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SIMULTANEOUS CONTROL ON LEAD TIME ELEMENTS AND ORDERING
COST FOR AN INFLATIONARY INVENTORY-PRODUCTION MODEL WITH
MIXTURE OF NORMAL DISTRIBUTIONS LTD UNDER FINITE CAPACITY

Hesamoddin Tahami1,∗, Abolfazl Mirzazadeh2 and Aref Gholami-Qadikolaei2

Abstract. The significance of inflation and time value of money in inventory/production systems
is indisputable for modern decision makers. Consequently, the paper aims to study the influence of
inflationary condition on a stochastic continuous review integrated vendor–buyer inventory system in
the presence of a multilevel reorder strategy for the system. It is considered that lead time components
and ordering cost are controllable. Lead time is decomposed into its components: set-up time, pro-
duction time and transportation time. Based on lead time components, demand during the lead time
for different batches is assumed to be a mixture of normal distributions. The objective is to minimize
joint inventory expected cost by simultaneously optimizing ordering quantity, reorder points of different
batches, ordering cost, setup time, transportation time, production time and a number of deliveries
under space constraint while the lead time demand follows a normal distribution. To minimize the
expected inventory cost, a Lagrange multiplier method is applied in order to solve the problem, and
an iterative algorithm is designed to find optimal values. The behavior of the model is illustrated in
numerical examples. It was found that for a fixed value of transportation time, setup time and number
of batches, with an augment in inflation rate, the two optimal reorder points for different batches were
increased. Also, optimum joint expected annual cost with inflation for two kinds of customers’ demand
is larger than one kind of customers’ demand. Furthermore, sensitivity analysis and managerial insights
are given to show the applicability of the model.
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1. Introduction

In many deterministic or stochastic inventory research papers, one facility (e.g. a buyer or a vendor) is
assumed to minimize its own cost or maximize its own profit. This one-sided optimal strategy is not appropriate
for the global market. However, according to the just-in-time (JIT) philosophy, many researchers concentrate
on integration between buyer and vendor. Once they form a long-term strategic alliance, both facilities can
cooperate and share information to achieve improved benefits. Nowadays, inflation is an observable phenomenon
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in most societies, and its impact on determining optimal policies of inventory/production systems is a momentous
concern for inventory managers. In economics, inflation is a sustained increase in the general price level of goods
and services in an economy over a period of time. When the general price level rises, with each unit of currency,
we can buy fewer goods and services. Consequently, inflation reflects a reduction in the purchasing power per
unit of money – a loss real value in the medium of exchange and unit of account within the economy. A chief
measure of price inflation is the inflation rate, the annualized percentage change in a general price index. In
addition, lead time plays an important role in the logistics management. In the inventory management literature,
lead time is treated as predetermined constant or stochastic parameters. If it is assumed that lead time can
be decomposed into several components, such as setup time, process time, and transportation time, it can be
assumed that each component may be reduced at a crashing cost. Also, as a consequence of high cost of land
acquisition in the most societies, most of inventory systems have limited storage space to stock goods. Moreover,
as can be seen in various industries, bi-modal or multi-modal distributions arise frequently in the cases where
demand is observed from multiple, distinct sources (customers). So, in order to model the real environment, it is
better not to use only a single distribution. Consequently, the present paper tries to capture all of the mentioned
factors and fill the gap in the literature by developing an inflationary integrated vendor–buyer inventory model
where the lead time components and ordering cost are controllable and demand during the lead time follows a
mixture of normal distributions.

2. Literature review

The inventory problem regarding integration between buyer and vendor has received a lot of attention in
recent years. Firms are appreciating that a more appropriate result is achieved over better coordination and
cooperation of all parties involved in a supply chain. Starting with Goyal [12], much research has been conducted
that aims to obtain coordinated inventory replenishment decisions among individual companies to benefit the
entire supply network rather than a single company. Banerjee [1] extended the model of Goyal [12], assumed
that the manufacturing rate was finite, and considered a lot-for-lot model where the vendor produced each buyer
shipment as a separate batch. Goyal [13] extended Banerjee’s work by relaxing the lot-for-lot production policy
for the vendor and assumed that the vendor’s lot size was an integral multiple of the buyer’s order quantity.
An extension of Banerjee [1] and Goyal [13] was proposed by Landeros and Lyth [20], which assumed that
inventory carrying charges of both buyer and vendor included different cost components. Lu [23] presented a
model for integrated vendor–buyer problems and developed a heuristic approach for the one-vendor multi-buyer
case. The model was an improvement over the models of Banerjee [1] and Goyal [13]. Regarding previously
mentioned studies, demand and lead time were assumed to be deterministic. However, demand or lead time
in various industries was stochastically distributed; hence, considering uncertainty in the integrated inventory
models is appropriate and meaningful. Also, through the Japanese successful experience of using Just-In-Time
(JIT) production, the advantages and benefits associated with efforts to control the lead time can be clearly
perceived. Regarding the mentioned issues, Pan and Yang [33] extended Goyal [13] by considering lead time
demand as a probabilistic variable and considered lead time as a controllable variable.

Ouyang et al. [32] extended Pan and Yang’s [33] model by further considering the reorder point as a decision
variable and shortage occurrence, simultaneously optimizing ordering quantity, reorder point, lead time and the
number of lots in an integrated single-vendor single-buyer inventory model. Ben-Daya and Hariga [3] considered
a single-vendor single-buyer integrated inventory problem and assumed that the lead time was composed of
lot-size dependent run time and constant delay times, such as moving, waiting, and setup times. Chang et al.
[6] proposed an integrated vendor–buyer cooperative inventory model in which lead time and ordering cost were
controllable. They considered that the buyer’s lead time can be reduced at an extra crashing cost which depends
on the lead time length and ordering lot size. They also investigated a case when the ordering cost and lead
time reduction acted dependently. Hsiao [18] modified the model developed by Ben-Daya and Hariga [3] by
adding the assumption that production time was the same as the lead time of the first batch and developed an
integrated inventory model with two reorder points and service levels. Glock [11] extended Hsiao’s [18] model
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considering that lead time could be decomposed to production, setup, and transportation time, and therefore,
lead time could be reduced by shortening setup and transportation time with the same crashing cost or by
increasing the production rate, which resulted in reduced production time.

Moon et al. [31] developed the distribution-free continuous-review inventory model to minimize the total cost
by using a negative exponential lead time crashing cost function, and derived the closed-form expressions for
the optimal order quantity, reorder point, and lead time. Sarkar et al. [39] examined the effects of setup cost
reduction and quality improvement in a two-echelon supply chain model with deterioration. Their objective was
to minimize the total cost of the entire supply chain model by simultaneously optimizing setup cost, process
quality, number of deliveries and lot size. Sarkar et al. [40] developed a sustainable integrated inventory model
by considering Stackelberg’s game policy, where a discrete investment was used to reduce the setup cost, as well
as introducing fixed and variable transportation and carbon emission cost.

Majumder et al. [24] investigated a two-echelon supply chain model considering the quality improvement
of products and setup cost reduction under controllable lead time. They considered two cases where in the
first one, lead time demand followed a normal distribution and in the second one, no specific distribution was
assumed except a mean and standard deviation. Kim and Sarkar [19] developed a model to minimize the total
cost throughout the supply chain network under single-supplier and single-buyer for a single type of product and
single-setup-multi delivery (SSMD) policy. They assumed that the supplier offered trade-credit-period to the
buyer and the buyer used the delay time to increase his/her profit. Also, a continuous review inventory model
was considered for both supplier and buyer, investment was used to reduce setup cost, and another investment
was used to improve the quality of products. Soni et al. [43] presented a continuous review inventory model with
backorders and lost sales with fuzzy demand and learning considerations. They showed that the learning effect
in fuzziness reduced the ambiguity associated with the decision making progress. In another paper of Soni et al.
[44], they investigated the effects of lost sales reduction and quality improvement in an imperfect production
process under an imprecise environment while simultaneously optimizing reorder point, order quantity, and lead
time. They also assumed that lead time demand followed a mixture of normal distributions.

Majumder et al. [25] developed a continuous review single-vendor multi-buyer inventory model with partially
back ordered demand, where the vendor produced products in a batch production process under a variable
production rate. Also, it was assumed that a crashing cost was incurred by all buyers to reduce their lead
time. Sarkar et al. [41] extended Glock’s [11] paper by adding the concept of quality improvement and setup
cost reduction in a two-echelon supply chain. They considered the combination of setup time reduction, quality
improvement of products, and setup time as well as transportation time crashing cost together to reduce
the whole supply chain cost. Dey et al. [8] studied a sustainable inventory model with a controllable lead
time, discrete setup cost reduction and consideration of environmental issues. They assumed that the customer
demand was dependent on selling-price and the lead time demand followed a Poisson distribution. Sarkar
and Mahapatra [34] investigated a periodic review fuzzy inventory model with lead time, reorder point, and
cycle length as decision variables, where the main goal was to minimize the expected total annual cost by
simultaneously optimizing cycle length, reorder point, and lead time for the whole system based on fuzzy
demand. They assumed that lead time demand could follow either normal distribution or distribution-free and
then solved their model considering both conditions. Sarkar et al. [37] studied a continuous review inventory
model considering setup cost reduction and quality improvement by using logarithmic expression, and solved
their model with a distribution-free approach. Sarkar and Majumder [35] developed two integrated vendor–buyer
supply chain models where in the first one, the lead time demand followed a normal distribution and in the
second one the distribution-free approach was applied for the lead time demand.

Regarding the inventory management literature about the space constrained problem, very few papers have
worked on stochastic demand models. In fact, previous research on inventory problems with space restriction
focused on the case of multiple items with deterministic demand [15,17]. Veinott [46] was one of the first authors
to propose storage space constrained inventory problems in the stochastic environment. Hariga [16] presented a
stochastic space constrained continuous review inventory system for a single item and random demand, wherein
the order quantity and reorder point were decision variables. Xu and Leung [48] proposed an analytical model in
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a two-party vendor managed system where the retailer restricted the maximum space allocated to the vendor.
Moon and Ha [29] proposed three extended models with variable capacity. First, they presented an EOQ model
with random yields. Second, they developed a multi-item EOQ model with storage space and solved the model
with the Lagrange multiplier method. Third, they applied a distribution-free approach to the (Q, r) with variable
capacity.

