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A GEOMETRIC PROGRAMMING APPROACH FOR A VENDOR MANAGED
INVENTORY OF A MULTIRETAILER MULTI-ITEM EPQ MODEL

YASAMAN KARIMIAN'*, ABOLFAZL MIRZAZADEH!, SEYED HAMIDREZA PASANDIDEH'
AND MOHAMMAD NAMAKSHENAS?

Abstract. Due to the uncertain situations of the world, considering inventory management in a
stochastic environment gains a lot of interest. In this paper, we propose a multi-item economic pro-
duction quantity (EPQ) model with a shortage for a single-vendor, multi-retailer supply chain under
vendor managed inventory (VMI) policy in a stochastic environment. Three stochastic constraints are
developed in the model. Geometric programming (GP) approach is employed to find the optimal so-
lution of the nonlinear stochastic programming problem to minimize the mean-variance of the total
inventory cost of the system. Since the problem is in the Signomial form, first, an algorithm is used to
convert the model into the standard GP form. The performance of the addressed model and the solving
method are evaluated based on computational experiments and sensitivity analysis. A case study in
an Iranian furniture supply chain is conducted to show the applicability of the proposed model and
17.78% improvement in terms of total cost is gained.
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1. INTRODUCTION

Fulfilling customers’ demand plays a crucial role in the success of organizations. In supply chain management
(SCM), a series of organizations integrate and cooperate with a specific end goal to enhance the competitive
capacities of the whole chain [1]. Due to the uncertainty in the business paradigm, individual businesses no
longer compete solely but rather work together as a supply chain, make the need and necessity for effective
decision support systems [2]. Vendor managed inventory (VMI) is one of the collaboration mechanism that
gathered a lot of interest recently and has been adopted by the successful retail businesses such as Wal-Mart,
JC Penney, Dillard Department stores, Intel and Shell [3]. Initially, VMI originated in the retail industry to
conquer some of the problems such as the amount of the retail storage space, the measure of inventory to be
kept on hand, the inventory obsolescence, and the logistics of returning items [4,5]. Reduction in costs, inventory
requirements, improvement in the customer service and a dramatic reduction in the bullwhip effect in SCs are
some of the advantages of implementing VMI [6,7]. Several authors dedicated their works to the study of VMI
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partnership in supply chain management. Magee [8] described an early theoretical framework of VMI regarding
the question of who should have the authority to control the inventories. However, the concept has only become
widespread during the 1990s.

Dong and Xu’s study estimated the effect of VMI in the long term and short term on supply chain’s members
within the EOQ framework. They proved that VMI always leads to a higher buyer’s profit. In the long term, VMI
is a successful production network technique that can increase the supplier’s profit compared to the short run [3].
Using the same assumptions as Dong and Xu’s, Yao et al. [9] presented an EOQ analytical model that explores
how key logistics parameters, most remarkably ordering costs and inventory carrying charges, can affect the
benefits which derived from VMI. Pasandideh et al. [10] extended an analytical model to investigate the impact of
important supply chain parameters on the cost savings obtained from investigation of vendor-managed inventory.
They developed their inventory model in the light of EOQ where the shortage is backlogged and examines their
model with and without the implementation of VMI. Pasandideh et al. [11] investigated a VMI problem based
on EOQ model, with the shortage. They proposed a genetic algorithm (GA) based heuristic to solve the model.
Pasandideh et al. [12] investigated the vendor-managed inventory problem of a single-vendor single-buyer supply
chain framework. The multi-product EPQ model with shortage was considered and a genetic algorithm (GA)
based heuristic was proposed to solve the model. Mokhtari and Rezvan [13] proposed a single-buyer multi-
product VMI model for a supply chain problem, with the use of a production-inventory system in which shortage
was allowed and partially backordered. They proposed a decomposition based analytical approach to solve the
model. Recently, Alfarez et al. considered a VMI and a consignment stock (CS) partnership and assumed that
the products contain a given amount of defective units. They proposed three mathematical models for VMI-CS
system, traditional and integrated system [14]. Ramrakhyani et al. considered VMI system with consignment
inventory policy. They presented eight inventory SC models and compered the profit function of supplier and
manufacturer in different environments to show the fruitfulness of the SCM system in a manufacturing industry
[15]. Pasandideh et al. modeled the joint replenishment problem for a two-level supply chain under VMI policy.
The objective of their work was to find the optimal number of order in both traditional and VMI policy. They
applied a metaheuristic approach to solve their model [16].

