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A BI-OBJECTIVE MODEL FOR ROBUST LOCAL CONTAINER DRAYAGE
PROBLEM

Jintao You1,2, Canrong Zhang1,2, Zhaojie Xue3,∗, Lixin Miao1,2 and Bin Ye4

Abstract. Local Container Drayage Problem (LCDP) refers to the optimization of the process of
planning and scheduling container trucks between a terminal and customers to offer door-to-door
service to customers in a local area. The time required for (un)packing containers at customers’ sites
are often relatively long and uncertain due to the current (un)packing work level and unexpected
deviations in operational situations, which has a significant influence on the planning and scheduling
of the container transportation process. This paper examines the LCDP with Separable tractors and
trailers, and additionally with consideration of (un)packing time Uncertainties (LCDPSU). A proactive
strategy is employed to tackle the uncertainty by proposing a “model robust” bi-objective optimization
model to balance the tradeoff between operational cost, which includes traveling cost and tractor
deployment setup cost, and robustness, which is represented as an exponential expression of the time
buffer between two stages of each individual task. The deterministic version of our problem is proved
to be NP hard, and an Ant Colony Optimization (ACO) scheme is therefore proposed to search for
feasible solutions in which the Zoutendijk feasible direction algorithm is embedded in order to tackle
the nonlinearity brought in by the robustness of the model. Numerical experiments are conducted
to validate the efficiencies and effectivenesses of the proposed models and methods, and managerial
implications are drawn from the numerical results.
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1. Introduction

Container transportation is safe, convenient, and low cost, and it can carry out intermodal transportation
through waterways, railways, and highways to realize door-to-door transportation services between customers
all over the world. In the system of intermodal container transportation, vessels and rails are the main modes of
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long-distance trunk transportation, and container trucks play an important role in branch transportation. The
container transportation by trucks between a terminal and customers is usually referred to as container drayage
operation, and it provides container pickup and delivery services for shippers and consignees.

In container drayage operation, a container truck consists of a tractor and a trailer carrying a container;
the tractor and the trailer are not operationally separable in the traditional stay-with mode. In the stay-
with mode, when a truck hauls an empty/loaded container from the terminal to the location of a customer,
the driver and the entire container truck will wait at the customers’ site for packing/unpacking. Only after
the packing/unpacking work is completed, can the driver and tractor continue to haul the container back to
the terminal. The (un)packing works always last several hours or even longer which significantly restrict the
utilization of container trucks and manpower. In the tractor-trailer separable mode, the tractor can be separated
from the trailer when one required container is transported to a customer, and the tractor continues to serve
other customers while the trailer and the container remain at the customer location for packing/unpacking.
Through this mode of operation, the planner can effectively use the idle waiting times of drivers and tractors,
thereby improving their utilization rate. The new tractor-trailer separable operation mode also give rise to more
possibilities for inserting time buffers between tasks, since the driver and tractor are able to leave the customer
while (un)packing work is being conducted, hence the idle time can be utilized efficiently.

The durations of (un)packing times required at the customers’ sites are critical to container trucks’ schedules
under the tractor-trailer separable mode and deserve close attention. In practice, one frequently used operation
strategy is that customers make commitments on the length of (un)packing times to the carrier before the
planning and scheduling process, then the carrier uses these commitment values and deterministic optimiza-
tion modeling tools to generate baseline schedules. However, there are often deviations between the realized
(un)packing times and the committed values, which make the baseline schedules become infeasible, and opera-
tors may face severe losses for rearrangements. Theoretically, there are two kinds of strategies for dealing with
uncertainties: reactive and proactive scheduling. Reactive strategies are those that respond to uncertainties only
after they are realized, while proactive strategies are designed to anticipate uncertain situations before complete
information is obtained. In this paper, we focus on proactive strategies for LCDP under the tractor-trailer
separable operation mode, which involves developing baseline schedules that incorporate anticipations of uncer-
tainties. Robust optimization and stochastic optimization can be adopted to deal with scenario uncertainties
and random distribution uncertainties respectively. However, since it is difficult to obtain specific uncertain
information, in this paper, we have adopted an idea from the model robust optimization technique by intro-
ducing a time buffer insertion technique to deal with the uncertainties, instead of using stochastic optimization
techniques.

This paper studies the LCDPSU by applying a proactive strategy, where we adopt the time buffer insertion
method to improve the robustness of tractor schedule plans under uncertainties without knowing any specific
uncertainty information in advance. A “model robust” bi-objective optimization model is proposed, and a two-
stage heuristic based on the Ant Colony Optimization(ACO) scheme is developed to solve the model, in which
Zoutendijk feasible direction algorithm is incorporated to resolve the nonlinearity that emerges in the model.
Numerical experiments are conducted to verify the effectiveness of the schedules obtained using the proposed
algorithms and to obtain some management insights.

The rest of the paper is organized as follows: a literature review is given in Section 2; the LCDPSU is described
in detail in Section 3 along with a mathematical model; the solution algorithm is presented in Section 4, followed
by the numerical experiments and analysis in Section 5; and the conclusions are drawn in the last section.

2. Literature review

2.1. The Local Container Drayage Problem

LCDP has been studied extensively in recent years, but most of those studies have concentrated on the
deterministic models under various container drayage operation modes and the techniques for finding their
solutions. Wang and Regan [22] studied the local truckload pickup and delivery problem and modeled it as
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a multiple Traveling Salesman Problem with Time Window(m-TSPTW), and they applied a time-window
partition method to solve this problem. Jula et al. [11] studied the Local Container Drayage Problem (LCDP),
which was defined as planning the movements of containers around a metropolitan (local) area by a truck
company. In their paper, each customer has a service requirement to deliver a container from an origin to a
destination (a O-D pair), and the O-D pairs are merged into one node and the entire problem is modeled as an
asymmetric multi-travelling salesman problem with time windows (am-TSPTW). Coslovich et al. [3] proposed
a decomposition method to solve the fleet management problem for an Italian container company, in which they
combined the drivers’ labor costs, trucks’ deployment costs, container repositioning costs, and routing costs.
Tjokroamidjojo et al. [20] studied the benefits and costs of sharing load information in advance of the pickup and
delivery of containers. Imai et al. [10] studied the problem that emerges in picking and delivering full container
load from/to an intermodal terminal. They achieved time and cost savings by linking the pickup and delivery
tasks on restricted conditions, and a Lagrangian relaxation based sub-gradient heuristic was adopted to find the
near optimal solution. Zhang et al. [26] considered a container transportation problem with resource constraints
where empty containers are treated as transportation resources, and the problem is based on one-terminal and
one-depot local area. Zhang et al. [25] further extended the truck scheduling problem for container transportation
with limited empty container resources into a multiple depots and multiple terminals problem. Xue et al. [23]
studied the LCDP under a special operation mode where the tractor and trailer can be separated, in which they
specifically considered the (un)packing time needed at each customer location, and a tabu heuristic was applied
to solve this problem. Xue et al. [24] also tried to solve the LCDP under tractor-trailer separable mode model
exactly by adopting the combinatorial Benders’ cut algorithm, but they did not present any results for large
sized instances. Shiri and Huynh [16] addressed a problem in which the intermodal terminal requires trucks
to have an appointment. The problem was formulated as an m-TSPTW, and was solved using an algorithm
based on Reactive Tabu Search(RTS). Song et al. [17] considered the LCDP under a separation mode where
some empty containers should return to the depot for maintenance, and they presented an arc-flow formulation
and applied a branch-and-price-and-cut algorithm to solve this problem exactly. Braekers et al. [2] proposed a
bi-objective model for LCDP and three algorithms to solve it. However, the bi-objective model they studied
is a deterministic LCDP. Ghezelsoflu et al. [5] proposed a set-covering model with single and double container
loads, where all the possible routes are enumerated, and the model can be solved efficiently by a commercial
solver.

