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EFFECT OF INSPECTION ERRORS ON IMPERFECT PRODUCTION
INVENTORY MODEL WITH WARRANTY AND PRICE DISCOUNT

DEPENDENT DEMAND RATE

Amalesh Kumar Manna1,∗, Jayanta Kumar Dey2 and Shyamal Kumar Mondal1

Abstract. This paper deals with selling price-discount and warranty period dependent demand in an
imperfect production inventory model under the consideration of inspection errors and time dependent
development cost. Normally, due to long-run, a production process deteriorates with time and here
we assume that the process shifts from “in-control” to “out-of-control” state at any random time. A
time dependent development cost has been constructed to increase the reliability of the production
system i.e., to decrease the deterioration of the system during the production process. As a result, a
few items are rejected. Here, two types of inspection errors such as Type-I error and Type-II error,
have been considered during the period of product inspection process. In Type-I error, an inspector
may choose falsely a defective item as non-defective and in Type-II error an inspector may choose
falsely a non-defective item as defective. Due to these phenomena, the inspection process would consist
of the following costs: cost of inspection, cost of inspection errors. The purpose of this paper is to
investigate the effects of time dependent development cost on the defective items, selling price-discount
and warranty policy on the market demand and finally optimize the expected average profit under
consideration of such inspection costs in infinite time horizon. Some numerical examples along with
graphical illustrations and sensitivity analysis are provided to test the feasibility of the model.
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1. Introduction

In a real manufacturing system, a long-run production process shifts from “in-control” to “out-of-control”
state due to different machinery problems, labor problems, etc. On the other hand, the production of defective
units is a natural phenomenon to be occurred due to different difficulties arisen in a long-run production
process. Normally, it is seen that a production process is initiated from “in-control” state, because every factors
associated with the system are in well condition. Then due to continuous running of system, these factors
gradually lose their perfectness. So, after some time, the production process may shift from “in-control” state
to “out-of-control” state. For this reason, some imperfect items along with perfect items are produced in every
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manufacturing system. Now, if all product together are sold to the customers, the company must lose his/her
good will and henceforth demand of the product will be decreased gradually in the market. So, problem is how
to maintain the good will in the market? To search the answer of this question, many researchers investigated
EPQ models with imperfect production in which inspection process was considered for screening the defective
items. But in these studies, the inspection process has been considered to be error free. Then Jaggi et al. [10],
Tiwari et al. [33], Mallick et al. [13], Panja and Mondal [19] proposed that this assumption is not always true
in business world. Basically, the inspection process may not be completely error free due to different types
of factors such as machinery and human in the system. They considered a possibility of Type I error (falsely
rejecting non-defective items) and Type II error (falsely accepting defective items) in their papers to study the
EPQ models with imperfect production. But in these studies, if a non-defective item is falsely rejected, there
was no scope to get back as a perfect one to be sold directly from the manufacturer. In this paper this lack
of analysis has been removed considering Type I error as the possibility of two types such as either (i) when
a non-defective item is rejected and it implies the loss of manufacturer or (ii) when a non-defective item is
submitted in reworked cell and it implies no loss of manufacturer since it will be detected as a non-defective
in the reworked cell. Simultaneously, Type II error is also considered in this paper where the acceptance of the
defective item has been considered as a non-defective item and due to that it has a risk to a customer. This is
one of the novelties in this paper.

In practice, the manufacturer usually offers a warranty for all selling items for the specific period due to
increasing the selling rate and reliability of the product. Warranty period of a product is a duration in which
a purchased product provides satisfactory performance to the customer. If any purchased product fails to
work within its warranty period, then the servicing center replaces it with a new item or repairs the product
by replacing one or more parts of the product. In the literature many researchers (c.f. [4, 23, 36]) considered
warranty cost as a constant parameter. But there is a connection between warranty period and demand on the
product in real business market. So a functional relationship among warranty period, selling price discount and
demand should have. Due to this reason, in our model, we consider a new type of demand rate which depends
on both selling price discount and warranty period. This is another of the novelty of our paper.

So based on the above facts, we have developed an imperfect production inventory model under considering
price discount and warranty period dependent demand with inspection errors.

1.1. Literature survey

In any production system, all produced items are not perfect. So the defective items are inevitable during
the production due to many reasons such as defects of machine and other related factors. In 1986, Rosenblatt
and Lee [24] considered an EPQ model that deals with imperfect quality. They assumed that at some random
point in time the process might shift from an “in-control” to an “out-of-control” state, and a fixed percentage of
defective items are produced. At the same year, Porteus [20] was one of the researchers to consider the situation
where the production process may shift from an “in-control” state to an “out-of-control” state. Recently, Manna
et al. [17] studied an imperfect production inventory model considering with the rate of defectiveness which is
random and depends on the time length of the “out-of-control” state. They considered the production process
shifts from “in-control” state to “out-of control” state, that follows an exponential distribution.

Most of researchers on the EPQ models with imperfect production process considered the inspection process to
separate the defective items and they assumed the inspection process perfect i.e., error-free (c.f. [10,13,16,26,30]).
But in general, this assumption is not always true. Sometimes, the inspection process is not error free due to
different types of factors related to machine and human factors in the system. It may be a possibility of Type I
error (falsely rejecting non-defective items) or Type II error (falsely accepting defective items) in the inspection
process. Raouf et al. [21] presented a cost-minimization model for multi characteristic component inspection.
Raz and Bricker [22] considered inspection errors during screening in an production process. Rentoul et al. [23]
studied several ways of inspection errors in manufacturing system which are made by comparing inspection points
with a solid model of the desired component. Salameh and Jaber [25] studied a joint lot sizing and inspection
policy for an EOQ model when a random proportion of the units in a lot are defective. They assumed a 100%
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screening process with no human error. Wang and Sheu [36] proposed an optimal production and maintenance
policy under the effect of inspection errors. Darwish and Ben-Daya [4] considered an inventory model in an
imperfect production process with the inspection errors. Duffuaa and Khan [5] studied the optimal inspection
policy under different kinds of misclassifications. Hsu and Hsu [9] studied the effects of inspection errors of
imperfect quality items on an economic order quantity (EOQ) model with shortages and sales returns. Sarkar
et al. [27] dealt with a problem of optimal production run time and inspection errors in an imperfect production
system with warranty.

In an imperfect production process, the rework policy is an important role for eliminating waste and de-
creasing manufacturing cost. A reworking cost is considered to make the defective items as new as perfect
by reworking process. Hayek and Salameh [8] studied the determination of optimal production lot size with
reworking of defective items. Flappera and Teunterb [6] showed how reworking plans could both reduce costs
and be environment friendly. Chiu et al. [2] proposed a more general model that allowed a certain proportion of
reworked units to be scrapped. Cárdenas-Barrón [1] proposed an inventory model on optimal batch sizing in a
multi-stage production system with rework process. Manna et al. [17] examined the effects of rework policy in
an imperfect production inventory model with two storage facilities. At the same year, Jain et al. [12] proposed
a fuzzy imperfect production and repair inventory model with time dependent demand. Recently, Nobil et al.
[18] consider rework and inspection in an imperfect multi-item single machine production system.

Recently, the supply chain models have generally considered the various demand function such as advertize-
ment (c.f. [14]), time dependent (c.f. [30]), stock-dependent (c.f. [15]), selling prince dependent(c.f. [7]) etc.
But in real life, the assumption is not always true in general. The demand may vary with selling price discount
and warranty period of the product. Due to this reason, a manufacturer considers warranty cost if there exists
free-warranty on selling items within the warranty period. Wang and Sheu [35] investigated the imperfect pro-
duction model with a free warranty for the discrete unit item. Yeh et al. [37] developed a production inventory
model considering the free warranty and derived the optimal production cycle time. Chung [3] considered an
EPQ model with the warranty period-dependent demand, effects on inspection scheduling and supply chain
replenishment policy. Jaggi et al. [11] introduced price dependent demand in economic ordering policies for
non-instantaneous deteriorating items. At the same year, Tiwari et al. [29] proposed stock-dependent demand
in two-warehouse inventory model for non-instantaneous deteriorating items using particle swarm optimiza-
tion. Later, Tiwari et al. [31] considered price and stock-dependent demand in a supply chain system with
deteriorating items under limited storage capacity.

1.2. Contribution of the proposed model

The contributions of our proposed EPQ model with imperfect production are elucidated as follows:

– In this paper, effect of warranty policy has been studied on profit maximization considering market demand
to be dependent on both selling price discount and warranty period of selling product.

– Here, a new type inspection error has been proposed for inspection the imperfect items. In this paper, Type
I error may be classified as two types such as (i) when a non-defective item is rejected or (ii) when a non-
defective item is submitted in reworked cell. Simultaneously, Type II error is also considered where defective
item has been considered as a non-defective item.

– Here, warranty period and warranty cost both have been considered separately in such a way that warranty
period has been taken as a decision variable for which warranty cost per unit item will be minimized as well
as market demand maximized in this profit system.

