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A NOVEL APPROACH TO SAFETY STOCK MANAGEMENT IN AN
INTEGRATED SUPPLY CHAIN WITH CONTROLLABLE LEAD TIME AND
ORDERING COST REDUCTION USING PRESENT VALUE

S. THARANI* AND R. UTHAYAKUMAR

Abstract. This paper presents a novel approach to safety stock management and investigates the
impact of lead time reduction within an integrated vendor—buyer supply chain framework using present
value where lead time and ordering cost reductions act dependently. In particular, the cost of the
safety stock is determined by adopting a logistic approximation to the standard normal cumulative
distribution. The service level is formulated in relation to the dimension of the single shipment, to
the average demand of the buyer and to the number of admissible stockouts. We first discuss the
case where the lead time and ordering cost reductions with linear function, and then consider the
logarithmic functional relationship. Numerical examples including the sensitivity analysis with some
managerial insights of system parameters is provided to validate the results of the supply chain models.
The main contribution of this paper is introducing various types of ordering cost reduction in Braglia
et al. (Appl. Stoc. Mod. Bus. Ind. 32 (2016) 99-112) by handling a new approach.
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1. INTRODUCTION

To improve the competitive capacity of the business, firms tend to become integral part of a supply chain,
rather than being single entities. According to this point of view, the development of Joint Economic Lot Size
(JELS) models still represents one of the main research topic in the Supply Chain Management (SCM) field.

The remarkable interest in supply chain management related research in the last decade has been due to its
significant potential to improve the efficiency of operations and reduce cost. Each individual party in the supply
chain can benefit through closer collaboration with other parties and through the integration of various decision
processes.

The single vendor single buyer integrated production inventory problem received a lot of attention in recent
years. This renewed interest is motivated by the growing focus on supply chain management. Firms are realizing
that a more efficient management of inventories across the entire supply chain through better coordination and
more cooperation is in the joint benefit of all parties involved. Such collaboration is facilitated by the advances in
information technology providing faster and cheaper communication means. Coordination among the members
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TABLE 1. Contribution of different authors.

Reference Safety stock  Ordering cost Lead time Present value
management reduction reduction

Braglia et al. [11] v v v

Liao and Shyu [22] v

Ouyang et al. [26] v v

Braglia et al. [10]
Gumis et al. [14]
Braglia and Zavanella [12]

SN N N

Jindal and Solanki [19] v v
Zavanella and Zanoni [40]

Battini et al. [1]

Proposed model v v v

of a supply chain is an important strategic issue as it effectively maintains inventories across the entire chain,
reduces the cost burden, and thereby increases the total profit. Supply chain managers possess all the information
relevant to take coordination decisions and the contractual power to have such decisions implemented.

Consignment Stock (CS) is an innovative approach to supply and stock management, based on a strong
and continuous collaboration between vendor and buyer to create a “win—win” situation, where both partners
have equal gains According to this strategy, the supplier autonomously manages the stock of its own items
at the customer warehouse and both decides the dimension of the batches and the time of delivery. In the
vendor—buyer relation only the former manages operatively, in an integrated and optimized fashion, the whole
stock level of the considered product within the supply chain. Ultimately, the consignment stock concept means
that the supplier holds the stock ownership until the customer actually uses it. A comprehensive analysis of
the CS policy is provided, e.g., by Valentini and Zavanella [39] and Glimis et al. [14]. An early analytical
formulation of the CS was proposed by Braglia and Zavanella [12], who proved the better performances of CS
in a stochastic environment (with particular reference to the equal-sized shipments with delayed deliveries case)
than the standard JELS model proposed by Hill [16,17].

Conventional inventory management techniques suggest stocking an inventory level for minimizing the system
cost. This technique does not handle risk or the time value of money in the recent highly volatile market
situations. In most of the research work, the time value of money was disregarded.

The most important continuous probability distribution used in engineering and science is perhaps the Gaus-
sian distribution. The Gaussian distribution reasonably describes many phenomena that occur in nature. In
addition, errors in measurements are extremely well approximated with the Gaussian distribution. The Gaus-
sian distribution finds numerous applications as a limiting distribution. Under certain conditions, the Gaussian
distribution provides a good approximation to binomial and hypergeometric distributions. In addition, it appears
that the limiting distribution of sample averages is normal. This provides a broad base for statistical inference
that proves very valuable in estimation and hypothesis testing.

Supply chain performance in aspect of various market and technical uncertainties is usually deliberated by
service level, that is, the expected fraction of demand that the supply chain can satisfy within a predefined
allowable delivery time window. Safety stock is imported into supply chains as an important fence against
uncertainty in order to provide customers with the promised service level. Although a higher safety stock level
guarantees a higher service level, it does increase the supply chain operating cost and thus these levels must be
suitably optimized.

