum vehicle payload and
25% of empty running. The average CO2-emission factor recommended by McKinnon for calculation of CO2-
emission from rail transport operations is 22 g CO2/tonne-km [14]. Table 1 summarizes the CO2 emissions
released during different phase of WTs production.

The model explained in Section 4 has been applied to the case of a RLND for EOL WTs. A five-echelon
network consisting of 3 wind farms (generating plants) was considered for the model implementation. A simple
illustration of the model – a single WT type with three components is considered. The remainder of this chapter
is organized as follows. The mathematical model, the calculation of input parameters and application of the
model are presented in detail in Section 4. All computational results for the base-case scenario and different
scenarios are given in Section 5. Model sensitivity analysis are given in Section 6. Finally, some concluding
remarks with future directions are provided in Section 7.

4. Reverse logistics network mathematical model

The main objective of this model is to minimize the cost and carbon emissions associated with logistics
and operating cost of different disposal options (i.e., recycling or remanufacturing) while minimizing carbon
emissions for EOL products. The proposed model considers the design of a multi-echelon reverse logistics network
that consists of collection centers, inspection centers, remanufacturing centers, recycling centers, and secondary
market. Similar to previous study [10], the present study makes the following assumptions:

The following assumptions are made:

– Locations are known.
• Potential inspection, recycling, and remanufacturing centers
• Markets for recycling and remanufacturing
• Disposal centers

– There is no storage in the inspection/recycling and remanufacturing centers, therefore no holding cost.
– A fixed cost is associated with opening inspection, recycling, disposal, and remanufacturing centers.
– Transportation cost is determined per mile, and total transportation costs in the objective function are

obtained by multiplying these costs by distances between two nodes. These distances are calculated by
haversine formula [29].

http://cdn.intechopen.com/pdfs/29930.pdf
https://www.ecta.com/resources/Documents/Best%20Practices%20Guidelines/guideline_for_measuring_and_managing_co2.pdf
https://www.ecta.com/resources/Documents/Best%20Practices%20Guidelines/guideline_for_measuring_and_managing_co2.pdf
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4.1. Model notation

In order to propose our model for the problem, the sets, indexes, parameters, cost, and decision variables
used in the model are given as follows:
c: parts, c ∈ C = {1, . . ., |C|}.
j: all possible locations j ∈ J = {1, . . ., |J|}.
t: time periods, t ∈ T = {1, . . ., |T|}.
w: location of collection centers, w ∈W = {1, . . ., |J|}.
i: potential inspection centers, i ∈ I = {1, . . ., |I|} ⊆ J.
m: potential remanufacturing centers, m ∈M = {1, . . ., |M |} ⊆ J .
r: potential recycling centers, r ∈ R = {1, . . ., |R|} ⊆ J .
s: potential markets, s ∈ S = {1, . . ., |S|} ⊆ J .
ds: potential disposal centers, ds ∈ DS = {1, . . ., |DS|} ⊆ J .
CARP: carbon cap.

Parameters
Qwct: supply of WT component c at wind farm w in period t.
DSMsct: demand of WT component c at market s in period t.
DRrct: demand of WT component c at recycling center r in period t.
DMmct: demand of WT component c at remanufacturing center m in period t.
DLdsct: demand of WT component c at disposal center ds in period t.
CAPIit: capacity of inspection center i in period t.
CAPRrt: capacity of recycling center r in period t.
CAPMmt: capacity of remanufacturing center m in period t.
CAPDdst: capacity of disposal center ds in period t.
α: % of WT component c sent from inspection center to recycling center.
β: % of WT component c sent from inspection center to remanufacturing center.
γ: % of WT component c sent from inspection center to disposal center.

