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ECONOMIC LOT-SIZE PROBLEM FOR A CLEANER MANUFACTURING
SYSTEM WITH WARM-UP PERIOD

Amir Hossein Nobil1, Abolfazl Kazemi1,∗ and Ata Allah Taleizadeh2

Abstract. There are instances that production machines require a warm-up period to reach their
anticipated productivity. This study extends an economic manufacturing quantity (EMQ) problem by
considering warm-up issue in the model. Warming up the machine decreases production loss, emission,
and machine depreciation. Therefore, this study helps industry to enhance the profitability and also to
reduce the environmental impact by decreasing waste generation and improving machine efficiency. In
this study, we divide our system into three subsystems based on the relationships between production
and consumption. Then we provide a mathematical model for each subsystem (three in total). The
first two models are single-item EMQ inventory problems and the third one is a multi-item single-
machine EMQ problem. In the third model, a machine/facility manufactures some items under a limited
manufacturing volume. The purpose of these proposed models is to find the optimum cycle length to
minimize the total system cost that consists of manufacturing, inventory and setup costs. Finally, we
propose exact solution procedures after proving the convexity of these mathematical models.
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1. Introduction and literature review

The inventory and manufacturing costs are crucial elements of every manufacturing organization. Taft per-
formed one of the first studies on inventory and production modeling in 1918. Taft [26], proposed the classical
EMQ problem for a manufacturing system with a single product. He investigated two essential issues, (1)
Number of goods to be produced and (2) The production period. Fifty years later, Eilon [5] and Rogers [24]
developed Taft’s inventory model for producing multiple items. Some researchers focused on the EMQ problems
for imperfect manufacturing systems. For instance, Chiu [2] presented a lot sizing production model with a view
to scrap and re-workable goods. Inderfurth et al. [10] proposed an EMQ model for a defective inventory problem
with deteriorating items and rework process. Chiu et al. [3] investigated the EMQ problem for a manufacturing
system with scrapped items, repair process, and random machine breakdowns to find the optimum production
period. Leung [11] considered an EMQ model for an imperfect production problem with immediate rework.

Keywords. Economic manufacturing quantity (EMQ), single machine production, warm-up period, non-linear programming
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Some instances of recent studies on imperfect quality items in inventory models are Manna et al. [12], Manna
et al. [13], Manna et al. [14], De et al. [4] and Manna et al. [15].

Another extension of the EMQ model is Economic lot scheduling problem (ELSP). ELSP studies cases
wherein multiple items are manufactured by a single facility/machine. In the context of ELSP models, demand
and manufacturing rates are known, the sequence of producing them is uncertain, and the focus is on decisions
about the cycle scheduling, which is repeated periodically. Due to the complexity and non-linearity of the
problem, no specific algorithm is proposed to obtain the optimal solution. In these models, most researchers
consider a boundary for system, i.e. items face an equal production cycle length. In this method, the optimal
common cycle can easily be obtained. The advantage of this approach is to find a feasible solution quickly.
Some early instance of these models is Elmaghraby [6], he reviewed the literature on ELSP problems until
1976 and highlighted the different approaches for solving this problem. Quenniche and Boctor [23] minimized
system costs by addressing sequencing and ELSP in a multi-item production system for the finite horizon
in a job shop environment using a mixed integer non-linear programming (MINLP) model. Ben-Daya and
Hariga [1] studied ELSP to optimize the number of inspections in a production period when the system deals
with a deteriorating process. Giri et al. [7] considered capacity constraint and quality-related costs triggered
by potential non-conforming items produced in modeling ELSP. Moon et al. [16] and Parveen and Rao [21]
employed inspection and restoration approach where a fixed interval for conducting inspections is considered
to identify process shifts to “out-of-control”. Haji et al. [9] investigated the impact of sequence-independent
setup times for the rework process in an ELSP for an imperfect production system. Defective products reworked
to meet acceptable quality. Then Nobil et al. [17] revisited Haji et al. [9] to obtain conditions under which,
the system would not suffer from shortage during setup time. Haji and Haji [8] employed accumulated rework
to model an imperfect production system with both conforming and nonconforming items where rework was
conducted after a certain period. Pasandideh et al. [22] addressed an ELSP with a shortage and non-conforming
items where some items were scrapped, and the rest of non-conformed items were reworked based on the severity
of product failure. At the same year, Taleizadeh and Wee [27] investigated a manufacturing system with limited
capacity, multiple items, partial backordering, immediate rework, and imperfect process performed by a single
machine to minimize the total cost by optimizing variables such as production cycle length and backorder.
Shafiee-Gol et al. [25] investigated ELSP for a defective production system with the rework that employed
pricing decisions to maximize system profits. The study assumed that the price of each item followed a random
distribution and customers’ demand was a linearly decreasing function of price. Nobil et al. [18] studied discrete
delivery shipment in a multi-echelon supply chain. Nobil et al. [19] proposed a defective manufacturing system
with permissible shortages, scrap and rework for an ELSP.