In most of the early literature dealing with inventory problems, either using deterministic or probabilistic
models, lead time is often viewed as a prescribed constant or a stochastic variable, which therefore, is not subject
to control. However, this may not be realistic. Lead time usually consists of the following components: order
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preparation, order transit, supplier lead time, delivery time and setup time [38]. Further quality improvements
and controllable lead time in stochastic environments can be studied through the works such as [13,20,21,23,29-
32]. In some cases, lead time can be shortened at an added crashing cost; in other words, it is controllable. By
shortening the lead time, we can lower the safety stock, reduce the loss caused by stockout, increase the service
level to the customer, and gain the competitive advantages in business. Here a novel approach to safety stock
managenment in an integrated supply chain with controllable lead time and ordering cost reduction using present
value is to be discussed (Tab. 1).

2. LITERATURE REVIEW

Inventory models considering lead time as a decision variable have been developed by several researchers
recently. Liao and Shyu [22] first presented a probabilistic inventory model in which the order quantity is
predetermined and lead time is a unique decision variable. Ben-Daya and Raouf [2] extended Liao and Shyu’s
[22] model by considering both lead time and order quantity as decision variables. Ouyang et al. [27] generalized
Ben-Daya and Raouf’s [2] model by allowing shortages with partial back orders.

Moon and Choi [24] and Hariga and Ben-Daya [15] revised Ouyang et al.’s [27] model by considering the
reorder point as one of the decision variables; they further develop ed a minimax distribution free procedure for
the problems. In the above papers [2,15,22,24,27], that focus on deriving the benefits from lead time reduction,
the ordering cost is treated as a fixed constant. In a recent article, Ouyang et al. [26] relaxed the fixed ordering
cost assumption in Moon and Choi [24] and proposed a model to study the effects of lead time and ordering
cost reductions.

We note that the lead time and ordering cost reductions in [26] are assumed to act independently, however,
this is only one of the possible situations. In practices, the lead time and ordering cost reductions may be
related closely; the reduction of lead time may accompany the reduction of ordering cost, and vice versa. For
example, the implementation of electronic data interchange (EDI) can reduce both the lead time and ordering
cost simultaneously. Therefore, it is more reasonable to assume that lead time and ordering cost reductions
act dependently. The purpose of this paper is to study the effect of lead time reduction on continuous review
inventory systems with partial back orders. Specifically, we modify Moon and Choi’s [24] model to include the
cases of the linear and logarithmic relationships between lead time and ordering cost reductions. The objective
is to minimize the total related cost by simultaneously optimizing the order quantity, reorder point, and lead
time.

Ouyang et al. [25] modified Moon and Choi’s [24] continuous review inventory model with variable lead time
and partial backorders by fuzzifying the backorder rate. A new analytical approach to safety stock management,
within single buyer-single vendor framework under VMI with consignment agreement, was presented by Braglia
et al. [10]. A novel approach to safety stock management in a coordinated supply chain with controllable lead
time using present value was presented by Braglia [11]. Priyan and Uthayakumar [28] developed an integrated
production-distribution inventory model for a single-vendor single-buyer supply chain system with the consid-
eration of quality inspection errors at the buyer’s end, the buyer’s warehouse has limited capacity and there is
an upper bound on the purchase of products.

Shaikh et al. [36] had developed an inventory model according to consideration of price, stock dependent,
fully backlogged shortage and inflation. Bhunia et al. [3] had developed a price break inventory model for a
single deteriorating item with imprecise inventory costs by considering all unit discount policy and variable
demand rate dependent on displayed stock level under partially backlogging. Bhunia and Shaikh [4] had dealt
with an inventory model, which considers the impact of marketing strategies such as pricing and advertising
as well as the displayed inventory level on the demand rate of the system. Bhunia et al. [7] had given a
memo on stock model with partial backlogging under delay in payments. Shaikh et al. [35] developed a two-
warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and
stock-dependent demand under inflationary conditions with shortages. Shaikh [33] had done an inventory model
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for a deteriorating item with selling price and frequency of advertisement dependent demand of an item under
the mixed type financial trade credit policy.

Bhunia et al. [6] formulated a production-inventory model to investigate the effects of partially integrated
production and marketing policy of a manufacturing firm. Shaikh [34] introduced an inventory model for single
deteriorating items with two separate storage facilities (own and rented warehouses) due to limited capacity of
the existing storage, i.e., own warehouse considering allowable delay in payment. Bhunia et al. [8] developed
a deterministic inventory model for single deteriorating items with two separate storage facilities (owned and
rented warehouse, RW) due to limited capacity of the existing storage (owned warehouse, OW). Bhunia and
Shaikh [5] had dealt with an alternative approach for a two-warehouse inventory model for single deteriorating
item considering allowable delay in payments with two separate warehouses having different preserving facilities.

Zavanella and Zanoni [40] proposed a research work for the way how a particular VMI policy, known as
Consignment Stock (CS), may represent a successful strategy for both the buyer and the supplier. Battini
et al. [1] proposed an innovative approach to supply and stock management based on a strong and continuous
collaboration between vendor and buyer with demand variability, stock-out risk and limited warehouses space.
Bowling et al. [9] gave a logistic approximation to the cumulative normal distribution. Jindal and Solanki [19]
presented a single-vendor single-buyer integrated supply chain inventory models with inflation and time value
of money under partial backlogging.

3. NOTATIONS AND ASSUMPTIONS

3.1. Notations

We need the following notations and assumptions to develop the mathematical model of the proposed model.
Additional notations and assumptions will be added up when required.