2.2. Robust optimization methods and applications

In recent years, robust optimization has played an important role in dealing with uncertain optimization
problems. In traditional robust optimization techniques, uncertain parameters are described by discrete scenarios
or continuous intervals, and the goal of robust optimization is to seek a solution that has acceptable performance
under all uncertain situations. The solution philosophy behind most of the robust optimization problems is
worst-case optimization.

Han et al. [8] studied a proactive approach to deal with the berth and quay crane scheduling problem with
uncertain arrival and handling times, and a simulation based Genetic Algorithm (GA) was applied to generate
robust berth and QC schedule proactively. Zhen and Chang [27] applied a bi-objective model to study the
proactive strategy for robust berth allocation and scheduling, where the arriving time and operation time are
uncertain. In their paper, they designed a heuristic to generate baseline schedules, and adopted an exponential
expression to describe the robustness. Wang and Meng [21] studied the liner ship route scheduling problem where
the wait time and container handling time are uncertain. The formulated mixed-integer nonlinear stochastic
programming model was solved by using a combination of a sample average approximation method, linearization
techniques, and a decomposition scheme. As for the VRP, Sungur et al. [19] studied a robust optimization
approach for a capacitated VRP under demand uncertainty, whose objective is to find routes that minimize
transportation costs while satisfying demands in a given bounded uncertainty set. They proved that in certain
formulation and specific uncertainty sets, the solution procedure of the robust model will not be harder than
the deterministic model. Gounaris et al. [6] also studied capacitated VRP under demand uncertainty. Their
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goal was to determine a minimum cost delivery plan that is feasible for all anticipated demand realizations,
and they discussed the conditions when a robust VRP can be solved as a deterministic problem. Han et al. [7]
studied the VRP with uncertain travel times and the time exceeding the planning horizon was penalized in the
objective. Instead of using a traditional stochastic programming approach in which precise knowledge of the
probabilities are required, they described the uncertain travel times as time intervals and replaced the point
estimates of travel times by range estimates. Lee et al. [13] studied a robust VRP with deadlines and vehicle
capacity limitations, where the demand of each customer and the travel times between customers are uncertain.
They proposed a Dantzig-Wolfe decomposition approach in which the uncertain data are dealt in the column
generation subproblem and solved using a dynamic programming based algorithm. Liu et al. [14] proposed a
bi-objective model for yard allocation sheduling for outbound containers; their solution technique is a heuristic,
and the nonlinearity is transformed by discretization.

To the best of our knowledge, most of the researches on LCDP were conducted for deterministic problems,
whose optimization goals include setup cost, operation cost, and penalty cost. Meanwhile, robust optimization
techniques have been widely used in VRP studies, and robust optimization has the advantage that the specific
distribution of uncertain data is not necessary. Compared with the above literature, the main contributions of
this paper are as follows:

(1) A buffer-based robust model is proposed to address the LCDP under tractor-trailer separable mode, where
the commitment values of (un)packing are given to planners by customers before the planning process;
however, the realistic (un)packing times can be different due to disruption in the operational process.

(2) Similar to previous literature, in order to measure the robustness more accurately, the time buffers are
treated as exponential expressions. Unlike the previous papers such as Liu et al. [14], and Zhen and Chang
[27], which adopted a discretized way to handle the nonlinearly exponential term, this paper adopts a
continuous way by using Zoutendijk feasible direction algorithm.

(3) Based on the concept “model robust” proposed by Mulvey et al. [15], a bi-objective model is proposed to
balance the operational cost and robustness, and due to the NP-hardness, the model is solved by using
an ACO scheme embedded with Zoutendijk feasible direction algorithm. Numerical experiments are con-
ducted to validate the model and solution techniques, and management suggestions are drawn from the
experimental results.

3. Bi-objective model for the LCDP with (un)packing time uncertainty

In this section we present the details of how the previously studied deterministic LCDP model is modified
into a bi-objective model to confront (un)packing time uncertain scenarios.

3.1. Cost-minimization objective

As shown in Section 2, the objective of deterministic LCDP models studied in previous papers is mostly
to minimize the operational cost, and the main tradeoff is between the number of tractors deployed and the
total travel distance. Since the problem we study is based on LCDP with tractor-trailer separable mode and
empty container sharing strategy, in this paper, we refer to the LCDP model proposed by Xue et al. [23], and
the (un)packing times are considered uncertain. In order to maintain the integrity of this paper, the critical
modeling issues are briefly stated as follows. For more detailed modeling descriptions, we refer the readers to
Xue et al. [23].

Container drayage operation considers the container transportation between a terminal and a set of customers
around the local area of the terminal. The LCDP studied in this paper assumes that there are two types of
customers: delivery customers and pickup customers. Delivery customers require cargos delivered from the
terminal while pickup customers need an empty container to transport their cargos to the terminal.