In the literature, the performance measure of channels and supply chains are either maximizing the expected
profit or minimizing the predictable cost [17]. However, the importance of the expected objective function
profoundly depends on the associated variance. For example, if the target is minimizing the cost, the expected
cost is naturally a performance measure. However, if the variance of the cost is large, the chance of deviating
from the expected cost will be high. If the supply chain does not operate under the same status for a long run,
using the expected measure as the only objective is insufficient. Moreover, each decision makers may consider
a different degree of risk aversion; therefore, find an effective way to incorporate the risk aversion into an
appropriate and implementable decision context is of great value [17].

The mean-variance formulation, which is a fundamental theory of risk management, was introduced by
Markowitz in the 1950s. When it comes to studying decision-making problems with risk concerns, the mean-
variance (MV) approach and the Von Neumann—-Morgenstern utility (VNMU) approach are two well-established
methodologies. Due to limitations in the VNMU application, the MV approach is accomplished to provide an
implementable and useful solution [17]. Although both VNMU and MV approaches have great importance and
popularity, their applications in supply chain management are not investigated thoroughly; works of Lau [1§],
Bassok and Nagarajan [19], Buzacott et al. [20], and Gan et al. [21], are some examples in the supply chain
management area. To the best of the authors’ knowledge, no study investigates VMI with MV performance
measure. However, under stochastic conditions, Kiesmuller and Broekmeulen [22] investigated the advantage of
VMI in a stochastic multi-product system dealing with slow-moving items. Lee and Ren [23] investigated the
impact of exchange rate uncertainty in a single-vendor VMI system with stochastic demand and determined the
optimal replenishment policy under these conditions.

The rest of the paper is organized as follows. In Section 2, the problem definition and the assumptions are
presented. In Section 3, the problem is formulated into a non-linear stochastic programming model. A Geometric
Programming (GP) approach would be used to solve the problem in Section 4. In order to demonstrate the
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performance of the proposed approach, computational experiments, sensitivity analysis and solution method
comparison are presented in Section 5. A case study is proposed in Section 6. Finally, Section 7 concludes the
paper with a summary and future direction.

2. PROBLEM STATEMENT

In the traditional supply chain, unlike the VMI policy, the vendor observes the customer’s demand indirectly
and the retailer appears to be the “leader” in this relationship. Not having any responsibility for holding the
products, the vendor only takes the order quantity from the retailer and satisfies the demand by making the
necessary deliveries. After the implementation of VMI, the retailer no longer manages its inventory system and
the vendor’s information system directly receives consumer’s demand. Moreover, the vendor is responsible for
order setup and holding cost; therefore, the vendor has a combined inventory [3]. Unlike the former system,
the vendor and the retailer act as a single unit in a VMI system. They work based on an agreement which is
the main idea of VMI and admitted by both parties. According to this agreement, the vendor establishes and
manages the inventory control policies. Therefore, in this article, it is assumed that the vendor pays the ordering
and holding costs on behalf of retailers and retailers pay no cost.