Costs
FIit: fixed cost opening inspection center i in period t ($).
FMmt: fixed cost opening remanufacturing center m in period t ($).
FRrt: fixed cost of opening recycling center r in period t ($).
FAlt: fixed cost of opening disposal center l in period t ($).
OIcit: cost of processing one unit of WT component c at inspection cen-

ter i in period t ($).
ORcrt: cost of processing one unit of WT component c at recycling center

r in period t ($).
OMcmt: cost of processing one unit of WT component c at remanufacturing

plant m in period t ($).
CIcit: CO2 emission indicator of processing one unit of WT component

c at inspection center i in period t (gram).
CRcrt: CO2 emission indicator of processing one unit of WT component

c at recycling center r in period t (gram).
CMcmt: CO2 emission indicator of processing one unit of WT component

c at remanufacturing plant m in period t (gram).
CAclt: CO2 emission indicator of processing one unit of WT component

c at disposal center m in period t (gram).
Twict, Tirct, Timct, Tmsct, Tilct: transportation distance of one unit of WT component c at time

period t from w to i, i to r, i to m, m to s, or i to l (mile).
θ : unit transpiration cost factor ($/mile).
Ω : unit carbon emissions factor (gram/unit-mile) total CO2 emis-

sions/# units.# km’s.
dr: inflation rate.
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Decision variables
X1wict: number components c shipped from wind farm w to inspection center i in period t.
X2imct: number components c shipped from inspection center i to remanufacturing center m in period t.
X3irct: number of components c shipped from inspection center i to recycling center r in period t.
X4msct: number of components c shipped from remanufacturing center m to market s in period t.
X5ilct: number of components c shipped from inspection center i to disposal center l in period t.

Binary variables

Yit =
{

1 if an inspection center i ∈ I is operating in period t ∈ T,
0 otherwise.

Zmt =
{

1 if a remanufacturing center m ∈M is operating in period t ∈ T,
0 otherwise.

Urt =
{

1 if a remanufacturing center r ∈ R is operating in period t ∈ T,
0 otherwise.

Alt =
{

1 if a disposal center l ∈ L is operating in period t ∈ T,
0 otherwise.

4.2. Mathematical model

The model proposed in this study is an extension to the reverse logistic network design problem proposed by
Cinar and Yildirim [10]. In their study, the objective is to minimize the transportation and operating cost as well
as finding the best locations for recycling and remanufacturing centers by using MILP. The main objective of
their model is to minimize the cost associated with logistics and operating cost of different disposal options (i.e.,
recycling or remanufacturing) for EOL products. Based on their model findings, it is concluded that in addition
to transportation cost, operating cost is also one of the main cost contributors to overall reverse logistics cost.
Their model helps decision makers to choose the most suitable disposal method with the remanufacturing and
recycling alternatives. In their model, the cost is only driving force for decision making process; therefore, the
RLND would greatly benefit if the carbon emissions concept is integrated into the whole reverse logistics network
process. There is a need for model-based research that extends quantitative models, which typically focus on
either minimizing cost or maximizing profit, to include carbon footprint. Therefore, we propose a model that
can be used to understand how accounting for carbon emissions (either as a constraint or as a decision criterion)
might affect operational decisions. We extend on Cinar and Yildirim [10] by introducing an optimization model,
where the economic profitability and the carbon emission issue are simultaneously considered. Furthermore,
two different carbon emission policies are analyzed. This extended model can also be used to inform operations
managers on how policies, such as mandatory emission caps, taxes on carbon emissions, and emission cap-and-
trade, among others, ought to affect operational decision-making. As a results, in our model, we presents two
extensions of the RLND model formulation to capture the environmental impact that different carbon regulatory
policies have on the RLND and logistics decisions. These policies include (1) carbon cap where companies are
subject to mandatory caps on the amount of carbon they emit; (2) carbon tax where companies are taxed on the
amount of carbon emissions they emit or get credit when emit less than the regulated amount of carbon. The
carbon emissions of reverse logistics include two parts: carbon emissions from processing of used products and
carbon emissions from the transportation. By adding carbon tax and/or carbon cap, our purpose to minimize
total carbon emissions which is produced by transportation and during operations.

4.3. Model 1: Model with carbon emissions consideration

In the following model, the objective is to minimize the environmental influences of the reverse logistic
network. Under the carbon cap policy, CO2 emissions from processing of used products and carbon emissions
from transportation have a limited amount of carbon allowance (in ton) to use, which is referred to as carbon
cap.