Decision variables

q Shipment quantity
n Number of shipments per production run from the vendor to the buyer
L Length of the lead time to deliver a shipment from the vendor to the buyer

Parameters
D Average demand rate which is received by the buyer (units/unit time)
P Vendor’s production rate (units/unit time)

Ap  Buyer’s ordering cost per order ($/order)

Ay Vendor’s setup cost per setup ($/setup)

14 Buyer’s variable cost for order handling and receiving ($/order)

F Fixed transportation cost borne by the buyer for each shipment ($/order)

hy Vendor’s stock holding cost per unit per unit time ($/unit/unit time)
Hy Total holding cost at the first cycle of the vendor

hg Buyer’s stock holding cost per unit per unit time ($/unit/unit time)
Hp Inventory holding cost at the first cycle of the buyer

k Number of admissible stockouts per unit time

r Buyer’s reorder point

SL Service level

ZsL, SL — quantile of the standard normal distribution with reference to the service level SL
oD Standard deviation of demand rate

p Discount rate representing the time value of money

n Inflation rate

i Net constant discount rate of inflation

TCp Buyer’s total cost at the first cycle
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PTCp Buyer’s present value of the total cost over an infinite horizon.
TCy Vendor’s total cost at the first cycle.

PTCy  Vendor’s present value of the total cost over an infinite horizon.
JTC Expected joint total cost

Random variables

Xp

Lead time demand rate of the buyer, a Gaussian random variable

Functions and operators

f()  Standard normal probability density function (p.d.f)
F(-) Standard normal cumulative density function (c.d.f)

Sets
R Real numbers
N Natural numbers

3.2. Assumptions

(1)

Some of the strategic characteristics become fundamental and the following hypothesis need to be considered:

The system deals with a single vendor—buyer co-operation with a single product. The vendor and the buyer
are in different corporate entities and are also enthusiastic to have an collaboration inventory system. Thus,
both the members accept to minimize the integrated expected total cost in the joint strategy. The buyer
prefers a continuous review inventory policy and the order is kept whenever the inventory level comes to the
reorder point 7.

The buyer orders a lot size ng. The vendor produces ng with finite production rate P (P > D) at one setup
and ships in quantity g to the buyer over n times. For each shipment, the buyer pays a fixed transportation
cost F'. The vendor has a setup cost Ay for each production run of size ng, and the buyer has an ordering
cost Ap for each order of size ng.

The lead time demand X p is Gaussian with mean DL and standard deviation opv/L.

The supplier’s production rate and the demand rate on the buyer are constant.

The buyer pays transportation and order handling costs.

The production rate is greater than the demand rate.

Safety stock SS = zgr, x standard deviation of the lead time demand. Hence, SS = zg1, X opV/L.

If SL and z are the service level and the safety factor, respectively we have % < SL < 1, which is equivalent
to the condition z > 0.

Shortages and backorders are not considered.

The time horizon is infinite.

The net constant discount rate of inflation is given as i = p —n > 0.

The lead time L consists of m mutually independent components. The ith component has a normal duration
a; and carshing cost per unit time ¢;. For convenience, we rearrange c; such that ¢; < co < --- < ¢;,. The
components of lead time are crashed one at a time starting from the first component because it has the
minimum unit crashing cost, and then the second component, and so on. Let Ly = Z?ll b;, and L; be the

length of lead time with components 1,2, ..., crashed to their minimum duration, then L; can be expressed
as L; = Lo — Z;Zl(bj —aj;), 1 =1,2,...,m and the lead time crashing cost R(L) per cycle is given by

R(L) = ci(Li-y — L)+ 3173 ¢;(b; — a;), L € [Li, Li1].
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4. A NOVEL STOCHASTIC JELS MODEL UNDER THE PV CRITERIA

4.1. The safety factor as a function of the shipment quantity

In accordance to Braglia et al. [10], the safety stock is determined by taking into an account to the following

logistic approximation of the standard normal cumulative distribution.
F(z) = 1 eR 1
(SU) 1 ez’ T ( )

where v = 1.702. Taking inverse for equation (1) we obtain

F_l(u):fy_lln< “ ) ue (0,1). (2)

1—u

Therefore, we can write zgy, which is SL-quantile of the standard normal distribution as

SL
_ _ 1
=0 =7 (g ) sLelya 0
and the service level SL can be put in relation to the number of admissible stockouts per unit time &
k kq
SL=1-——=1-——- 4
(Dn/nq) D )

It has to be highlighted that the service level as well as the cost of safety stock are functions only of ¢ and
reminding that the lead-time demand is supposed to be a Gaussian random variable. Then the safety factor
2(q) and the service level are ostensibly related through the following expression:

_ 1— (kq/D) ) _ (D

1 1

z(q) =~ ln< =~y "Inl—-1). 5

@ = (1 (kg/D)) ka ®)
Clearly, it is acceptable to assume D/k > 1 as the demand is often bulkier than the number of admissible

stockouts per unit time. Thus it is possible to obtain a valid interval for the variable ¢ as

kq
D

—_

D
< — which implies 0 < g < — (6)