We assume that there are a certain number of full-container-load pickup and delivery customers around a local
terminal area. These tasks have to be fulfilled within a fixed planning horizon. We mathematically represent
the problem as a graph G = (N,A). Node set N and arc set A are described below.
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Wetacticallyspliteachcustomernodeintotwotasknodes,whichhavethesamelocationwiththeoriginalcustomer
node spatially. To be more specified, a pickup customer node is split into an empty pickup task node and a loaded
pickup task node. An empty pickup task node requires an empty container. A loaded pickup task node requires a
tractor to transport its loaded container back to the terminal. Similarly, a delivery customer node can be split into a
loaded delivery task node and an empty delivery task node. A loaded delivery task node requires its loaded container
transported from the terminal. An empty delivery task node requires a tractor to tow the emptied container away.
It is noted that the two task nodes of the same customer can be served by different tractors. We suppose there are p
pickup customers and d delivery customers. The total task numbern = 2(p+ d).

The definitions of the node sets are:

C: represents the task node set of all the customers; each customer node is split into two task nodes: a stage
one task node and a stage two task node
C1: the stage one task node set
C2: the stage two task node set
N : the entire node set

The relationships between the node sets are as follows:

N



0 the terminal node

C


C1

{
P1 : {1, 2, ..., p} empty pickup task nodes
D1 : {p+ 1, p+ 2, ..., p+ d} loaded delivery task nodes

C2

{
P2 : {1′, 2′, ..., p′} loaded pickup task nodes
D2 : {(p+ 1)′, (p+ 2)′, ..., (p+ d)′} empty delivery task nodes.

Here we introduce the notations θ(i) = i′ and θ(i′) = i for i ∈ C1 to represent the corresponding relationship
between C1 and C2.

The arc set is represented by A = {(i, j)|i, j ∈ N, i 6= j}. For each arc (i, j), we use τij to denote the direct
vehicle travel time from the location of node i to the location of node j, and tij to denote the real travel time
between two consecutive nodes served by the same tractor. Based on tractor-trailer separable mode and empty
container sharing strategy, tij may have different relationships with τij as is shown in Table 1:

ρ1: the fixed setup cost for a deployed tractor
ρ2: the truck/tractor travel cost per unit travel time
p̃i: commitment (un)packing times for customer i, ∀i ∈ C1, which is uncertain before the scenarios are realized
T : the planning horizon
K: a sufficiently large constant

Variables:
Xij : equals 1 if node i and j are served consecutively by the same tractor, ∀i, j ∈ N, i 6= j; 0 otherwise
Si: the service beginning time at node i, i ∈ C

Cost-minimization model:

Min ρ1 ·
∑
j∈C

X0j + ρ2 ·
∑
i∈N

∑
j∈N\{i}

tijXij (3.1)

s.t.
∑

i∈N\{j}

Xij = 1, ∀j ∈ C (3.2)

∑
i∈N\{j}

Xij −
∑

i∈N\{j}

Xji = 0, ∀j ∈ C (3.3)
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Table 1. Calculation of tij .

i\j 0 P1 D1 P2 D2

0 − τ0j τ0j τ0j τ0j

P1 τi0 τi0+τ0j τi0+τ0j τij τij

D1 τi0 τi0+τ0j τi0+τ0j τij τij

P2 τi0 τi0+τ0j τi0+τ0j τi0+τ0j τi0+τ0j

D2 τi0 τij τi0+τ0j τi0+τ0j τi0+τ0j

Si + tij ≤ Sj +K(1−Xij), ∀i, j ∈ C, i 6= j (3.4)
Si + p̃i ≤ Sθ(i), ∀i ∈ C1 (3.5)
Si ≥ t0i, ∀i ∈ C1 (3.6)
Si + ti0 ≤ T, ∀i ∈ C2 (3.7)
Xij ∈ {0, 1}, ∀i, j ∈ N, i 6= j. (3.8)

Objective function (3.1) minimizes the total cost, including the cost of deployed tractors and total travel
cost. Constraints (3.2) and (3.3) are flow constraints. Constraints (3.4) specify the service beginning times of
two consecutive task nodes served by the same tractor. Constraints (3.5) are the temporal dependence between
the two stages of the same customer, which ensure that the (un)packing time of each customer is satisfied.
Constraints (3.6) and (3.7) ensure that all tasks are finished within the planning horizon. Constraints (3.8)
define the decision variables as binary ones.

3.2. Robustness-maximization objective

Figures 1 and 2 show a simple example to demostrate how a robust-oriented schedule can be more tolerant
to uncertainties than a cost-oriented schedule. The travel time and commitment (un)packing times are labeled
in Figure 1, where D and D′ represent the two time points of the delivery customer before and after unpacking,
P and P ′ represent the two time points the pickup customer before and after packing. The planning horizon
we consider here is 15. Figure 2 shows the comparison between a cost-oriented schedule and a robust-oriented
schedule on a time axis. The cost-oriented schedule is operated in the stay-with mode and the robust-oriented is
operated in tractor-trailer separable mode. The comparison shows that the cost-oriented schedule has a shorter
total travel time, while the robust-oriented schedule is more tolerant to uncertainties. For example, when the
realized unpacking time of the delivery customer is larger than its committed value, and supposing the realized
unpacking time is 5, the robust-oriented schedule will still be feasible; however, the cost-oriented schedule will
be infeasible under this situation.

As shown in the example in Figures 1 and 2, a baseline schedule plan generated from a traditional cost-
minimization model will become infeasible or may cause severe losses under uncertainties. Robust solutions can
perform better under such uncertain situations, although with a possible increase in cost.

While creating baseline schedules for tractors, the first issue is how to define and measure the robustness.
There are several strategies to measure the robustness in practice, such as the expected objective values, the
objective value of the worst case, the length of the slack time (buffer time), and so on. In this paper, we adopt
a strategy based on buffer time, and robustness is defined as a weighted sum of buffer times [1], in which the
weights are related to the relative punctuality levels of customers to fit practical situations.

The buffer time bi is defined as the time period between the (un)packing work’s finish time (which is Si +
p̃i,∀i ∈ C1) for customer node i and the service starting time of the customer’s stage two task node (which is
Sθ(i)), which is expressed as bi = Sθ(i) − Si − p̃i.
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Unpacking Time:4 Packing Time:5
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Figure 1. An illustrative network of one delivery customer and one pickup customer.
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Figure 2. Min-cost schedule and max-robustness schedule for the illustrative network.

Intuitively, the time buffer for each customer needs to be arranged as long as possible. However, considering
common practice and the studies in related areas, the robustness return per time unit for each customer is
diminishing. It should be mentioned that the adoption of exponential decreasing function (rather than other
expressions, such as linear expression, logarithmic function and so on) to express the diminishing trend of
robustness return is a usual practice in robust project scheduling [9, 12], and [27] has applied this idea in the
research on robust berth allocation scheduling.