This research has been motivated by the work of Pasandideh et al. [12]. We address a single-vendor multi-item
multi-constraint EPQ model with the shortage in the form of backorder for an SC under the VMI policy in this
research. The EPQ model is utilized with practical instances of finite production rate for this problem. Moreover,
the lead-time is less than a day can be neglected and the selling prices are constant during the planning horizon.
However, unlike the model of Pasandideh et al. [12] a multi-retailer system is assumed and to bring the model
more applicable to the real world issues, additional contractual agreements between the vendor and the retailers
including constraints on the storage capacity, the number of orders, and the available budget are considered in
stochastic form. To make the model more applicable, the ordering fixed cost of the vendor, the ordering fixed cost
of retailers, the holding cost, and the fixed backorder cost are assumed stochastic. In addition, a mean-variance
analysis of the problem is considered. To the best of the authors’ knowledge no study has been investigated VMI
with MV performance measure. The purpose of the model is to determine the optimal order quantities along
with the maximum backorder levels of the product in a cycle, so that the total cost of the system is minimized
while the constraints are fulfilled. Therefore, geometric programming (GP) approach is employed. Since the
model contains Signomial terms and is not in the standard GP form, an algorithm is proposed first to make the
model in the standard GP form, and then solve the model efficiently. For further validation, similar numerical
examples are solved with both GP approach in GGPLAB solver of MATLAB software and BARRON solver of
GAMS software, and the results are compared to each other.

2.1. Notations

The following notations are used to model the problem.

Fori=1,2,...,r and j = 1,2,...,n define the parameters and variables of the model as:
r Number of retailers
n Number of products
0;  Fixed ordering cost of vendor per order of the jth product
O;; Fixed ordering cost of retailer ¢ per order of the jth product
d;;  Annual demand for retailer ¢ for product j
dj  Vendor’s total annual demand of product j (d; = >_'_, d;j)
P;  Production rate of product j in each period
T Fixed backorder cost per unit (not depending on the time)
T Fixed backorder cost per unit per time unit

>
<

Holding cost of product j per unit (h; = %Cj)
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i Fixed interest rate (rate of the holding cost that is not dependent on the time)
C; Retailer’s procurement cost per unit of product j

S5 Space occupied by each unit of product j

S Vendor’s available storage capacity for all products

N Total number of orders for all products in each cycle

B Total available budget in each cycle

Q@ The probability of violating each of stochastic constraints

qij Order quantity of retailer ¢ for product j in a cycle

q; Order quantity of product j in a cycle (¢; = >.i_, ¢j)

bi; Backorder level of retailer ¢ for product j

b; Maximum backorder level of product j in a cycle (b; = >_\_, bi;)

TCymr Total inventory costs of the VMI supply chain
KRymr  Retailer’s inventory cost after utilizing the VMI system
KVyumr  Vendor’s inventory cost after VMI

3. MODEL DEVELOPMENT

In this section, the model will be proposed. As mentioned before, after the implementation of VMI, the vendor
takes the responsibility of managing the inventory levels, order quantities, and lead-time. We assume that the
vendor pays the ordering and holding cost on behalf of the buyer [24]. Therefore, unlike the traditional systems,
the retailer will pay no cost.

KRy = 0. (3.1)

According to Pasandideh et al. [12], after both parties accept the VMI contract, the inventory cost of both
the retailer and the vendor, and therefore the total inventory costs of the whole integrated chain, are calculated
as follows:

TCvm = KRvwr + KV

405\ | v dijOy i+ hy Gijh;
_Z< )+ZZ< 1O Tt hipe hy + B2 J). (3.2)
j=1

o\ G 2pgq”

To make the model more applicable, the ordering fixed cost of the vendor, the ordering fixed cost of retailers,
the holding cost, and the fixed backorder cost are assumed stochastic. Considering a mean-variance analysis for
the problem, the objective function would be:

E(TCVMI) = E(KRVMI) + E(KVVMI)

Z": (d E(O > ZZ < | B(iy) f{?(h )bfj — by E(hy) + qusz(h])) (3.3)

=1 j=1 2p]q7‘j
Var(TCymr) = Var(KRVMI) + Var(KVywmr)