0< o

\}

4.2. Buyer’s perspective

Now we examine the relevant cost of the buyer. The buyer perceives a replenishment cycle with length equal
to q/D. For given g € (0, D/2k] and L € [L,,, Lo], the expected net inventory level just before the order arrival
is z(q)opV/'L, and the expected net inventory at the beginning of the cycle is ¢ + z(¢)opV/'L, where z(q) is given
by equation (5). Therefore, the expected inventory level at ¢ € [0,q/D] is z(¢)opVL — Dt. Let i be the net
constant discount rate of inflation which is formulated as i = p — . Thus the inventory holding cost for the first
cycle at ¢ € [0, %] using the PV approach is written as

q/D

Hp = nhp / [q+ 2(¢)opV'L — Dt]le""dt
0

apf (kq B 1)] (1 3 e—iq/D)

4 geinlP 9 (1=}, ™)
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The total cost for the buyer at the first cycle is the sum of the ordering cost, variable cost, holding cost and
transportation cost. Thus we get the total cost for the first cycle relevant to the buyer as

g+ JD;E In (D - 1) (1 - e—iq/D)

kq
) D .
+ qe—lq/D - (1 — e—zq/D>} +nV +nR(L). (8)

h
TCB(q7n7L) = AB +nEF + niB {

Consequently, the present value of the total cost of the buyer over an infinite time horizon can be formulated
as

q+

X —1
PTCp(q,n, L) = (1 _ e—mq/D) {AB FnF + nhTB {

~

X (1 —e‘iq/D> + ge~t/P — ? (1 - e‘iq/D>} +nV+nR(L)}. 9

4.3. Vendor’s perspective

For each production period, ¢ units are produced, and the vendor delivers those inventories to the buyer.
After that the vendor will generate only the average inventory level 4 units for delivering the buyer until the
inventory level reaches zero. Also the vendor manufactures ng quantity for a lot. Since the cycle length for the
vendor is “Z!, the average inventory for the vendor can be given as

2.2 2

na(f+m-0E) -G - S s -] D =Ew-n-@-23]

Therefore the total holding cost for the vendor at the first cycle in the interval ¢ € [0, %] is expressed as

na/D
Hy = hy / : [(n 1) = (n- 2)1;] e=itdt
0
:hTVg {(n—l)—(n—2)g} (l—e_i”Q/D). (10)

Thus the total cost of the vendor at first cycle which is a composition of setup cost and holding cost can be
exhibited as

TCy(q,n) = Ay + h'“g {(n 1)~ (n— g)ﬂ (1 - e—i"q/D) (11)

i
Consequently, the present value of the total cost of the vendor over an infinite time horizon can be admitted as

PTCy(q,n) = (1 - e*mq/D)_l {AV n %% [(n 1) —(n— 2)]]2} (1 _ emq/D>} . (12)
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5. JOINT OPTIMIZATION

On considering vendor and buyer cooperation to each other, we framed the expected joint total cost at the
first cycle as

JTC((L n, L) = PTCB((], n, L) + PTCV(Q» TL)

= (1 - e*i”q/D)_l {AB +nF+ nhTB {

X (1 —e_iQ/D) +ge /D ? (1 - e_iQ/D)} +nV +nR(L)

kq

q+ UD;Eln <D - 1)]

hv q D —ing/D
+Av+i2[m1)(nﬁp}@e ) (13)
with ¢ € (0,D/2k], n € Nand L € [L,,, Lo].

To establish an exact optimization procedure which is to minimize JTC(g,n, L) under the constraints ¢ €
(0,D/2k], n € N and L € [Ly,, Lo|, we seek to define the properties which are satisfied by JTC(q,n, L).

At first, for fixed (¢,n) and L € [L;, L;_1], JTC(g,n, L) is strictly concave in L due to the fact that

D 1 —emi/P
iJ"‘F(j(Q7n7L) = NG + nhB - 1 < 1) ((e> and

oL 27 'Y\/Z n Fq o 1— e*inq/D)
0? nhg op D (1 - €7iq/D)

Therefore, for fixed (¢,n) and L € [L;, L;_1], the minimum of JTC(g,n, L) in L lies on the end points of the
interval L € [L;, L;j_4].
Basically, we are granted to write the following equality:

min JTC(g,n, L) = min {minJTC(q,n,Lj)U =0,1,... ,m} .
(g¢,n,L) (g,m)

Secondly, if we relax the integer constraint on n, it is possible to note that JTC(g,n, L) is strictly convex in
n, for fixed (¢, L). In fact, putting in evidence the terms that depending on n, substantially JTC(gq,n, L) can
be written as follows:

1 n

(1 _ e—inq/D) +C2 (1 _ e—inq/D)

JTC(C], n, L) = Cl + CSn + C4 (14)

where

Ci=Ap + Ay

h
02F+V+R(L)+”Z,B{

q+ ooVL <D - 1)] (1 - e*iq/D)
¥ kq

4 ge~ia/D _ Q (1 _ e—iq/D)}
2

_th D
Cs = 2 (1 P)

h 2D
oot (221)
21
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and noticing that

o2 1 qi 2 einq/D (einq/D + 1)
= (L 1
on? (1 — e~ina/D) (D) (eina/D — 1)3 >0 (15)
and
0? n B (nqi>2 ema/P (eima/D 4 1) 16
w (1 — e—inq/D) - f (einq/D _ 1)3 ( )

The equations (15) and (16) suggest that the expected joint total cost is strictly convex in n for (g, L) fixed.