The robustness factor Ri for each customer i is calculated as Ri =
∫ bi

0
e−xdx = 1− e−bi . Based on the above

explanation, the robustness of a given schedule is measured by the sum of robustness factor Ri. In the solution
construction process, we want to maximize the robustness, and the robustness of a solution s is calculated as
follows:

Robust maximization: R(s) =
∑
i∈C1

Ri =
∑
i∈C1

(wi · (1− e−bi)). (3.9)

Here, wi is the parameter that measures the punctuality level of customers based on the fleet planner’s human
experience.
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3.3. Bi-objective optimization: min-cost and max-robustness

The purpose of this study is to obtain a robust schedule with a satisfactory cost. However, the improvement in
robustness will cause an increase in transportation cost, and vice versa. In order to balance the tradeoff between
the two objectives, a bi-objective optimization model is proposed based on the models described above. This
model can help planners make proactive scheduling plans when facing (un)packing time uncertainties based on
limited information (only the commitment (un)packing times are known in advance).

Objective 1: Min ρ1 ·
∑
j∈C

X0j + ρ2 ·
∑
i∈N

∑
j∈N\{i}

tijXij (3.10)

Objective 2: Max
∑
i∈C1

(wi · (1− e−bi)) (3.11)

s.t. (3.2)–(3.8)
bi = Sθ(i) − Si − p̃i, ∀i ∈ C1 (3.12)
bi ≥ 0. (3.13)

Constraints (3.12) define the time buffer bi for each customer i. Through the bi-objective optimization model,
we are able to obtain a Pareto front with a given set of commitment values, and the details of calculation for
obtaining the Pareto front are presented in Section 5.3.2. After the non-dominated solutions are obtained, their
performances are further tested with a set of actual stochastic instances generated by a simulator, and the
details of the evaluation strategies are presented in Section 5.

4. Solution approach

We introduce a coefficient λ to combine the above two objectives:

Objective: Min (1− λ) ·

ρ1 ·
∑
j∈C

X0j + ρ2 ·
∑
i∈N

∑
j∈N\{i}

tijXij

− λ · ∑
i∈C1

wi · (1− e−bi). (4.1)

In this paper, the coefficient λ is a parameter ranging from 0.1 to 0.9, and varied in steps of 0.1. By changing
the value of λ, different sets of solutions can be obtained, where λ = 0.1 means the objective is cost-oriented,
and λ = 0.9 tends to give a robust-oriented solution. The step in which λ is varied can be adjusted according
to the requirement.

Though we have converted two objectives into one, it does not change the NP hard essence of this problem.
Because the original deterministic LCDP is an extension of VRP, which is already NP hard, the tractor-trailer
separable mode and empty container sharing strategy considered in this paper make the problem even harder.
In addition, the nonlinear part of the objective function makes the problem more sophisticated. Therefore,
we design a two stage heuristic to solve this problem. Firstly, we adopt the Ant Colony Optimization (ACO)
scheme to guide the heuristic search process, and then a Zoutendijk feasible direction algorithm is applied to
tackle the nonlinearity. A brief skeleton of the entire algorithm is described as follows. A feasible sequence of
the task nodes is generated through ACO, and the value of objective 1 is obtained at the same time. After
that, the optimal service time of this sequence is calculated using Zoutendijk feasible direction algorithm;
simultaneously, we can obtain the value of objective 2. Then, the combined objective value is saved as heuristic
information to guide further search of ACO. This search process continues iteratively until the stopping criteria
are met. The following sections provide detailed descriptions of ACO and the Zoutendijk feasible direction
algorithm.
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4.1. Ant Colony Optimization

4.1.1. Preparation process

Before the heuristic process, some preparation work is done to narrow the search space by inspection [23].
The time windows of each task node can be reduced from [0, T ] to the following:

[ai, bi] = [t0i, T − tθ(i),0 − pi], ∀i ∈ C1 (4.2)
[ai, bi] = [t0,θ(i) + pθ(i), T − ti0], ∀i ∈ C2. (4.3)

For a given sequence, the lower bounds of the service beginning times are updated as follows.

S0 = 0, (4.4)
Si = Sj + tji, if j precedes i in the same route, i ∈ C1, j ∈ N (4.5)
Si = max{Sj + tji, Sθ(i) + pθ(i)}, if j precedes i in the same route, i ∈ C2, j ∈ N. (4.6)

During the heuristic search process, customers’ service beginning times are updated dynamically. In addition,
they are checked with the time windows to ensure feasibility.

4.1.2. Ant Colony Optimization scheme

ACO is an algorithm in which a set of artificial ants are generated to iteratively construct candidate solutions.
The ants’ solution construction processes are guided by pheromone and problem-dependent heuristic informa-
tion, as shown by Dorigo et al. [4]. In each construction process, every ant chooses unvisited task nodes based
on certain probabilities. The probability of choosing node j after node i is given by

pij =
ξαijη

β
ij∑

(i,j)∈A ξ
α
ijη

β
ij

, ∀(i, j) ∈ A, (4.7)

where ξ is the pheromone and η is the heuristic information, α and β are the parameters that determine the
relative importance of ξ and η. To be specific, the heuristic information factor η is highly problem dependent.
When applying ACO to solve the TSP, the heuristic information is conventionally defined as ηij = 1/dij , where
dij is the length of arc (i, j). In this paper, we define the heuristic information as follows:

ηij =


1

ρ1+ρ2·tij
, if i = 0

1
ρ1·pi/T

, if i ∈ C1 and j = θ(i)
1

ρ1·tij/T+ρ2·tij
, otherwise.

(4.8)

Due to the random data generation rules, tij can be very small, which will cause ηij to be a very large number.
In order to diversify the solution space, we introduce ηij as an upper bound of ηij .

To avoid early convergence, γ is introduced as the volatilization rate of the pheromone. In each iteration,
only the elite ant is used to update the pheromone:

ξij(t+ 1) = (1− γ)ξij(t) +4ξij , (4.9)

where t is the iteration counter, and 4ξij is calculated in the following way:

4ξij =

{
Q/f(s), solution S contains arc(i, j)
0, otherwise.

(4.10)

Here, f(s) is the objective value of solution s, and Q is the pheromone updating constant. In order to avoid
situations in which some ants have much larger pheromone values than the others, ξij(t) is restricted within
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the bounds ξmin and ξmax. According to Stutzle and Hoos [18], ξmin(t) and ξmax(t) are dynamically calculated
as follows:

lim
t→∞

ξij(t) ≤
1
γ

Q

f(sopt)
= ξmax(t), (4.11)

ξmin(t) = ξmax(t)/2n, (4.12)

where sopt is the current global best solution.
To initialize the pheromone, we set ξ(0) as an arbitrary large number. Following the rules of equations (4.6)

and (4.8), ξ(1) will be forced to ξmax(1) [18].