The analysis of inventory systems under an inflationary condition in the literature can be carried out using
two procedures. The first one determines the optimal values of the control variables by minimizing the average
annual cost, and the second one determines the optimal ordering policy by minimizing the discounted value
of all future costs. Hadley [14] showed with the detailed computations in the simplest way that the ordering
quantities computed by minimizing the average annual cost and also by minimizing the discounted cost did
not differ significantly. Mirzazadeh [27] extended Hadley’s work by minimizing the inflation and time value of
money under uncertain conditions, shortages and the effect of deterioration. The above-mentioned system was
formulated with two methods, which were derived under some assumptions, and the objective was to minimize
the average annual cost and the discounted cost. These methods were compared to each other carefully, and the
results revealed that the mentioned methods (the average annual cost and the discounted cost) had a negligible
difference to each other.

A number of papers have considered the effect of inflation on the inventory system since 1975. Buzacott
[5] developed an economic order quantity model with a fixed inflation rate for all related costs. Bierman and
Thomas [4] proposed an inventory model under an inflationary condition that also incorporated the discount
rate. Then, Misra [26] extended an inventory model with different inflation rates for variously related costs.
Yang et al. [49] developed different inventory models with time-varying demand patterns under inflation. Moon
et al. [30] developed an inflation EOQ model for both ameliorating and deteriorating items, assuming not only
a constant length of each replenishment, but also a constant fraction of shortage length with respect to the
cycle length. Mirzazadeh et al. [28] proposed an inventory model with probabilistic inflationary conditions. The
developed model also implicated to a finite replenishment rate and finite time horizon with a shortage. The
objective was to minimize the expected present value of costs over the time horizon. Hence, in this study, a
stochastic (Q, r) integrated inventory system under the inflationary condition is proposed.

In the case of probabilistic demand, as can be seen in various industries, bi-modal or multi-modal distributions
arise frequently in the cases where demand is observed from multiple, distinct sources (customers). So, we cannot
use only a single distribution [3, 6, 10, 11, 29, 32, 36, 38, 42]. Wu and Tsai [47] considered the mixture of normal
distributions for lead time demand to find optimal ordering quantity and lead time for the buyer based on the
work by Everitt and Hand [9]. Lee et al. [21] proposed a one-sided inventory system with defective goods wherein
the lead time demand followed a mixture of normal distributions to find buyer’s optimal inventory strategy when
reorder point, lead time and ordering quantity were the decision variables. Lin [22] extended the research by
Lee et al. [21] by assuming lost sale rate as a controllable variable. However, in the previously mentioned
research, one facility, e.g. a buyer, was assumed to minimize its own cost. This one-sided optimal strategy is
not appropriate for the global market. Therefore, in this study, we consider a mixture of normally distributed
lead time demands for an integrated single-vendor single-buyer inventory model rather than considering only
one facility.

The present paper extends the mentioned works considering multi-reorder level inventory systems by adding
lead time components. In Glock’s [11] study, it was assumed that transportation time was a fraction of setup
time with the same crashing cost. But, in practice, setup and transportation time and their crashing costs
are different from each other, and mostly the mentioned assumption cannot be used in a real environment.
Therefore, this paper assumes transportation and setup time and their crashing costs act independently. Also,
in order to fit some real environment, transportation time crashing cost is presented as a function of reduced
transportation time and the quantities in the orders. This paper also considers a random space constraint for
random demand and positive lead time when maximum permissible storage space is restricted. A few papers
have considered space constraint for stochastic demand. However, to our knowledge, no paper has assumed a
mixture of distributions for demand while considering space constraint to the model. In addition, as mentioned
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in the previous paragraph, inflationary condition for the proposed stochastic demand and deterministic variable
lead time is considered, helping the model to be more appropriate for the real environment. The paper aims
to minimize joint inventory expected cost by simultaneously optimizing ordering quantity, reorder points of
different batches, ordering cost, setup time, transportation time, production time, and a number of deliveries
under space constraint, while the lead time demand follows a normal distribution. Hence, a Lagrangian method
is applied to solve the problem, and a solution procedure is proposed to find optimal values. The behavior of
the model is also illustrated in numerical examples.

The rest of the paper is organized as follows. In Section 3, the notations and assumptions are given. In
Section 4, we present the mathematical model. In Section 5, a numerical example and sensitivity analysis are
given to illustrate the model and its solution procedure. Finally, we conclude this paper.

3. Notations and assumptions

Notations

Following notations have been used through the paper:

Decision variables
Q Buyer’s order quantity (units).
r Buyer’s reorder point (units).
A Buyer’s ordering cost at the time zero ($/order).
t Transportation time (days).
s Setup time (days).
m The number of lots in which the product is delivered from the vendor to the buyer in one Production

cycle, a positive integer (units).

Parameters
D Annual demand for buyer (units/year).
P Production rate in units per unit time (units/unit time).
p 1/P .
a Vendor’s setup cost per set up at the time zero ($/setup).
π Buyer’s stock out cost per unit at the time zero ($/unit).
hv Vendor’s holding cost per unit per year at the time zero ($/unit/year).
hb Buyer’s holding cost per unit per year at the time zero ($/unit/year).
I Inflation rate.
n Number of cycle.
ns Number of shipment cycle.
f Space used per unit (m2/unit).
F Maximum permissible storage space (m2).
I(A) Buyer’s capital investment required to achieve ordering cost A, 0 < A ≤ A0.
b Percentage decrease in ordering cost A per dollar increase in investment I(A).
θ Fractional opportunity cost of capital investment per year ($/year).
Cpu Buyer’s purchasing cost per unit at the time zero ($/unit).
cs Vendor’s Setup cost per setup at the time zero ($/setup).
cpr Vendor’s Production cost per unit at the time zero ($/unit).
A0 Buyer’s original ordering cost per order ($/order).
X Demand during lead time, as a random variable.
X+ Maximum value of x and 0.
E(·) Mathematical expectation.
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Assumptions

1. There are single-vendor and single-buyer for a single product in this paper.
2. The vendor’s production rate is finite and greater than the buyer’s demand rate, i.e., P > D, where P and
D are given.

3. The buyer orders a lot, of size mQ and the vendor manufactures a lot, of size mQ, but transfer a shipment
of size Q to the buyer. Once a vendor produces the first Q units, he will deliver them to the buyer. The
vendor will schedule successive deliveries every Q/D units of time.

4. We assume that the capital investment, I(A) in reducing buyer’s ordering cost is a logarithmic function of
the ordering costA. That is,

I (A) =
1
δ

ln
(
A0

A

)
for 0 < A ≤ A0

where δ is the fraction of the reduction in A per dollar increase in investment.
5. Setup time s consists of ns mutually independent components. The ith component has a normal duration

NSi and minimum duration MSi, i = 1, 2, . . . , ns. If we let s0 =
∑ns

j=1 NSj and si be the length of setup
time with components 1, 2, . . ., i, crashed to their minimum duration, then si can be expressed as si =
s0 −

∑i
j=1(NSj −MSj), i = 1, 2, . . . , ns and the setup time crashing cost is given by

CS (s) = csi (si−1 − s) +
i−1∑
j=1

csj (NSj −MSj) .

6. The transportation time t consists of nt mutually independent components. The ith component has a normal
duration NTi and minimum duration MTi, i = 1, 2, . . . , nt.

7. For the ith component of transportation time, the crashing cost per unit time cti, depends on the ordering
lot size Q and is described by cti = ai + biQ, where ai > 0 is the fixed cost, and bi > 0 is the unit variable
cost, for i = 1, 2, . . . , nt.

8. For any two crash cost lines cti = ai + biQ and ctj = aj + bjQ, where ai > aj , bi < bj , for i 6= j and
i, j = 1, 2, . . . , nt, there is an intersection point QS such that cti = ctj . These intersection points are arranged
in ascending order so that QS0 < QS1 < . . . < QSw < QSw+1, where QS0 = 0, QSw+1 =∞ and w ≤ nt(nt − 1)/2.
For any order quantity range (QSi , Q

S
i+1), cis are arranged such that c1 ≤ c2 ≤ . . . ≤ cnt , and the lead time

components are crashed one at a time starting with the component of least ci, and so on.
9. Let t0 ≡

∑nt

j=1 NTj and ti be the length of transportation time with components 1, 2, . . . , i crashed to
their minimum duration, then ti can be expressed as ti = t0 −

∑i
j=1(NTj −MTj), i = 1, 2, . . . , nt and the

transportation time crashing cost per cycle CT(t) is given by CT(t) = cti(ti−1 − t) +
∑i−1
j=1 cj(NTj −MTj),

where tε[ti, ti−1], and cj = aj + bjQ for j = 1, 2, . . . , i.
10. We consider the deterministic variable lead time L and assume that the demand of the lead time X follows

the mixture of normal distributions, F∗ = αF1 + (1− α)F2, where F1 has a normal distribution with finite
mean µ1 and standard deviation σ

√
L and F2 has a normal distribution with finite mean µ2 and standard

deviation σ
√
L. Therefore, the lead time demand, X has a mixture of probability density function (PDF)

which is given by

f (x) = α
1√

2πσ
√
L
× exp

[
−1

2

(
x− µ1L

σ
√
L

)2
]

+ (1− α)
1√

2πσ
√
L
× exp

[
−1

2

(
x− µ2L

σ
√
L

)2
]

where µ1 − µ2 = k1σ/
√
L or µ1L − µ2L = k1σ

√
L, k1 > 0, −∞ < x < ∞, 0 ≤ α ≤ 1, σ > 0. Moreover,

the mixture of normal distributions is unimodal for all α if (µ1 − µ2)2 < 27σ2/8L or k1 <
√

27
8 . Also, when

(µ1 − µ2)2 > 4σ2/L or k1 > 2, at least we can find a value of α(0 ≤ α ≤ 1) which makes the mixture of
normal distributions to be a bimodal distribution.
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11. The reorder point r = expected demand during lead time + safety stock (ss), and ss = k× (standard
deviation of lead time demand), that is r = µ∗L + kσ∗

√
L, where µ∗ = αµ1 + (1 − α)µ2, σ∗ =√

1 + α(1− α)k2
1σ, µ1 = µ∗ + (1− α)k1σ/

√
L, µ2 = µ∗ − αk1σ/

√
L, and k is the safety factor which

satisfies P (X > r) = 1 − pΦ(r1) − (1− p)Φ(r2) = q, where Φ represents the cumulative distribution func-
tion of the standard normal random variable, q represents the allowable stock-out probability during L,
r1 = (r − µ1L/σ

√
L) = (r − µ∗L/σ

√
L)− (1− α)k1, and r2 = (r − µ2L/σ

√
L) = (r − µ∗L/σ

√
L) + k1α.