_ Z(( ) var oj)>

b4‘ A 2 p?qgj
T Z Z ((qw ) var(Oi;) + 4/)3(]]2 (var(#;;) + var(hy)) + bj;var(h;) + 4var(hj)> . (3.4)

=1 j=1

As mentioned before to make the model closer to reality, three constraints including the available storage
capacity, the total number of order for all items, and the available budget are assumed in a stochastic form in
the model.
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The capacity of the vendor’s warehouse space to store the items is limited to S with a probability greater
than « and since the average inventory of the jth item is (¢; — b;), the space constraint will be:

P si(aps—b) < S| >a (3.5)

j=1

Moreover, the total number of order for all items is limited to N with a probability greater than «.

ZZ B 2N > (3.6)

=1 j= lq”

The total available budget is limited to B with a probability greater than a.

> Cig;<B| >a (3.7)
j=1

Assuming a normal distribution with a mean u and variance o2, the constraints would be:

ZSJ 4;p; = bj) < s — Zaos (3.8)
Jj=1
ZZ”@wa (3.9)
=1 j= 1
Z Cja; < g — Za0B. (3.10)
j=1

According to the above mentioned the multi-item multi-retailer EPQ model under VMI policy and in a
stochastic environment could be obtained as:

Min E(TCyar) = i (djE(Oj)>

Jj=1 %
dwE ij) E(W%J)"‘E(h ) o P2 E(h;)
2 E 11
+ZZ( S, Vs~ buB(hy) + S5 (3.11)
i=1 j=1
n 2
Min Var(TCymr) = Z (( ) var Oj)>
=1
r n 2 b4»
(O; ; h; b2 var(h
+ <<qu) var( J)+4p2q2 (var(wj)—i—var( )) + bj;var(h;)
=1 j=1 J 3
2

2,2
4P JZ” Var(hj)> : (3.12)
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Subject to satisfying:

3

si(qjp; —bj) < ps — Zaos

ZZ i < uUN — ZaoN

Jj=1

=1 j=1 ij
d; .
pj=1--> "V (3.13)
Dj
hj =1iC; Y j (3.14)
4= a; Vi (3.15)
i=1
b= by Vj (3.16)
i=1
Gij = (3.17)
bi; > 0. (3.18)

The goal is to determine the values of the order quantities (g;5, ¢;) and the maximum backorder level (b;;,b;)
in a cycle so that the total cost of the supply chain under the VMI system is minimized while the constraints
are fulfilled.

4. SOLUTION APPROACH

Most decision makers are risk averse. As it is mentioned before, two popular approaches for handling risk
are Markowitz mean-variance model [25], and von Neuman Morgenstern expected utility model [26]. In mean-
variance approach, the risk is equated with the variance. Assuming the variance as a surrogate for risk, the
expected value for a given level of risk is minimized. An appropriate choice for the objective function would be
the mean plus a constant (A) times the variance [27]. Therefore, the objective function of this problem becomes:

Min Z (d E(O ) ZZ (duE ij) i E(iz) +E(hj)b?j by E(hy) + pJ’qijQE(hj)>

j=1 =1 =1 2p;qi;
" d;i\? b
+ A (J) var(O; + < ) var(0;;) + —2 (var (7;; ) + var(h,;
;< % /) pr i A (0) 4p?q32-( (7o) vt
p2q2
+ bfjvar(hj) + ]levar(hj)) . (4.1)

The proposed formulation is a nonlinear programming model. In this article, geometric programming (GP)
approach is utilized for solving the problem. Although geometric programming restricts the form of the objective
and constraint functions, it gives extremely efficient and reliable solution methods even for large-scale problems
[28].

Geometric programming (GP) term was presented by Duffin, Peterson, and Zener in 1967 in their book “geo-
metric programming: Theory and Application” [29]. A Geometric Programing (GP) is a kind of mathematical
optimization problem. The objective and constraint functions in GP have a specific form.