Finally, for fixed (n,L) we relax the constraint on ¢ € (0,&/2], it is possible to note that JTC(g,n, L) is

strictly convex in ¢, for fixed (n, L). By taking account of the equation (14) we could be able to investigate the
convexity of the expected joint total cost JTC(g,n,L).

Now, for fixed (n, L) we take the derivatives of JTC(q,n, L) with respect to ¢ and obtain

-2 ()]
X (1 — e—iQ/D) 4 ge—i/D _ ? (1 B e_iq/D) H } N n@B { [1 DaD\f

0JTC —ine~ina/D
8q D (1 _ e*inq/D)2

{AB+Av+n

h
F+V+R(L)+ni3{

i Yq(D — kq)

—iq ig \F —iq
x (1—e/P) 4 27 (kq—1> /D}x(l_e_lmq/%
+];‘/<n—1—l;(n—2)>, (17)

and

(Cr+nCy) + 52 S

92]JTC B { (qZ)Q einq/D (einq/D + 1)

0q? D (einq/D _ 1)3

opVILD(D — 2kq) (1 dia/Dy _ 20pV'Li yia/D
v¢*(D — kq)"’ 74(D — k)

_ i UD\/> Z 1) e /DN 1
" D2y kq (1 — e—ina/D)
2n hB DO’D\/Z —iq/D
* (1 —e—ina/D) Xi{ll_'yq(Dkq)] (1_6 )

ol a) o *

By examining the second order sufficient conditions (SOSC), it can be verified that the expected joint total
cost JTC(g,n, L) is strictly convex in n for (n, L) fixed.

nhp { je~a/D
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Thus, for fixed (n,L) the minimum value of JTC(g,n, L) occurs at the point ¢ which satisfies 8‘]81;(3 = 0.

Solving this equation, we yield the value of ¢ as
(1 — e ta/D )

D (1 e-inaiD) Hl DooyE
. _ _—ing/D\?
N wpﬁln(D >e—iq/D}+hVD(]‘ e~"ma )

q:

ine~ina/D  v¢(D — kq)
— =1 -
D~ 2ihgn2e—ina/D

kq
b

[Ap+ Ay +n[F+V + R(L)
nhB

— l:} (1 - e"’q/D)

The equations (17) and (18) suggest that the expected joint total cost is strictly convex in ¢ for (n, L) fixed.

(19)

6. LEAD TIME REDUCTION

6.1. Linear function case

In this section, we assume that lead time and ordering cost reductions act dependently with the following

relationship
0 ( B0 B >

- (20)

Apo
where (a > 0) is a constant scaling parameter which describes the linear relationship between percentages of
reductions in lead time and ordering cost.

By considering the relationship (20), the ordering cost Ap can be formulated as a linear function of L, that
is,
Ap(L) =u+vL (21)

Apo

where u = ( - éABO) and v = o

. Using (21) in (13) we get the problem as

q+ UDﬁln (D —1)
Y kq

. —1 h
JTCi(g,n, L) = (1 - e_m']/D) {u +oL+nF + nTB {

— e—ta/D —ig/D _ ~ (1 _ o—ta/D
X (1 e )—i—qe ; (1 e )}—l—nV—i—nR(L)
hv q _ _ _ D _ _—ing/D
+ Ay + =22 {(n 1) - (n 2)P} (1 e ) . (22)

To minimize JTC; (g, n, L) under the constraints ¢ € (0, D/2k], n € N and L € [L,, Ly], we need to find the
partial derivatives of JTC; (g, n, L) with respect to ¢, n, L.

0 . nhB op D (1 - €_iq/D)
ﬁJTCl(q7TL,L)—U77LCl+T’émIH (kql)(l_e—lmlm
2

0 nhg op D (1—€_iq/D)
2T L=-2E0 g (Z 1) 2 Z___ <y
o2 TO @ L) = = n(kq ) (1—emap) ="

Since the first and second partial derivatives of JTCy(g, n, L) with respect to ¢, n are as same as the partial
derivatives of JTC(q, n, L) with respect to g, n respectively. There is no oscillation in the formulation of q.

and
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6.2. Logarithmic function case
In this section, we assume that lead time and ordering cost reductions act dependently with the following
relationship
Apg— A L
2B B _ ( ) (23)
ABpo Ly

where (7 < 0) is a constant scaling parameter which describes the logarithmic relationship between percentages
of reductions in lead time and ordering cost.
By considering the relationship (23), the ordering cost Ap can be formulated as a logarithmic function of L,
that is,
Ap(L)=d+elnL (24)

where d = Apg + 7ApoIn Ly and e = —7Apg. Using (24) in (13) we get the problem as

. -1
JTCz(q,n,L)=<1—e""q/D> {d+elnL+nF+”]zBﬂq "D;F (m_l)]

% (1 _ 64q/D) 4 ge~ia/D ? <1 _ eiq/D)} +nV +nR(L)

+ AV+%g [(n— 1) — (n_g)ﬂ (1_e—i"q/D)}. (25)

To minimize JTCy(g, n, L) under the constraints ¢ € (0, D/2k], n € N and L € [L,,, Lo], we need to find the
second partial derivatives of JTCs(g,n, L) with respect to ¢, n, L.