– Finally, an algorithm has been developed to get the optimal solution of the proposed model.

The remainder of this paper is organized as follows: In Section 2, we define notations and assumptions to
be used in this model. The mathematical formulation of our proposed model are described in Section 3. In
Section 4, a solution methodology has been developed. A numerical analyses and managerial insights are also
presented in Sections 5 and 6 respectively. Finally, practical implication and conclusion with future research are
carried out in Sections 7 and 8 respectively.
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2. Notation and assumptions of the proposed model

In this section we have described the notation and assumptions of the proposed model which are as follows:

2.1. Notation

To develop the model, following notations have been used.
P : Production rate of manufacturer.
D : Selling rate of manufacturer/demand rate customer.
η : Selling price discount parameter.
ρ : Effective parameter of demand on warranty.
τ : Random time with mean 1

λ after which the production system shifts from an “in-control” state
to “out-of-control” state.

θ1 : Percentage of produced defective items in “in-control’; state.
θ1 : Percentage of produced defective items in “out-of-control” state (θ1 < θ2).
δ : Probability of rework rate of defective units.
cp : Production cost per item.
csr : Screening cost per item.
hc : Holding cost per item per unit time in production center.
cw : Average warranty cost per item.
s : Selling price per item for perfect quality.
cr : Average reworking cost per item of reworkable item.
cd : Disposal cost per item.
A : = (A0 + K

Pt1
), set up cost of manufacture.

cv : Development cost during production runtime.
m1 : Probability of a Type I error (classifying a non- defective item as defective).
m2 : Probability of a Type II error (classifying a defective item as non-defective).
f(τ) : Probability density function of τ .
φ(δ) : Probability density function of δ.
φ(m1) : Probability density function of m1.
φ(m2) : Probability density function of m2.
ca : The cost of accepting a defective item, where ca = ct + cl.
γ : Probability of classifying a non-defective item as rework item due to Type I error.
φ(γ) : Probability density function of γ.
Decision variables:
t1 : Production period.
tw : Warranty period of selling item.
Related to the decision variable:
T : Total business period.

2.2. Assumptions

The mathematical model of the proposed inventory problem is based on the following assumptions:
(i) In this model a manufacturer produces a mixture of defective and non-defective (perfect quality) items.

Some portion of defective items are reworked at a cost.
(ii) The manufacturer inspects each produced item to check whether the item is perfect or not. In this in-

spection process, there may exist some possibility that a non-defective item is treated as defective item
and defective item may be considered as a non-defective item which are known as type-I and type-II error
respectively. Due to type-I error an item may be truly non-defective or defective. If it is non-defective then
it is sent to the inventory of non-defective items after checking from the reworked cell. On the other hand,
if it is defective then it is reworked and then sent to the inventory non-defective items, otherwise it is
rejected completely from the rework cell. Again in case of type-II error, an defective item is delivered as a
non-defective item to the customers. So, after checking it by customer, it is sent back to the manufacturer.



EFFECT OF INSPECTION ERRORS ON IMPERFECT PRODUCTION INVENTORY MODEL 1193

Therefore under type-II error the manufacturer is compelled to bear an extra cost as a miss-classification
cost.

(iii) Here we assume that due to continuous long run production process, the components of production system
gradually losses their perfectness. So, some time (τ) after production, the production process may shift
from the “in-control” state to “out-of-control” state. The time (τ) is an exponential distributed with a
finite mean.

(iv) According to assumption (iii), the defective rate (θ1) in “in-control” state is less than the defective rate
(θ2) in “out-of-control” state and is given by

θ =
{
θ1, 0 ≤ t ≤ τ
θ2, τ ≤ t ≤ t1

. (2.1)

(v) Here, we consider the warranty cost (cw) per item is not constant, it depends on the warranty period (tw)
and is given by

cw = a+ btw. (2.2)

(vi) Selling price (s) per item of non-defective item is not fixed always, we consider

s = s0 − ηs0, 0 ≤ t ≤ T (2.3)

where η is the discounts percentage of selling price.
(vii) Here, we consider a new type of selling rate which depends on both selling price discount and warranty

period. The selling rate is defined as

D =
{

(D0 + ρtw)ekη, 0 ≤ t ≤ t1
D0 + ρtw, t1 ≤ t ≤ T

(2.4)

where k and ρ are suitable positive constant.
(viii) Due to long run production process and increasing the duration of “in-control” state, we consider a

devolvement cost (f(τ)) per unit time as the form

f(τ) =
{
B0, 0 ≤ t ≤ τ
B0 +B1(t− τ)ek1

υmax−υ
υ−υmin , τ ≤ t ≤ t1

. (2.5)

3. The mathematical formulation of the model

This model considers a supply chain system between manufacturer and customer for single type of prod-
ucts such as mobiles, in which the qualities of the production and inspection process are not perfect. In this
manufacturing system, it is considered that production, inspections and reworked processes are performed si-
multaneously. The manufacturer starts production at a rate of P from the beginning and it continues upto the
end of the production run, t1. During the whole production period all produced items are inspected at the rate
of P . Initially, the production system starts from “in-control” state and continues to any random time, τ . After
this time “in-control” state shifts to “out-of-control” state and it stays until the end of the production-run time,
t1. According to assumption (iv), the probability of the number of defective items in “in-control” state is less
than the probability of the number of defective items in “out-of-control” state.

Further, since the inspection process is not perfect, hence it generates both Type-I and Type-II inspection
errors. Due to Type-I error there is possibilities of some non-defective items to be considered as defective items
of amount m1(1 − θ1)P in “in-control” state and m1(1 − θ2)P in “out-of-control” state. On the other hand,
it classifies some defective items as non-defective items of amount m2θ1P in “in-control” state and m2θ2P in
“out-of-control” state. Here for sorting the items, an inspection cost per unit (csr) has been considered. After
the inspection of the produced product, some portion (δ) of defective items are send in rework cell to convert
it into non-defective item as fixed cost rc per item. Then all confirming items are sent to the market within
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Figure 1. Relationship among production, inspection, selling and rework processes.

warranty period tw. Figure 1 shows the relationship among production, inspection, rework processes and selling.
The manufacturer fulfills the customer demand rate (D) continuously according to the assumption (ix) until
the end of business cycle time T . Due to the position of random time τ for which the production system goes
from “in-control” state to “out-of-control” state, the model has two different cases such as Case I: 0 < τ < t1;
and Case II: t1 ≤ τ <∞; which are discussed as follows.

Case I: When 0 < τ < t1 i.e., the “out-of-control” state to be occurred during the
production-run time

In this case, the production period [0, t1] can be divided into two sub-intervals such as [0, τ ] and [τ, t1].
During the time interval [0, τ ], the production process is in “in-control” state and in [τ, t1] the process is in
“out-of-control” state. Through-out the time interval [0, τ ], the amount of non-defective items, defective items
and reworked items are (1 − θ1)Pτ , θ1Pτ and δθ1Pτ respectively. Also on [τ, t1], the amount of non-defective
items, defective items and reworked items are (1− θ2)P (t1 − τ), θ2P (t1 − τ) and δθ2P (t1 − τ) respectively.

During the inspection period [0, τ ], the inspectors accept defective items the amount of θ1Pτ in which
the amount of falsely accepted defective items and falsely rejected non-defective items are m2θ1Pτ and (1 −
γ)m1(1 − θ1)Pτ respectively. Also, the inspection period [τ, t1], inspectors accept the defective items of the
amount θ2P (t1 − τ) in which the amount of falsely accepted defective items and falsely reject amount of non-
defective items are m2θ2P (t1 − τ) and (1− γ)m1(1− θ2)P (t1 − τ) respectively (Fig. 2).

During the period [0, t1], the inventory level increases due to excess production after fulfill the customer
demand upto time t = t1 at which the inventory level reaches at maximum. Therefor the behavior of the
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Figure 2. Graphical representation of inventory of selling item.

inventory level during [0, τ ] and [τ, t1] respectively are given by

I1(t) = [(1−m1)(1− θ1)P + γm1(1− θ1)P + δ(1−m2)θ1P +m2θ1P −D]t, 0 ≤ t ≤ τ
= [{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P − (D0 + ρtw)ekη]t, 0 ≤ t ≤ τ

I2(t) = [(1−m1)(1− θ2)P + γm1(1− θ2)P + δ(1−m2)θ2P +m2θ2P −D](t− τ) + I1(τ)τ ≤ t ≤ t1
= [{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P − (D0 + ρtw)ekη](t− τ)

+ [{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P − (D0 + ρtw)ekη]τ, τ ≤ t ≤ t1.

Then during the period [t1, T ] the inventory level decline due to meeting customer demand and it reaches
zero at T . Therefor the behavior of the inventory level during [t1, T ] is given by

I3(t) = D(T − t), t1 ≤ t ≤ T
= (D0 + ρtw)(T − t), t1 ≤ t ≤ T.