SUSTAINABLE REVERSE LOGISTIC NETWORK DESIGN S511

Basic model formulation

Minimize Z1 = Z11 + Z12 + Z13. (1)
Fixed cost Z11 =∑

i

∑
t

FIit ∗ (Yit − Yi,t−1) ∗ (1 + dr)−t +
∑
m

∑
t

FMmt ∗ (Zmt − Zm,t−1) ∗ (1 + dr)−t +
∑

r

∑
t

FRrt ∗ (Urt

− Ur,t−1) ∗ (1 + dr)−t +
∑

l

∑
t

FAlt ∗ (Alt −Al,t−1) ∗ (1 + dr)−t.

Transportation cost Z12 =∑
t

∑
c

∑
w

∑
i

Twict ∗Θ ∗X1wict ∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
m

Timct ∗Θ ∗X2imct ∗ (1 + dr)−t

+
∑

t

∑
c

∑
i

∑
r

Tirct ∗Θ ∗X3irct ∗ (1 + dr)−t +
∑

t

∑
c

∑
m

∑
s

Tmsct ∗Θ ∗X4msct ∗ (1 + dr)−t

+
∑

t

∑
c

∑
i

∑
l

Tilct ∗Θ ∗X5ilct ∗ (1 + dr)−t.

Operations and disposal cost Z13 =∑
t

∑
c

∑
w

∑
i

OIcit ∗X1wict ∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
m

OMcmt ∗X2imct ∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
r

ORcrt

∗X3irct ∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
l

OAcst ∗X5ilct ∗ (1 + dr)−t.

The followings are the constraints of the basic model:

Qwct =
∑
i∈I

X1wict w ∈W, c ∈ C, t ∈ T (2)

α+ β + γ = 1 (3)∑
w∈W

α ∗X1wict =
∑

m∈M

X2imct i ∈ I, c ∈ C, t ∈ T (4)∑
c∈C

γ ∗X1cipt =
∑
l∈L

X5ilct i ∈ I, c ∈ C, t ∈ T (5)∑
w∈W

β ∗X1wict =
∑
r∈R

X3irct i ∈ I, c ∈ C, t ∈ T (6)∑
s∈S

X4msct =
∑
i∈I

X2imct m ∈M, c ∈ C, t ∈ T (7)∑
s∈S

X4msct ≤
∑
s∈S

DSMsct m ∈M, c ∈ C, t ∈ T (8)∑
r∈R

X3irct ≤
∑
r∈R

DRrct i ∈ I, c ∈ C, t ∈ T (9)∑
m∈M

X2imct ≤
∑

m∈M

DMmct i ∈ I, c ∈ C, t ∈ T (10)∑
l∈L

X5ilpt ≤
∑
l∈L

DLlct i ∈ I, c ∈ C, t ∈ T (11)∑
w∈W

∑
c∈C

X1wict ≤ CAPIit ∗ Yit i ∈ I, t ∈ T (12)
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i∈I

∑
c∈C

X3irct ≤ CAPRrt ∗ Urt r ∈ r, t ∈ T (13)∑
i∈I

∑
c∈C

X2imct ≤ CAPMmt ∗ Zmt m ∈M, t ∈ T (14)∑
i∈I

∑
c∈C

X5ilct ≤ CAPDlt ∗Alt l ∈ L, t ∈ T (15)

X1wict, X2imct, X3irct, X4msct, X5ilct ≥ 0 (16)
Yit ∈ {0, 1}, Zmt ∈ {0, 1}, Urt ∈ {0, 1}, Alt ∈ {0, 1} i ∈ I, r ∈ R,M ∈M, t ∈ T, l ∈ L (17)

Yit ≤ Yi,t+1 i ∈ I, t ∈ T (18)
Urt ≤ Ur,t+1 r ∈ R, t ∈ T (19)

Zmt ≤ Zm,t+1 m ∈M, t ∈ T (20)
Alt ≤ ZAl,t+1 l ∈ L, t ∈ T. (21)