9 n o 1—e~e/D
a JTCZ(qvn L) - — NC; + ng 7\/D— In (kq ]_) ((17877”"1/.)) and
e n o 1—e—t/P
@JTCQ(Q’”’L) =L~ N (Q - ) M <0

Since the first and second order partial derivatives of JTCsy(g,n, L) with respect to g, n are as same as the
partial derivatives of JTC(q,n, L) with respect to ¢, n respectively, there is no variation in the formulation
of q.

Algorithm

Step 1: Set n =1 and g = 100.

Step 2: Determine ¢ from equation (5). Using this ¢ find the values of SL and 2.

Step 3: Determine the value of ¢ from equation (19) by substituting the value of z.

Step 4: Using this ¢ find the values of SL and z. Also repeat the step 3 until the value of ¢ remains unchanged.

Step 5: Then calculate the expected joint total cost JTC(q,n, L).

Step 6: Increase the value of n to n + 1 and repeat the steps from (1) to (5).

Step 6: Repeat the step 6 until the convexity of the expected joint total cost JTC(g, n, L) is achieved. The place
where the convexity is achieved will give us the optimal values for n and gq.

The above algorithm is same for all the three cases constructed.

7. NUMERICAL APPLICATION

In this section the model has been practiced to a large number of consumable items like metallic and plastic
small parts, personal protective equipment, packaging components, etc. All these items are circumscribed, by
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TABLE 2. Lead time data.

Duration (days)
Normal — b;  Minimum — a;

Component — j Unit Crashing Cost ($/day)

1 12 7 0.3
2 12 7 2.1
3 10 8 5.3

TABLE 3. Values of Parameters considered in the numerical study.

Parameters Values
Normal case Linear function case Logarithmic function case
D (units/unit time) 500 500 500
P (units/unit time) 1000 1000 1000
Ay ($/setup) 200 - -
Ap ($/order) 100 - -
Avo ($/setup) - 200 200
Apo ($/order) - 100 100
V ($/order) 3 3 3
F($/order) 20 20 20
hp ($/unit/unit time) 30 30 30
hy ($/unit/unit time) 10 10 10
p 0.15 0.15 0.15
n 0.07 0.07 0.07
k 0.5 0.5 0.5
op (unit/week) 5 5 5
¥ 1.702 1.702 1.702
x 10°
5.02
*
5f K
4981
4961
2 404}
=
492t
*,
491 :
4.88 v - e
4.86 ‘ ‘ ‘ ‘ —
98.6 98.65 98.7 98.75 98.8 98.85
q

FIGURE 1. The convexity of the expected joint total cost when the ordering cost is fixed to be
a constant.
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TABLE 4. The change in the value of JTC when the reduction parameters are represented by
the values as « = 0.75 and 7 = —1.

Normal case

Linear case

Logarithmic case

L n q JTC (0% ABO q JTCl T ABO q JTCQ
34 2 98,5759 50125 0.75 100 98.5759 50125 -1 100 98.5759 50125
29 2 98.7313 49135 0.75 80.3922 98.8645 48514 -1 84.0935 98.8393 48631
24 2 98.8290 48622 0.75 60.7843 99.0954 47381 -1 65.1693 99.0657 47520
22 2 98.8213 48790 0.75 529412 99.1412 47301 -1 56.4682 99.1172 47413

TABLE 5. The change in the value of JTC when the reduction parameters are represented by
the values as @ =1 and 7 = —0.8.

Linear case

Logarithmic case

Lo n « ABO q JTCl T ABO q JTCQ
34 2 075 100 98.5759 50125 -0.2 100 98.5759 50125
29 2 0.75 80.3922 98.8645 48514 -0.2  96.8187 98.7529 49034
24 2 075 60.7843 99.0954 47381 -0.2  93.0339 98.8762 48401
22 2 0.75 529412 99.1412 47301 -0.2  91.2936 98.8805 48514

TABLE 6. The change in the value of JTC when the reduction parameters are represented by
the values as a« = 1.25 and 7 = —0.5.

TABLE 7. The change in the value of JTC when the

Linear case

Logarithmic case

Lo n 0% ABO q JTCl T ABO q JTCQ
34 2 125 100 98.5759 50125 -0.5 100 98.5759 50125
29 2 1.25 88.2353 98.7683 48759 -0.5 92.0468 98.7853 48883
24 2 125 76.4706 98.9888 47877 -0.5 82.5847 98.9473 48070
22 2 1.25 71.7647 99.0132 47896 -0.5 78.2341 98.9692 48101

the values as « = 2.5 and 7 = —0.2.