Lemma 3.1. When 0 < τ ≤ t1, in a manufacturing system the business period (T ) must satisfy the following
relation in terms of production rate (P ), demand rate (D) warranty period (tw) and production period (t1)

T =
1

(D0 + ρtw)

[{
{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P + (D0 + ρtw)(1− ekη)

}
t1

+
{
{1− (1− γ)m1}+ {1− (1− δ)(1−m2)}

}
(θ2 − θ1)Pτ

]
.

Proof. Satisfying the continuity condition of I2(t) and I3(t) at t = t1 a relation is obtain following

[{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P − (D0 + ρtw)ekη](t1 − τ)

+ [{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P − (D0 + ρtw)ekη]τ = (D0 + ρtw)(T − t1)

i.e., [{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P − (D0 + ρtw)ekη]t1
+ [{1− (1− γ)m1}+ {1− (1− δ)(1−m2)}](θ2 − θ1)Pτ = (D0 + ρtw)(T − t1)
i.e., (D0 + ρtw)T = [{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P
+ (D0 + ρtw)(1− ekη)]t1 + [{1− (1− γ)m1}+ {1− (1− δ)(1−m2)}](θ2 − θ1)Pτ
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i.e., T =
1

(D0 + ρtw)

[{
{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P

+ (D0 + ρtw)(1− ekη)
}
t1 +

{
{1− (1− γ)m1}+ {1− (1− δ)(1−m2)}

}
(θ2 − θ1)Pτ

]
.

Now, the proof is complete. �

Now, we derive the holding cost, manufacturing cost, rework cost, setup cost, inspection cost, return cost,
penalty cost, development cost and warranty cost in one cycle as follows.

Holding cost. During the period [0, T ], the holding cost is given by

HC = hc

[ ∫ τ

0

I1(t)dt+
∫ t1

τ

I2(t)dt+
∫ T

t1

I3(t)dt
]

=
hc
2

[{
{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P

}
(2t1τ − τ2)

+
{
{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P

}
(t1 − τ)2

− (D0 + ρtw)ekηt21 + (D0 + ρtw)(T − t1)2
]
.

Manufacturing, inspection and reworked cost. During the period [0, t1], total manufacturing, inspection
and reworked cost is given by PC = (cp + cs)Pt1 + crδ(1−m2){θ1Pτ + θ2P (t1 − τ)}.

Setup cost = A0 +
K

Pt1
·

Return and penalty cost. The return cost including communication and reverse logistics per unit (ct), and
penalty cost per unit (cl), due to inspection errors during the period [0, T ] is given by RC = (ct+ cl)m2{θ1Pτ +
θ2P (t1 − τ)}.

Inspection error cost (or misclassification cost). During the period [0, t1], inspectors accept the amount
of θ1Pt1 defective items in which falsely accepted amount of defective items and falsely reject amount of non-
defective items are m2{θ1Pτ + θ2P (t1 − τ)} and m1(1− γ){(1− θ1)Pτ + (1− θ2)P (t1 − τ)} respectively.

Therefore the inspection error cost is given by, IEC = s(1− γ)m1{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}.

Development cost. During the period [0, t1], the development cost is given by

cv =
[∫ τ

0

B0dt+
∫ t1

τ

{
B0 +B1(t− τ)ek

υmax−υ
υ−υmin

}
dt
]

= B0t1 +
B1

2
(t1 − τ)2ek1

υmax−υ
υ−υmin .

Revenue from serviceable items. During the period [0, T ], the amount of serviceable items (i.e., falsely
accepted defective and successfully accepted non-defective items) is [(1−m1){(1− θ1)Pτ + (1− θ2)P (t1− τ)}+
m2{θ1Pτ + θ2P (t1 − τ)}] at a unit selling price of s, so the sales revenue is s[(1 − m1){(1 − θ1)Pτ + (1 −
θ2)P (t1− τ)}+m2{θ1Pτ + θ2P (t1− τ)}]. Again, the amount of defective items is returned from the customers’
due to Type-II inspection errors is m2{θ1Pτ + θ2P (t1 − τ)} for refunds at its full unit price s or replace by
non-defective items, it incurs revenue loss which is sm2{θ1Pτ + θ2P (t1 − τ)}. Further, the amount of returned
non-defective items from rework cell due to inspection errors is m1γ{(1 − θ1)Pτ + (1 − θ2)P (t1 − τ)} and
the manufacturer obtained sales revenue sm1γ{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}. Also the amount of reworked
serviceable items is δ(1−m2){θ1Pτ +θ2P (t1−τ)} at the same unit selling price of s and obtained sales revenue
sδ(1−m2){θ1Pτ + θ2P (t1 − τ)}. Thus, the total sales revenues during the interval [0, T ] is given by

R = s[{1− (1− γ)m1}{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}+ {δ + (1− δ)m2}{θ1Pτ + θ2P (t1 − τ)}].
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The warranty cost. During the period [0, T ], the warranty cost is given by

WC = cw[{1− (1− γ)m1}{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}+ {δ + (1− δ)m2}{θ1Pτ + θ2P (t1 − τ)}].

Therefore, the profit of the manufacturer in case I is given by

π1(t1, tw) = (s− cw)[{1− (1− γ)m1}{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}+ {δ + (1− δ)m2}
× {θ1Pτ + θ2P (t1 − τ)}]− [(cp + cs)Pt1 + crδ(1−m2){θ1Pτ + θ2P (t1 − τ)}]

− hc
2

[{
{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P

}
(2t1τ − τ2)

+
{
{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P

}
(t1 − τ)2

− (D0 + ρtw)ekηt21 + (D0 + ρtw)(T − t1)2
]
−
(
A0 +

K

Pt1

)
− (ct + cl)m2{θ1Pτ + θ2P (t1 − τ)} −B0t1 −

B1

2
(t1 − τ)2ek1

υmax−υ
υ−υmin .

The expected profit of the manufacturer in case I is given by

E[π1(t1, tw)] = (s− cw)
[
{1− E[m1(1− γ)]}{(1− θ1)PE[τ ] + (1− θ2)PE[(t1 − τ)]}

+ E[{m2 + δ(1−m2)}]{θ1PE[τ ] + θ2PE[(t1 − τ)]}
]
−
[
(cp + cs)Pt1

+ crE[δ(1−m2)]{θ1PE[τ ] + θ2PE[(t1 − τ)]}
]
− hc

2

[{
{1− E[m1(1− γ)]}

× (1− θ1)P + {1− E[(1− δ)(1−m2)]}θ1P
}

(2t1E[τ ]− E[τ2])

+
{
{1− E[(1− γ)m1]}(1− θ2)P + {1− E[(1− δ)(1−m2)]}θ2P

}
E[(t1 − τ)2]

+
{

(D0 + ρtw)(T − t1)2 − (D0 + ρtw)ekηt21
}∫ t1

0

f(τ) dτ
]
−B0t1

∫ t1

0

f(τ) dτ

− (ct + cl)E[m2]{θ1PE[τ ] + θ2PE[(t1 − τ)]} −
(
A0 +

K

Pt1

)∫ t1

0

f(τ) dτ

− B1

2
e
k υmax−υ
υ−υmin

∫ t1

0

(t1 − τ)2f(τ) dτ

= (s− cw)
[
{1− E[m1(1− γ)]}

{
(1− θ1)Pλt21 + (1− θ2)P

λt21
2

}
+ E[{m2 + δ(1−m2)}]

×
{
θ1Pλt

2
1 + θ2P

λt21
2

}]
−
[
(cp + cs)Pt1 + crE[δ(1−m2)]

{
θ1Pλt

2
1 + θ2P

λt21
2

}]
− hc

2

[{
{1− E[m1(1− γ)]}(1− θ1)P + {1− E[(1− δ)(1−m2)]}θ1P

}
(2λt31 −

1
2
λ2t41)

+
{
{1− E[(1− γ)m1]}(1− θ2)P + {1− E[(1− δ)(1−m2)]}θ2P

}1
3
λt31

+
{

(D0 + ρtw)(T − t1)2 − (D0 + ρtw)ekη
}
λt1

]
−
(
A0 +

K

Pt1

)
λt1

− (ct + cl)E[m2]
{
θ1Pλt

2
1 + θ2P

λt21
2

}
−B0λt

2
1 −

B1λt
3
1

6
e
k1

υmax−υ
υ−υmin .

See appendix, approximating the function e−λt1 for its expansion.
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Figure 3. Graphical representation of inventory model of perfect quality item.

Case II: When τ ≥ t1, the “out-of-control” state not to be occurred in the production-run
time

In this case, the whole production period [0, t1] is “in-control” state. During the production period [0, t1], the
amount of non-defective items, defective items and reworked items are (1−θ1)Pt1, θ1Pt1 and δθ1Pt1 respectively.
During the inspection period [0, t1], the inspectors accept defective items of amount θ1Pt1 in which the amount
of falsely accepted defective items and falsely rejected non-defective items are m2θ1Pt1 and (1−γ)m1(1−θ1)Pt1
respectively (Fig. 3).