Solving a GP problem requires two steps, first, detecting the feasibility and second detecting whether the
constraints are in the standard form of GP or not, these steps are known as phase 1.
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A geometric program is an optimization problem of the form:

min fo(z)

subject to:
file) <1, i=1,...,m,
gz(llf):l, izla"'apa

(4.2)

where f; are posynomial functions, g; are monomials, and x; are the optimization variables. The problem (4.2)
is a geometric program in standard form. In a standard GP problem, the objective function must be posynomial
and minimized. The equality restrictions can only have the form of monomial equal to one, and the inequality
ones must be in the form of a posynomial less than or equal to one. There is an implied restriction that the
variables are positive.

In some cases, the objective and constraint functions present posynomial functions contain negative coef-
ficient; this type of problems belongs to signomial programming [28]. Unlike posynomials, signomial geomet-
ric programming (SGP) problems are not globally convex therefore, non-linear optimization problems, which
contains signomials, are generally solved harder, but signomial optimization problems are more realistic for
real-world non-linear problems.

4.1. Converting the model into standard GP form

This paper takes advantage of the global optimization approach proposed by Xu [30] for solving SGP problems.
Some transformation and convexification strategies, which was suggested by Xu [30], are applied to convert the
original problem into a sequence of standard geometric programming problems that can be solved to reach a
global solution.

It is obvious that the first objective function and the first constraint contain negative terms and therefore
they are not in the standard GP form, so; the proposed model is in the form of SGP.

Min E(TCyy) = Zn: <C“5;(JO)>

j=1
i

+ZZ”;(%E i) E(ﬁij)JrE(h)b?,bijE(hj)erj%E(hj))+q) (4.3)

2p;4i Y
d])2
var(O;
(qj ( J>>
r 4

= b
+ 2 <<q” ) var(O;;) + ﬁ(var(%ij) + var(h;)) + bZ;var(h;)

JHi
2.2
+ qu”var(hﬂ) .

?

1
Min Var(TCVMI = Z
j=1

1

n

i=

4

Subject to satisfying:

n

ZSJ qip; — bj) (s — Zaos) Tt <1 (4.4)
> ( ) (un — Zaon)~H <1 (4.5)
i=1 j=1

j% - ZaUB)_l <1 (4.6)

n

7 1
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and constraints number (3.13)—(3.18).
Where ® > 0 is a sufficiently large value to keep equation (4.3) always positive.

Then, an additional variable x( is used to create a linear objective function. The first objective function is
transformed as the first constraint and the rest of constraints are rearrange into quotient form. Since the second
objective function does not contain any negative term, it remains without any change.

Min zg (4.7

n 2
Min Var(TCywmi) = <d]) var(Oj)>
j=1
4

T n 2 b,
+ var(O;;) + —=— (var(7;;) + var(h;) ) + b7 var
Z((q) (i) + iz (van(R) + var(ly)) + ¥ vy

= Jj1j

2 2
Pt var(hj)> .

4

Subject to satisfying:

i=1j5=1 ig

N (d,;E0y) & (di B(Oyy E(#:i;)+E(h; piqi; E(h;
<Z ( ; ) 2 2 ( T ( 2P)jQij( )blzj : 2( )>> ®
<1

D (4.8)
2 2 (bi E(hy)) + o

Zn: (sj(g;p; )

=1 Zaog) t <1 (4.9)

o
m:

bj>
and constraints number (3.13)—(3.18), (4.5), and (4.6).

Constraints (4.8) and (4.9) are not still allowable in standard GP form. To tackle this difficulty, denomina-
tors of these constraints are approximated with monomial functions, but their posynomial numerators remain
unchanged. The required monomial approximation can be calculated using the following arithmetic geometric
mean approximation [30].