TABLE 8. The change in the value of JTC when the

reduction parameters are represented by

Linear case

Logarithmic case

Lo n « ABO q JTCl T ABO q JTCQ
34 2 25 100 98.5759 50125 -0.2 100 98.5759 50125
29 2 25 941176 98.7713 48949 -0.2  96.8187 98.7529 49034
24 2 25 88.2353 98.9089 48249 -0.2  93.0339 98.8762 48401
22 2 2.5 85.8824 99.9172 48343 -0.2  91.2936 98.8805 48514

the values as « = 5 and 7 = 0.

reduction parameters are represented by

Linear case

Logarithmic case

Lo n (0% ABO q JTC1 T ABQ q JTCQ
34 2 5 100 98.5759 50125 0 100  98.5759 50125
29 2 5 97.0588 98.7513 49042 0 100 98.7313 49135
24 2 5 94.1176 98.8690 48435 0 100  98.8290 48622
22 2 5 929412 98.8693 48566 0 100 98.8213 48790
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(c) 7=-0.5, 0, —0.2. (d) 7=-0.8, —1.
F1GURE 2. Convexity of JTC with the variable ¢ for both the linear and logarithmic cases
respectively.
55*:10‘ 5.1 xio *
5.4 5“;'
3 * *
o™ 2 4
5.1 * . *
5 . g _*_ ‘‘‘‘‘
49 * * 46
(a) o =1.25, 5, 2.5. (b) a=1, 0.75.
5a 110 *
% L
e
5 ¢ »*

n

(c) r=—0.5, 0, —0.2.

FiGure 3. Convexity of JTC with the variable n for all the three cases.
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¥ Normal case <10t ¥ Normal case
case r
x10* : Logarithmic case * Logarithmic case

120

(a) Buyer. (b) Vendor.

FIGURE 4. Sensitivity on Ordering cost of buyer and vendor respectively.

<3 Normal case <% Normal case
Linear case x 10 ar case
Logarithmic case ogarithmic case

(a) Buyer. (b) Vendor.

FIGURE 5. Sensitivity on holding cost of buyer and vendor.

<% Normal case + ¥ Normal case
+ r case
@' Logarithmic case

J1c

FIGURE 6. Sensitivity on Buyer’s variable cost and Transportation cost respectively.
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low price, high annual consumption, small dimensions and ease of storage, but, they achieve a considerable

annual monetary volume when considered cummulatively.

In order to illustrate the proposed model, we follow the data used in Braglia et al. [11] which is shown in

Table 2 and some newly introduced parameters are included in Table 3.

The variation of the expected joint total cost and the ordering cost of the buyer can be observed through

through the following figures when there is an oscillation in the values of o and 7:

The sensitivity analysis has been conducted based on the variation of the following parameters:

(i) Standard deviation in market demand (in % of the average monthly demand).
(ii) Average demand rate.
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% Normal case % Normal case
4 Linear case = Linear case
' Logarithmic case x 10 @' Logarithmic case

1200

q 985 800 P

FIGURE 7. Sensitivity on Demand rate and Production rate respectively.

'+ Normal case <% Normal case
Linear case ‘4 Linear case
¥ Logarithmic case x10* ' Logarithmic case

985 012 014 016 0.18

q P

al case
ar case
ogarithmic case

'mal case
ear case
Logarithmic case

O+ %

FIGURE 9. Sensitivity on number of admissible stockouts and standard deviation of demand rate.

(iii) Various cost used by both vendor and buyer.
(iv) Inflation rate and discount rate of present value.

Based on our numerical results, we achieve the following managerial phenomena:

(1) From Figure 1 the convexity of the expected joint total cost JTC can be observed clearly with reference to
the values tablulated in the Table 4.

(2) From Tables 4-8, we observe the results of sensitivity analysis of the change in the parameters a and 7 and
the optimized values are figured out in Figure 2.

(3) We can find that that the demand D and P have not a significant impact on the expected joint total cost
per unit time JTC in both the cases.

(4) For both the cases, we could see a moderate significance for the role of inflation rate n, number of admissible
stockouts per unit time.



TABLE 9. Sensitivity of various cost used by both vendor and buyer when a = 0.75, Ly = 22
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and 7= —1, Lg=22.