Constraint (2) is a flow balance constraint which is the number of disassemble WTs parts at wind farms
(generation points) equal to the number of WT parts sent to inspection centers. Constraint (3), the total ratio of
components that are sent to recycling, remanufacturing, and disposal centers, is equal to one. Constraints (4)–(6)
model the flow balance between inspection centers, and recycling, remanufacturing and disposal centers, i.e.,
the total number of WT components at the inspection centers is equal to number of WT components shipped to
recycling, remanufacturing and disposal center. Constraint (7) shows the total inflow component coming from
remanufacturing centers is equal to the outflow of WTs sold to secondary market. Constraint (8) formulates the
number of WTs sold to the secondary market are no more than the demand for the remanufactured WTs at each
time period. Constraint (9) assures that the number of WT components sent to a recycling center is no more
than the demand of component at each time period. Constraint (10) ensures that the amount of WT component
sent to remanufacturing center is no more than the demand of component at each time period. Constraint (11)
ensures that the amount of WT component sent to disposal center is no more than the demand of component at
each time period. Constraint (12) is the capacity constraint for production in the inspection center. Constraint
(13) is the capacity constraint for production in the recycling center. Constraint (14) is the capacity constraint
for production in the remanufacturing center. Constraint (15) is the capacity constraint for the disposal center.
Constraint (16) is the non-negativity constraint, and constraint (17) is the integrality constraint. Constraints
(18)–(21) ensure that once a center is installed, it remains operating until the end of the planning horizon.

Model 1 (Extended model)

The Model 1 (extended model) consists of basic model objective function, constraint (2) through constraint
(21), and additional constraint (22) which represents the sum of emissions within the facilities and emissions
due to transportation activities which should be less than or equals to the amount of carbon cap allowed.∑

t

∑
w

∑
c

∑
i

Twict ∗ Ω ∗X1wict ∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
r

Tirct ∗ Ω ∗X3irct ∗ (1 + dr)−t

+
∑

t

∑
c

∑
i

∑
m

Timct ∗ Ω ∗X2impt ∗ (1 + dr)−t +
∑

t

∑
c

∑
m

∑
s

Timct ∗Θ ∗X4msct

∗ (1 + dr)−t +
∑

t

∑
w

∑
c

∑
i

CIcit ∗X1wict ∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
m

CMcmt ∗X2impt

∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
r

CRcrt ∗X3irct ∗ (1 + dr)−t +
∑

t

∑
l

∑
c

∑
i

CAclt ∗X5ilct

∗ (1 + dr)−t ≤ CARP. (22)
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4.4. Model 2: Model with carbon emission CAP and carbon credit policy

In the following model, the objective is to minimize the total network cost under carbon emission cap/credit
policy. Under the carbon emission cap policy, there is a restriction on emissions and emission is penalized by
using a carbon tax (penalty per unit of carbon emissions). This means that for every tonne of carbon dioxide
emitted into the atmosphere, the producer may sacrifice a certain amount of capital. In terms of carbon credit,
one carbon credit (or carbon “offset”) is a closely regulated certificate representing a reduction of one metric
ton of carbon dioxide being released into the atmosphere. In dollar terms, the price of carbon credits per ton is
about USD 15 to USD 40 [22].

Minimize Model 2 = Model 1 + cost of carbon emissions credit in $ per ton CO2 * (Total CO2 emission-
Carbon emission cap (CARP))

Total Carbon Emissions =∑
t

∑
p

∑
c

∑
i

Tcipt ∗ Ω ∗X1cipt ∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
r

Tirct ∗ Ω ∗X3irct ∗ (1 + dr)−t

+
∑

t

∑
c

∑
i

∑
m

Timct ∗ Ω ∗X2imct ∗ (1 + dr)−t +
∑

t

∑
c

∑
m

∑
s

Tmsct ∗Θ ∗X4msct ∗ (1 + dr)−t

+
∑

t

∑
c

∑
i

∑
m

CMcmt ∗X2imct ∗ (1 + dr)−t +
∑

t

∑
c

∑
i

∑
r

CRcrt ∗X3irct ∗ (1 + dr)−t

+
∑

t

∑
p

∑
c

∑
i

CIcit ∗X1cipt ∗ (1 + dr)−t.

Subject to:

Constraints (2)–(21) except constraint (22).

4.5. Input parameters

For each wind farm location, the number of WTs is determined randomly, and the distance matrix is created
between 5 wind farm locations. It is assumed that three types of WT components are sent to each center. The
cost data summarized in Table 2 is used for this study.

4.6. Experimental design

In this section, we present a RLND for one type WT under different cases by solving the proposed model. We
perform all computational experiments on a personal computer equipped with Windows 7, 1:80 GHz CPU and
4 GB memory. This model is coded in the Generic Algebraic Modeling System (GAMS) as a front-end interface
to CPLEX optimizer, which is used for solving MIP model over a 50-period (year) horizon.