All the aforementioned studies, except for Nobil et al. [20] research, assumed that goods are produced at a
constant rate until the batch quantity reaches a predefined level. However, in all manufacturing industries, this
assumption is not held in industries such as tire companies and thermoplastic injection molding. Considering the
warm-up period for the machine decreases production loss, emission, and machine depreciation, and increases
the efficiency of it and its useful life span. In addition, during the warm-up period, the errors and defects of
the manufactured machine become evident, which can be eliminated before the original production begins. As
a result, the number of imperfect quality items reduce and the environment remains healthier.

Moreover, we extend Nobil et al. [20] research by considering various manufacturing rates with respect to
demand rates during warm-up period for a multi-product single machine EMQ problem. Nobil et al. [20] assumed
that the manufacturing rate during warm-up is greater than the consumption rate. In addition, they proposed
the model for a single item EMQ problem. Thus, in this paper, we address an economic lot-scheduling problem
with multiple items and single machine, which requires a period before reaching its normal manufacturing
rate. So, the production process consists of four parts: setup time, warm-up time, uptime, and downtime. In
addition, we assume that the manufacturing rate of items during warm-up period can be lower or higher than
the consumption rate. Accordingly, in this study an EMQ inventory problem is studied by considering warm-up
period for machines and three models are proposed. Two models address the cases where a machine produces
an item for different relations between manufacturing and consumption rates. The first model investigates the
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case that the manufacturing rate during warm-up period is less than the consumption rate. The second model
investigates the opposite (i.e. the manufacturing rate during warm-up period is more than consumption rate).
The third model develops two previous models by considering production of several goods on a facility/machine
or in a production hall. Therefore, the third model is a combination of aforementioned models, i.e. items may
have the first or the second model conditions.

The remainder of this paper is arranged as follows: definition of problem and models are described in Section 2.
In Section 3, notations and mathematical models are presented. In Section 4, the exact solution methods to
optimize these models are developed. Section 5, describes numerical examples and analysis. Finally, in Section 6,
the managerial insights and conclusion are expressed.

2. Problem definition and assumptions

In this study, we assume a perfect manufacturing system in which the item i is manufactured at rate Pi

and is consumed at rate yi. In this production system, after setup time, machine requires a period of time to
reach its intended production rate (Pi). This time is called warm-up period and is indicated by tRi wherein
machine produces item i at a lower speed than normal period. Therefore, regular manufacturing rate of item
i (Pi) is more than warm-up rate (Ri). Also, shortages are not allowed in this manufacturing system, hence
the manufacturing rate of item i (Pi), should be greater than or equal to the consumption rate of product
(yi). So, regular manufacturing rate assumed to be greater than or equal to consumption rate and its warm-up
counterpart (Pi ≥ yi and Pi ≥ Ri). After the warm-up period tRi , the process stops to undergo corrective
maintenance to remove any faults occurred for machine during warm-up period. In this problem, we assume
that the corrective maintenance cost and time are negligible. What follows presents possible cases considering
relationships between Ri and yi:

(1) The manufacturing rate during warm-up period is smaller than or equal to consumption rate (yi ≥ Ri), i.e.
Pi ≥ yi ≥ Ri.

(2) The manufacturing rate during the warm-up period is greater than or equal to consumption rate (Ri ≥ yi),
i.e. Pi ≥ Ri ≥ yi.

Based on the above-mentioned we would present three EMQ inventory control models considering warm-up
period.

3. Model description

The notations of the proposed model are given as follows:

m The number of items
i Index of items (i = 1, . . . ,m)
j Index of models (j = 1, 2), if j = 1, model 1 suits the item warm-up condition; otherwise, model

2 is the suitable model.
Pi Manufacturing rate for item i after warm-up period (kg/month)
Ri Manufacturing rate for item i during warm-up period (kg/month)
yi Consumption rate for item i (kg/month)
Ii Maximum inventory level for item i when normal production process finishes (kg)
Ai Setup cost for manufacturing item i ($/setup)
hi Inventory cost per product per unit time for item i ($/kg/month)
ci Manufacturing cost per unit for item i ($/month)
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tSi Setup time for producing item i

tRi Warm-up period for producing item i

tPi Machine uptime for producing item i

tDi Machine downtime for manufacturing item i

CPj
i Total manufacturing cost for item i for model j ($)

CHj
i Total inventory cost for item i for model j ($)

CAj
i Total setup cost for item i for model j ($)

TCj
i Total cost for item i for model j in a month ($)

Z Total cost in a month ($)

QP
i Batch quantity for item i after warm-up period per cycle

QR
i Batch quantity for item i during warm-up period per cycle

Qj
i Total batch quantity for item i for model j per cycle (QT

i = QP
i +QR

i )
Ti Cycle length for item i

T The common cycle length for all products
N Number of common cycles in a month

In this study if production rate during warm-up is less than or equal to consumption rate them model 1 is the
suitable model (i.e.j = 1). Otherwise (i.e. when production rate during warm-up is greater than consumption
rate) model 2 suits the item (j = 2). What follows investigates models expression and formulation.

3.1. The first model (j = 1) for single item when (y ≥ R)

In this case, the manufacturing rate during warm-up period is lower than or equal to consumption rate and
deficiency is not allowed in the system. The inventory graph of the EMQ problem under this condition is shown
in Figure 1. In this system, the production rate during warm-up period is lower than the consumption rate, and
in order to avoid deficiency, the warm-up period begins before total consumption of inventory of former period.