12. Lead time for the first shipment is proportional to the lot size produced by the vendor and consists of the
sum of setup time, transportation time and production time, i.e. L(Q, s, t) = s + pQ + t. For shipments
2, . . .,m only transportation time has to be considered for calculating lead time, i.e. L(t) = t. Since, due
to P > D, shipments 2, . . .,m have been completed when the order of buyers arrives. Hence, considering
the mixture of normal distributions, the lead time demand for the first batch, X1, has a probability density
function f(x1, µ1L(Q, s, t), µ2L(Q, s, t), σ

√
L(Q, s, t), α) with the mean µ1L(Q, s, t), µ2L(Q, s, t) and stan-

dard deviation σ
√
L(Q, s, t) and for the other batches, the lead time demand, X2, has a probability density

function f(x2, µ1L(t), µ2L(t), σ
√
L(t), α) with the mean µ1L(t), µ2L(t) and standard deviation σ

√
L(t).

4. Model formulation

In this section, we establish a continuous review integrated inventory model involving backorders, variable
lead time elements, mixture of normal distributions for lead time demand, bi-level reorder strategy and storage
space constraint. We assume that buyer order mQ units and vendor produces mQ units, but transfer a shipment
of size Q to the buyer. Therefore the length of buyer’s and vendor’s cycle is mQ/D, but the shipment cycle is
Q/D.

4.1. Buyer’s total expected cost per unit time

Due to random demand, shortage may occur at the buyer side. The expected shortage for the first batch is
equal to E(X1−r1)+ =

∫∞
r1

(x1 − r1)f(x1)dx1; And for the other batches E(X2−r2)+ =
∫∞
r2

(x2 − r2)f(x2)dx2.
For bi-level reorder point system, the expected net inventory level for the first batch just before an order arrival
is equal to E[(X1 − r1)−I0<X1<r1 ]−E(X1− r1)+ and the expected net inventory level at the beginning of the
cycle equals Q+E[(X1 − r1)−I0<X1<r1 ]−E(X1− r1)+. For the other batches, expected net inventory level for
the first batch just before an order arrival is equal to E[(X2 − r2)−I0<X2<r2 ]−E(X2 − r2)+ and the expected
net inventory level at the beginning of the cycle equals Q + E[(X2 − r2)−I0<X2<r2 ] − E(X2 − r2)+. Hence,
average inventory can be expressed by

Q

2
+

1
m

{
E
[(
X1 − r1

)−
I0<X1<r1

]
− E(X1 − r1)+

}
+
m− 1
m

{
E
[(
X2 − r2

)−
I0<X2<r2

]
− E(X2 − r2)+

}
.

(4.1)
As mentioned in assumption 12, the demand during the lead time is a mixture of normal distributions. For

the first batch, means and standard deviation are µ1L(pQ, s, t), µ2L(pQ, s, t), σ
√
L(pQ, s, t) respectively, and

for the jth batch, j = 2, . . . ,m. They are equal to µ1L(t), µ2L(t) and σ
√
L(t) respectively. Therefore, the safety

stock (SS), can be expressed as follows:

SS = σ
√
s+ t+ pQ

{
r11 + k1 (1− α)√
1 + k2

1α (1− α)

}
· (4.2)

The safety stock also can be expressed as follows:

SS = σ
√
t

{
r21 + k1 (1− α)√
1 + k2

1α (1− α)

}
. (4.3)
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According to [18], from equations (4.2) and (4.3), we have

σ
√
s+ t+ pQ

{
r11 + k1 (1− α)√
1 + k2

1α (1− α)

}
= σ
√
t

{
r21 + k1 (1− α)√
1 + k2

1α (1− α)

}
· (4.4)

The expected shortage of the first batch shipment is given as (see Appendix A)

E(X1 − r1)+ =
∫ ∞
r1

(
x1 − r1

)
f
(
x1
)

dx1 = σ
√
t+ s+ pQψ

(
r11, r

1
2, α
)
. (4.5)

For batches 2, . . . ,m, the expected shortage amount is

E(X2 − r2)+ =
∫ ∞
r2

(
x2 − r2

)
f
(
x2
)

dx2 = σ
√
tψ
(
r21, r

2
2, α
)
. (4.6)

Hence, considering the inflationary condition for the inventory costs, (see Appendix B), the buyer’s expected
annual cost under inflationary condition can be obtained as follows

MIN EAC
(
Q,A, r1, r2, t

)
=
θ

δ
ln
(
A0

A

)
+A

[
D

mQ

(
1 +

I

2

)
− I

2

]
+
hb
(
1 + I

2

)
m

σ
√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]}
+

(m− 1)hb
(
1 + I

2

)
m

σ
√
t

{
α

[
r21Φ

(
µ∗
√
t

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t

σ
+ (1− α) k1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
+
hbQ

2

(
1 +

I

2

)
+
Dπ

mQ

[
1 + (s+ pQ+ t) I +

I

2

(
1− Q

D

)] [
σ
√
t+ s+ pQψ

(
r11, r

1
2, α
)

+ (m− 1)σ
√
tψ
(
r21, r

2
2, α
)]

+
D

Q

ut+ (ai + biQ) (ti−1 − t) +
i−1∑
j=1

(aj + bjQ) (NTj −MTj)

[1 + (s+ pQ) I +
I

2

(
1− Q

D

)]

+Dcpu

[
1 +

I

2

(
1− mQ

D

)]
· (4.7)

With today’s high cost of land acquisition in most societies, most of the inventory systems have limited storage
space to stock goods. Therefore, for the proposed inventory system, it is assumed that maximum permissible
storage space is limited. The proposed constraint is probabilistic since buyer’s maximum inventory level is a
random variable. The mentioned probabilistic constraint can be expressed by

P {f [Q+ r −X] ≤ F} ≥ γ. (4.8)

The above constraint forces the probability that the total used space is within maximum permissible storage
space to be no smaller than γ. It is problematic to solve the constrained inventory system when the space
constraint is written as (4.8). Hence, by using the chance-constrained programming technique which is proposed
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by Charnes and Cooper [7] and considering Markov inequality, the random constraint for a mixture of normal
distributions is converted to the crisp one which is given by (see Appendix C)

γQ+ σ
√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
s+ t+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
s+ t+ pQ

σ + (1− α) k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
s+ t+ pQ

σ
− αk1

)
− φ

(
µ∗
√
s+ t+ pQ

σ
− αk1

)]}
− F

f
≤ 0 (4.9)

and

γQ+ σ
√
t

{
α

[
r21Φ

(
µ∗
√
t

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t

σ
+ (1− α) k1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
− F

f
≤ 0. (4.10)

4.2. Vendor’s total expected cost per unit time

The initial stock in the system, QD/P , is the amount of inventory required by the buyer during the protection
period of the first shipment Q. As soon as the production run is started, the total stock increases at a rate of
(P −D) until the complete batch quantity, mQ, has been manufactured. Hence, the average inventory level per
unit time for the vendor can be calculated as follows:{

mQ

[
Q

P
+ (m− 1)

Q

D
− m2Q2

2P

]
−
[
Q2

D
(1 + 2 + · · ·+ (m− 1))

]}/(
mQ

D

)
=
[
m

(
1− D

P

)
− 1 +

2D
P

]
·

(4.11)
Considering the inflationary condition, the vendor’s expected total cost per year is computed as given below

EACv =

as+ csi (si−1 − s) +
i∑

j=1

csj (NSj −MSj)

[ D

mQ

(
1 +

I

2

)
− I

2

]
+DcPr

[
1 + sI +

I

2

(
1− mQ

D

)]

+
hvQ

2

(
1 +

I

2

)[
m

(
1− D

P

)
− 1 +

2D
P

]
· (4.12)

4.3. Joint total expected cost per unit time

Once the buyer and vendor have built up a long-term strategic partnership, they can jointly determine the
best policy for both parties. Accordingly, the joint total expected cost per unit time can be obtained as the sum
of the buyer’s and the vendor’ total expected costs per unit time. That is,

MIN JEAC(Q,A, r1, r2, s, t,m)

=
θ

γ
ln
(
A0

A

)
+A

[
D

mQ

(
1 +

I

2

)
− I

2

]
−
hb
(
1 + I

2

)
m

σ
√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (a− α)k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (a− α)k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− ak1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− ak1

)]}
+

(m− 1)hb
(
1 + I

2

)
m

σ
√
L

{
α

[
r − 12Φ

(
µ∗
√
t

σ
+ 1− αK1

)
− φ

(
µ∗
√
t

σ
+ 1− αK1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
+
hbQ

2

(
1 +

I

2

)
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+
Dπ

mQ

[
1 + (s+ pQ+ t)I +

I

2

(
1− Q

D

)]
[σ
√
t+ S + pQψ(r11, r

1
2, α) + (m− 1)σ

√
tψ(r21, r

2
2, α)]

+
D

Q

ut+ (ai + biQ)(ti−1 − t) +
i−1∑
j=1

(a− j + bjQ)(NTj −MTj)

[1 + (s+ pQ)I +
I

2

(
1− Q

D

)]

+

as+ csi(Si−1 − S) +
i−1∑
j=1

ssi(NSj −MSj)

[ D

mQ

(
1 +

I

2

)
− I

2

]
+D cPr

[
1 + sI +

I

2

(
1− mQ

D

)]

+Dcpu

[
1 +

I

2

(
1− mQ

D

)]
+
hvQ

2

(
1 +

I

2

)[
m

(
1− D

P

)
− 1 +

2D
P

]
·

Subject to

σ
√
s+ t+ pQ

[
r11 + k1 (1− α)

]
− σ
√
t
[
r21 + k1 (1− α)

]
= 0

γQ+ σ
√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]}
− F

f
≤ 0

γQ+ σ
√
t

{
α

[
r21Φ

(
µ∗
√
t

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t

σ
+ (1− α) k1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
− F

f
≤ 0

Over Q, r1, r2 ≥ 0, Aε ( 0, A0 ] , tε [ti, ti−1] , sε [si, si−1] ,m > 0 integer. (4.13)

The above model (4.13) can be solved with the Lagrange multiplier method as given below:

JEAC
(
Q,A, r1, r2, s, t,m, λ1, λ2, λ3

)
=
θ

δ
ln
(
A0

A

)
+A

[
D

mQ

(
1 +

I

2

)
− I

2

]
+
hb
(
1 + I

2

)
m

σ
√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]}
+

(m− 1)hb
(
1 + I

2

)
m

σ
√
t

{
α

[
r21Φ

(
µ∗
√
t

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t

σ
+ (1− α) k1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
+
hbQ

2

(
1 +

I

2

)
+
Dπ

mQ

[
1 + (s+ pQ+ t) I +

I

2

(
1− Q

D

)] [
σ
√
t+ s+ pQψ

(
r11, r

1
2, α
)