During the period [0, t1], the inventory level increases due to production after fulfill the customer demand
upto time t = t1 at which the inventory level reaches at maximum. Therefore the behavior of the inventory level
during the interval [0, t1] is given by

I1(t) = [(1−m1)(1− θ1)P + γm1(1− θ1)P + δ(1−m2)θ1P +m2θ1P −D] t, 0 ≤ t ≤ t1
=
[
{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P − (D0 + ρtw)ekη

]
t, 0 ≤ t ≤ t1.

Then during the period [t1, T ], the inventory level declines due to meet the customer demand and it reaches
zero at T . Therefore the behavior of the inventory level during the interval [t1, T ] is given by

I2(t) = D(T − t), t1 ≤ t ≤ T
= (D0 + ρtw)(T − t), t1 ≤ t ≤ T.

Lemma 3.2. When 0 < τ < t1, in a manufacturing system the business period (T ) must satisfy the following
relation in terms of production rate (P ), demand rate (D) warranty period (tw) and production period (t1) is
given by

T =
1

(D0 + ρtw)
[{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P + (D0 + ρtw)(1− ekη)]t1.

Proof. Satisfying the continuity condition of I1(t) and I2(t) at t = t1 a relation is obtain following

[{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P − (D0 + ρtw)ekη]t1 = (D0 + ρtw)(T − t1)

i.e., T =
1

(D0 + ρtw)
[
{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P + (D0 + ρtw)(1− ekη)

]
t1.

Now, the proof is complete. �
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Now, we derive the holding cost, manufacturing cost, rework cost, inspection cost, setup cost, return cost,
penalty cost, development cost and warranty cost in one cycle as follows.

Holding cost. During the period [0, T ], the holding cost is given by

HC = hc

[∫ t1

0

I1(t)dt+
∫ T

t1

I2(t)dt

]

=
hc
2

[{
{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P

}
t21 + (D0 + ρtw)(T 2 − 2t1T )

]
.

Manufacturing, inspection and rework cost. During the period [0, t1], total manufacturing, inspection and
reworked cost is given by PC = {cp + cs + crδ(1−m2)θ1}Pt1.

Setup cost = A0 +
K

Pt1
·

Return and penalty cost. The return cost including communication and reverse logistics per unit (Ct), and
penalty cost per unit (cl), due to inspection errors during [0, T ] is given by RC = (ct + cl)m2θ1Pt1.

Inspection error cost (or misclassification cost). During the period [0, t1], inspectors accepts the amount
of defective items θ1Pt1 in which falsely accepted amount of defective items and falsely reject amount of non-
defective items are m2θ1Pt1 and m1(1− θ1)Pt1 respectively. Therefore the inspection error cost is given by,
IEC = s(1− γ)m1(1− γ)(1− θ1)Pt1.

Development cost. During the period [0, t1], the development cost is given by

cv =
∫ t1

0

B0dt = B0t1.

Revenue from serviceable items. During the period [0, T ], the amount of serviceable items (i.e., falsely
accepted defective and successfully accepted non-defective items) is [(1−m1)(1− θ1)Pt1 +m2θ1Pt1] at a unit
selling price of s, so the sales revenue is s[(1−m1)(1− θ1)Pt1 +m2θ1Pt1]. Again, amount of defective items to
be returned from the customers’ due to Type-II inspection errors is m2θ1Pt1 and refunds at its full unit price
s or replace by non-defective items, it incurs revenue loss which is sm2θ1Pt1. Further, the amount of returned
non-defective items from rework cell due to inspection error is m1γ(1 − θ1)Pt1 and the manufacturer obtains
sales revenue sm1γ(1− θ1)Pt1. Also the amount of reworked serviceable items is δ(1−m2)θ1Pt1 which is sold
at the same unit selling price of s and obtains sales revenue sδ(1 −m2)θ1Pt1. Thus, the total sales revenues
during the interval [0, T ] is given by

R = s[{1− (1− γ)m1}(1− θ1)Pt1 + {m2 + δ(1−m2)}θ1Pt1].

Warranty cost. During the period [0, T ], the warranty cost is given by

WC = cw[{1− (1− γ)m1}(1− θ1)Pt1 + {m2 + δ(1−m2)}θ1Pt1].

Therefore, the profit of the manufacturer in case II is given by

π2(t1, tw) = (s− cw)[{1− (1− γ)m1}(1− θ1)Pt1 + {δ + (1− δ)m2}θ1Pt1]

− {cp + cs + crδ(1−m2)θ1}Pt1 −
hc
2

[{
{1− (1− γ)m1}(1− θ1)Pt1

+ {δ + (1− δ)m2}θ1Pt1 − (D0 + ρtw)ekη
}
t21 + (D0 + ρtw)(T − t1)2

]
−
(
A0 +

K

Pt1

)
− {(ct + cl)m2θ1Pt1 − s(1− γ)m1(1− θ1)Pt1} −B0t1.
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Therefore, the expected profit of the manufacturer in case II is given by

E[π2(t1, tw)] = (s− cw)
[
{1− E[m1(1− γ)](1− θ1)Pt1 + E[{δ + (1− δ)m2}]θ1Pt1

] ∫ ∞
t1

f(τ) dτ

− {cp + cs + crE[δ(1−m2)]θ1}Pt1
∫ ∞
t1

f(τ) dτ − hc
2

[{
E[{1− (1− γ)m1}](1− θ1)Pt1

+ E[{δ + (1− δ)m2}]θ1Pt1 − (D0 + ρtw)ekη
}
t21 + (D0 + ρtw)(T − t1)2

] ∫ ∞
t1

f(τ) dτ

−
[
{(ct + cl)E[m2]θ1Pt1 + crE[(1− δ)m1](1− θ1)Pt1}+

(
A0 +B0t1 +

K

Pt1

)]∫ ∞
t1

f(τ) dτ

= (s− cw)
[
{1− E[m1(1− γ)](1− θ1)Pt1 + E[{δ + (1− δ)m2}]θ1Pt1

]
(1− λt1)

− {cp + cs + crE[δ(1−m2)]θ1}Pt1(1− λt1)− hc
2

[{
E[{1− (1− γ)m1}](1− θ1)Pt1

+ E[{δ + (1− δ)m2}]θ1Pt1 − (D0 + ρtw)ekη
}
t21 + (D0 + ρtw)(T − t1)2

]
(1− λt1)

−
[
{(ct + cl)E[m2]θ1Pt1 + crE[(1− δ)m1](1− θ1)Pt1}+

(
A0 +B0t1 +

K

Pt1

)]
(1− λt1).

See appendix, approximating the function e−λt1 of its expansion.

3.1. Case I + Case II: Total expected profit during whole business period [0, T ]

Now combining Case I and Case II, the expected total profit is given by

E[π(t1, tw)] = (s− cw)
[
{1− E[m1(1− γ)]}

{
(1− θ1)Pt1 + (1− θ2)P

λt21
2

}
+ E[m2 + δ(1−m2)]

×
{
θ1Pt1 + θ2P

λt21
2

}]
−
[
(cp + cs)Pt1 + crE[δ(1−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]
− hc

2

[
{E[1− (1− γ)m1](1− θ1)P + E[δ + (1− δ)m2]θ1P}

(
t21 + λt31 −

λ2t41
2

)
+

1
3

{
E[1− (1− γ)m1](1− θ2)P + E[δ + (1− δ)m2]θ2P

}
λt31 − (D0 + ρtw)ekηt21

+ (D0 + ρtw)(T − t1)2
]
− (ct + cl)E[m2]

{
θ1Pt1 + θ2P

λt21
2

}
− crE[(1− δ)m1]

×
{

(1− θ1)Pt1 + (1− θ2)P
λt21
2

}
−B0t1 −

B1λt
3
1

6
e
k1

υmax−υ
υ−υmin −

(
A0 +

K

Pt1

)
·

Lemma 3.3. In the manufacturing system, the business period (T ) must satisfy the following relation in terms
of production rate (P ), demand rate (D), warranty period (tw) and production period (t1) as follows

T =
1

(D0 + ρtw)

[{
{1− E[(1− γ)m1]}(1− θ1)P + {1− E[(1− δ)(1−m2)]}{2(θ2 − θ1)λt1

+ θ1}P + (D0 + ρtw)(1− ekη)
}
t1

]
.
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Proof. From Lemma 3.1, the expected value of T in case I (0 < τ ≤ t1) is given by∫ t1

0

T f(τ) dτ =
1

(D0 + ρtw)

[{
{1− E[(1− γ)m1]}(1− θ2)P + {1− E[(1− δ)(1−m2)]}θ2P

+ (D0 + ρtw)(1− ekη)
}
t1

∫ t1

0

f(τ) dτ +
{
{1− E[](1− γ)m1]}

+ {1− E[(1− δ)(1−m2)]}
}

(θ2 − θ1)P
∫ t1

0

τ f(τ) dτ
]
. (3.1)

Again, from Lemma 3.2, the expected value of T in case I (t1 < τ ≤ ∞) is given by∫ ∞
t1

T f(τ) dτ =
1

(D0 + ρtw)
[{1− E[(1− γ)m1]}(1− θ1)P + {1− E[(1− δ)(1−m2)]}θ1P

+ (D0 + ρtw)(1− ekη)]t1
∫ ∞
t1

f(τ) dτ. (3.2)

Combining (3.1) and (3.2), we have

T =
1

(D0 + ρtw)

[{
{1− E[(1− γ)m1]}(1− θ1)P + {1− E[(1− δ)(1−m2)]}{2(θ2 − θ1)λt1

+ θ1}P + (D0 + ρtw)(1− ekη)
}
t1

]
.