TT

y-R y-R y-R

P-y P-y
y y

x

I

time

On-hand

inventory

t p t ptD tDtR tR

Figure 1. The inventory diagram of the single item (first condition).
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As can be seen in Figure 1:

I = (P − y)
QP

P
(3.1)

x = (y −R) tR. (3.2)

For a given tR we have:
QR = RtR. (3.3)

In Figure 1, production period length consists of three parts: uptime tP , downtime tD, and warm-up period
tR. Based on Figure 1, these periods are determined as follows:

tP =
QP

P
(3.4)

tD =
I − x
y

= (P − y)
QP

Py
− (y −R) tR

y
· (3.5)

Consequently, thecycle length for the item is:

T = tP + tD + tR =
QP

P
+ (P − y)

QP

Py
− (y −R) tR

y
+ tR =

QP +RtR

y

=
QP +QR

y
=
Q

y
· (3.6)

Hence

Q1 = yT. (3.7)

Based on the equations (3.3) and (3.7), we have:

QP = Q1 −QR = yT −RtR. (3.8)

Finally, total cost will be:
TC1 = CA1 + CP1 + CH1. (3.9)

3.1.1. The setup cost

Since the setup cost per period is A and N periods exist in a unit time, the total setup cost is obtained by:

CA1 = NA. (3.10)

According to the joint manufacturing policy; T = 1/N ,

CA1 =
A

T
· (3.11)

3.1.2. The manufacturing cost

The manufacturing cost per unit time is achieved using the equation (3.12.

CP1 = NcQ. (3.12)

From the equation (3.7), we have:

CP1 =
1
T
cyT = yc. (3.13)
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3.1.3. The inventory cost

In Figure 1, the area under the curve is equal to
(
x× tR/2

)
+
(
I × tP /2

)
+
(
(I + x) tD/2

)
. Hence, the total

inventory cost of this model based on the holding cost per product per unit time (h) is computed using the
equation (3.14) as:

CH1 = Nh

[
x× tR

2
+
I × tP

2
+

(I + x) tD

2

]
· (3.14)

From the equations (3.4) and (3.5), we have:

CH1 =
h

T

[
xtR

2
+
IQP

2P
+

(I + x) (I − x)
2y

]
=

h

2T

[
xtR +

IQP

P
+

(I)2 − (x)2

y

]
· (3.15)

Substituting I and x from the equations (3.1) and (3.2) respectively, results in:

CH1 =
h

2T

(y −R)
(
tR
)2

+
(P − y)

(
QP
)2

(P )2
+

(
(P − y) QP

P

)2

−
(
(y −R) tR

)2
y

 · (3.16)

Finally, substituting QP from the equation (3.8), results in:

CH1 =
h (P − y)
2 (P )2 T

[
(yT )2 +

(
RtR

)2 − 2RtRyT
]

+
h (P − y)2

2 (P )2 yT

[
(yT )2 +

(
RtR

)2 − 2RtRyT
]

−
h (y −R)2

(
tR
)2

2yT
+
h (y −R)

(
tR
)2

2T
=
hi (P − y)

2PyT

[
(yT )2 +

(
RtR

)2 − 2RtRyT
]

+
hR (y −R)

(
tR
)2

2yT

CH1 =

[
hy (P − y) (T )

2P
+
h (P − y)

(
RtR

)2
2Py

(
1
T

)
− h (P − y)RtR

P
+
hR (y −R)

(
tR
)2

2y

(
1
T

)]
· (3.17)

Moreover, substituting the equations (3.11), (3.13) and (3.17) into the equation (3.9) yields:

TC1 = CA1 + CP1 + CH1 = θ1 + α1

(
1
T

)
+ π1T (3.18)

where,

θ1 = yc− h (P − y)RtR

P
(3.19)

α1 = A+
h (P − y)

(
RtR

)2
2Py

+
hR (y −R)

(
tR
)2

2y
(3.20)

π1 =
hy (P − y)

2P
· (3.21)

In this inventory system, the cycle length should be greater than total setup, warm-up, and manufacturing
times altogether. Therefore,

tS + tR + tP ≤ T. (3.22)

This limitation means that the setup must be performed during downtime. Substituting tPi shown in the
equation (3.4), results in:

tS + tR +
QP

P
≤ T. (3.23)
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Figure 2. The inventory diagram of the single item (second condition).