+ (m− 1)σ
√
tψ
(
r21, r

2
2, α
)]

+
D

Q

ut+ (ai + biQ) (ti−1 − t) +
i−1∑
j=1

(aj + bjQ) (NTj −MTj)

[1 + (s+ pQ) I +
I

2

(
1− Q

D

)]

+

as+ csi (si−1 − s) +
i∑

j=1

csj (NSj −MSj)

[ D

mQ

(
1 +

I

2

)
− I

2

]
+DcPr

[
1 + sI +

I

2

(
1− mQ

D

)]
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+Dcpu

[
1 +

I

2

(
1− mQ

D

)]
+
hvQ

2

(
1 +

I

2

)[
m

(
1− D

P

)
− 1 +

2D
P

]
+ λ1

{
σ
√
s+ t+ pQ

[
r11 + k1 (1− α)

]
− σ
√
t
[
r21 + k1 (1− α)

]}
+ λ2Qϕ1

+ λ2σ
√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]}
− λ2

F

f

+ λ3σ
√
t

{
α

[
r21Φ

(
µ∗
√
t

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t

σ
+ (1− α) k1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
+ λ3Qϕ2 − λ3

F

f
(4.14)

where λ1 is free in sign and λ2 and λ3 are nonnegative variables. To solve the above nonlinear programming
problem, this study temporarily ignores the constraint 0 ≤ A ≤ A0 and relaxes the integer requirement on
m (the number of shipments from the vendor to the buyer during a cycle). It can be shown that for fixed
Q,A, r1, r2, s, t,m, λ1, λ2, λ3, the optimal setup and transportation time occur at the end of points of interval
sε[si, si−1] and tε[ti, ti−1] respectively (see Pan and Yang [33], Chang et al. [6], Glock [11], Ben-Daya and Hariga
[2]). This result simplifies considerably the search for the optimal solution to this inventory problem. Therefore,
the Kuhn-Tucker necessary conditions for minimization of the function (4.14) are as follows:

∂JEAC
∂Q

= −
D
(
1 + I

2

)
mQ2

A+ as+ csi (si−1 − s) +
i∑

j=1

csj (NSj −MSj)


− Dπ

mQ2

(
1 + sI + tI +

I

2

)[
σ
√
t+ s+ pQψ

(
r11, r

1
2, α
)

+ (m− 1)σ
√
tψ
(
r21, r

2
2, α
)]

− D

Q2

ut+ ai (ti−1 − t) +
i−1∑
j=1

aj (NTj −MTj)

(1 + sI +
I

2

)

+

bi (ti−1 − t) +
i−1∑
j=1

bj (NTj −MTj)

(DpI − I

2

)
+

(
hb
m

(
1 + I

2

)
+ λ2

)
pσ

2
√
s+ t+ pQ

×
{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]}
+

(
hb
m

(
1 + I

2

)
+ λ2

)
µ∗p

2

[
α

(
r11 +

µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
+ (1− α)

(
r12 +

µ∗
√
t+ s+ pQ

σ
− αk1

)
φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]
+
hb
2

(
1 +

I

2

)
+
Dpπσψ

(
r11, r

1
2, p
) (

1 + sI + tI + I
2

)
2mQ

√
s+ t+ pQ

+
λ1σp

[
r11 + k1 (1− α)

]
2
√
s+ t+ pQ

+
Dpπσψ

(
r11, r

1
2, p
) (
pI + I

2D

)
2m
√
s+ t+ pQ

− mI

2
(cpr + cpu) +

hv
2

(
1 +

I

2

)[
m

(
1− D

P

)
− 1 +

2D
P

]
+ λ2ϕ1

+ λ3ϕ2 = 0 (4.15)
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∂JEAC
∂r1

=

[
hb
(
1 + I

2

)
m

+ λ2

]
σ
√
s+ t+ pQ

[
αΦ
(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
+ (1− α) Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]
+ λ1σ

√
t+ s+ pQ+

Dπ

mQ

[
1 + (s+ pQ+ t) I +

I

2

(
1− Q

D

)]
×
[
σ
√
t+ s+ pQ

(
αΦ
(
r11
)

+ (1− α) Φ
(
r12
)
− 1
)]

= 0 (4.16)

∂JEAC
∂r2

=
Dπ (m− 1)

mQ

[
1 + (s+ pQ+ t) I +

I

2

(
1− Q

D

)] [
σ
√
t
(
αΦ
(
r21
)

+ (1− α) Φ
(
r22
)
− 1
)]

+
(

(m− 1)hb
m

+ λ3

)
σ
√
t

[
αΦ
(
µ∗
√
t

σ
+ (1− α) k1

)
+ (1− α) Φ

(
µ∗
√
t

σ
− αk1

)]
− λ1σ

√
t = 0

(4.17)

∂JEAC (Q,A, k, λ1, λ2)
∂A

= − θ

δA
+
DA

(
1 + I

2

)
mQ

= 0 (4.18)

σ
√
s+ t+ pQ

[
r11 + k1 (1− α)

]
− σ
√
t
[
r21 + k1 (1− α)

]
= 0 (4.19)

λ1

{
γQ+ σ

√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]}
− F

f

}
= 0 (4.20)

λ2

{
γQ+ σ

√
t

{
α

[
r21Φ

(
µ∗
√
t

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t

σ
+ (1− α) k1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
− F

f

}
= 0. (4.21)

Solving equations (4.15)–(4.18) respectively produce

Q =

√√√√√ D
m

{(
1 + I

2

)
[A+ as+ CS (s)] +

(
1 + sI + tI + I

2

)
Y (r1, r2) +m [ut+ U (t)]

(
1 + sI + I

2

)}
Hv +Hb,λ1,λ2,λ3 +

Dpπσψ(r11 ,r12 ,p)
2m
√
s+t+pQ

[
(1+sI+tI+ I

2 )
Q +

(
pI + I

2D

)]
− mI

2 (cpr + cpu) + (λ2ϕ1 + λ3ϕ2)

(4.22)
where

U (t) = ai (ti−1 − t) +
i−1∑
j=1

aj (NTj −MTj) (4.23)

CS (s) = csi (si−1 − s) +
i−1∑
j=1

csj (NSj −MSj) (4.24)

Y
(
r1, r2

)
= π

[
σ
√
t+ s+ pQψ

(
r11, r

1
2, α
)

+ (m− 1)σ
√
tψ
(
r21, r

2
2, α
)]

(4.25)

Hv =
hv
2

(
1 +

I

2

)[
m

(
1− D

P

)
− 1 +

2D
P

]
(4.26)

Hb,λ1,λ2 =

(
hb
m

(
1 + I

2

)
+ λ2

)
pσ

2
√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)]
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+ (1− α)
[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]}
+

(
hb
(
1 + I

2

)
+ λ2

)
µ∗p

2

[
α

(
r11 +

µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
+ (1− α)

(
r12 +

µ∗
√
t+ s+ pQ

σ
− αk1

)
φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]
+
hb
2

(
1 +

I

2

)
(4.27)

and[
hb
(
1 + I

2

)
m

+ λ1 + λ2

]
σ
√
s+ t+ pQ

[
αΦ
(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
+ (1− α)

× Φ
(
µ∗
√
t+ s+ pQ

σ
− αk1

)]
+ λ1σ

√
t+ s+ pQ =

Dπ

mQ

[
1 + (s+ pQ+ t) I +

I

2

(
1− Q

D

)] (
1− F∗

(
r1
))

(4.28)(
(m− 1)hb

m
+ λ3

)
σ
√
t

[
αΦ
(
µ∗
√
t

σ
+ (1− α) k1

)
+ (1− α) Φ

(
µ∗
√
t

σ
− αk1

)]
− λ1σ

√
t

=
Dπ (m− 1)

mQ

[
1 + (s+ pQ+ t) I +

I

2

(
1− Q

D

)] (
1− F∗

(
r2
))

(4.29)

A =
θmQ

Dδ
(
1 + I

2

) · (4.30)

Where F∗(r1) = αΦ(r11) + (1− α)Φ(r12) and F∗(r2) = αΦ(r21) + (1 − α)Φ(r22). On the other hand, for fixed
s, t and m, it can be shown that JEAC(Q,A, r1, r2, s, t,m, λ1, λ2, λ3) is convex in (A, r1, r2) since the objective
function, JEAC(Q,A, r1, r2, s, t,m), is convex in (A, r1, r2) by examining second order sufficient condition and
also the constraints are linear in (A, r1, r2); however, may not be convex in (Q,A, r1, r2). Therefore, the following
algorithm can be used to find an approximate solution to the above problem.

Algorithm

Step 1. Set m = 1.
Step 2. Compute the intersection points Qs of the crash cost lines ci = ai + biQ and cj = aj + bjQ, for all
i and j, where ai > aj , bi < bj , i 6= j and i, j = 1, 2, . . . , nt. Arrange these intersection points such that
Qs1 < Qs2 < . . . < Qsw and let Qs0 = 0, Qsw+1 =∞.
Step 3. Rearrange ci such that c1 ≤ c2 ≤ . . . ≤ cnt , j = 1, 2, . . . , w, for the order quantity range (Qsj−1, Q

s
j).

Step 4. For each ti and sz, i = 0, 1, . . . , nt, z = 0, 1, . . . , ns, perform Step 4-1 to Step 4-10.
Step 4-1. Set λ2 = 0 and λ3 = 0 and solve the problem without space constraint.

Step 4-2. Compute Q1
iz =

√
D
m{
(
1 + I

2

)
[A+ as+ CS(s)] +m[ut+ U(t)]

(
1 + sI + I

2

)
}/Hv.

Step 4-3. Find A1
iz from equation (4.30).

Step 4-4. Find r1
1

iz , r2
1

iz in terms of λ1 from equations (4.28) and (4.29).
Setp 4-5. Setting the values Q1

iz, r
11

iz and r2
1

iz in equation (4.19) and find λ1
1iz .

Step 4-6. Compute Q2
iz from (4.22) using A1

iz, r
11

iz , r2
1

iz and λ1
1iz .