To illustrate how the proposed MILP model can help wind farm operator to make optimal recy-
cling/remanufacturing decisions, real world WT cost data is analyzed and incorporated into the model. We
carried out scenario analysis, including three different cases, to understand how different disposal options affect
the WTs RLND. Before giving the model results, it would be ideal to explain the each Case/Scenario.

For the initial base run for both Model-1 and Model-2, it was assumed that 30% of the total supply would be
remanufactured, 60% would be recycled and the remaining 10% of the parts would go to disposal centers. It was
assumed that this is not the case for all WTs, since several factors may affect their remaining life and that some
of the WTs may still be in good conditions, or vise versa. Therefore, several other scenarios were modelled using
ratio (α) values between 0.1 and 0.8, in increments of 0.1, to evaluate the effects of recycling/remanufacturing
costs during the decision-making process.

The sensitivity analysis for Model-1 and Model-2 involved the investigation of the impact of carbon emissions
rate, carbon cap amount and carbon credit provided for each kg CO2, which is not emitted to the atmosphere.



S514 S. CINAR

Table 2. Summary of cost data.

Item Cost Reference

Transportation cost $4.2 per mile [4]
New wind turbine cost (GE 1.5 XLE 1.5 MW $1 400 000 [2], [3]
Remanufactured turbine cost (GE 1.5 SL) $500 000 [2], [3]

Operating Cost
Operating cost at remanu-
facturing center

[$10 000–$50 000] Estimated based on expert
opinion (gearbox, generator,
towers or blades) [1]

Operating cost at inspection
center plus added disman-
tling cost

[$1000–$5000] [$35 000
added dismantling cost]

Estimated based on expert
opinion (gearbox, generator,
towers or blades) [1]

Operating cost at recycling
center

[1000–5000] Estimated based on expert
opinion (gearbox, generator,
towers or blades) [1]

Installation cost of
centers

Inspection, remanufactur-
ing, and recycling centers

[15 000–70 000] Estimated based on expert
opinion [1]

Remanufactured tur-
bine

Gearbox 10–15% total cost
of WT

$50 000–$75 000 [2], [3]

component cost Generator 5–10% total cost
of WT

$25 000–$50 000

Tower cost 10–25% total
cost of WT

$50 000–$125 000

Blades 10–15% total cost of
WT

$50 000–$75 000

Recycling cost profit
Generator $12 500 Estimated based on typical
Gear box $7000 materials and quantities
Tower $75 600 required for Vestas V82

1.65-MW turbine.

Notes. [1] Renew Energy Maintenance [34]. [2] Oliveira and Fernandes [11]. [3] Repowering Solutions [35]. [4] Sandia
National Laboratories [37].

5. Summary of numerical results

In this section, we illustrate how the models presented in the previous section can be used to obtain useful
insights. The insights, presented in the form of a series of observations, are based on numerical results generated
from solving the models for examples of problems with varying parameter values. The details of the experimental
setup can be found in Section 4.6.

5.1. Model 1: Results

For the Model-1, to investigate the impact of emission control on the reverse logistic network design, several
different recycling/remanufacturing ratio were used to analyze the effect of material flow on total emissions and
the total network cost. Table 3 presents the output generated by the Model-1. The output variables include
total network cost, operating cost for both recycling and remanufacturing facilities, transportation cost for
recycling and remanufacturing centers and total emissions associated with operation activities at recycling
and remanufacturing centers. It is observed that when the recycling ratio decreases, the operating emissions
increases up to 70% due to the higher emissions rate at the remanufacturing center. The percent contribution
of the transportation emissions for recycling and remanufacturing centers stays between 3–17% and 6–21%,
respectively (see Fig. 1). Therefore, it can be concluded that in addition to operating emissions, transportation
emissions are also important factors in the design of a reverse logistics network. Comparing all the scenarios, for
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Table 3. Model 1 results summary.

Scenario R-RM Network Operating Operating Trans. Cost Trans. Cost Facility Facility Trans. Trans.