Now, the proof is complete. �

Hence, the average expected profit is given by

AEP(t1, tw) =
E[π(t1, tw)]

T

=
(s− a− btw)

T

[
{1− E[m1(1− γ)]}

{
(1− θ1)Pt1 + (1− θ2)P

λt21
2

}
+ E[m2 + δ(1−m2)]

×
{
θ1Pt1 + θ2P

λt21
2

}]
− 1
T

[
(cp + cs)Pt1 + crE[δ(1−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]
− hc

2T

[
{E[1− (1− γ)m1](1− θ1)P + E[δ + (1− δ)m2]θ1P}

(
t21 + λt31 −

λ2t41
2

)
+

1
3

{
E[1− (1− γ)m1](1− θ2)P + E[δ + (1− δ)m2]θ2P

}
λt31 − (D0 + ρtw)ekηt21

+ (D0 + ρtw)(T − t1)2
]
− 1
T

(ct + cl)E[m2]
{
θ1Pt1 + θ2P

λt21
2

}
− cr
T
E[(1− δ)m1]

×
{

(1− θ1)Pt1 + (1− θ2)P
λt21
2

}
− 1
T

[
B0t1 +

B1λt
3
1

6
e
k1

υmax−υ
υ−υmin +

(
A0 +

K

Pt1

)]
. (3.3)

Now the average expected profit (AEP) is a function of two independent variables t1 and tw.
Here it is considered that ∂

∂t1
(AEP(t1, tw)) = F (t1, tw) (see appendix) and ∂

∂tw
(AEP(t1, tw)) = G(t1, tw) (see

appendix). Due to complexity of the equations, F (t1, tw) = 0 and G(t1, tw) = 0, it is not possible to show the
existence of the solution analytically. Now it is supposed that there exists at least one positive point (tr1, t

r
w) for

which F (tr1, t
r
w) = 0 and G(tr1, t

r
w) = 0 for some parametric values involved in the system.

Let at (tr1, t
r
w), ∂F

∂t1
= ∆1, ∂G

∂tw
= ∆2 and ∂F

∂tw
= ∆3.

Lemma 3.4. The maximum average profit AEP(tr1, t
r
w) exits if ∆1∆2 > ∆2

3, ∆1 < 0 and ∆2 < 0.
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Proof. Now, from the optimization of calculus, it is known that a function of two variables, φ(u, v) is maximum at
the stationary point (a, b) if ∂2

∂u2 (φ(a, b)) ∂
2

∂v2 (φ(a, b))-{ ∂2

∂u∂v (φ(a, b))}2 > 0, ∂2

∂u2 (φ(a, b)) < 0 and ∂2

∂v2 (φ(a, b)) < 0.
The 1st condition for the existence of maximum value of AEP(t1, tw) at the point (tr1, t

r
w) is

∂2

∂t21
(AEP(tr1, t

r
w)) ∂2

∂t2w
(AEP(tr1, t

r
w))-{ ∂2

∂t1∂tw
(AEP(tr1, t

r
w))}2 > 0.

i.e., ∂
∂t1

(F (tr1, t
r
w)) ∂

∂tw
(G(tr1, t

r
w))-{ ∂

∂tw
(F (tr1, t

r
w))}2 > 0, since ∂

∂t1
(AEP(t1, tw)) = F (t1, tw) and

∂
∂tw

(AEP(t1, tw)) = G(t1, tw).
i.e., ∆1∆2 > ∆2

3, since ∂
∂t1
F (tr1, t

r
w) = ∆1, ∂

∂tw
G(tr1, t

r
w) = ∆2 and ∂

∂tw
F (tr1, t

r
w) = ∆3.

The 2nd condition for the existence of maximum value of AEP(t1, tw) at the point (tr1, t
r
w) is

∂2

∂t21
(AEP(tr1, t

r
w)) < 0. i.e., ∂

∂t1
(F (tr1, t

r
w)) < 0, since ∂

∂t1
(AEP(t1, tw)) = F (t1, tw).

i.e., ∆1 < 0, since ∂
∂t1
F (tr1, t

r
w) = ∆1.

The 3rd condition for the existence of maximum value of AEP(t1, tw) at the point (tr1, t
r
w) is

∂2

∂t2w
(AEP(tr1, t

r
w)) < 0. i.e., ∂

∂tw
(G(tr1, t

r
w)) < 0, since ∂

∂tw
(AEP(t1, tw)) = G(t1, tw).

i.e., ∆2 < 0, since ∂
∂tw

G(tr1, t
r
w) = ∆2. Now, the proof is complete. �

Lemma 3.5. There does not exist the maximum average profit AEP(tr1, t
r
w) if ∆1 > 0 and ∆2 > 0.

Lemma 3.6. There does not exist the maximum average profit AEP(tr1, t
r
w) if ∆1∆2 −∆2

3 < 0.

4. Solution methodology

From equation (3.3) it is seen that in the proposed model, the objective function AEP(t1, tw) is highly
nonlinear. Here t1 and tw are two decision variables. Also T is a function of t1 and tw obtained according to
Lemma 3.3. Since the objective function is highly nonlinear hence to get the optimal solution of the proposed
model the following algorithms have been developed.

Algorithm 4.1. For a fixed x, suppose x = x0, the value of y from ψ(x, y) = 0 can be obtained as follows:

Step 1: For x = x0, compute ψ(x0, y) = 0.
Step 2: Select (y1, y2) such that ψ(x0, y1)ψ(x0, y2) < 0. Then by Roll’s theorem there exist a root of ψ(x0, y) = 0,

between y1 and y2.
Step 3: Calculate m = (y1+y2)

2 , be the midpoint of the interval (y1, y2).
Step 4: Compute the signs of ψ(x0, y1), ψ(x0,m), and ψ(x0, y2).
Step 5: If ψ(x0, y1)ψ(x0,m) < 0, then a root of ψ(x0, y) = 0 lies between y1 and m. In this case, replace y2 by

m. Otherwise, a root of ψ(x0, y) = 0 lies between m and y2, then replace y1 by m.
Step 6: Repeat steps 3 through 5 until |y1 − y2| < 10−ε where ε is a tolerance limit.
Step 7: Then the root of ψ(x0, y) = 0 is m such that m = (y1+y2)

2 .

Algorithm 4.2. Since there is no possibility to get the general explicit solution due to absence of linearity of
the profit function, to get the maximum profit the following procedure has been devised according to Lemma 3.4
and Algorithm 4.1. Here the optimal values of T , t1, tw and AEP(t1, tw) are denoted by T ∗, t∗1, t∗w and AEP∗

respectively.

Step 1: Initialize all parameters associated with the objective function AEP(t1, tw).
Step 2: Set an interval (t10, t11) where t10 ∈ (0, T0) and t11 ∈ (0, T0). Here tw ≤ T0 where T0 also is initialized.
Step 3: Compute tw0F , tw1F , tw0G and tw1G for tw from F (t10, tw) = 0, F (t11, tw) = 0, G(t10, tw) = 0 and

G(t11, tw) = 0 respectively by Algorithm 4.1.
Step 4: Compute 4t10 = tw0F − tw0G and 4t11 = tw1F − tw1G.
Step 5: If 4t104t11 < 0, i.e., the signs of 4t10 and 4t11 are opposite, then compute t1m = (t10+t11)

2 .
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Step 6: Compute tw1mF and tw1mG for tw from F (t1m, tw) = 0 and G(t1m, tw) = 0 respectively by Algo-
rithm 4.1.

Step 7: Calculate 4t1m = 4tw1mF −4tw1mG .
Step 8: Compare 4t1m with 4t10 . If 4t104t1m < 0, i.e., the signs of 4t10 and 4t1m are opposite, then replace

t11 by t1m. Otherwise replace t10 by t1m.
Step 9: Repeat steps 5 through 8 until the absolute values of (t10 − t1m) or (4t10 −4t1m) or (4t10 −4t1m)

are within the tolerance limits.
Step 10: The root of F (t1, tw) = 0 and G(t1, tw) = 0 is (t1r, twr) where t1r = t1m and twr = tw0F+tw1F

2 or
tw0G+tw1G

2 .
Step 11: Compute 41, 42 and 43 at the point (t1r, twr) where ∂F

∂t1
= ∆1, ∂G

∂tw
= ∆2 and ∂F

∂tw
= ∆3.