Step 4-7. Repeat Step 4-2 to Step 4-6 until no changes occur in the values of Qiz, Aiz, r1iz and r2iz.
Step 4-8. Check whether Aiz < A0 and Qi ∈ [Qsj−1, Q

s
j ]:

Step 4-8-1. If Aiz < A0 and Qiz ∈ [Qsj−1, Q
s
j ], then the solution found in Step 4-2 to Step 4-7 is optimal for

given ti and sz go to Step 4.5.
Step 4-8-2. If Aiz ≥ A0, for given ti and sz, set Aiz = A0 and obtain Qiz, r1iz, r

2
iz, λ1iz by solving equations

(4.22), (4.28), (4.29) and (4.19) iteratively until convergence.
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Step 4-8-3. If Qiz ≤ Qsj−1, let Qiz = Qsj−1 and if Qsj ≤ Qiz let Qsj = Qiz. Using Qiz as a constant, obtain Aiz,
r1iz, r

2
iz and λ1iz by solving equations (4.28)–(4.30) and (4.19) iteratively until convergence.

Step 4-9. If the solution for Qiz, Aiz, r1iz, r
2
iz and λ1iz satisfies the space constraint from a model (4.13), then

go to step 4.5 otherwise go to step (4-10).
Step 4-10. If the solution for Qiz, Aiz, r1iz, r

2
iz and λ1iz don’t satisfy the space constraint, determine the new

Qiz, Aiz, r1iz, r
2
iz, λ1iz , λ2iz and λ3iz by a procedure similar to given In Step 4 then go to Step 5.

Step 5. Find min JTEC(Qiz, Aiz, r1iz, r
2
iz, ti, sz) = JTEC(Qm, Am, r1

m

, r2
m

, tm, sm) for i = 0, 1, . . . , nt, z =
0, 1, . . . , ns.
Step 6. Set m = m+ 1, and repeat Steps 2 to 5 to get JTEC(Qm, Am, r1

m

, r2
m

, tm, sm).
Step 7. If JTEC(Qm, Am, r1

m

, r2
m

, tm, sm,m) ≤ JTEC(Qm−1, Am−1, r1
m−1

, r2
m−1

, tm−1, sm−1,m− 1), then go
to step 6, otherwise go to step 8.
Step 8. Set (Q∗, A∗, r1

∗
, r2
∗
, t∗, s∗,m∗) = (Qm, Am, r1

m

, r2
m

, tm, sm,m), then (Q∗, A∗, k∗1 , t
∗, s∗,m∗) is the op-

timal solution and JTEC(Q∗, A∗, r1
∗
, r2
∗
, t∗, s∗,m∗) is the minimum joint expected annual cost.

5. Numerical example

To illustrate the behavior of the model developed in this paper, let us consider an inventory problem with
the following data: D = 624 units per year, hb = 10$ per unit per year, hv = 3$ per unit per year, A0 = 50$
per order, a = 1000$ per week, u = 7$ per week, p = 1/125 week per unit, σ = 15 units per week, π = 70$ per
unit per year, f = 3 M2 per unit, F = 400 M2 , φ1 = 0.99, φ2 = 0.99, θ = 0.1 and δ = 1/700. Moreover, we
consider 1 yr = 48 weeks. The lead time has three components with data shown in Table 1. The Table 2’s data
are first used to evaluate the intersection points, order quantity rage interval and component crash priorities in
each interval. Table 2 shows the crash sequence corresponding to each order quantity range. Setup times and
their respective crashing costs are tabulated in Table 3. To show the performance of the proposed inventory
system under the inflationary condition, we first assume the model without space constraint and solve the case
when α = 0.0, 0.3, 0.8, 1.0 and I = 0.00, 0.01, 0.02 and k1 = 0.7. Applying the proposed algorithm yields the
optimal solutions as tabulated in Tables 4–7. Results of optimal decisions show that for a fixed value of s, t and
m, with an augment in the expected inflation rate, the optimal ordering quantity increases. Also, results reveal
that with an increase in inflation rate the optimal number of shipment increases consequently. We also observe
that when α = 0 or 1, the model considers only one kind of customers’ demand and when 0 ≤ α ≤ 1, the model
considers two kinds of customers’ demand. It implies that the minimum joint expected annual cost with two
kinds of customers’ demand is larger than the minimum expected annual cost with of one kind of customers’
demand. Thus, the minimum joint expected annual cost with inflation increases as the distance between α and 0
(or 1) increased for the fixed inflation rate. Also, the summary of results for the model without space constraint
are listed in Table 8.

Then, we consider space constrained model and solve the case where, α = 0.0, 0.3, 0.8, 1.0 and I =
0.00, 0.01, 0.02 and k1 = 0.7. Utilizing the presented algorithm, optimal decisions are obtained which are tabu-
lated in Tables 9–12. Similar to the unconstrained model, for a fixed value of m, t and s, with an augment in

Table 1. Transportation time data.

Transportation time component i 1 2 3
Normal duration NTi (days) 20 20 16
Minimum duration MTi (days) 6 6 9
Unit fixed crash cost ai ($/day) 0.5 1.3 5.1
Unit variable crash cost bi ($/unit/day) 0.012 0.004 0.0012
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Table 2. The values of Qs, order quantity ranges and crash sequence.

Inspection points (Qs) Order quantity range Crash sequence of components

100 (0, 100] 1, 2, 3
426 (100, 426] 2, 1, 3
1357 (426, 1357] 2, 3, 1
– (1357, ∞) 3, 2, 1

Table 3. Setup time data.

Setup time component i 1 2 3
Normal duration NSi (days) 0.14 0.14 0.07
Minimum duration MTi (days) 0.105 0.105 0.049
Unit fixed crash cost csi ($/day) 2000 3000 5000

α, the two optimal reorder points for different batches are increased. Also, optimum joint expected annual cost
with inflation for two kind of customers’ demand is larger than one kind of customers’ demand. The summary
of results for the model under space constraint are listed in Table 13.

5.1. Sensitivity analysis

Change in the value of system parameters can take place due to uncertainties and dynamic market conditions
in any DM situation. Therefore, the sensitivity analysis will be of great help to study these changes in the value

Table 4. Results of solution procedure for the proposed model without space constraint for α = 0.

m Q A r1 r2 s(weeks) t(weeks) λ1 JEACWI

I = 0.0
1 122 13.63 148 123 0.05 4 0 64 754.08
2 102 22.83 140 118 0.05 4 1.89 64 626.06∗

3 90 30.42 137 118 0.05 4 1.74 64 631.69
I = 0.01
1 127 14.14 150 123 0.05 4 0 65 044.67
2 111 24.63 142 118 0.05 4 2.01 64 870.96
3 101 33.80 139 117 0.05 4 1.89 64 838.68∗

4 94 41.95 137 117 0.05 4 1.61 64 845.42
I = 0.02
1 133 14.72 152 124 0.05 4 0 65 232.31
2 122 26.95 144 118 0.05 4 2.14 65 106.15
3 117 38.64 142 117 0.05 4 2.06 65 026.80
4 113 50.00 140 116 0.05 4 1.80 64 990.58
5 109 50.00 139 116 0.05 4 1.55 64 974.32
6 105 50.00 138 115 0.05 4 1.35 64 969.36∗

7 102 50.00 137 115 0.05 4 1.19 64 790.83

Notes. (∗) shows the optimal decision.
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Table 5. Results of solution procedure for the proposed model without space constraint for
α = 0.3.

m Q A r1 r2 s(weeks) t(weeks) λ1 JEACWI

I = 0.0
1 121 13.60 152 127 0.05 4 0 64 794.67
2 102 22.85 144 102 0.05 4 1.87 64 661.37∗

3 91 30.48 141 121 0.05 4 1.72 64 665.52
I = 0.01
1 126 14.10 154 121 0.05 4 0 65 086.06
2 111 24.64 145 127 0.05 4 1.98 64 906.75
3 101 33.87 143 122 0.05 4 1.86 64 872.74∗

4 94 42.05 141 121 0.05 4 1.59 64 878.75
I = 0.02
1 132 14.67 156 128 0.05 4 0 65 374.50
2 122 26.96 148 122 0.05 4 2.11 65 142.43
3 117 38.71 145 120 0.05 4 2.04 65 061.08
4 113 50.00 143 119 0.05 4 1.78 65 023.87
5 109 50.00 142 119 0.05 4 1.54 65 007.10
6 105 50.00 142 119 0.05 4 1.34 65 001.83∗

7 102 50.00 141 119 0.05 4 1.18 65 003.12

Notes. (∗) shows the optimal decision.

Table 6. Results of solution procedure for the proposed model without space constraint for
α = 0.8.

m Q A r1 r2 s(weeks) t(weeks) λ1 JEACWI

I = 0.0
1 121 13.58 151 125 0.05 4 0 64 770.67
2 101 22.79 142 120 0.05 4 1.90 64 639.48∗

3 90 30.40 139 120 0.05 4 1.75 64 644.05
I = 0.01
1 126 14.08 153 126 0.05 4 0 65 061.65
2 110 24.58 144 121 0.05 4 2.01 64 884.69
3 101 33.77 141 119 0.05 4 1.89 64 851.28∗

4 94 41.92 139 119 0.05 4 1.62 64 857.46
I = 0.02
1 132 14.66 154 126 0.05 4 0 65 349.70
2 122 26.89 147 121 0.05 4 2.14 65 120.25
3 116 38.59 144 119 0.05 4 2.07 65 039.72
4 113 50.00 142 118 0.05 4 1.81 65 002.88
5 108 50.00 141 118 0.05 4 1.56 64 986.24
6 105 50.00 140 117 0.05 4 1.36 64 981.03∗

7 102 50.00 139 117 0.05 4 1.20 64 982.34

Notes. (∗) shows the optimal decision.
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Table 7. Results of solution procedure for the proposed model without space constraint for
α = 1.0.

m Q A r1 r2 s(weeks) t(weeks) λ1 JEACWI

I = 0.0
1 122 13.63 148 123 0.05 4 0 64 754.08
2 102 22.83 140 118 0.05 4 1.89 64 626.06∗

3 90 30.42 137 118 0.05 4 1.74 64 631.69
I = 0.01
1 127 14.14 150 123 0.05 4 0 65 044.67
2 111 24.63 142 118 0.05 4 2.01 64 870.96
3 101 33.80 139 117 0.05 4 1.89 64 838.68∗

4 94 41.95 137 117 0.05 4 1.61 64 845.42
I = 0.02
1 133 14.72 152 124 0.05 4 0 65 232.31
2 122 26.95 144 118 0.05 4 2.14 65 106.15
3 117 38.64 142 117 0.05 4 2.06 65 026.80
4 113 50.00 140 116 0.05 4 1.80 64 990.58
5 109 50.00 139 116 0.05 4 1.55 64 974.32
6 105 50.00 138 115 0.05 4 1.35 64 969.36∗

7 102 50.00 137 115 0.05 4 1.19 64 790.83

Notes. (∗) shows the optimal decision.