Ratio Cost ($) Cost R ($) Cost RM ($) to R ($) to RM ($) Emissions Emissions Emissions Emissions

(RM) (R) (RM) (R)

0(base 60/30 538 339 012 38 556 000 311 760 000 105 046 600 70 031 040 17 507 760 57 629 824 6 426 000 17 133 600

case)

1 50/40 609 852 992 32 130 000 389 700 000 87 538 810 87 538 810 35 015 520 51 544 838 10 852 000 13 278 000

2 40/50 681 367 012 25 704 000 467 640 000 70 031 040 105 046 600 52 523 280 44 819 866 12 278 000 9 422 400

3 30/60 752 880 952 19 278 000 545 580 000 52 523 280 122 554 300 70 031 040 33 614 899 15 704 000 7 366 800

4 20/70 824 394 992 12 852 000 623 520 000 35 015 520 140 062 100 80 538 810 22 409 933 22 130 000 6 511 200

5 10/80 895 909 032 6 426 000 701 460 000 17 507 760 157 569 900 90 046 600 11 204 966 28 556 000 3 855 600

Figure 1. Total emission and transportation emission with % distribution to total emissions
for the remanufacturing operations.

the recycling operation, carbon emissions from the operating activities decreasde to 21%, while carbon emissions
from the transportation activities decreased to 7%. For the remanufacturing facility, carbon emissions from the
operating activities increased to 59%, while carbon emissions from the transportation activities increased to
7%. This implies that carbon emissions can be reduced through optimal planning of a reverse logistics network.

5.2. Model 2: Results

For the Model-2, the impact of carbon cap and carbon credit on reverse logistic network design were investi-
gated under six different recycling/remanufacturing ratio. Table 4 presents the output generated by the Model-2.
The output variables include total network cost, operating cost for both recycling and remanufacturing facilities,
transportation cost for recycling and remanufacturing centers and total emissions associated operation activities
at recycling and remanufacturing centers. Similar to the Model 1, it was observed that with decreasing recy-
cling ratio, operating emissions from the remanufacturing centers increased 70% during the first three scenarios
and operating emissions from the remanufacturing centers decreased 70% during the last three scenarios (see
Fig. 2). As CO2 emissions rate at the recycling centers is less than the remanufacturing centers, at some point,
the model prefers recycling over remanufacturing due to cost minimization objective. Providing a carbon credit
for every kg CO2 emissions reduction leads to decrease in the total reverse logistic cost. It is also observed more
carbon emissions reduction can be achieved through the implementation of higher carbon cap rate. This is due
to applied carbon credit paid for each kg CO2, which is not emitted.
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Table 4. Model 2 results summary.

Scenario R-RM Network Operating Operating Trans. Cost Trans. Cost Facility Facility Trans. Trans.

Ratio Cost ($) Cost R ($) Cost RM ($) to RM ($) to R ($) Emissions Emissions Emissions Emissions

(RM) (R) (RM) (R)

0(base 60/30 533 339 012 38 556 000 311 760 000 70 231 040 104 846 600 14 006 208 63 392 806 6 426 000 14 133 600

case)

1 50/40 539 852 992 31 130 000 389 700 000 87 638 810 86 538 810 28 012 416 56 699 322 10 952 000 13 178 000

2 40/50 545 367 012 24 704 000 467 640 000 105 846 600 69 031 040 42 018 624 49 301 852 12 778 000 11 222 400

3 30/60 534 880 952 29 178 000 445 580 000 103 554 300 71 523 280 40 024 832 52 976 389 11 904 000 10 466 800

4 20/70 522 394 992 32 652 000 423 520 000 101 062 100 72 015 520 37 431 048 55 650 926 11 830 000 12 211 200

5 10/80 520 394 992 36 126 000 401 460 000 98 569 900 76 507 760 32 037 280 54 325 463 10 272 600 13 041 160

Figure 2. % Emission contribution at recycling and remanufacturing operations for each scenario.

6. Sensitivity analysis

The purpose of the sensitivity analysis is to investigate the influences of those key parameters on operating
costs and carbon emissions of the reverse logistics network. It is clear that there is a relationship between total
carbon emissions, operating emission rates of recycling and remanufacturing centers, carbon cap, and carbon
credit. Therefore, a sensitivity analysis was performed to see the effect of carbon cap and carbon credit on the
total carbon emissions.