Step 12: If ∆1 < 0, ∆2 < 0 and ∆1∆2 > ∆2
3, then according Lemma 3.4 then (t1r, twr) be the optimal solution.

So t∗1 = t1
r, t∗w = tw

r and calculate T ∗ by Lemma 3.3. Also calculate AEP∗ = AEP(t∗1, t
∗
w).

Step 13: If ∆1 > 0, ∆2 > 0 by Lemma 3.5, or ∆1∆2 − ∆2
3 < 0 by Lemma 3.6, then (t1r, twr) is not optimal

solution. In this case, goto step 1 and change some parametric values.
Step 14: Print the optimal values t∗1, t∗w, T ∗ and AEP∗.

5. Numerical analysis

Here we considered a production inventory system that produces defective and non-defective items as well as
continuously fills up the customer demand. The inspection process that screens out the defective items is also
imperfect. After a random time at which a the production system goes from “in-control” to “out-of-control” in a
cycle has been considered random which is exponentially distributed with mean 1

λ . Similarly, the parameters for
inspection errors and rework rate have been considered as uniform distribution. The probability density functions
of the inspection errors and rewoke rate are mostly taken from the history of a machine and workers. Using the
above mentioned solution procedure (Section 4), the optimum values of t1, tw, T and the average expected total
profit, AEP(t1, tw) have been calculated for the following values of the parameters of the illustrated model:
P = 100 unit/unit time,D0 = 45 unit per unit time, θ1 = 0.05, θ2 = 0.12, s0 = $95/unit,λ = 0.01, cp =

$25/unit, csr = $3 /unit, cr = $15 /unit, (ct + cl) = $5.5/unit,hc = $1.5 /unit/unit time, a = $15, vmax =
10, vmin = 3, v = 8,B1 = $58,B0 = $45/unit time,A0 = $257, k = 1,K = 25.
The probability density functions of the inspection errors (m1 and m2), fraction of rejecting non-defective items
(γ) due to type I error and rewoke rate (δ) are considered as follows:

φ(m1) =
{

1
α , 0 ≤ m1 ≤ α
0, otherwise φ(m2) =

{
1
β , 0 ≤ m2 ≤ β
0, otherwise

φ(γ) =
{

1
ξ , 0 ≤ γ ≤ ξ
0, otherwise

φ(δ) =
{

1
µ , 0 ≤ δ ≤ µ

0, otherwise
.

Now we calculate E[m2], E[δ], E[(1− γ)m1], E[δ(1−m2)], and E[(1− δ)(1−m2)] and the values are given by

E[m2] =
∫ β

0

m2φ(m2) dδ =
β

2
, E[δ] =

∫ µ

0

δφ(δ) dδ =
µ

2

E[(1− γ)m1] =
∫ α

0

m1φ(m1) dm1

∫ ξ

0

(1− γ)φ(γ) dγ =
α

2

(
1− ξ

2

)
E[δ(1−m2)] =

∫ µ

0

δφ(δ) dδ
∫ α

0

(1−m2)φ(m2) dm1 =
µ

2

(
1− β

2

)
E[(1− δ)(1−m2)] =

∫ α

0

(1− δ)φ(δ) dδ
∫ β

0

(1−m2)φ(m2) dm1 = (1− µ

2
)
(

1− β

2

)
·
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Figure 4. Expected average profit AEP(t1, tw) versus production period (t1) and warranty (tw).

Table 1. Optimal solution of the illustrated model with the effect of discount on selling price
and warranty period on demand.

Production period Warranty period Business cycle period Expected average profit
(t∗1 umit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

Optimal value 2.59 7.79 4.93 1706.15

Notes. η = 0.10, ρ = 0.50, b0 = 0.4, k = 0.80.

Table 2. Optimal solution of the illustrated model with the effect of only warranty period on
demand.

Production period Warranty period Business cycle period Expected average profit
(t∗1 umit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

Optimal value 2.26 5.17 4.61 1624.77

Notes. η = 0.10, k = 0.80.

Substituting the above expressions in the profit function in equation (3.3), we obtain the optimal values of
the expected average profit when α = 0.04, β = 0.06, ξ = 0.0004 and µ = 0.60.

For this data set, Figure 4 shows the average expected profit as a function of t1 and tw. From this figure it is
guarantied that the average expected profit is concave. So there exist unique solution of (t1, tw) that maximize
the average expected profit AEP(t1, tw). The optimal solutions for the given parametric set with different type
of demand rate are represented by following Tables 1–3.

The change in the values of the system parameters can take place an important role in decision-making about
the system due to uncertainties and dynamic market conditions. In order to examine the implications of these
changes in the values of parameters, the sensitivity analysis will be of great help in a decision-making process.
Here, the sensitivity analysis with respect to the parameters such as α, β, µ, η, k, ρ, λ, and b have been carried
out. The results of the sensitivity analysis are shown in Tables 4–10.
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Table 3. Optimal solution of the illustrated model with the effect of only discount on selling
price on demand.

Production period Warranty period Business cycle period Expected average profit
(t∗1 umit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

Optimal value 2.28 − 4.73 1694.55

Notes. b0 = 0.4, ρ = 0.50.

Table 4. Sensitivity analysis with respect to the probability of Type I error (α).

Parameter Production period Warranty period Business cycle period Expected average profit
(α) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

0.04 2.59 7.78 4.93 1706.15
0.08 2.66 6.89 5.01 1669.81
0.12 2.72 5.95 5.09 1632.42
0.16 2.80 4.98 5.18 1593.94
0.20 2.87 3.97 5.27 1554.34

Table 5. Sensitivity analysis with respect to the probability of Type II error (β).

Parameter Production period Warranty period Business cycle period Expected average profit
(β) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

0.06 2.59 7.78 4.93 1706.15
0.12 2.56 7.39 4.89 1694.23
0.18 2.53 7.01 4.86 1682.38
0.24 2.50 6.63 4.83 1670.60
0.30 2.48 6.25 4.80 1658.89

– From Table 4, we see that the warranty period (t∗w), the business cycle period (T ∗) and the expected average
profit (AEP∗(t∗1, t

∗
w)) decrease with the increase of α i.e., probability of a Type I error. But, the production

period (t∗1) increases when α increases.

– From Table 5, we see that the production period (t∗1), warranty period (t∗w), the business cycle period (T ∗)
and the expected average profit (AEP∗(t∗1, t

∗
w)) decrease with the increase of β i.e., probability of a Type II

error.

– From Table 6 it is observed that when µ and cr increases simultaneously, the production period (t∗1), warranty
period (t∗w) and the expected average profit (AEP∗(t∗1, t

∗
w)) initially increase, then decrease due to the rapidly

increase of average rework cost for defective item.

– Table 7 signifies that when k is fixed, the production period (t∗1),warranty period (t∗w), the business cycle
period (T ∗) and the expected average profit (AEP∗(t∗1, t

∗
w)) increase together due to the increase of discount

rate η.

– Table 8 shows that when η increases and k decreases simultaneously, the production period (t∗1),warranty
period (t∗w), the business cycle period (T ∗) and the average expected profit (AEP∗(t∗1, t

∗
w)) initially increase,

after that decrease.
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Table 6. Sensitivity analysis on the rework rate (µ) and reworked cost (cr) simultaneously.

Parameter Reworked Production period Warranty period Business cycle Expected average profit
(µ) cost (cr $) (t∗1 unit) (t∗w unit) time (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

0.45 11 2.56 7.81 4.90 1692.84
0.50 12 2.57 7.82 4.91 1697.85
0.55 13 2.58 7.83 4.92 1702.78
0.60 15 2.59 7.79 4.93 1706.15
0.65 20 2.58 7.61 4.92 1704.75
0.70 25 2.58 7.42 4.92 1702.96
0.75 28 2.58 7.22 4.92 1700.77

Table 7. Sensitivity analysis on different values of η with a fixed k = 0.8.

Parameter Production period Warranty period Business cycle period Expected average profit
(η) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

0.06 2.44 6.67 4.78 1671.61
0.08 2.51 7.22 4.85 1688.52
0.10 2.59 7.78 4.92 1706.15
0.12 2.68 8.38 5.01 1724.55
0.14 2.76 9.01 5.11 1743.78

Table 8. Sensitivity analysis with respect to η and k simultaneously.

Parameter Production period Warranty period Business cycle period Expected average profit
(η and k) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

η = 0.05, k = 1.2 2.50 7.08 4.83 1684.23
η = 0.07, k = 1.0 2.54 7.43 4.88 1695.04
η = 0.10, k = 0.8 2.59 7.78 4.92 1706.15
η = 0.12, k = 0.6 2.55 7.50 4.88 1697.24
η = 0.14, k = 0.4 2.47 6.94 4.81 1679.98

Table 9. Sensitivity analysis for different values of λ.