Substituting QP from the equation (3.8), we have:

tS + tR +
yT −RtR

P
≤ T. (3.24)

And after some simple calculations,

T 1
Min =

 t
S +

(
1− R

y

)
tR(

1− y
P

)
 ≤ T. (3.25)

Therefore, the final model is as follows:

Min TC1 = θ1 + α1

(
1
T

)
+ π1T

s.t. : T ≥ T 1
Min

T > 0. (3.26)

3.2. The second model (j = 2) for single item when (R ≥ y)

In this case, the manufacturing rate during the warm-up period is equal to or greater than consumption rate.
The inventory graph of this EMQ problem is depicted in Figure 2. As can be seen in Figure 2,

x = (R− y) tR (3.27)

I = (P − y)
QP

P
+ x = (P − y)

QP

P
+ (R− y) tR (3.28)

In Figure 2, the production period length consists of warm-up period tR, uptime tP , and downtime tD. Based
on Figure 2, these periods are determined as follows:

tP =
QP

P
(3.29)

tD =
I

y
=

(R− y) tR

y
+ (P − y)

QP

yP
· (3.30)
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Consequently, the production cycle length for item i is:

T = tR + tP + tD = tR +
QP

P
+

(R− y) tR

y
+ (P − y)

QP

yP
=
RtR +QP

y
=
QR +QP

y
=
Q

y
· (3.31)

Hence
Q2 = yT. (3.32)

Therefore,
QP = Q2 −QR = yT −RtR. (3.33)

So we have:
TC2 = CA2 + CP2 + CH2. (3.34)

3.2.1. The setup cost

The setup cost per unit time associated with this model is computed as the equation (3.35).

CA2 = NA =
A

T
· (3.35)

3.2.2. The manufacturing cost

Similar to the previous model, the manufacturing cost can be computed as:

CP2 =
1
T
cyT = yc. (3.36)

3.2.3. The inventory cost

In Figure 2, the area under the curve is equal to
(
xtR/2

)
+
(
(I + x) tP /2

)
+
(
ItD/2

)
. Hence, the total inventory

cost of this model based on the holding cost per product per unit time (h) is computed by the equation (3.37):

CH2 = Nh

[
xtR

2
+

(I + x) tP

2
+
ItD

2

]
· (3.37)

Substituting tP and tD from the equations (3.29) and (3.30), respectively, results in:

CH2 =
h

2T

[
xtR +

(I + x)QP

P
+

(I)2

y

]
· (3.38)

Substituting x and I from the equations (3.27) and (3.28), respectively, results in:

CH2 =
h

2T

[
(R− y)

(
tR
)2

+

(
2 (R− y)

tRQP

P
+ (P − y)

(
QP

P

)2
)

+
(

(R− y) tR + (P − y)
QP

P

)2/
y

]
.

(3.39)
Finally, using QP from the equation (3.33), we have:

CH2 =

[
h (P − y)

(
RtR

)2
2Py

(
1
T

)
−
h (R− y)R

(
tR
)2

2y

(
1
T

)
+
h (P − y) y

2P
(T ) + h (R− y) tR − h (P − y)RtR

2P

]
· (3.40)

Substituting the equations (3.35), (3.36) and (3.40) into the equation (3.34) we can compute the total cost
as follows:

TC2 = CA2 + CP2 + CH2 = θ2 + α2

(
1
T

)
+ π2T (3.41)



ECONOMIC LOT-SIZE PROBLEM 1503

where

θ2 = yc+ h (R− y) tR − h (P − y)RtR

2P
(3.42)

α2 = A+
h (P − y)

(
RtR

)2
2Py

−
h (R− y)R

(
tR
)2

2y
(3.43)

π2 =
hy (P − y)

2P
· (3.44)

In this inventory system, the cycle length should be greater than the sum of setup, warm-up, and manufac-
turing times. Therefore,

T ≥ tS + tR + tP . (3.45)

So we have,

T ≥

{
tS +

(
1− R

P

)
tR(

1− y
P

) }
= T 2

Min. (3.46)

Finally, the model is concluded as:

Min TC2 = θ2 + α2

(
1
T

)
+ π2T

s.t. : T ≥ T 2
Min

T > 0. (3.47)

3.3. Multi-item single-machine EMQ problem

Now, we develop a multi-item single-facility/machine EMQ problem based on the 3.1 and 3.2, wherein a
facility/machine produces multiple items. A single facility/machine produces m items and each of these products
may have one of conditions discussed in Section 3.1 or Section 3.2. Thus, the total cost of this problem consists
of setup cost, manufacturing cost and inventory cost of these items. In other words:

Z =
m∑

i=1

∑
i∈j

TCj
i =

m∑
i=1

∑
i∈j

{
CAj

i + CPj
i + CHj

i

}
. (3.48)

So the total cost is a combination of the individual costs of each item. Thus, according to equations (3.18)
and (3.41) we have

Z =
m∑

i=1

∑
i∈j

{
CAj

i + CPj
i + CHj

i

}
=

m∑
i=1

∑
i∈j

{
θj

i + αj
i

(
1
Ti

)
+ πj

iTi

}
. (3.49)

Besides, all goods are made on one facility/machine with a common cycle length. In other words, T = Ti =
T1 = T2 = · · · = Tm (for instance see: [18, 22]). Therefore,

Z =
m∑

i=1

∑
i∈j

{
θj

i + αj
i

(
1
Ti

)
+ πj

iTi

}
=

m∑
i=1

∑
i∈j

{
θj

i + αj
i

(
1
T

)
+ πj

iT

}
. (3.50)

On the other hand, the cycle length should be greater than the overall time associated with manufacturing,
warm-up and setup for all items. Hence,