With the use of the posynomial function g(z) = Y, u,(x) with u,(z) being the monomial terms, the following
expression is computed:

wn(x ay(y)
o@) > i) = ] (;;Ey;) (4.10)

where the parameters «,(y) can be obtained by computing

ay(y) = u”(y)), Vo (4.11)

where y is a fixed point with y > 0. It can be easily verified that §(y) is the best local monomial approximation
of g(x) near y [28]. Applying the presented monomial approximation method to each denominator of constraints
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(4.8) and (4.9) we get the following optimization problem:

Min o
n . 2
Min Var(TCVMI) = Z ((j) var(Oj)>
— qj
j=1
T n dis 2 b4 )
+ Z Z (((;) var(O;;) + 4p2q2 (var(7;;) + var(hy)) + b;;var(h;)
i=1 j=1 t 75

2 2
+ pJZ“ var(hﬂ) .

Subject to satisfying:
X (d;E(0, gL d”E i E(#:;)+E(h, i E(hy
(2( )>+ZZ< ) 4 (gp);”( )b2+pq2( ))>+q)
—~ <1

i=1j=1
fo (bij, o)

(4.12)

> (s5(050,)

I (us— Zaos) <1 4.13
=00 (1s os) (4.13)

and constraints number (3.13)—(3.16), (4.5), and (4.6).
In this problem, fo (bij, o) and fr(b ;) are the corresponding monomial approximation of posynomial func-
tions >_1_, " i=1(bi; E(hj)) + zo and (Z 1 bj) + 1 respectively. They have the following formulations:

w1 (S480)” ()

i=1j5=1
Fra(by) = ﬁl (Zi)a (Oi) (4.15)

where «;j, o, o, and o, can be computed by using (4.11) as follows:

(bij £ (h;)) "

ay; = o Vi (4.16)
(; é}l(wa(h ) + 1’0>
)
Qy = 0 o Vi (4.17)
<;T:1 i:l(szE(hj)) + $0>
=2 .
a; = J = Vi (4.18)
(£2))
a, = ! = Vi (4.19)
(52))
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Without loss of generaity constraints (3.17) and (3.18) will change to g;; > 0 and b;; > 0 to fit the model to
the standard form. With these changes, the proposed model is in the standard GP form. Therefore, it can be
solved efficiently [28]. Now we use the iterative algorithm proposed by Xu [30] to reach the optimal solution of

Y. KARIMIAN ET AL.

Start

A

v Choose initial feasible values for
the variables: q;” and b;"”
Choose the solution accuracy >0
Set iteration counter r=0

AN

A

Evaluate the monomial terms in the
denominator  posynomials — of  the
constraints with the given q;" and b

'

Compute the corresponding parameter

- 7, D
av(q[j(r 7bi/) )

!

Solve the standard GP problem to attain
q,"and b,

Is
lg;" —q," "<&

and
16,7 =b," <&

Print qy) and b;.r)

v
End

FIGURE 1. The basic steps of the GP algorithm.

the problem. The basic steps of the algorithm are given as a flowchart (Fig. 1).
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The iterative solution of problem converges to a point satisfying the KKT conditions of the original SGP
problem [31].
According to the presented iterative method, the optimal solution of the SGP problem can be found efficiently.

5. COMPUTATIONAL EXPERIMENTS AND SENSITIVITY ANALYSIS

In order to demonstrate the performance of the proposed procedure and to study its performances, computa-
tional experiments are given in this section. Since no benchmark is available, random data as shown in Table 1 is
used for numerical examples. For each parameter, an interval with lower and upper bound is considered and for
each examples data are generated from this interval. It should be noted that, for all examples 7 = 0.3, & = 1074,
and A = 0.4. The mean and variance value for stochastic parameters are calculated first.

In addition, test problems with the different number of retailers and products are solved with both BARRON
solver of GAMS software and also GP approach coded in GGPLAB solver of MATLAB software. The objective
function value and CPU time will be compared. All the test problems are solved on a personal computer with
Intel corei5-5200U processor having 2.20 GHz CPU and 8 GB RAM. Furthermore, the GP algorithm is coded
using MATLAB R2014a software.