Parameter Production period Warranty period Business cycle period Expected average profit
(λ) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

0.005 2.26 7.01 4.32 1690.68
0.010 2.59 7.78 4.92 1706.15
0.015 3.10 8.87 5.84 1724.09
0.020 3.99 10.54 7.41 1745.99
0.025 5.73 13.48 10.40 1774.95

– Table 9 explores that when the value of λ increases, both the production period (t∗1) and warranty period (t∗w)
increase as well as the corresponding business cycle period T ∗ and expected average profit (AEP∗(t∗1, t

∗
w))

also increase due to the increase of the “in-control” state.
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Table 10. Sensitivity analysis for different values of ρ.

Parameter Production period Warranty period Business cycle period Expected average profit
(ρ) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP∗(t∗1, t

∗
w) $)

0.45 2.36 2.38 4.77 1695.54
0.50 2.59 7.78 4.92 1706.15
0.55 2.87 12.34 5.14 1726.22
0.60 3.22 16.33 5.44 1753.88
0.65 3.71 19.96 5.91 1788.05

– Table 10 shows that when the value of ρ increases, all of the production period (t∗1), warranty period (t∗w) and
the business cycle period (T ∗) increases together. In this case it is also observed that the expected average
profit (AEP∗(t∗1, t

∗
w)) increases due to increase of the demand rate.

6. Managerial insights

From numerical analysis of the proposed model, the following managerial insights have been drawn.

(i) From Tables 1–3 it is concluded that the average expected profit is maximum when manufacturer gives both
effects such as (a) selling price discount, and (b) warranty period policy on the sale because of attraction of
customer. Practically this phenomena is observed in real business system. So this finding supports the real
case.

(ii) Again, from Tables 4 and 5 it is inferred that the expected average profit decreases as the probability of
a Type I and Type II error increases. This is because of (a) addition to the loss of incorrect rejection of a
non-defective item, and (b) return and penalty cost for a defective item to be sold as a non-defective item
which is returned from market. In reality, this can be seen in business system. So this finding also supports
the real case.

(iii) Table 6 shows that when the probability of reworked rate and average reworked cost simultaneously increase,
initially average expected profit increases, after that average expected profit decreases due to a minimum
rework cost for reworking some of the defective items and the rest portion of defective items, if reworked,
then the rework-cost will be huge. So any manufacturer company can find the optimal reworked rate from
this study. Practically, this phenomenon is observed in real business system. So the real situation is supports
by finding.

(iv) Table 8 shows that when selling price discount(η) increases and the corresponding effective parameter (k)
simultaneously decreases, initially the average expected profit increases, after that the average expected
profit decreases. Because at first selling price discount attracts more customers. As a result, the demand
rate increases. But later, though discount rate increases, the rate of demand does not increase as much as
in the initial stage due to market saturation. So from this study, any manufacturer company can find the
optimal selling price discount rate. Practically this phenomenon can be found in real business system. So
this finding supports the real example.

7. Practical implication

There are many practical implications of this proposed model. As for example, it is very practicable in the
manufacturing system for mobile phones. At the time of production, few defective units (like, scratch, disorder
shape, etc) are produced and then some of them get repaired to be sold at the market. Sometimes the company
gives a discount on selling price and increases the warranty period to increase selling rate. The decision manager
of the company decides the maximization of the profit function, considering the warranty period of each product
and the length of the production cycle. For such a real life problem, the present model can be implemented.
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From this study, some managerial insights have been drawn which are very useful for the decision maker of any
newly established mobile company.

8. Conclusion and future research

In this paper, we have studied the combined effects of inspection errors and warranty policy in an imperfect
production system. Here for inspection errors, a newly proposed Type I error has been incorporated to get the
effect of profit function. Also warranty period and warranty cost both have been considered simultaneously. Here
we have demonstrated how warranty policy and discount on selling price can be effected in the market demand
of a manufacturing system. The key decisions are to determine the optimal production period and warranty
period to maximize the average expected profit for the manufacturer. To solve the objective function of our
proposed model, a computational algorithm has been developed to determine the optimal warranty period and
optimal production period as well as average expected profit.

From this study, for the practitioners it is recommended that (i) the discount on selling price at random does
not go in favor of profit. Actually, there exists an upper limit of discount for which profit goes to increase, and
(ii) products should be carefully inspected to increase the quality of the product in such a way that during
warranty period minimum number of sold items are returned from the retailer.

Limitations of this model are that (i) model should be related with imperfect production system, (ii) produced
items must be repairable, and (iii) items should be of electronics nature.

There are several interesting future extensions of this research work. First, we may study the effect of trade
credit dependent demand [28,32]. Second, we can extend the model to allow machine breakdown with shortages
[7,18]. Third, this model can be extended in a supply chain if it contains manufacture with imperfect production
[19]. Finally, we can study the effect of carbon emissions for a clean production system [16,34].

Appendix

(i)
∫ t1

0

f(τ) dτ = λ

∫ t1

0

e−λτ dτ = 1− e−λt1 = λt1,

approximating up to the second term of the expansion of e−λt1 .

(ii)
∫ ∞
t1

f(τ) dτ = λ

∫ ∞
t1

e−λτ dτ = e−λt1 = 1− λt1,

approximating up to the second term of the expansion of e−λt1 .

(iii)
∫ t1

0

τf(τ) dτ = λ

∫ t1

0

τe−λτ dτ =
1
λ
{1− e−λt1} − t1e−λt1 = λt21,

approximating up to the third term of the expansion of e−λt1 .

(iv)
∫ t1

0

(
t1 − τ

)
f(τ) dτ = λ

∫ t1

0

(
t1 − τ

)
e−λτ dτ = t1 −

1
λ

{
1− e−λt1

}
=

1
2
λt21,

approximating up to the third term of the expansion of e−λt1 .

(v)
∫ t1

0

τ2f(τ) dτ = λ

∫ t1

0

τ2e−λτ dτ = t21e
−λt1 − 2t1

λ
e−λt1 +

2
λ2
{1− e−λt1} =

1
2
λ2t41,
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approximating up to the third term of the expansion of e−λt1 .

(vi)
∫ t1

0

(
t1 − τ

)2

f(τ) dτ = λ

∫ t1

0

(
t1 − τ

)2

e−λτ dτ = t21 −
2t1
λ

+
2
λ2
{1− e−λt1} =

1
3
λt31,

approximating up to the fourth term of the expansion of e−λt1 .

(vii)
∫ t1

0

(
t1 − τ

)3

f(τ) dτ = λ

∫ t1

0

(
t1 − τ

)3

e−λτ dτ = t31 −
3
λ

[
t21 −

2t1
λ

+
2
{λ}2

{1− e−λt1}
]
,=

1
4
λt41,

using Appendix (iv) & approximating up to the fifth term of the expansion of e−λt1 .
By taking the first derivative of AEP[π(t1, tw)] with respect to t1 and tw, we have

∂

∂t1
{AEP(t1, tw)} =

(s− a− btw)
T

[
{1− E[m1(1− γ)]}{(1− θ1)P + (1− θ2)Pλt1}

+ E[m2 + δ(1−m2)]{θ1P + θ2Pλt1}
]
− 1
T

[
(cp + cs)P + crE[δ(1−m2)]{θ1P

+ θ2Pλt1}
]
− hc

2T

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(2t1 − 3λt21 + 2λ2t31)

+ 3{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt21 − 2(D0 + ρtw)(T − t1)
]

− 1
T

(ct + cl)E[m2]{θ1P + θ2Pλt1} −
cr
T
E[(1− δ)m1]{(1− θ1) + (1− θ2)λt1}P

− B0

T
− B1λt

2
1

2T
e
k υmax−υ
υ−υmin +

K

PTt21
− (s− a− btw)

T 2

[
{1− E[m1(1− γ)]}

×
{

(1− θ1)Pt1 + (1− θ2)P
λt21
2

}
+ E[m2 + δ(1−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]
∂T

∂t1

+
1
T 2

[
(cp + cs)Pt1 + crE[δ(1−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]
∂T

∂t1

+
hc

2T 2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}

(
t21 − λt31 +

λ2t41
2

)
+ {(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt31 + (D0 + ρtw)(T − t1)2

] ∂T
∂t1

+
1
T 2

(ct + cl)E[m2]
{
θ1Pt1 + θ2P

λt21
2

}
∂T

∂t1
+
cr
T 2
E[(1− δ)m1]

{
(1− θ1)Pt1

+ (1− θ2)P
λt21
2

}
∂T

∂t1
+
B1λt

3
1

6T 2

∂T

∂t1
e
k1

υmax−υ
υ−υmin +

1
T 2

(
A0 +B0t1 +

K

Pt1

)
∂T

∂t1

= F (t1, tw), say

∂

∂tw
{AEP(t1, tw)} = − b

T

[
{1− E[m1(1− γ)]}

{
(1− θ1)Pt1 + (1− θ2)P

λt21
2

}
+ E[m2 + δ(1−m2)]

×
{
θ1Pt1 + θ2P

λt21
2

}]
+
hc
2T

[
ρekη

(
t21 − λt31 +

λ2t41
2

)
+ ρekηλt31 − ρ(T − t1)2

]

− (s− a− btw)
T 2

[
{1− E[m1(1− γ)]}

{
(1− θ1)Pt1 + (1− θ2)P

λt21
2

}
+ E[m2
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+ δ(1−m2)]
{
θ1Pt1 + θ2P

λt21
2

}]
∂T

∂tw
+

1
T 2

[
(cp + cs)Pt1 + crE[δ(1−m2)]

{
θ1Pt1

+ θ2P
λt21
2

}]
∂T

∂tw
+

hc
2T 2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}

(
t21 − λt31 +

λ2t41
2

)

+ {(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt31 + (D0 + ρtw)(T − t1)2
]
∂T

∂tw

+
1
T 2

(ct + cl)E[m2]
{
θ1Pt1 + θ2P

λt21
2

}
∂T

∂tw
+
cr
T 2
E[(1− δ)m1]

{
(1− θ1)Pt1

+ (1− θ2)P
λt21
2

}
∂T

∂tw
+
B1λt

3
1

6T 2

∂T

∂tw
e
k1

υmax−υ
υ−υmin +

1
T 2

(
A0 +B0t1 +

K

Pt1

)
∂T

∂tw

= G(t1, tw), say.