T ≥
m∑

i=1

(
tPi + tRi

)
+

m∑
i=1

tSi . (3.51)
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So,

T ≥
m∑

i=1

(
yiT −Rit

R
i

Pi
+ tRi

)
+

m∑
i=1

tSi . (3.52)

Finally, we have:

T ≥


∑m

i=1

[
tRi

(
1− Ri

Pi

)]
+
∑m

i=1

(
tSi
)(

1−
∑m

i=1
yi

Pi

)
 = TMin. (3.53)

Using the total inventory cost in the equation (3.50) and the constraint in inequality (3.53), the multi-item
single-machine EMQ inventory model is obtained as follows:

MinZ =
m∑

i=1

∑
i∈j

{
θj

i + αj
i

(
1
T

)
+ πj

iT

}
s.t. : T ≥ TMin

T > 0. (3.54)

4. The solution procedures

This section focuses on solution procedures for three models proposed in Section 3. These solution procedures
are as follows.

4.1. The solution procedure for the first model

The objective function of the model (3.26) is convex. We prove that the second derivative of the objective
function with respect to decision variable, shown in the equation (4.1), is positive (see Appendix A). Besides,
the constraint in (3.26) is a linear function; hence, it is convex. Thus, the proposed EMQ model in (3.26) is a
convex nonlinear mathematical model.

∂2TC1

∂2T
=
− (−2T )α1

(T )4
=

2Tα1

(T )4
=

2α1

(T )3
· (4.1)

To find the optimum cycle length, we differentiate the objective function in model (3.26) with respect to T .
Hence, we have:

T =

√
α1

π1
· (4.2)

Finally, the following algorithm obtains the optimal solution for the aforementioned model:

Step 1. Calculate θ1, α1 and π1 using equations (3.19), (3.20) and (3.21), respectively.
Step 2. Compute T using the equation (4.2).
Step 3. Compute T 1

Min using the equation (3.25).
Step 4. If T < T 1

Min, then T ∗ = T 1
Min; else, T ∗ = T .

Step 5. According to the value of T ∗, obtain Q1∗ using the equation (3.7) and TC1∗ using the equation (3.18).

4.2. The solution procedure for the second model

The objective function in model (3.47) is convex (it can be proven as before). Thus, the proposed EMQ model
presented in the equation (3.47) is a convex nonlinear mathematical model.

∂2TC2

∂2T
=

2α2

(T )3
· (4.3)
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Table 1. General data for the first model.

Parameter A c h tS tR

Value 800 40 10 0.02 0.01

To find the optimum period length, we differentiate the objective function in model (3.26) with respect to T .
Hence, we have:

T =

√
α2

π2
· (4.4)

Consequently, the following algorithm obtains the optimal solution:

Step 1. Calculate θ2, α2 and π2 using equations (3.42), (3.43) and (3.44), respectively.
Step 2. Compute T using the equation (4.4).
Step 3. Compute T 2

Min using the equation (3.46).
Step 4. If T < T 2

Min, then T ∗ = T 2
Min; else, T ∗ = T.

Step 5. According to the value of T ∗, obtain Q2∗ using the equation (3.32) and TC2∗ using the equation (3.41).

4.3. The solution procedure of the developed model

This model is a combination of the aforementioned models such that some items follow conditions of the first
model and the rest follows conditions of the second model. The objective function in model (3.54) is convex
(see Appendix C). To calculate the optimum cycle length, the first derivative of the objective function (Z) is
calculated with respect to T . Hence, the optimal cycle length yields as follows:

∂Z

∂T
= 0→ −

∑m
i=1

∑
i∈j α

j
i

(T )2
+

m∑
i=1

∑
i∈j

πj
i = 0→ T =

√√√√∑m
i=1

∑
i∈j α

j
i∑m

i=1

∑
i∈j π

j
i

· (4.5)

Finally, the following algorithm obtains the optimal solution for the multi-item single-machine EMQ model.

Step 1. If 1 >
∑m

i=1
yi

Pi
, go to Step 2. Else, the proposed EMQ problem is not feasible, and go to Step 8.

Step 2. For each item, if yi ≥ Ri, then it is of Type I (j = 1). Otherwise, it is of Type II (j = 2).
Step 3. For Type I items form (yi ≥ Ri), calculate θ1i , α1

i and π1
i using equations (3.19), (3.20) and (3.21),

respectively. For type II items (Ri ≥ yi), calculate θ2i .α
2
i and π2

i using equations (3.42), (3.43) and
(3.44), respectively.

Step 4. Calculate T using the equation (4.5).
Step 5. Calculate TMin using the equation (3.53).
Step 6. If T < TMin, then T ∗ = TMin; else, T ∗ = T .
Step 7. According to T ∗, obtain Qj∗

i by Qj∗
i = yiT

∗ and Z∗ using the equation (3.50).
Step 8. Terminate the procedure.

5. Experiments

In this section, we present three numerical examples for the above-mentioned cases. We have employed the
proposed algorithms to solve the examples:

5.1. The first model

Consider a single item manufacturing system with P = 4000, y = 2000 and R = 500. The rest of the
parameters are given in Table 1. The optimum values are obtained as follows.
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Since y is greater than R (y > R), we use the first model’s algorithm as follows:
Step 1. Initial calculations

We calculate θ1, α1 and π1 using equations (3.19), (3.20) and (3.21), respectively.