4.1.3. Route-Saving operator

The probabilistic searching essence of ACO can lead the search to slow convergence or a local minimum.
Local search operators are often introduced to improve the solution quality. However, in this paper, due to the
planning horizon and temporal constraints, common operators such as inter-route, intra-route and k-opt are
highly likely to generate infeasible solutions. We designed a Route-Saving (RS) operator to avoid this problem.
This operator can be more promising for finding feasible solutions, while maintain the robustness to some extent.

When a sequence is generated, we filter out the route with the least number of task nodes. The route removing
process starts with the route having the least task node, and if its task node number is less than a small predefined
number l, the task nodes on the selected route are sequentially removed and reinserted into other routes. The
rest of routes are ranked in descending order with respect to their idle times. The insertion process starts with
the route with largest idle time, and continues with respect to the ranked order to find feasible positions for
the removed task nodes. If this operation is able to produce a feasible solution with one route less, the above
removing process continues iteratively. The RS operation stops when the task node numbers of all routes are
larger or equal to l, or the route selected in the previous processes cannot be removed. The reason for applying
the RS operator is to avoid routes that are extremely tight, which will lead to solutions with low robustness.
The efficiency of the RS operator is tested later in Section 5.3.1.

4.2. Zoutendijk feasible direction algorithm

Since we have introduced an exponential expression to represent the robustness in the objective function,
Zoutendijk feasible direction algorithm is applied to tackle the nonlinearity during the search process of ACO.
For a given task node sequence constructed by ACO, which is mathematically represented by matrix X, we are
able to calculate objective 1 and the initial service beginning times array Sinit (applying (4.1)–(4.3)). In order
to calculate objective 2 and the exact service times array S, we apply Zoutendijk feasible direction algorithm to
the following model.

Max
∑
i∈C1

wi · (1− e−bi), (4.13)

s.t. Si + tij ≤ Sj +K(1−Xij), ∀i, j ∈ C, i 6= j,Xij given (4.14)
(3.5)−(3.7), (3.12).

To simplify the description of the details of the algorithm, the above model is rewritten in matrix form.

Max g(S), (4.15)
s.t. AS ≥ b. (4.16)

The detailed Zountendijk feasible direction algorithm is given in Algorithm 1.
Finally, with all the work described above, the solution algorithm scheme is concluded in Algorithm 2.
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Algorithm 1 Zoutendijk Algorithm
function Zoutendijk(X,Sinit)

Step 1 : initialize iteration number k = 0, Sk = Sinit, tolerance ε;

Step 2 : split A =

[
A1

A2

]
, b =

[
b1

b2

]
, where A1S

k = b1,A2S
k > b2;

Step 3 : solve the following LP model to optimality to get the feasible direction d;

Min ∇g(Sk)T d (4.17)

s.t. A1d ≥ 0 (4.18)

−1 ≤dj ≤ 1, j ∈ C (4.19)

Step 4 : if |∇g(Sk)T dk| < ε, output Sk; else, a feasible direction dk is obtained;
Step 5 : calculate the optimal step size, b′ = b2 −A2S

k,d′ = A2d
k,

ςmax =

{
min{ b′

i
d′

i
|d′i < 0} when d′ � 0

+∞, when d′ ≥ 0
, solve the problem min

0<ς<ςmax
g(Sk +ςk) to get optimal ςk, set Sk+1 = Sk +ςkdk,

k := k + 1, goto Step 2.
end function

Algorithm 2 Solution Algorithm Scheme
Initialization:

iteration = 0, arrangedNum = 0, ITER NUM
for each edge do

initialize Pheromone, Heuristic, Probability
end for

while iteration < ITER NUM do
for each ant do

choose an initial node from C1 with Probability
while arrangedNum < N do

if feasible task nodes can be found then
choose next feasible task node j with Probability

else
start a new route

end if
arrangedNum++

end while
execute Route-saving operator
compute objective 1, apply Zoutendijk algorithm for objective 2

end for
update Pheromone and Probability
iteration++

end while

5. Numerical experiments and analyses

In this section, experiments are designed and instances are generated to evaluate and measure the proposed
model and methods. The solution procedures described in Section 4 are implemented in Java on a laptop with
3.1 GHz CPU, 64 GB RAM.

5.1. Instance generation

Test instances are randomly generated, and for the generation rules, we refer to Xue et al. [23]. The test area
under consieration is a square region with side length equal to 200 km, and the terminal is located at the center
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Table 2. Parameter settings.

Parameter Parameter description Values

ITER NUM Iteration number 1000
m Number of ants 20
Q Pheromone updating constant 10
η̄ij Upper bound of heuristic parameter 0.9
γ Volatilization rate of pheromone 0.95
ε Tolerance of Zoutendijk Algorithm 0.01
l Bound value of RS operator 4

of the region. All the pickup and delivery customers are randomly distributed in this region, and the direct
travel time between two customers is calculated by the Euclidean distance divided by the speed of the vehicles
(70 km/h). The commitment (un)packing times of customers are generated by a uniform distribution of U[3,5]
hours. Considering both the practical and academic relative values of the truck deployment setup cost to travel
cost, we set ρ1 = 10 and ρ2 = 1. Based on the previous researches of Xue et al. [23] and Xue et al. [24] on the
deterministic LCDP with tractor-trailer separable mode, and to balance the tradeoff between computational
cost and practical value, the test instance size we used here is 20/20, which means that there are 20 pickup
customers and 20 delivery customers, the total task nodes that need to be served is 80.

5.2. Algorithm parameter settings

Based on preliminary researches and numerical experiments, the main parameters are presented in Table 2;
however, the details are omitted considering the article length.

5.3. Experiment results and analyses

In this section, we describe the numerical experiments that were conducted based on the model, settings, and
solution algorithms described in above sections.

5.3.1. Algorithm efficiency

Since ACO and Zoutendijk algorithm are both iterative algorithms, we examine the convergence properties
to reveal their efficiencies. For simplicity of presentation, we use the 20/20 scenario with λ = 0.5 (λ values
do not have significant influence on the calculation speed of algorithms) to show the convergence properties of
the two proposed algorithms. Firstly, experiments are conducted to compare ACO and ACO with RS operator
(ACORS); both the algorithms incorporate the Zoutendijk algorithm. Secondly, we test the convergence effi-
ciency of Zoutendijk feasible direction method with a feasible sequence generated by ACORS. The results are
displayed in Figure 3.