Taking the second derivative of AEP[π(t1, tw)] with respect to tw and t1, we have

∂2

∂t2w
{AEP(t1, tw)} =

2b

T 2

[

{1− E[m1(1− γ)]}
{

(1− θ1)Pt1 + (1− θ2)P
λt21
2

}
+ E[m2 + δ(1−m2)]

×
{
θ1Pt1 + θ2P

λt21
2

}]
∂T

∂tw
+
hc
T 2

[
ρekη

(
t21 − λt31 +

λ2t41
2

)
+ ρekηλt31 − ρ(T − t1)2

]

+ (s− a− btw)

[

{1− E[m1(1− γ)]}
{

(1− θ1)Pt1 + (1− θ2)P
λt21
2

}
+ E[m2 + δ(1

−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]{
2

T 3

(
∂T

∂t1

)2

− 1

T 2

∂2T

∂t21

}

+

[

(cp + cs)Pt1 + crE[δ(1−m2)]

×
{
θ1Pt1 + θ2P

λt21
2

}]{
1

T 2

∂2T

∂t21
− 2

T 3

(
∂T

∂t1

)2
}

+
hc
2

[

{(1− θ1)P + E[δ]θ1P − (D0

+ ρtw)ekη}
(
t21 − λt31 +

λ2t41
2

)
+ {(1− θ2)P + E[δ]θ2P}λt31 + (D0 + ρtw){(T − t1)2

− ekηλt31}

]{
1

T 2

∂2T

∂t21
− 2

T 3

(
∂T

∂t1

)2
}

+

[

(ct + cl)E[m2]

{
θ1Pt1 + θ2P

λt21
2

}

+
cr
T 2
E[(1− δ)m1]

{
(1− θ1)Pt1 + (1− θ2)P

λt21
2

}]{
1

T 2

∂2T

∂t21
− 2

T 3

(
∂T

∂t1

)2
}

+
B1λt

3
1

6T 2

{∂2T

∂t21
− 2

T 3
(
∂T

∂t1
)2
}
e
k1
υmax−υ
υ−υmin +

(
A0 +B0t1 +

K

Pt1

){
1

T 2

∂2T

∂t21
− 2

T 3

(
∂T

∂t1

)2
}

∂2

∂t21
{AEP(t1, tw)} =

(s− a− btw)

T

[
{1− E[m1(1− γ)]}(1− θ2)Pλ+ E[m2 + δ(1−m2)]θ2Pλ

]

− cr
T
E[δ(1−m2)]θ2Pλ−

hc
2T

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}

× (2− 6λt1 + 6λ2t21) + 6{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt1 + 2(D0 + ρtw)
]

− 1

T
(ct + cl)E[m2]θ2Pλ−

cr
T
E[(1− δ)m1](1− θ2)Pλ+

B1λt
2
1

T
e
k1
υmax−υ
υ−υmin − 2K

PTt31

− 2(s− a− btw)

T 2

[
{1− E[m1(1− γ)]}{(1− θ1)P + (1− θ2)Pλt1}+ E[m2 + δ(1−m2)]
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× {θ1P + θ2Pλt1}
] ∂T
∂t1

+
2

T 2

[
(cp + cs)P + crE[δ(1−m2)]{θ1P + θ2Pλt1}

] ∂T
∂t1

+
hc
T 2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(2t1 − 3λt21 + 2λ2t31)

+ 3{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt21 − 2(D0 + ρtw)(T − t1)
] ∂T
∂t1

+
2

T 2
(ct + cl)E[m2]{θ1P + θ2Pλt1}

∂T

∂t1
+

2cr
T 2

E[(1− δ)m1]{(1− θ1)P

+ (1− θ2)Pλt1}
∂T

∂t1
+

2B0

T 2

∂T

∂t1
+
B1λt

2
1

2T 2

∂T

∂t1
e
k υmax−υ
υ−υmin +

2K

PT 2t21

∂T

∂t1

+ (s− a− btw)

[

{1− E[m1(1− γ)]}
{

(1− θ1)Pt1 + (1− θ2)P
λt21
2

}

+ E[m2 + δ(1−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]{
2

T 3

(
∂T

∂t1

)2

− 1

T 2

∂2T

∂t21

}

+

[
(cp + cs)Pt1 + crE[δ(1−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]{
1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}

+
hc
2

[{
(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη

}(
t21 − λt31 +

λ2t41
2

)

+ {(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt31 + (D0 + ρtw)(T − t1)2
]

×
{

1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}
+ (ct + cl)E[m2]

{
θ1Pt1 + θ2P

λt21
2

}
∂T

∂t1

{
1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}

+ crE[(1− δ)m1]

{
(1− θ1)Pt1 + (1− θ2)P

λt21
2

}{
1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}

+
B1λt

3
1

6

{
1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}
e
k1
υmax−υ
υ−υmin +

(
A0 +B0t1 +

K

Pt1

){
1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}

∂2

∂t1∂tw
{AEP(t1, tw)} = − b

T

[
{1− E[m1(1− γ)]}{(1− θ1)P + (1− θ2)Pλt1}+ E[m2 + δ(1−m2)]

× {θ1P + θ2Pλt1}
]

+
hc
2T

[
ρekη(2t1 + 2λ2t31) + 2ρ(T − t1)

]

+
b

T 2

[

{1− E[m1(1− γ)]}
{

(1− θ1)Pt1 + (1− θ2)P
λt21
2

}
+ E[m2 + δ(1−m2)]

×
{
θ1Pt1 + θ2P

λt21
2

}]
∂T

∂t1
− hc

2T 2

[
ρekη

(
t21 +

λ2t41
2

)
− ρ(T − t1)2

]
∂T

∂t1
− (s− a− btw)

T 2

×
[
{1− E[m1(1− γ)]}{(1− θ1)P + (1− θ2)Pλt1}+ E[m2 + δ(1−m2)]

× {θ1P + θ2Pλt1}
] ∂T
∂tw

+
1

T 2

[
(cp + cs)P + crE[δ(1−m2)]{θ1P + θ2Pλt1}

] ∂T
∂tw

+
hc

2T 2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(2t1 − 3λt1 + 2λ2t31)

+ {(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}3λt21 − 2(D0 + ρtw)(T − t1)
] ∂T
∂tw

+
1

T 2
(ct + cl)E[m2]{θ1P + θ2Pλt1}

∂T

∂tw
+
cr
T 2
E[(1− δ)m1]{(1− θ1)P

+ (1− θ2)Pλt1}
∂T

∂tw
+
B1λt

2
1

2T 2

∂T

∂tw
e
k1
υmax−υ
υ−υmin +

1

T 2

(
B0 −

K

Pt21

)
∂T

∂tw
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+ (s− a− btw)

[

{1− E[m1(1− γ)]}
{

(1− θ1)Pt1 + (1− θ2)P
λt21
2

}

+ E[m2 + δ(1−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]{
2

T 3

∂T

∂t1

∂T

∂tw
− 1

T 2

∂2T

∂t1∂tw

}

+

[
(cp + cs)Pt1 + crE[δ(1−m2)]

{
θ1Pt1 + θ2P

λt21
2

}]{
1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}

+
hc
2

[{
(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη

}(
t21 − λt31 +

λ2t41
2

)

+ {(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt31 + (D0 + ρtw)(T − t1)2
]

×
{

1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
+ (ct + cl)E[m2]

{
θ1Pt1 + θ2P

λt21
2

}

×
{

1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
+
B1λt

3
1

6

{
1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
e
k υmax−υ
υ−υmin

+ crE[(1− δ)m1]

{
(1− θ1)Pt1 + (1− θ2)P

λt21
2

}{
1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}

+

(
A0 +B0t1 +

K

Pt1

){
1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
·
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