θ1 = cy − hR (P − y) tR

P
= 40× 2000− 10× 500× (4000− 2000)× 0.01

4000
= 79975

α1 = A+
h (P − y)

(
RtR

)2
2Py

+
hR (y −R)

(
tR
)2

2y
= 800 +

10× (4000− 2000)× (500× 0.01)2

2× 4000× 2000

+
10× 500× (2000− 500) (0.01)2

2× 2000
= 800.21875

π1 =
hy (P − y)

2P
=

10× 2000× (4000− 2000)
2× 4000

= 5000.

Step 2. Finding the cycle length
Based on the equality (4.2), T is computed as:

T =

√
α1

π1
=

√
800.21875

5000
∼= 0.4.

Step 3. Lower bound
Using the equation (3.25), T 1

Min is obtained as:

T 1
Min =

tS +
(
1− R

P

)
tR(

1− y
P

) =
0.02 +

(
1− 500

4000

)
× 0.01(

1− 2000
4000

) = 0.0575.

Step 4. Checking the constraint
As (T = 0.4) >

(
T 1

Min = 0.0575
)
, we have T ∗ = T = 0.4.

Step 5. Finding the optimum values
According to the value of T ∗ = 0.4, Q∗ and TC1∗ are computed as:

Q1∗ = yT = 2000× 0.4 = 800 kg

TC1∗ = θ1 + α1

(
1
T

)
+ π1T = 79975 +

800.21875
0.4

+ 5000× 0.4 = 83975.5$.

Moreover, according to the above results we can conclude that:

– The manufacturing cost (c) and setup time (tS) have no effect on the value of T .
– The manufacturing cost (c), setup cost (tS) and the inventory cost (h) have no effect on the lower bound of

the cycle length (TMin).

5.2. The second model

Consider a single-item manufacturing system with P = 4000, R = 3000, and y = 2000. Moreover, the rest
of the parameters are proposed in Table 1. The optimal solution is obtained for cases that R is greater than y
(R > y), and the exact algorithm of the second model is employed as follows:
Step 1. Initial calculations
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We calculate θ2, α2 and π2 using equations (3.42), (3.43), and (3.44), respectively as:

θ2 = cy + h (R− y) tR − h (P − y)RtR

2P
= 40× 2000 + 10× (3000− 2000)× 0.01

− 10× (4000− 2000)× 3000× 0.01
4000

= 80025

α2 = A+
h (P − y)

(
RtR

)2
2Py

−
h (R− y)R

(
tR
)2

2y
= 800 +

10× (4000− 2000)× (3000× 0.01)2

2× 4000× 2000

− 10× 3000× (3000− 2000)× (0.01)2

2× 2000
= 800.375

π2 =
hy (P − y)

2P
=

10× 2000× (4000− 2000)
2× 4000

= 5000.

Step 2. Finding the cycle length
Based on equality (4.2), T is computed as:

T =

√
α2

π2
=

√
800.375

5000
∼= 0.4.

Step 3. Lower bound
Using the equation (3.46), T 2

Min is obtained as:

T 2
Min =

tS +
(
1− R

P

)
tR(

1− y
P

) =
0.02 +

(
1− 3000

4000

)
× 0.01(

1− 2000
4000

) = 0.045.

Step 4. Checking the constraint
Since, (T = 0.4) >

(
T 2

Min = 0.045
)
, we have T ∗ = T = 0.4.

Step 5. Finding the optimum values
According to T ∗ = 0.4, Q∗ and TC2∗ are computed as:

Q2∗ = yT = 2000× 0.4 = 800 kg

TC2∗ = CA2 + CP2 + CH2 = 80025 +
800.375

0.4
+ 5000× 0.4 = 84025.9$.

According to these the results:

– The manufacturing cost (c) and setup time (tS) have no effect on the cycle length (T ).
– The manufacturing cost (c), the setup cost (tS) and the inventory cost (h) have no effect on the lower bound

of the cycle length (TMin).

5.3. The extended model

Consider a single-facility/machine manufacturing system with five items. Values for parameters of this prob-
lem are given in Table 2 and optimal solution for this model is determined based on the following solution
procedure.
Step 1. Checking the feasibility

As
(

1−
∑m

i=1
yi

Pi

)
= 0.0497873471557683, then go to Step 2.

Step 2. Specifying items’ types
We specify the items as shown in Table 3.

Step 3. Initial calculations
θj

i , α
j
i and πj

i , are computed and shown in Table 3.
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Table 2. General data for the developed model.

Item Pi yi Ri Ai ci hi tSi tRi

1 8000 2000 500 800 40 10 0.002 0.001
2 9000 2000 3000 1000 50 8 0.003 0.002
3 9500 1000 1500 900 40 12 0.001 0.002
4 10 000 1000 500 1100 45 15 0.002 0.001
5 11 000 3000 4000 1200 50 10 0.003 0.003

Table 3. Type of the items and θj
i , αj

i and πj
i .