In Figure 3a, we display the changes of up-to-now best solution objectives of two algorithms with respect
to the iteration numbers. Evidently, both the algorithms are able to converge, and the improvement ratios are
more than 20%. In more detail, both the algorithms converge significantly in the first 200 iterations, and the
convergence trend is much more gentle in the later 800 iterations. In comparison, ACORS can always find better
solutions compared with the ACO without RS operator, and the gaps are between 10% and 25%. Moreover,
ACORS converges faster than ACO without RS operator. In Figure 3b, we display the convergence of objective 2
with respect to the iteration number for a determined sequence (Xij values given). The convergence curve shows
that the Zoutendijk algorithm is able to gain optimal service times (Si) with a given sequence (Xij) within
a predefined tolerance in less than 15 iterations, and the total improvement of objective 2 is up to 50%. In
conclusion, the proposed ACO incorporated with Zoutendijk algorithm is able to efficiently solve the robust
LCDP under the tractor-trailer separable mode.
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Figure 3. Convergence of proposed algorithms.

5.3.2. Approximation of Pareto front

In this paper, we study the tradeoff between two objectives: minimizing cost and maximizing robustness.
However, there is no ultimate solution that can realize the lowest cost and the highest robustness simultaneously.
In this section, we present an illustrative example of obtaining a set of non-dominated solutions for the LCDP.
We conduct experiments by setting λ from 0.1 to 0.9 based on the 20/20 instance. λ approaching 0.1 means that
the solutions are cost-oriented, and λ approaching 0.9 means that the solutions are robust-oriented. For each λ,
we apply the solution algorithms described in Section 4 to obtain a set of solutions. Here, we illustrate the top
30 best solutions for each λ in Figure 4, where each circle denotes a solution, and the non-dominated solutions
are filtered out from the 270 solutions and represented by red solid circles. The Pareto front is approximated
by a curve in the figure.

As mentioned above, there is no solution with the highest robustness and lowest cost at the same time among
these non-dominated solutions. Which solution or schedule should be chosen is determined by the preference of
the planners and the uncertainties of the practical environment.

5.3.3. Robustness evaluation by simulation

In order to further evaluate the performance of different non-dominated schedules, we generated a series
of scenarios based on the 20/20 instance to simulate practical situations. When generating the scenarios, we
assume that the realized (un)packing times follow a normal distribution. For customer i, the mean value of its
realized (un)packing time is its committed (un)packing time p̃i, and the variance of its realized (un)packing
time is σ2. Here, we only consider situations in which the realized (un)packing times are longer than their
commitment values, because if the realized (un)packing time for one customer is shorter than its commitment
value, the baseline schedule will always be feasible for this customer as it will have a larger feasible time window
as discussed in Section 4.1.1.

Besides the uncertainties in variances, we also consider the proportion in which the realized (un)packing
times vary from the commitment values, because in practical situations, not all customers will violate their
commitments simultaneously. We define Pr to denote the percentage of varied customers among the entire
population C1 in one scheduling operation. For each generated scenario, Pr ·|C1| customers are chosen randomly,
and their realized (un)packing times are generated by the normal distribution N(pi, σ2). Except for these Pr·|C1|
customers, the realized (un)packing times of the remaining customers are the same as their commitment values.
In order to ensure the reliability of the experiments, we generated 100 instances for each scenario to calculate
the average values.
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Figure 4. Pareto front approximation.

In this paper, we mainly use three measurements to evaluate the robustness performances of the non-
dominated baseline schedules:

(1) The number of violated (Nv) routes. Feasible baseline schedules are generated according to the commitment
(un)packing times, but the realized (un)packing times may be longer than commitment values, which will
cause the length of certain routes to be longer than expected or even lead to violations. Here one violation is
recognized if the final realized makespan of one route exceeds the planning horizon T . Nv is the summation
of all violations in one schedule.

(2) The quantity of violations (Qv). Qv measures the degree of violations. For each route, when the actual
makespan exceeds the planning horizon, we calculate the difference between the actual makespan of this
route and the planning horizon T . The sum of the violation times of all routes is Qv.

(3) The rearrangement and penalty cost (Ca). Although we have proposed a bi-objective model to generate
schedules to balance the cost and robustness, objective 2 has no practical meaning in practical operations,
and the entire planning work is unfinished till this stage. Therefore, we have defined Ca to represent the
actual cost if reactive methods are applied to deal with the violations. There are two ways to deal with
violated tasks: (a) extra tractors and drivers are dispatched to deal with the violated tasks; (b) tractors and
drivers continue to work with the violated tasks, but penalties will be levied for the extra work, which may
cause some legitimacy issues in some countries due to the long working hours of drivers. Ca is calculated as
follows: Ca = objective 1 +P1 ·Nv +P2 ·Qv. Here, P1 and P2 vary in different practical situations, where P1

represents the rearrangement penalty of tractors and drivers, and P2 is the penalty cost for extra working
hours of tractors and drivers, and they are decided based on practical situations.

The performance of different baseline schedules under different scenarios are presented in Table 3. Baseline
schedules are obtained based on the solution algorithms proposed above with different λ values. Different scenario
instances are generated with combinations of Pr = 0.2, 0.4, 0.6, 0.8 and σ2 = 2, 4, 6, 8. To ensure reliability, for
each pair of Pr and σ2, we generate 100 different instances and calculate the average values of Nv, Qv, and Ca.

The following aspects can be observed from Table 3:
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Table 3. The calculation of Nv and Qv according to Pr and σ2.

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pr σ2 Nv Qv Nv Qv Nv Qv Nv Qv Nv Qv Nv Qv Nv Qv Nv Qv Nv Qv