Table 8. Summary of results for the model without space constraint.

I Q A r1 r2 m s(weeks) t(weeks) E(X1 − r1)+ E(X2 − r2)+ JEACWI

α = 0.0
0.00 102 22.83 140 118 2 0.05 4 0.4420 0.1416 64 626.06
0.01 101 33.80 139 117 3 0.05 4 0.4770 0.1577 64 838.68
0.02 105 50.00 138 115 6 0.05 4 0.5567 0.1863 64 969.36
α = 0.3
0.00 102 22.85 144 122 2 0.05 4 0.4654 0.1493 64 661.37
0.01 101 33.87 143 121 3 0.05 4 0.5031 0.1662 64 872.74
0.02 105 50.00 141 119 6 0.05 4 0.5880 0.1966 65 001.83
α = 0.8
0.00 102 22.79 142 120 2 0.05 4 0.4478 0.1415 64 639.48
0.01 101 33.77 141 119 3 0.05 4 0.4844 0.1579 64 851.28
0.02 105 50.00 140 117 6 0.05 4 0.5671 0.1872 64 981.03
α = 1.0
0.00 102 22.83 140 118 2 0.05 4 0.4420 0.1416 64 626.06
0.01 101 33.80 139 117 3 0.05 4 0.4770 0.1577 64 838.68
0.02 105 50.00 138 115 61 0.05 4 0.5567 0.1863 64 969.36
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Table 9. Results of solution procedure for the proposed model under space constraint α = 0.0.

m Q A r1 r2 s(weeks) t(weeks) λ1, λ2, λ3 JEACWI

I = 0.0
1 74 8.32 131 115 0.05 4 0, 9.64, 0 64 955.22
2 75 16.78 131 115 0.05 4 −0.56, 5.77, 0 64 701.50
3 74 25.05 131 115 0.05 4 0.52, 3.82, 0 64 663.75∗

4 73 32.97 132 116 0.05 4 0.13, 2.34, 0 64 682.66
I = 0.01
1 74 8.24 132 116 0.05 4 0, 10.27, 0 65 275.91
2 75 16.71 131 114 0.05 4 −0.91, 6.78, 0 64 980.25
3 75 25.09 131 114 0.05 4 −1.27, 5.24, 0 64 903.87
4 75 33.31 131 115 0.05 4 −1.27, 4.74, 0 64 885.76∗

5 74 41.37 131 115 0.05 4 −1.07, 3.28, 0 64 892.01
I = 0.02
1 74 8.15 132 116 0.05 4 0, 10.90, 0 65 596.44
2 75. 16.64 131 114 0.05 4 −1.26, 7.80, 0 65 258.98
3 76 25.13 130 114 0.05 4 −2.03, 6.69, 0 65 143.46
4 76 35.57 130 113 0.05 4 −2.45, 6.06, 0 65 087.22
5 76 41.97 130 113 0.05 4 −2.68, 5.60, 0 65 056.01
6 76 50.00 130 113 0.05 4 −2.78, 5.24, 0 65 037.95
7 76 50.00 130 114 0.05 4 −2.73, 4.81, 0 65 028.56
8 76 50.00 130 114 0.05 4 −2.65, 4.45, 0 65 025.28∗

9 76 50.00 130 114 0.05 4 −2.55, 4.12, 0 65 026.07

Notes. (∗) shows the optimal decision.

Table 10. Results of solution procedure for the proposed model under space constraint α = 0.3.

m Q A r1 r2 s(weeks) t(weeks) λ1, λ2, λ3 JEACWI

I = 0.0
1 72 8.07 134 118 0.05 4 0, 10.66, 0 65 025.37
2 72 16.27 134 118 0.05 4 −0.95, 6.65, 0 64 755.43
3 72 24.25 134 118 0.05 4 −1.04, 4.66, 0 64 710.49∗

4 71 31.95 135 119 0.05 4 −0.70, 3.18, 0 64724.44
I = 0.01
1 72 7.98 134 119 0.05 4 0, 11.32, 0 65 348.81
2 73 16.20 133 118 0.05 4 −1.30, 7.68, 0 65 037.73
3 73 24.31 133 118 0.05 4 −1.78, 6.09, 0 64 955.17
4 72 32.28 134 118 0.05 4 −1.84, −5.00, 0 64 933.16∗

5 72 40.08 134 118 0.05 4 −1.69, −4.11, 0 64 936.42
I = 0.02
1 71 7.09 135 119 0.05 4 0, 11.98, 0 65 672.05
2 73 16.31 133 118 0.05 4 −1.66, 8.71, 0 65 320.00
3 74 24.35 133 117 0.05 4 −2.54, 7.54, 0 65 199.36
4 74 32.54 133 117 0.05 4 −3.02, 6.88, 0 65 140.33
5 74 40.67 133 117 0.05 4 −3.28, 6.24, 0 65 107.26
6 74 48.75 133 117 0.05 4 −3.41, 6.05, 0 65 087.81
7 74 50.00 133 117 0.05 4 −3.39, 5.63, 0 65 077.00
8 73 50.00 133 117 0.05 4 −3.32, 5.26, 0 65 072.51
9 73 50.00 133 117 0.05 4 −3.23, 4.93, 0 65 072.25∗

10 73 50.00 133 117 0.05 4 −3.22, 4.63 65 074.93

Notes. (∗) shows the optimal decision.
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Table 11. Results of solution procedure for the proposed model under space constraint α = 0.8.

m Q A r1 r2 s(weeks) t(weeks) λ1, λ2, λ3 JEACWI

I = 0.0
1 73 8.20 133 117 0.05 4 0, 10.03, 0 64 982.63
2 74 16.55 133 117 0.05 4 −0.68, 6.10, 0 64 721.69
3 73 24.68 133 117 0.05 4 −0.69, 4.13, 0 64 680.73∗

4 72 32.53 134 118 0.05 4 −0.32, 2.65, 0 64 697.46
I = 0.01
1 73 8.12 133 118 0.05 4 0, 10.67, 0 65 304.32
2 74 16.48 132 116 0.05 4 −1.02, 7.12, 0 65 001.83
3 74 24.74 132 116 0.05 4 −1.43, 5.56, 0 64 922.68
4 74 32.86 133 117 0.05 4 −1.45, 4.48, 0 64 902.83∗

5 73 40.82 133 117 0.05 4 −1.27, 3.59, 0 64 907.76
I = 0.02
1 72 8.03 134 118 0.05 4 0, 11.31, 0 65 625.83
2 74 16.41 132 116 0.05 4 −1.37, 8.13, 0 65 281.95
3 75 24.78 132 116 0.05 4 −2.18, 7.00, 0 65 164.13
4 75 33.12 132 115 0.05 4 −2.62, 6.36, 0 65 106.62
5 75 41.40 132 115 0.05 4 −2.87, 5.90, 0 65 074.58
6 75 49.63 132 115 0.05 4 −2.99, 5.54, 0 65 055.89
7 75 50.00 132 115 0.05 4 −2.95, 5.11, 0 65 045.86
8 75 50.00 132 115 0.05 4 −2.87, 4.74, 0 65 042.05∗

9 74 50.00 132 116 0.05 4 −2.77, 4.42, 0 65 043.38

Notes. (∗) shows the optimal decision.

Table 12. Results of solution procedure for the proposed model under space constraint α = 1.0.

m Q A r1 r2 s(weeks) t(weeks) λ1 JEACWI

I = 0.0
1 74 8.32 131 115 0.05 4 0, 9.64, 0 64 955.22
2 75 16.78 131 115 0.05 4 −0.56, 5.77, 0 64 701.50
3 74 25.05 131 115 0.05 4 0.52, 3.82, 0 64 663.75∗

4 73 32.97 132 116 0.05 4 0.13, 2.34, 0 64 682.66
I = 0.01
1 74 8.24 132 116 0.05 4 0, 10.27, 0 65 275.91
2 75 16.71 131 114 0.05 4 −0.91, 6.78, 0 64 980.25
3 75 25.09 131 114 0.05 4 −1.27, 5.24, 0 64 903.87
4 75 33.31 131 115 0.05 4 −1.27, 4.74, 0 64 885.76∗

5 74 41.37 131 115 0.05 4 −1.07, 3.28, 0 64 892.01
I = 0.02
1 74 8.15 132 116 0.05 4 0, 10.90, 0 65 596.44
2 75. 16.64 131 114 0.05 4 −1.26, 7.80, 0 65 258.98
3 76 25.13 130 114 0.05 4 −2.03, 6.69, 0 65 143.46
4 76 35.57 130 113 0.05 4 −2.45, 6.06, 0 65 087.22
5 76 41.97 130 113 0.05 4 −2.68, 5.60, 0 65 056.01
6 76 50.00 130 113 0.05 4 −2.78, 5.24, 0 65 037.95
7 76 50.00 130 114 0.05 4 −2.73, 4.81, 0 65 028.56
8 76 50.00 130 114 0.05 4 −2.65, 4.45, 0 65 025.28∗

9 76 50.00 130 114 0.05 4 −2.55, 4.12, 0 65 026.07

Notes. (∗) shows the optimal decision.
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Table 13. Summary of results for the model under space constraint.