Item yi Ri Situation Condition θj
i αj

i πj
i

1 2000 500 y1 > R1 j = 1 79 962.5 800.234375 7500
2 2000 3000 y2 < R2 j = 2 99 973.333333 1003.2 6222.222222
3 1000 1500 y3 < R3 j = 2 39 958.947368 903.031578 5368.421052
4 1000 500 y4 > R4 j = 1 44 932.5 1100.35625 6750
5 3000 4000 y5 < R5 j = 2 149 863.636363 1211.454545 10 909.090909

Table 4. Values of Qj∗
i and TCj∗

i .

1 2 3 4 5

Qj∗
i 736 736 368 368 1104

TCj∗
i 84 930.1 105 004.7 44 417.3 50 466.3 15 7262.4

Step 4. Finding the cycle length
Based on equality (4.5), T is computed as:

T =

√∑m
i=1 α

j
i∑m

i=1 π
j
i

=

√
5018.27674940191
36749.7341839447

∼= 0.368.

Step 5. Lower bound
Using the equation (3.53), TMin is obtained as:

TMin =

∑m
i=1

[
tRi

(
1− Ri

Pi

)]
+
∑m

i=1

(
tSi
)(

1−
∑m

i=1
yi

Pi

) ∼= 0.357.

Step 6. Checking the constraint
Based on the (T = 0.368) >

(
TMin = 0.357

)
, value of T ∗ is 0.368.

Step 7. Finding the optimum values
According to T ∗ = 0.368, values of Qj∗

i and TC∗i for all items are proposed in Table 4. Finally, the minimum
annual inventory cost is Z∗ =

∑m
i=1 TC∗i = 442080.8$.

Step 8. Terminate the solution procedure.

5.4. The sensitivity analysis

In this subsection, the third model, which is a combination of two former models, is chosen for sensitivity
analysis. In Table 5, we display the results of the analysis. Table 5 indicates that:
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Table 5. The sensitivity analysis.

% Changes in
Parameters % Changes T TMin T ∗ Z∗

Initial 0 0 0 0 0
Pi +50 −3.9215 −85.8607 −3.9215 0.2635

+10 −0.9505 −63.0295 −0.9505 0.0730
−50 Infeasible

yi +50 Infeasible
+10 Infeasible
−50 33.2061 −90.5147 33.2061 −48.4407

Ri +50 0.2435 −6.1351 0.2435 0.0134
+10 0.2378 −1.2270 0.2378 0.0026
−50 0.2339 6.1351 3.1946 −0.0094

Ai +50 22.7628 0 22.7628 1.3782
+10 5.1287 0 5.1287 0.2993
−50 −29.1191 0 −2.7705 −1.5776

ci +50 0 0 0 46.9371
+10 0 0 0 9.3874
−50 0 0 0 −46.9370

hi +50 −18.1554 0 −2.7705 1.4866
+10 −4.4276 0 −2.7705 0.29965
−50 41.7533 0 41.7533 −1.7928

tSi +50 0 30.8743 0 0
+10 0 6.1748 0 0
−50 0 −30.8743 0 0

tRi +50 0.2415 19.1256 15.8252 0.0609
+10 0.2375 3.8251 0.9486 −0.0004
−50 0.2338 −19.1256 0.2338 0.0033

– T is a lot sensitive to changes in the amounts of consumption rate, setup cost, and inventory cost, is slightly
sensitive to changes in manufacturing rate, warm-up time and manufacturing rate during warm-up period,
and setup time and manufacturing cost have no effect on T value.

– TMin is insensitive to changes in manufacturing cost, inventory cost and setup cost, is almost sensitive to
changes in manufacturing rate during warm-up period and warm-up time, and is a lot sensitive to changes
in consumption rate, manufacturing rate and setup time.

– Z∗ is slightly sensitive to the changes in manufacturing rate during warm-up period and warm-up period,
is moderately sensitive to changes in inventory and setup costs, and is highly sensitive to changes in con-
sumption rate and manufacturing cost, and setup time has no effect on optimum amount of total inventory
cost.

Moreover, effects of changes manufacturing rate during warm-up period (Ri) and warm-up time (tRi ) on the
optimal cycle length and optimal total cost are presented in Figures 3 and 4, respectively.

6. Conclusion and managerial insights

In this study, we have presented three economic manufacturing quantity models by considering warm-up
period. In the proposed models a certain time, called warm-up period, has been considered. Warm-up time is
the required period for a machine by when it operates efficiently. In the warm-up period, the production machine
manufactures the items at a lower rate than the normal production time. After this time, the machine produces
the items at normal manufacturing rate. Two models have been proposed considering warm-up period, in one
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Figure 3. Effects of Ri and tRi parameters on the optimal cycle length.

Figure 4. Effects of Ri and tRi parameters on the optimal total inventory cost.
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of them production rate has been greater or equal to consumption rate, in the other production rate has been
smaller than the consumption rate. As the nonlinear programming problems of these two models have been
proved to be convex, two exact algorithms with five simple steps have been proposed to calculate the optimal
solution aiming to minimize the total cost. Finally, based on these two models, a multi-item EMQ model as a
combination of the aforementioned models has been developed. In this model, all items are made by a unique
facility/machine with a limited manufacturing volume. As the cost function associated with the third model
has also been convex, an exact method containing 8 steps has been suggested to obtain the optimal cycle length
that minimizes total cost of the inventory system.