0.2 2 0.52 0.38 0.79 0.67 1.17 0.97 1.06 0.96 1.98 1.99 1.53 1.62 1.96 2.07 1.45 1.17 1.72 1.68
0.2 4 1.11 1.35 1.19 1.64 1.86 2.85 2.11 3.09 2.69 4.33 2.26 3.53 2.82 4.28 2.33 3.26 2.73 4.26
0.2 6 0.95 1.52 1.60 2.61 2.06 3.22 2.17 3.28 2.98 5.50 2.43 4.54 2.87 5.24 2.49 3.94 2.83 4.77
0.2 8 1.46 2.50 2.05 3.59 2.62 4.67 3.05 5.52 3.55 7.60 2.95 6.72 3.53 7.69 2.94 6.15 3.30 6.72
0.4 2 0.95 0.76 1.73 1.76 2.50 2.48 2.32 2.60 3.83 4.49 2.99 3.58 3.94 4.75 2.94 3.50 3.50 4.15
0.4 4 1.67 2.32 2.83 4.69 3.62 5.70 3.70 5.82 5.24 9.47 4.36 8.31 5.20 9.61 4.07 6.80 4.70 8.50
0.4 6 2.42 3.95 3.58 6.52 4.39 8.68 4.73 10.08 5.63 13.67 5.17 11.89 5.85 14.13 4.99 10.51 5.78 12.59
0.4 8 3.23 6.68 4.41 10.48 5.01 13.11 5.62 14.74 6.28 20.39 5.49 17.37 6.31 18.68 5.76 15.17 6.06 18.88
0.6 2 1.33 0.99 2.35 2.88 3.77 3.86 3.56 4.01 5.17 7.31 4.44 5.81 5.29 7.19 4.32 5.22 5.15 6.96
0.6 4 2.66 3.26 3.78 6.33 5.11 8.82 5.38 9.65 6.71 15.20 5.75 12.05 6.86 14.59 5.93 10.82 6.66 13.42
0.6 6 3.57 6.48 5.06 10.23 5.79 13.85 6.53 15.98 7.14 20.48 6.53 18.11 7.85 21.72 7.12 16.85 7.57 21.37
0.6 8 4.56 9.05 6.21 14.77 6.65 17.47 7.19 21.64 7.95 28.78 7.32 23.46 8.63 28.89 7.21 21.75 8.36 27.29
0.8 2 2.00 1.71 3.40 4.21 4.64 5.03 5.03 6.23 6.79 10.44 5.71 8.41 6.96 9.96 5.65 7.74 6.59 10.01
0.8 4 3.89 5.61 5.51 9.05 6.39 12.07 6.99 14.71 8.09 21.13 7.27 17.10 8.74 21.10 7.58 15.74 8.73 20.04
0.8 6 4.78 8.41 7.16 16.01 7.31 18.85 8.00 22.68 8.82 31.29 8.28 24.26 9.60 29.31 8.47 23.89 9.50 30.04
0.8 8 5.82 13.33 8.28 22.71 8.08 26.05 8.79 32.64 9.58 41.77 9.35 34.76 10.27 41.84 9.39 33.31 10.40 41.56

Notes. Pr: the probability of varied customers. σ2: variances of varied customers. Nv: the total number of violated
tractor routes. Qv: the total quality of violations. λ: the weights for robustness.

(1) Along the vertical direction, for each baseline schedule, both Nv and Qv are increasing with respect to σ2

for a determined Pr, while the trend is the same with respect to Pr for a determined σ2. These trends are
obvious because a high level of uncertainties will lead to more violations.

(2) Along the horizontal direction, for each pair of Pr and σ2, both Nv and Qv show an increasing trend with
respect to λ, which means that the cost-oriented schedules are more sensitive to uncertainties.

Figure 5 presents the actual cost for reactive strategies, where P1 = 10 and P2 = 5, λ = 0.1 stands for
the most cost-oriented schedule, and λ = 0.9 represents the most robust-oriented schedule. From this figure,
we conclude that robust-oriented schedules are more stable to uncertainties with the given P1 and P2 values;
that is to say, cost-oriented schedules tend to have a lower cost when the uncertainty levels (Pr and σ2) are
low. However, with the increase in uncertainty levels, their costs increase much faster than the robust-oriented
schedules.

5.3.4. Parameter analyses of P1 and P2

In previous subsections, we have mentioned that P1 is the rearrangement costs for tractors and drivers and
P2 is the penalty cost for tractors and drivers. Since in practical situations, the strategies to deal with violations
may vary due to planners’ preferences and legitimacy issues, P1 and P2 can also have different values. Besides
the results shown in Figure 5, we conducted experiments on different P1 and P2 combinations as shown in
Figure 6, where λ = 0.1 represents the most cost-oriented schedule and λ = 0.9 represents the most robust-
oriented schedule. The main observations in Figure 6 can be summarized as follows. In Figure 6a and b, where
the rearrangement costs and penalty costs are relatively low, cost-oriented schedules have slightly dominant
advantages over robust-oriented schedules when the uncertainty levels (Pr and σ2) are low; however, as the
uncertainty levels rise, some robust-oriented schedules start showing their advantages. On the other hand, as
the rearrangement and penalty costs are relatively higher as shown in Figure 6c and d, with the increase in
uncertainty levels, robust-oriented schedules trend to outperform cost-oriented schedules. In conclusion, when
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Figure 5. Actual cost Ca according to Pr and σ2 for different λ.

the rearrangement and penalty costs are relatively low, the cost-oriented schedules and robust-oriented schedules
have relatively fair results. On the other hand, the rearrangement and penalty costs are high, robust-oriented
schedules have more advantages than cost-oriented schedules.

5.3.5. Schedule selection preferences

In order to provide some management insights to the planners, we extend the experiments to show how to
adopt proper schedules for different scenarios. In Section 5.3.2, we presented how to approximate the Pareto
front of the solution space and obtain non-dominated solutions. Each solution corresponds to a λ, which reflects
the robustness of this solution. As the value of λ changes from 0.1 to 0.9, it means that the solutions are
changing from cost-oriented to robust-oriented, and they are denoted by S1, S2, ..., S9 in the following parts.
Experiments are conducted with respect to the changes in uncertainty levels (Pr and σ2). To explore the
influence of uncertainty levels, experiments are conducted in the following two aspects using a control variable
method:

(1) for the first two groups of experiments, Pr is set as: 0.2 and 0.8, respectively, and instances are generated
with σ2 changing from 0 to 8;

(2) for the following two groups of experiments, σ2 is set to 2 and 8, respectively, and instances are generated
with Pr varying from 0 to 0.8.

All the instances are repeated 100 times to achieve average values. The results are illustrated in Figure 7, and
the best schedule suggestions are shown in the upper part of each subfigure. The lower part of each subfigure
shows the evolution trends of the actual cost Ca for different schedules, which explains the choices of the upper
parts of the subfigures, and in order to make the figure clean and clear, we only present the curves of a few
representative schedules.