I Q A r1 r2 m s(weeks) t(weeks) E(X1 − r1)+ E(X2 − r2)+ JEACWI

α = 0.0
0.00 74 25.05 131 115 3 0.05 4 0.4441 0.1916 64 663.75
0.01 75 33.31 131 115 4 0.05 4 0.4616 0.2000 64 885.76
0.02 76 50.00 130 114 8 0.05 4 0.4977 0.2176 65 025.28
α = 0.4
0.00 72 24.25 134 118 3 0.05 4 0.4747 0.2108 64 710.49
0.01 72 32.28 134 118 4 0.05 4 0.4908 0.2187 64 933.16
0.02 73 50.00 133 117 9 0.05 4 0.5183 0.2325 65 071.25
α = 0.8
0.00 73 24.68 133 118 3 0.05 4 0.4528 0.1955 64 680.73
0.01 74 32.86 133 117 4 0.05 4 0.4700 0.2038 64 902.83
0.02 75 50.00 132 116 8 0.05 4 0.5064 0.2215 65 042.05
α = 1.0
0.00 74 25.05 131 115 3 0.05 4 0.4441 0.1916 64 663.75
0.01 75 25.05 131 115 4 0.05 4 0.4616 0.2000 64 885.76
0.02 76 50.00 130 114 8 0.05 4 0.4977 0.2176 65 025.28

of parameters. Following the previous example and considering a constrained model with I = 0.01 and α = 0.8,
the sensitivity analysis with respect to various system parameters has been done. The results of the sensitivity
analysis are listed in Table 14. Keeping all parameters fixed, with an increase in maximum allowable space, F ,
the optimal ordering quantity, Q, is increased which indicates that if allowable space increases, ordering quantity
should be increased to diminish total expected annual cost, JEAC. Also, with an augment in buyer’s shortage
cost, π, the optimal reorder point for the first and other batches, r1, r2, will be increased consequently. From
an economic viewpoint, this implies that once shortage cost in the system increases, reorder point for all of the
batches should be increased to avoid large shortage in the system which results in higher joint expected annual
cost. On the other hand, an augment in buyer’s demand standard deviation, σ, results in increasing reorder point
for all of the batches, r1, r2, and also reducing transportation time, t. A simple economic interpretation says if the
variation of demand increases, then reorder point for all of the batches should be increased and transportation
time should be decreased simultaneously to reduce inventory costs. In addition, with an increase in vendor’s
holding cost and keeping the remaining parameters unchanged, the number of shipment, m, decreases. It shows
that the vendor should reduce his stored items when his holding cost is increased to reduce the total expected
annual cost. As can be seen in Table 14, the optimal setup time for the system is always 0.35 days or 0.05 weeks.
It means that the crashing cost of setup time is so high that it doesn’t allow the system to crash setup time.
Table 15 displays expected annual cost of the system for I = 0.01 and α = 0.8 with their respective crashing
cost wherein optimal joint expected annual cost is obtained 64 902.83$ with s∗ = 0.05. The crashing costs for
the setup components must be highly reduced to change optimal setup time. For instance, if cs1, setup crashing
cost of first components, is reduced from 2000 $ to 150$, the total expected annual cost is reduced to 64 901$
which gives optimal setup time as 0.045 weeks.

6. Conclusion

The purpose of this paper was to propose a multilevel reorder inventory-production model in which buyer’s
LTD followed the mixture of distributions. Lead time components and ordering cost were considered to be con-
trollable. In practice, setup and transportation time and their crashing costs are different from each. Therefore,
the paper assumed that transportation and setup time and their crashing costs acted independently. Also, in
order to fit some real environment, transportation time crashing cost was presented as a function of reduced
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Table 14. Effect of changes in various parameters.

Q A r1 r2 m s(weeks) t(weeks) JEACWI
F
+50% 101.10 33.77 141 119 3 0.05 4 64 851.28
+30% 101.10 33.77 141 119 3 0.05 4 64 851.28
+10% 85.48 38.06 137 118 4 0.05 4 64 864.36
−10% 62.16 34.60 128 115 5 0.05 4 64 984.29
−30% 41.51 27.74 118 108 6 0.05 4 65 430.44
−50% 25.56 34.16 104 98 10 0.05 4 67 106.84
π
+50% 68.87 38.33 137 122 5 0.05 4 64 972.39
+30% 70.76 31.52 135 120 4 0.05 4 64 947.82
+10% 72.67 32.37 133 117 4 0.05 4 64 919.12
−10% 75.04 33.42 131 115 4 0.05 4 64 885.10
−30% 78.13 34.80 129 112 4 0.05 4 64 843.51
−50% 82.54 36.75 125 107 4 0.05 4 64 789.14
σ
+50% 71.76 39.93 137 122 5 0.05 3 65 236.19
+30% 85.01 33.73 127 111 4 0.05 3 65 131.59
+10% 70.19 31.27 138 122 4 0.05 4 64 979.62
−10% 70.19 34.72 127 111 4 0.05 4 64 825.71
−30% 88.47 35.75 125 108 4 0.05 4 64 787.08
−50% 95.10 138 117 3 0.05 6 64 506.98
A0

+50% 74 25.00 133 117 4 0.05 4 64 905.21
+30% 74 32.86 133 117 4 0.05 4 64 902.83
+10% 74 32.86 133 117 4 0.05 4 64 902.83
−10% 74 32.86 133 117 4 0.05 4 64 902.83
−30% 74 32.86 133 117 4 0.05 4 64 902.83
−50% 74 32.86 133 117 4 0.05 4 64 902.83
hb

+50% 75.96 33.83 131 114 4 0.05 4 65 380.77
+30% 75.11 33.45 131 115 4 0.05 4 65 190.24
+10% 74.23 33.06 132 116 4 0.05 4 64 998.85
−10% 73.33 32.66 133 117 4 0.05 4 64 806.56
−30% 72.40 32.25 134 118 4 0.05 4 64 613.43
−50% 71.45 31.83 134 119 4 0.05 4 64 419.34
hv

+50% 72.85 24.35 133 118 3 0.05 4 65 021.89
+30% 72.70 32.38 133 118 4 0.05 4 64 988.43
+10% 73.42 32.70 133 117 4 0.05 4 64 931.51
−10% 73.83 41.08 132 116 5 0.05 4 64 870.31
−30% 74.31 50.00 132 116 7 0.05 4 64 786.81
−50% 75.27 50.00 131 115 12 0.05 4 64 649.54

Table 15. Setup times with their expected annual costs.

si (weeks) Q A r1 r2 m t(weeks) JEACWI

0.05 74 32.86 133 117 4 4 64 902.83∗

0.045 175 33.58 131 115 4 4 65 037.55
0.04 78 34.52 129 113 4 4 65 240.44
0.037 79 35.35 127 111 4 4 65 442.74

Notes. (∗) shows the optimal decision.
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transportation time and the quantities in the orders. Also, in this paper, it was assumed that buyer’s maximum
permissible storage space was limited and therefore a random space constraint was added to the respective
inventory system. In addition, inflationary condition for the proposed stochastic demand and deterministic vari-
able lead time was considered, helping the model to be more appropriate for the real environment. The paper
intended to minimize joint inventory expected cost by simultaneously optimizing ordering quantity, reorder
points of different batches, ordering cost, setup time, transportation time, production time and a number of
deliveries under space constraint while the lead time demand followed a normal distribution. A Lagrangian
method was utilized in order to solve the model and a solution procedure was proposed to find optimal values.
Then, the behavior of the model was illustrated in numerical examples. In the numerical experiment, two cases
were considered. First, the inflationary inventory system without space constraint was considered. The results
showed that with an augment in the expected inflation rate, the optimal ordering quantity was increased. Also,
results revealed that with an increase in inflation rate, the optimal number of shipment was increased conse-
quently. We also observed that the minimum joint expected annual cost with two kinds of customers’ demand
was larger than the minimum expected annual cost with of one kind of customers’ demand. In the second case,
the inflationary inventory system with space constraint was considered. Similar to the unconstrained model,
for a fixed value of transportation time, setup time and number of batches, with an augment in inflation rate,
the two optimal reorder points for different batches were increased. Also, optimum joint expected annual cost
with inflation for two kind of customers’ demand was larger than one kind of customers’ demand. To increase
the scope of our analysis, the model presented in this article could be extended in several ways. For example,
shortage cost can be calculated as a mixture of backorder and lost sales. Thus, with an increasing or a decreasing
in a backorder rate, the optimal order quantity and reorder level may be higher or lower. Another important
aspect that has not been addressed in this paper is that, relaxing the assumption of the form of a mixture of
normal distributions function and assuming buyer’s lead time demand follows a mixture of free distribution
and then applies minimax distribution-free procedure to find the most unfavorable expected cost. In this way,
comparing the expected cost with a mixture of normal and free distributions for buyer’s LTD and obtaining
expected additional cost when using minimax distribution-free procedure. Also, investigating some other LTD
approach such as gamma and lognormal distribution could be considered. Other kinds of constraints such as
budget constraint could be added in order to make the system more closely to the real environment.

Appendix A.

The expected shortage, E(X − r)+, is computed as follows.

E(X − r)+ =
∫ ∞
r

(x− r)

{
α

1√
2πσ
√
L
× exp

[
−1

2

(
x− µ1L

σ
√
L

)2
]

+ (1− α)
1√

2πσ
√
L

× exp

[
−1

2

(
x− µ2L

σ
√
L

)2
]}

dx

=
[
ασ
√
L
∞
∫
r1

(z − r1)
1√
2π

exp
(
−1

2
z2

)
dz
]

+
[
(1− α)σ

√
L
∞
∫
r2

(z − r2)
1√
2π

exp
(
−1

2
z2

)
dz
]

= σ
√
L
{
α
[
φ (r1)− r1Φ (r1)

]
+ (1− α)

[
φ (r2)− r2Φ (r2)

]}
. (A.1)
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Hence, for bi-level reorder point system, the expected shortage for the first batch is given by

E(X1 − r1)+ = σ
√
t+ s+ pq

{
α
[
φ
(
r11
)
− r11Φ (r11)

]
+ (1− α)

[
φ
(
r12
)
− r12Φ (r12)

]}
= σ
√
t+ s+ pqψ

(
r11, r

1
2, α
)
. (A.2)

The expected shortage of the other batches is

E
(
X2 − r2

)+
= σ
√
t
{
α
[
φ
(
r21
)
− r21Φ (r21)

]
+ (1− α)

[
φ
(
r22
)
− r22Φ (r22)

]}
= σ
√
tψ
(
r21, r

2
2, α
)
. (A.3)

The expected net inventory level just before an order arrival is E[(X − r)−I0<X<r] − E(X − r)+, which is
computed as follows:

E
[
(X − r)− I0<X<r

]
− E (X − r)+

= ασ
√
L

{
r1

[
Φ (r1)− Φ

(
−µ1L

σ
√
L

)]
+
[
φ (r1)− φ

(
−µ1L

σ
√
L

)]}
+ (1− α)σ

√
L

{
r2

[
Φ (r2)− Φ

(
−µ2L

σ
√
L

)]
+
[
φ (r2)− φ

(
−µ2L

σ
√
L

)]}
− σ
√
L
{
α
[
φ (r1)− r1Φ (r1)

]
+ (1− α)

[
φ (r2)− r2Φ (r2)

]}
= σ
√
L

{
α

[
r1Φ

(
µ1

√
L

σ

)
− φ

(
µ1

√
L

σ

)]
+ (1− α)