Normal case

Linear case

Logarithmic case

Parameters Values q JTC q JTCy q JTC,
80 98.9373 47986 99.0902 45722 99.0431 47043
90 98.8969 48305 99.0688 45893 99.0203 47223
Apo 100 98.8564 48624 99.0474 46059 98.9974 47402
110 98.8160 48943 99.0260 46228 98.9746 47583
120 98.9990 49229 99.2018 46357 98.9517 47762
160 99.0182 47349 99.2091 44787 99.1593 46130
180 98.9373 47986 99.2885 45423 99.0784 46766
Ay 200 98.8564 48624 99.0474 46059 98.9974 47402
220 98.9990 49229 98.9546 46555 98.9165 48040
240 98.8987 49650 98.8913 46976 98.8356 48678
8 98.7940 46945 99.0074 45214 98.9184 46163
9 98.8233 47876 99.0145 45921 98.9579 46783
Hy 10 98.8564 48624 99.0474 46059 98.9974 47402
11 98.8959 49243 99.1663 47921 99.0370 48022
12 98.9354 49862 99.2059 48542 99.0765 48642
24 98.7083 41235 99.9083 41235 98.7753 40941
27 98.7944 44267 99.5297 44267 98.8988 43871
Hp 30 98.8564 48624 99.0474 46059 98.9974 46402
33 98.9871 50334 99.2059 50334 99.0781 50148
36 99.0487 53368 99.2720 53368 99.1453 51363
16 98.1545 47125 99.0084 45754 98.9184 46163
18 98.5684 47493 99.0148 45971 98.9579 46783
K 20 98.8564 48624 99.0474 46059 98.9974 47402
22 99.0057 49124 99.0784 46471 99.0370 48022
24 99.0681 49721 99.1294 46745 99.0765 48642
2.4 98.8596 48624 99.0574 46059 99.0007 47403
2.7 98.8580 48624 99.0483 46059 98.9990 47403
\% 3 98.8564 48624 99.0474 46059 98.9974 47402
3.3 98.8532 48624 99.0444 46059 98.9958 47402
3.6 98.8528 48624 99.0368 46059 98.9942 47402
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(5) For both the cases, there is a high impact in the discount rate representing the time value of money p when
the values have some changes.
(6) In both the cases, we could be able to observe a moderate impact in the expected joint total cost with the
change in various cost used by vendor and buyer (Figs. 3-9).

8. CONCLUSION

In this paper we presented a novel approach to safety stock management and investigated the impact of lead
time reduction within an integrated vendor—buyer supply chain framework using present value where lead time
and ordering cost reductions act dependently. The cost of the safety stock is determined by adopting a logistic
approximation to the standard normal cumulative distribution and the service level is formulated in relation
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TABLE 10. Sensitivity of Average demand rate D and Production rate P when a = 0.75, Lo =
22 and 7= -1, Lo =22.

Normal case Linear case Logarithmic case

Parameters Values q JTC q JTCy q JTC,
400 99.1103 45037 99.3913 43940 99.2611 44018

450 98.9670 46869 99.2421 45657 99.1124 45747

D 500 98.8564 48624 99.0474 46059 98.9974 47402
550 98.7281 49850 99.0351 48886 98.9062 49000

600 98.5789 50847 99.0020 49925 98.8582 49999

800 99.1010 48041 99.4157 45434 99.0310 47405

900 99.1001 48467 99.1416 45801 99.0213 47404

P 1000 98.8564 48624 99.0474 46059 98.9974 47402
1100 98.8442 48623 99.0151 46062 98.9852 47401

1200 98.8341 48622 99.0128 46062 98.9751 47401

TABLE 11. Sensitivity of various factors used for inflation and admissible stockouts when o =
0.75, Lp=22and 7=-1, Ly=22.

Normal case Linear case Logarithmic case
Parameters Values q JTC q JTCy q JTCs2
0.1200 99.0793 77539 99.2787 75429 99.1562 75592
0.1350 98.9672 59745 99.2020 58119 99.0761 58245
p 0.15 98.8564 48624 99.0474 46059 98.9974 47402
0.1650 98.7469 41014 99.0128 39898 98.9202 39984
0.1800 98.6388 35480 99.0091 34514 98.8444 34589
0.056 98.7542 43446 99.0057 40318 98.9253 40405
0.063 98.8052 46746 99.0092 43528 98.9784 46766
n 0.07 98.9612 48624 99.0474 46059 98.9974 47402
0.077 99.0980 53245 99.1616 51796 99.0340 51908
0.084 99.0054 58846 99.1969 57245 99.0708 57368
0.4 98.7894 49953 99.0023 48573 98.9332 48675
0.45 98.8249 49255 99.0145 47905 98.9672 48007
k 0.5 98.8564 48624 99.0474 46059 98.9974 47402
0.55 98.8846 48046 99.1537 45747 99.0245 46850
0.6 98.9101 47513 99.1781 45237 99.0489 46339
4 99.1000 46231 99.3601 45013 99.2307 45113
4.5 98.9782 47427 99.2434 45914 99.1104 46258
op 5 98.8564 48624 99.0474 46059 98.9974 46402
5.5 98.7347 49821 99.0100 48445 98.8809 48548
6 98.6131 51020 98.8934 49590 98.7644 49694

to the dimension of the single shipment, to the average demand of the buyer and to the number of admissible
stockouts (Tabs. 9-11).

We then developed an exact algorithm that permits the optimization of inventory replenishment and lead
time. Numerical application conferrred that this optimization approach achieves a high level of efficiency, which
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may offer promising application in practice. One of the repercussions of this work is that if the ordering cost
per order could be reduced effectively, then the expected joint total cost per unit time could be automatically
minimized.

Further one can extend this work by using various other reduction factors, service level constraints and
variable transportation cost. Also one can deal with multi item, trade credit policy, various dependent demand
rates, and shortages with partial backorder, etc. A plausible future work deals with the multi-echelon supply
chains such as: single vendor-multi buyer, multi vendor-single buyer and multi vendor-multi buyer framework
adopting the CS perpective. In this case, the model has either fuzzy or stochastic nature.
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