As mentioned before, in order to solve the multi-objective mean-variance model the ultimate objective func-
tion is considered the mean plus a constant (A) times the variance. Therefore, equation (4.1) is considered as
the ultimate objective function of the model. Then, the problem will be solved with the help of a commercial
solver. Since the model is a nonlinear programming, the solver cannot guarantee to reach the optimal solution.

TABLE 1. The range of data for numerical examples.

Parameter Interval

di; ~U [15-25]

A ~U [6-10]

Aij ~U [1-5]

i ~U [2-5]

c; ~U [35-45]

P, ~U [60-120]

fi ~U [1-5]

F ~U [500-900]
M ~U [600-1100]
X ~U [1500-2500]

TABLE 2. The total cost comparison of GP and GAMS.

Example Retailers Products Total cost ($) Variance Improvement (%)
) yi BARRON GP/MATLAB
1 2 2 80.826 64.899 12.904 19.705
2 2 3 210.498 177.283 37.194 15.778
3 2 4 266.951 216.523 55.988 18.890
4 3 2 183.879 138.409 27.924 24.727
5 3 3 248.203 209.187 37.243 15.719
6 3 4 475.545 383.370 71.147 19.382
7 4 2 244.349 190.720 39.847 21.947
8 4 3 457.489 357.948 57.559 21.758
9 4 4 781.543 649.784 93.744 16.858
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TABLE 3. The CPU time comparison of GP and GAMS.

Example Retailers Products CPU time (s)

i j BARRON GP
1 2 2 2.12 3.10
2 2 3 3.34 7.67
3 2 4 4.77 15.32
4 3 2 5.67 10.73
5 3 3 6.51 17.95
6 3 4 6.97 21.36
7 4 2 7.32 19.70
8 4 3 7.72 22.02
9 4 4 8.12 25.92

Solution Approach Comparison

800
700
600
500
400
300
200
100

1 2 3 4 5 6 7 8 9
uBARRON = GP/MATLAB

FIGURE 2. The total cost comparison trend of GP and GAMS.

Therefore, GP approach is conducted to find the optimal solution. In addition, to compare the proposed GP
approach, results obtained from GP approach in GGPLAB solver of MATLAB software are compared with the
results from BARON solver of GAMS software in terms of objective function value and CPU time. To measure
risks the variance of the total costs are reported, too. This information is tabulated below (Tabs. 2 and 3).

It is clear that GP approach outperforms GAMS in term of total cost; however, GP obtains more CPU time
than BARRON does. For the sake of brevity, the solution approaches comparison is demonstrated in Figure 2.

For further validation, sensitivity analyses are done on some important parameters of the objective function
as well as constraints, so the accuracy of the model will be discussed. For this purpose, the objective function
parameters from 10 to 100% of the initial value will be increased and the accuracy of the model will be checked.

It is obvious that the fixed ordering cost is paid each time we have an order therefore with increase in the
vendor’s fixed ordering cost in order to decrease the number of times this cost is paid, the order quantity in
each order is increased. In addition, due to the increase in the vendor’s fixed ordering cost the optimal value of
the objective function would be increased (Figs. 3 and 4).

When the holding cost increases, willingness for storing will decrease and that leads to an increase in the
backorder level. Similar to the increase in other cost parameters, an increase in holding cost makes the optimal
value of the objective function increased (Figs. 5 and 6).

As expected, the increase in the total available budget makes the whole chain more capable of producing, so
the order quantity will be increased (Fig. 7).
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Increasing in the storage capacity enables the system to store more and that leads to a decrease in the
backorder level (Fig. 8).

The value of the X\ parameter will be increased to 90% of the initial value. As it is expected with increases in
the variance coefficient, the variance value increases and the objective function value becomes worse (Fig. 9).

These expected behaviors show the accuracy of the proposed model.