[
r2Φ

(
µ2

√
L

σ

)
− φ

(
µ2

√
L

σ

)]}

= σ
√
L

{
α

[
r1Φ

(
µ∗
√
L

σ
+ (1− α) k1

)
− φ

(
µ∗
√
L

σ
+ (1− α) k1

)]

+ (1− α)

[
r2Φ

(
µ∗
√
L

σ
− αk1

)
− φ

(
µ∗
√
L

σ
− αk1

)]}
(A.4)

where

E[(X − r)−I0<X<r] =
∫ r

0

−(x− r)

{
α

1√
2πσ
√
L
× exp

[
−1

2

(
x− µ1L

σ
√
L

)2
]

+ (1− α)
1√

2πσ
√
L

× exp

[
−1

2

(
x− µ1L

σ
√
L

)2
]}

dx

=

[
ασ
√
L

∫ r1

=µ1L
σ
√
L

(r1 − Z)
1√
2π

exp
(
−1

2
Z2

)
dZ

]

= ασ
√
L

{
r1

[
Φ(r1)− φ

(
−µ1L

σ
√
L

)]
+
[
Φ(r1)− φ

(
−µ1L

σ
√
L

)]}
+ (1− α)σ

√
L

{
r2

[
Φ(r2)− φ

(
−µ2L

σ
√
L

)]
+
[
Φ(r2)− φ

(
−µ2L

σ
√
L

)]}
· (A.5)

The following functions are used

Y − =
{
−Y, Y < 0
0, Y > 0 (A.6)

and

I(0<X<r) =
{

1, 0 < X < r
0, otherwise . (A.7)
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For bi-level reorder point system, the expected net inventory level for the first batch just before an order
arrival is

E[(X1 − r1)−I0<X1<r1 ]− E(X1 − r1)+ = σ
√
t+ s+ pQ

{
α

[
r11Φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
+ (1− α) k1

)]
+ (1− α)

×
[
r12Φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)
− φ

(
µ∗
√
t+ s+ pQ

σ
− αk1

)]}
· (A.8)

For bi-level reorder point system, the expected net inventory level of other batches just before an order arrival
is

E[(X2 − r2)−I0<X2<r2 ]− E(X2 − r2)+

= σ
√
t

{
α

[
r21Φ

(
µ∗
√
t

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t

σ
+ (1− α) k1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
· (A.9)

Appendix B.

B.1. Buyer’s inventory costs with inflation
Stock out cost is assumed to be paid at the end of the shipment cycle. Stock out cost during an infinite

planning horizon considering inflationary condition is shown in the following matrix




π(1 + (s+ pQ+ t)I) π
(
1 + (s+ pQ+ t)I + Q

D
I
)

π
(

1 + (s+ pQ+ t)I + (m−1)Q
D

I
)

π
(
1 + (s+ pQ+ t)I + mQ

D
I
)

π
(

1 + (s+ pQ+ t)I + (m+1)Q
D

I
)

· · · π
(

1 + (s+ pQ+ t)I + (2m−1)Q
D

I
)

...
. . .

...

π
(

1 + (s+ pQ+ t)I + (n−1)mQ
D

I
)
π
(

1 + (s+ pQ+ t)I + [(n−1)m+1]Q
D

I
)
· · · π

(
1 + (s+ pQ+ t)I + [nm−1]Q

D
I
)





n×m

.

Considering the above matrix, the average stock out cost per unit can be computed as follows:

1
ns

ns−1∑
j=0

π

(
1 + (s+ pQ+ t) I +

Q

D
Ij

)
= π

[
1 + (s+ pQ+ t) I +

I

2

(
1− Q

D

)]
· (B.1)

Buyer’s transportation cost is paid once the vendor sends a lot size to the buyer. The period of paying is
repeated in every shipment cycle. Hence, Buyer’s transportation cost during an infinite planning horizon with
inflation is presented in the following matrix
ct(1 + (s+ pQ)I) ct

(
1 + (s+ pQ)I + Q

D I
)

ct

(
1 + (s+ pQ)I + (m−1)Q

D I
)

ct

(
1 + (s+ pQ)I + mQ

D I
)

ct

(
1 + (s+ pQ)I + (m+1)Q

D I
)

· · · ct
(

1 + (s+ pQ)I + (2m−1)Q
D I

)
...

. . .
...

ct

(
1 + (s+ pQ)I + (n−1)mQ

D I
)
ct

(
1 + (s+ pQ)I + [(n−1)m+1]Q

D I
)
· · · ct

(
1 + (s+ pQ)I + [nm−1]Q

D I
)


n×m

.
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With the summation of above components based on a number of shipment cycle, the total transportation
cost is obtained by

ns−1∑
j=0

ct

(
1 + (s+ pQ) I +

Q

D
Ij

)
=
ctD

Q

[
1 + (s+ pQ) I +

I

2

(
1− Q

D

)]
(B.2)

where

ct = ut+

(ai + biQ) (ti−1 − t) +
i−1∑
j=1

(aj + bjQ) (NTj −MTj)

 .
Buyer’s ordering cot is assumed to be paid at the beginning of buyer’s and vendor’s cycle. Buyer’s ordering

cost will be paid at the following matrix elements[
AA

(
1 +

mQ

D
I

)
A

(
1 +

2mQ
D

I

)
. . . A

(
1 +

(n− 1)mQ
D

I

)]
.

The summation of the above elements is given the buyer’s total ordering cost which is given below

n−1∑
j=0

A

(
1 +

mQ

D
Ij

)
= A

[
D

mQ

(
1 +

I

2

)
− I

2

]
· (B.3)

Buyer’s purchasing cost is also paid at the beginning of the cycle which is shown in the following matrix
elements. [

cpu cpu

(
1 +

mQ

D
I

)
cpu

(
1 +

2mQ
D

I

)
. . . cpu

(
1 +

(n− 1)mQ
D

I

)]
·

The average purchasing cost per unit is obtained by

1
n

n−1∑
j=0

cpu

(
1 +

mQ

D
Ij

)
= cpu

[
1 +

I

2

(
1− mQ

D

)]
· (B.4)

Hence, the total annual buyer’s purchasing cost is

Dcpu

[
1 +

I

2

(
1− mQ

D

)]
. (B.5)

In the average annual method, buyer’s holding cost is dependent on the buyer’s average inventory level.
Hence, buyer’s annual holding cost can be computed as follows[∫ nT

0

hb

(
Q

2
+

1
m

{
E
[(
X1 − r1

)−
I0<X1<r1

]
− E

(
X1 − r1

)+}
+

m− 1
m

{
E
[(
X2 − r2

)−
I0<X2<r2

]
− E

(
X2 − r2

)+})
(1 + It) dt

]
= hb

(
1 +

I

2

)(
Q

2
+

1
m

{
E
[(
X1 − r1

)−
I0<X1<r1

]
− E

(
X1 − r1

)+}
+
m− 1
m

{
E
[(
X2 − r2

)−
I0<X2<r2

]
− E

(
X2 − r2

)+})
. (B.6)
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B.2. Vendor’s inventory costs with inflation

Vendor’s Setup cost is obtained at the beginning of the cycle. Setup cost payment’s time is as follows[
cs cs

(
1 +

mQ

D
I

)
cs

(
1 +

2mQ
D

I

)
· · · cs

(
1 +

(n− 1)mQ
D

I

)]
.

Considering the above matrix, the total setup cost is obtained by

n−1∑
j=0

cs

(
1 +

mQ

D
Ij

)
= cs

[
D

mQ

(
1 +

I

2

)
− I

2

]
(B.7)

where

cs = as+ csi (si−1 − s) +
i∑

j=1

csj (NSj −MSj) .

Vendor’s Production cost will be paid after setup which is shown in the following matrix[
cpr(1 + sI)cpr

(
1 + sI +

mQ

D
I

)
cpr

(
1 + sI +

2mQ
D

I

)
· · · cpr

(
1 +

(n− 1)mQ
D

I

)]
·

The average production cost per unit is obtained by

1
n

n−1∑
j=0

cPr

(
1 + sI +

mQ

D
Ij

)
= cPr

[
1 + sI +

I

2

(
1− mQ

D

)]
· (B.8)

Hence, the total annual vendor’s production cost is

DcPr

[
1 + sI +

I

2

(
1− mQ

D

)]
· (B.9)

Also, a vendor’s holding cost is computed as follows∫ nT

0

hvQ

2

[
m

(
1− D

P

)
− 1 +

2D
P

]
(1 + It) dt =

hvQ

2

(
1 +

I

2

)[
m

(
1− D

P

)
− 1 +

2D
P

]
· (B.10)

Appendix C.

The space constraint can be expressed as follows:

P {f [Q+ r −X] ≤ F} ≥ γ. (C.1)

The above constraint can be written as follows:

P

{
(X − r) +

F

f
≥ Q

}
≥ γ. (C.2)

Thus, using Markov inequality, we have

γ ≤ P
{

(X − r)+ − (X − r)− +Qγ +
F

f
≥ Q

}
≤
E
[
(X − r)+ IX>r

]
− E

[
(X − r)− I0<X<r

]
+ F

f

Q
· (C.3)
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Hence, the space constraint is obtained as follows

γQ+ E
[
(X − r)− I0<X<r

]
− E

[
(X − r)+ IX>r

]
− F

f
≤ 0. (C.4)

Note that the constraint in (C.4) is a relaxation of (C.3) obtained by applying the Markov Inequality.
Therefore, substituting (C.3) by (C.4) gives a lower bound to the minimization problem. For bi-level reorder
point system, the space constraint can be written as follows

γQ+ σ
√
s+ t+ pQ

{
α

[
r11Φ

(
µ∗
√
s+ t+ pQ

σ
+ (1− α) k1

)
− φ

(
µ∗
√
s+ t+ pQ

σ
+ (1− α) k1

)]
+ (1− α)

[
r12Φ

(
µ∗
√
s+ t+ pQ

σ
− αk1

)
− φ

(
µ∗
√
s+ t+ pQ

σ
− αk1

)]}
− F

f
≤ 0 (C.5)

and

γQ+ σ
√
t

{
α

[
r21Φ

(
µ∗
√
t

σ
+ (1− α) k1

)
− φ

(
µ∗
√
t

σ
+ (1− α) k1

)]
+ (1− α)

[
r22Φ

(
µ∗
√
t

σ
− αk1

)
− φ

(
µ∗
√
t

σ
− αk1

)]}
− F

f
≤ 0. (C.6)
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