Most important managerial insight that is driven from this study is its focus on cleaner production (by taking
account of maintenance during warm-up), to provide managers guidelines for choosing the optimal cycle length
based on minimizing total cost; including inventory cost, setup cost for normal manufacturing process, and
manufacturing cost. Furthermore, considering the warm-up period helps managers to increase the useful life
span of the machine and decrease production loss. Moreover, to prevent producing scrapped items, machine
needs a warm-up during which the defects of the machine are identified. The defects can be fixed by employing
corrective maintenance like astringent, replacement of the parts, and lubrication. The aim of this study is to
identify a policy that minimizes the sum of setup, manufacturing, and holding costs.

For future research, some suggestions are as follows:

– Considering approximated and uncertain warm-up time by considering it as a stochastic or fuzzy parameter.
– The models can be extended by considering shortage, in forms of backordered, lost sale, or partial backo-

rdering.
– A defective manufacturing system with rework and scraped items can be developed.
– The models can be developed by considering deteriorating process, stock-time dependent demand, sustainable

production policy, etc.

Appendix A. Prove convexity of the objective (3.26)

The second order derivative of the objective function shown in the equation (3.26) with respect to the cycle
length is:

∂2TC1

∂2T
=

2α1

(T )3
·

Based on the equation (3.20), we have:

α1 = A+
h (P − y)

(
RtR

)2
2Py

+
hR (y −R)

(
tR
)2

2y
·

Note that since P ≥ y ≥ R and all parameters are positive, α1 ≥ 0. Also, T is greater than zero, the second
derivative of the equation (3.26) is positive.

α1 ≥ 0.T > 0→ ∂2TC1

∂2T
=

2α1

(T )3
≥ 0; (P.S.D) .

Appendix B. Prove convexity of the objective (3.47)

The second order derivative of the objective function shown in the equation (3.47) with respect to the cycle
length is:

∂2TC2

∂2T
=

2α2

(T )3
·
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Based on the equation (3.43), we have:

α2 = A+
h (P − y)

(
RtR

)2
2Py

−
h (R− y)R

(
tR
)2

2y
·

The third part of this equation is a negative number. So to prove positivity of this equation, we assume that
A = 0 (in addition to all parameters of the model are positive). We have:

α2 =
h (P − y)

(
RtR

)2
2Py

−
h (R− y)R

(
tR
)2

2y
=
hR
(
tR
)2

2y︸︷︷︸
≥0

[
(P − y)R

P
− (R− y)

]
.

Since the first part is always positive we have,

(P − y)R
P

− (R− y) =
(P − y)R

P
− (R− y)P

P
=

(P − y)R− (R− y)P
(P ≥ 0)

·

Because the denominator is always positive, so we have:

(P − y)R− (R− y)P = (PR− yR)− (PR− yP ) = yP − yR = y (P −R) .

Since P ≥ R, we can say always

α2 = A+
h (P − y)

(
RtR

)2
2Py

−
h (R− y)R

(
tR
)2

2y
≥ 0.

Also, T is greater than zero and the second order derivative of the equation (3.47) with respect to period length
is positive:

α2 ≥ 0.T > 0→ ∂2TC2

∂2T
=

2α2

(T )3
=

2α2

(T )3
≥ 0; (P.S.D) .

Appendix C. Prove convexity of the objective (3.54)

Based on the objective function shown in the equation (3.54):

Z =
m∑

i=1

∑
i∈j

{
θj

i + αj
i

(
1
T

)
+ πj

iT

}
.

Its second order derivative with respect to period length is:

∂2Z

∂2T
=

2
(∑m

i=1

∑
i∈j α

j
i

)
(T )3

·

In the multi-product single machine EMQ model, the following three conditions exist:

(1) If all items have the first model conditions during the warm-up ime, i.e. yi ≥ Ri, then for all items, we have
α1

i ≥ 0 (see Appendix A). As a result,
∑m

i=1 α
1
i ≥ 0 and the second derivative of objective function shown

in the equation (3.54) is positive.
(2) If all items have the first model conditions during the warm-up time, i.e. Ri ≥ yi, then, for all items, we

have α2
i ≥ 0 (see Appendix B). As a result,

∑m
i=1 α

2
i ≥ 0 and the second derivative of objective function

shown in the equation (3.54) is positive.
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(3) If some items have the first (yi ≥ Ri) and remaining items have the second model (Ri ≥ Di) conditions
during the warm-up time, we prove that αj

i ; i = 1, 2, . . . ,m are positive (see Appendices A and B). Therefore,
the sum of positive numbers (

∑m
i=1 α

j
i ) is positive. So, the second derivative of objective function in (3.54)

is also positive.

Finally, we can say that the second derivative of objective function (3.54) is always positive.

T > 0, αj
i ≥ 0; i = 1, 2, . . . ,m→ ∂2Z

∂2T
=

2
(∑m

i=1 α
j
i

)
(T )3

≥ 0; (P.S.D) .
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