6.1. Model 1: Sensitivity

6.1.1. Increasing emission rate at remanufacturing centers

In the first sensitivity analysis for the Model 1, the emission rate (i.e., 10%, 20%, and 30%) at remanufacturing
centers was increased in the interval of 10 and the other parameters remain the same. Figure 3 presents the
output generated by the sensitivity analysis. The total carbon emission begins relatively high and continues to
decrease with increasing emittion rate. Sensitivity analysis showed that as model tries to optimize both cost
and the carbon emissions, once we increased the emission rate at the remanufacturing centers, the model prefers
to send more flow to recycling centers, which has low operating cost and low carbon emissions rate. Therefore,
there an increase is observed in transportation and operating emissions at recycling centers whereas a decrease
is observed in transportation and operating emissions at remanufacturing centers.
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Figure 3. Sensitivity analysis results for increasing emission rate at recycling center.

Figure 4. Model 1-Sensitivity analysis results for increasing cap rate.

6.1.2. Increasing carbon cap rate

In the second sensitivity analysis for the Model 1, the carbon cap rate was increased by 10%, 20% and 30%.
As a result, the total emission increased by more than 20%. The carbon cap rate for the base case was selected
to be 500 000 kg CO2. This analysis indicates that in the assumed case, if the carbon cap rate was flexed, the
model acts as if there is no carbon limiting constraint exist and the model prefers sending most of the material
to the remanufacturing centers (see Fig. 4). Therefore, the total increase in total carbon emissions was due to
the high operating carbon emissions at remanufacturing centers.

6.2. Model 2: Sensitivity analysis

In the sensitivity analysis for the Model 2, we are interested in how the carbon cap and carbon credit
influences decision-making in a reverse logistics network design and three scenarios with incremental carbon cap
and carbon credit rate (i.e., 10%, 20%, and 30%) are investigated.
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Figure 5. Model 2-Sensitivity analysis results for increasing cap rate.

Figure 6. Model 2-Sensitivity analysis results for increasing credit amount.

6.2.1. Increasing carbon cap rate

In the first sensitivity analysis for the Model 2, the cap rate (i.e., 10%, 20%, and 30%) was decreased in the
interval of 10 and the other parameters remain the same. The sensitivity analysis showed (see Fig. 5) that once
we decreased the cap rates at a certain level, as model tried to optimize both cost and the carbon emissions, the
model the preferred to send more flow to recycling centers, which has lower operating cost and lower emission
rates. When carbon cap is relatively high, the model was mostly sending most of the material to remanufacturing
centers. When the carbon cap was sufficiently low, the model started sending most of the material to recycling
centers, as the model finds it advantageous to adjust its operations and emit less carbon.

6.2.2. Increasing carbon credit rate

In the second sensitivity analysis for the Model 2, the carbon credit rate (i.e., 10%, 20%, and 30%) was
increased in the interval of 10 and the other parameters remain the same. Sensitivity analysis showed (see
Fig. 6) that increasing carbon credit rate, the total carbon emissions decreases by 2% for the 10% and a 20%
increase, respectively and for the 30% increase, the increase is only 0.1%. This means that increasing carbon
credit rate may not be enough by itself. Therefore, along with carbon credit rate, increasing or decreasing of
carbon cap rate may be effective to reach the minimum cost and minimum emission for the system.
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Comparing the results of these different scenarios show that this current reverse logistics network fits all
scenarios quite well, with the potential to be adjusted to fit the strategic change of recycling and remanufacturing
options to optimize the total network cost and total carbon emissions. It was observed that emissions can be
directly controlled by varying the carbon cap rate and carbon price. Therefore, the resulting emissions can be
controlled by adjusting these parameters to reach the optimum cost and emission values for the reverse logistic
network. Applying different carbon cap and carbon credit rates as well as different recycling and remanufacturing
rates will provides guidance in decision making by quantifying the difference, in terms of total network cost and
total carbon emissions of reverse logistics of WTs.