The vertical axis of the upper parts of each subfigure represents different baseline schedules, where S9 stands
for the most robust-oriented baseline schedule, and S1 stands for the most cost-oriented schedule. The horizontal
axes represent the changes in λ and σ2. Figure 7a and b show that with the increase in σ2, the schedule choices
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Figure 6. Actual costs Ca for schedules with different P1 and P2 values.

will change from cost-oriented to robust-oriented, but Figure 7b shows a much more obvious trend to choose
robust-oriented schedules than Figure 7 since it has a larger Pr value. Figure 7c and d show that with the
increase in Pr, schedule choices also have a tendency to change from cost-oriented to robust-oriented, Figure 7d
shows a more obvious trend of choosing robust-oriented schedules than Figure 7c. Besides, Pr seems to have a
more obvious influence on the choice of schedules than σ2.

5.3.6. Human experience of fleet planners

Since, in this paper, we study the proactive strategy in which the plans are made by fleet planners before
complete information is obtained, the accumulated experience of planners is important to make baseline sched-
ules in the long-term orientation. Based on the history of cooperations, fleet planners may have anticipations for
each customer of being punctual or late. If the anticipation information is considered in the generation process
of baseline schedules, it will possibly improve the robustness of the obtained schedules.

Experiments are conducted for different anticipation information based on varied human experience of fleet
planners. We assume that 20 out of 40 customers have longer (un)packing times than their commitment
(un)packing values, and fleet planners can predict the actual scenarios in different levels. For ease of pre-
sentation, two different representative cases are considered in the experiments with different anticipation levels:
Anti5: 5 out of 20 uncertain customers are predicted correctly and are assigned with larger wi values as

described in Section 3.2.
Anti20: 20 out of 20 uncertain customers are predicted correctly and are assigned with larger wi values.



S642 J. YOU ET AL.

Figure 7. Examples of choices and details for planners.

We solve the two models with varied wi values and obtain two groups of schedules. Each schedule is tested
through the generated instances with variances ranging from 2 to 16 to calculate Ca values, and experiments
are conducted 100 times to obtain average values. For better illustration, parts of the results are presented in
Figure 8a and b, from which we find that more anticipation information leads to more cost savings. Furthermore,
Figure 8c shows the minimum costs among all schedules under the two different levels of anticipations. When the
variance is low, which means that the uncertainty levels are insignificant, the costs under different anticipation
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Figure 8. Performance comparisons of different levels of anticipation based on planner’s
experience.

information levels are very close; however, as the uncertainty level increases, the important of anticipation
information becomes increasingly evident. The experiments in this subsection validate the importance of correct
anticipation for uncertainties in practical situations.

5.3.7. Comparisons among different planning strategies

Though we studied the importance of anticipation information in Section 5.3.6, in realistic environments, fleet
planners need to make plans without any prior information; therefore, heuristic strategies other than the bi-
objective model proposed in this paper are often adopted. One of the most commonly applied heuristic strategy
is to simply extend the committed (un)packing times in the planning process (greedy extension strategy)
to generate robust baseline schedules. In order to evaluate and compare the performances of strategies, we
conducted experiments on three different scheduling strategies:

(1) Greedy extension strategy (Greedy 1): the simplest heuristic strategy for fleet planners is to extend
all customers’ (un)packing times from the commitment values with certain extend levels (which means
the (un)packing times used to generate baseline schedules are multiplied by the extend levels). Here we
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Figure 9. Comparisons among different planning strategies.

conducted experiments with extension levels ranging from 1.1 to 1.9 with in steps of 0.1; thus 9 schedules
were generated.

(2) Greedy extension strategy with complete information (Greedy 2): we consider this strategy as a baseline
strategy of this subsection, which means that all the uncertain information are predicted accurately before
the planning process, and the solution process is the same as the greedy extension strategy with the extension
levels (ranging from 1.1 to 1.9) for different customers being related to their varied levels (σ2 ranging from
2 to 8) from the committed values.

(3) Bi-objective strategy: a group of nine schedules were generated by the model and algorithms proposed in
this paper without any information given, except for the commitment (un)packing times.

In order to evaluate the schedules generated by the three strategies above, 20 out of 40 customers were set
as uncertain and instance generation processes, and experiments were repeated 100 times for calculating the
average Ca values. The results are presented in Figure 9, where three different strategies are presented in one
figure to make a visual presentation; however, there is no physical meaning in comparing the different strategies
directly. The upper x-axis stands for the extend levels of the heuristic extension strategy, the lower x-axis stands
for λ of the bi-objective model, and the y-axis stands for the Ca values of different schedules. The following
aspects are observed in Figure 9:

(1) Ca tends to decrease as the extension level of the heuristic extension strategy and λ of the bi-objective
strategy increase.

(2) We expect the bi-objective strategy schedules to have lower Ca than the heuristic extension strategy sched-
ules and complete human experience strategy schedules in most of the cases.

(3) Complete human experience strategy has compatible Ca with the other two strategies when their robustness
levels are low, but as their robustness levels increase, complete human experience strategy starts being
overtaken by the other two strategies.
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The bi-objective strategy proposed in this paper outperforms the greedy extension strategy and greedy
extension strategy with complete information in most of the cases, and it can generate robust schedules that
have lower costs for most of the situations compared with the other two strategies.

6. Conclusion

This paper studies proactive strategies for making robust schedule plans for the Local Container Drayage
Problem with Separable tractors and trailers, and additionally with consideration of (un)packing time Uncer-
tainties (LCDPSU), and proposes a bi-objective model and algorithms to generate robust baseline schedules
based on committed (un)packing times of customers. The contributions of this study mainly include three
aspects:

(1) A “model robust” bi-objective model is proposed to balance the trade-off between operational cost and
robustness for the routing and scheduling of tractors, containers, and drivers in LCDPSU. The first objective
of the proposed model is the same as most of the traditional deterministic LCDP researches on this topic,
which basically minimizes the truck deployment setup cost and travel cost. The second objective is to combine
a time buffer insertion strategy, which is used to incorporate model robustness, with the deterministic LCDP
model and increase the robustness of baseline schedules.

(2) An ACO scheme based algorithm incorporated with the Zoutendijk feasible direction algorithm is proposed
to solve this model. Candidate service sequences are generated by ACORS, and exact optimal schedules are
calculated by the Zoutendijk feasible direction algorithm. Unlike the existing researches, this study attempted
to combine an exact method with a meta-heuristic algorithm to solve a practical problem in LCDPSU.

(3) Numerical experiments and parameter analyses are conducted, and management suggestions are given to fleet
planners of container drayage operations so that they can make proactive schedule plans to face uncertainties.
The proposed model and methods are able to generate schedules that consider the costs and uncertainties
at the same time, and the solutions outperform some basic heuristic strategies.

In the future, we will try to analyze the structure of this problem further, and apply exact algorithms for the
model. At the same time, we will also consider other uncertain factors such as travel time uncertainties.
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