6. CASE STUDY

To validate the proposed model a real-life example has been solved using the model. The company of this
study is a business that originated in 1980 in the city of Jajrood. The company, which is called Veniz, has a
furniture production factory and acts as the supplier (vendor) of the chain and it interacts with three furniture
galleries (retailers). However, they cooperate in a traditional supply chain and the company only takes the order
quantities from galleries and satisfies the demand by making the necessary deliveries.

Data that are obtained from interviews with the plant manager and the corresponding values of mean and
variance are tabulated below. It should be noted that the cost value for the year 2017 was 5123$ which is equal
to 281765000 Rials (Tabs. 4-8).

As mentioned before, all the costs information were received and put in the proposed model. Table 9 demon-
strates the results of this computation.

The cost value gained by the model is 4211.7$ which is improved by 17.78%.

TABLE 4. The retailers’ and vendor’s demand.

dij j=1 43=2 ;=3
i=1 400 420 500
1=2 340 520 310
i=3 400 350 450
d; 1140 1290 1260
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TABLE 5. Retailers’ ordering fixed cost.

Ay j=1 j=2 j=3

=1 80 76 78
1=2 75 7 75
=3 80 78 79

TABLE 6. The fixed backorder cost per unit per time unit.

Tij j=1 j=2 j=3
1=1 3 5 4
1=2 4 4 2
1 =3 b5 3 3

TABLE 7. The rest of the parameter for solving the problem.

j=1 j=2 j=3

A; 362 365 363
C; 40 39 43
P; 1300 1450 1400
i 3 5 4

TABLE 8. The mean and variance value of each stochastic parameter.

E(Ai;) 7755
V&I‘(Aij) 3.77
E(A;) 363.66
var(4;)  2.33
E(m;)  3.66
var(mj) 1
E(h;)  12.26
var(h;)  0.39
E(M) 2000
var(M) 275
E(X) 500000
var (X) 16.66
B(F) 10000
var (F) 16.66

7. CONCLUSION

This research has been motivated by the work of Pasandideh et al. [12]. However, compared to that model, the
presented model is more applicable. While Pasandideh et al. [12] considered a single-retailer multi-product SC
under VMI policy and solve their model with GA, in this research, a multi-item EPQ model with the shortage
in the form of backorder was considered for a single-vendor, multi-retailer supply chain under VMI contractual
agreement. Some parameters were assumed stochastic in order to make the model more applicable to the real
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TABLE 9. Output obtained from VMI strategy.

j=1 J=2 Jj=3

q; 636.747  714.641 741.446
b; 60.284 60.659 57.034
Cost value ($) 4211.7

Variance 141.49

world issues. In addition, three constraints including storage capacity, number of orders and available budget
were considered in stochastic form. Geometric programming (GP) approach was employed to find the optimal
solution of the nonlinear stochastic programming problem with the objective of minimizing the mean-variance
of the total inventory cost of the system. Since the problem is in the Signomial form, by using the procedure
and algorithm proposed by Xu [30], first, the model was converted into the standard GP form and then the
optimal value of the problem was reached. To evaluate the performance of the addressed model and the solving
method test problems with different number of retailers and items were solved with both BARRON solver of
GAMS software and also GP approach in MATLAB software. As a result, GP approach outperformed GAMS
in terms of the minimum total cost; however, GP obtained more CPU time than GAMS. Sensitivity analyses
were done on some important parameters of the objective function as well as constraints, so the accuracy of
the model has been discussed. Moreover, to demonstrate the applicability of the proposed methodology, a case
study in an Iranian furniture supply chain was conducted and 17.78% improvement in terms of total cost was
gained.
For future researches in this area, we recommend the following:

(a) The problem can be solved with meta-heuristic algorithms.
(b) Inflations can be considered.

(¢) In addition to backorders, lost sales can also be assumed for shortages.
(d) The economic order quantity (EOQ) model can also be utilized.
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