7. Conclusions and further research

In recent years, reverse logistics has been increasingly focused in order to capture the remaining values from
used products through recycling and remanufacturing. A significant number of previous studies have focused
on both theoretical development and mathematical modeling of reverse logistics problems. This paper has
presented a mathematical model includes two objectives (1) minimization of overall reverse logistics costs, and
(2) minimization of carbon emissions of the transportation and processing of used products. To the best of our
knowledge, this paper is the first to study the RLN designed for EOL WT considering environmental factors
(i.e, carbon cap and carbon credit rates). Therefore, the most significant contribution of this study is to take
into account of environmental factors in order to improve both economic and environmental sustainability of
reverse logistics in the field of WT industry. The proposed model will help the decision maker to choose the most
suitable disposal method with the remanufacturing and recycling alternatives by considering the environmental
impact of each disposal alternative. Together with a baseline run of the current situation, various scenarios are
modeled. The results of this study show that due to the high operating emission rate at remanufacturing center,
sending most WTs to remanufacturing centers has more environmental effect than sending them to recycling
centers. In addition, it was shown that transportation emissions depend on the amount of flow that has been sent
to the recycling or remanufacturing center. Two major carbon control policies are involved in this study, carbon
cap and carbon credit scheme. The carbon cap approach has a fixed number of annual allowances allocated to
the participants as a cap. The carbon credit approach is allowing participants to sell their surplus allowances
for a profit. To identify potential business reactions or behavior with government carbon control policies, the
analysis is performed with different carbon credit rates as sensitivity analysis through the optimization model.
For carbon cap policy, different carbon limits are used in the analysis. The analysis with the optimization model
uses different rates of carbon credit so that the sensitivity of the reverse logistic network performance of the
carbon policy can be reserved.

In summary, the computer results and analysis yielded the following conclusions:

(i) The rate of carbon cap and carbon credit is clearly an important factor in selecting different disposal options
for EOL WTs. The results shows (demonstrate that) low emission cap leads to higher total emissions limit.
With carbon credit increasing in the amount of emissions that exceed the cap, the system is penalized for
doing so, with penalties. Companies are also rewarded for emitting less than their cap by receiving payments
increasing in the difference between their cap and their actual emissions.

(ii) It was determined that besides operating emissions, transportation emissions plays important role on total
carbon emissions.

As the price of carbon emissions is affected by market dynamics and the total amount of carbon that can be
bought and sold is limited by the sum of the cap imposed by the government, these factors can be also analyzed
to see the difference market conditions. As such, in order to extend the current MILP formulation, the following
additions to the model have been proposed for future work:

– It would be useful to carry out empirical work that can be used to validate or enrich the results from the
analytical models. For example, there is already carbon emission control legislation that has been in place in
various countries, such as those in the EU, for several years now. It might be possible to further document
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the impact this legislation has had on the operations of various firms in those countries and on emission
levels and carbon prices. In particular, it would be useful to identify the types of operational adjustments
that firms have made in response to climate control legislation and the impact these adjustments have had
on emissions and cost. It would also be of interest to compare how differences in legislation from country to
country (e.g., those that have adopted a carbon tax versus those with a cap-and-trade system) have affected
differently operational decisions made in those countries.

– While our approach with the available information provided good solutions that certainly, improve decision-
making to accommodate uncertainties in data, either a stochastic MILP model or a Stochastic Dynamic
Programming model could be developed for current problem.

– Our approach takes into consideration environmental factors as to evaluate dynamic situations. Instead,
proposed model can be modified as a multi-objective problem to trade-off between cost and environmental
objective. In addition, there can be interest to social effects into the objective function.

Real-world reverse logistic network design for WTs are typically more complicated than the hypothetical test
case considered in this paper. During the decision-making process, technical, economic and legal aspect of each
option should be considered. With respect to the legal aspect in terms of Cap-and-trade policy, there are several
country-specific uncertainties such as subsidy schemes, legal requirements, future demand for wind energy, wind
energy prices, etc., that were not taken into account by the model presented here and can be considered as
managerial implications. Due to impact of these uncertainties, it is necessary for companies to restructure their
supply chains in terms of strategic and operational decisions to meet the targeted emissions.

It can be concluded that the trade-off between system operating costs and environmental impacts of reverse
logistics activities, and it has also provided decision makers with deep managerial insights of the interactions
among different parameters in the reverse logistics network design.
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