

## A NOVEL APPROACH TO SAFETY STOCK MANAGEMENT IN AN INTEGRATED SUPPLY CHAIN WITH CONTROLLABLE LEAD TIME AND ORDERING COST REDUCTION USING PRESENT VALUE

S. THARANI\* AND R. UTHAYAKUMAR

**Abstract.** This paper presents a novel approach to safety stock management and investigates the impact of lead time reduction within an integrated vendor–buyer supply chain framework using present value where lead time and ordering cost reductions act dependently. In particular, the cost of the safety stock is determined by adopting a logistic approximation to the standard normal cumulative distribution. The service level is formulated in relation to the dimension of the single shipment, to the average demand of the buyer and to the number of admissible stockouts. We first discuss the case where the lead time and ordering cost reductions with linear function, and then consider the logarithmic functional relationship. Numerical examples including the sensitivity analysis with some managerial insights of system parameters is provided to validate the results of the supply chain models. The main contribution of this paper is introducing various types of ordering cost reduction in Braglia *et al.* (*Appl. Stoc. Mod. Bus. Ind.* **32** (2016) 99–112) by handling a new approach.

**Mathematics Subject Classification.** 90B05.

Received December 5, 2017. Accepted May 7, 2019.

### 1. INTRODUCTION

To improve the competitive capacity of the business, firms tend to become integral part of a supply chain, rather than being single entities. According to this point of view, the development of Joint Economic Lot Size (JELS) models still represents one of the main research topic in the Supply Chain Management (SCM) field.

The remarkable interest in supply chain management related research in the last decade has been due to its significant potential to improve the efficiency of operations and reduce cost. Each individual party in the supply chain can benefit through closer collaboration with other parties and through the integration of various decision processes.

The single vendor single buyer integrated production inventory problem received a lot of attention in recent years. This renewed interest is motivated by the growing focus on supply chain management. Firms are realizing that a more efficient management of inventories across the entire supply chain through better coordination and more cooperation is in the joint benefit of all parties involved. Such collaboration is facilitated by the advances in information technology providing faster and cheaper communication means. Coordination among the members

---

*Keywords.* Safety stock management, integrated vendor–buyer supply chain, logistic approximation, ordering cost reductions, present value.

Department of Mathematics, The Gandhigram Rural Institute – Deemed University, Gandhigram, Tamil Nadu, India.

\*Corresponding author: [tharanimaths@gmail.com](mailto:tharanimaths@gmail.com)

TABLE 1. Contribution of different authors.

| Reference                  | Safety stock management | Ordering cost reduction | Lead time reduction | Present value |
|----------------------------|-------------------------|-------------------------|---------------------|---------------|
| Braglia <i>et al.</i> [11] | ✓                       |                         | ✓                   | ✓             |
| Liao and Shyu [22]         |                         |                         | ✓                   |               |
| Ouyang <i>et al.</i> [26]  |                         | ✓                       | ✓                   |               |
| Braglia <i>et al.</i> [10] | ✓                       |                         |                     |               |
| Gümüs <i>et al.</i> [14]   | ✓                       |                         |                     |               |
| Braglia and Zavanella [12] | ✓                       |                         |                     |               |
| Jindal and Solanki [19]    |                         |                         | ✓                   | ✓             |
| Zavanella and Zanoni [40]  | ✓                       |                         |                     |               |
| Battini <i>et al.</i> [1]  | ✓                       |                         |                     |               |
| Proposed model             | ✓                       | ✓                       | ✓                   | ✓             |

of a supply chain is an important strategic issue as it effectively maintains inventories across the entire chain, reduces the cost burden, and thereby increases the total profit. Supply chain managers possess all the information relevant to take coordination decisions and the contractual power to have such decisions implemented.

Consignment Stock (CS) is an innovative approach to supply and stock management, based on a strong and continuous collaboration between vendor and buyer to create a “win–win” situation, where both partners have equal gains. According to this strategy, the supplier autonomously manages the stock of its own items at the customer warehouse and both decides the dimension of the batches and the time of delivery. In the vendor–buyer relation only the former manages operatively, in an integrated and optimized fashion, the whole stock level of the considered product within the supply chain. Ultimately, the consignment stock concept means that the supplier holds the stock ownership until the customer actually uses it. A comprehensive analysis of the CS policy is provided, *e.g.*, by Valentini and Zavanella [39] and Gümüs *et al.* [14]. An early analytical formulation of the CS was proposed by Braglia and Zavanella [12], who proved the better performances of CS in a stochastic environment (with particular reference to the equal-sized shipments with delayed deliveries case) than the standard JELS model proposed by Hill [16, 17].

Conventional inventory management techniques suggest stocking an inventory level for minimizing the system cost. This technique does not handle risk or the time value of money in the recent highly volatile market situations. In most of the research work, the time value of money was disregarded.

The most important continuous probability distribution used in engineering and science is perhaps the Gaussian distribution. The Gaussian distribution reasonably describes many phenomena that occur in nature. In addition, errors in measurements are extremely well approximated with the Gaussian distribution. The Gaussian distribution finds numerous applications as a limiting distribution. Under certain conditions, the Gaussian distribution provides a good approximation to binomial and hypergeometric distributions. In addition, it appears that the limiting distribution of sample averages is normal. This provides a broad base for statistical inference that proves very valuable in estimation and hypothesis testing.

Supply chain performance in aspect of various market and technical uncertainties is usually deliberated by service level, that is, the expected fraction of demand that the supply chain can satisfy within a predefined allowable delivery time window. Safety stock is imported into supply chains as an important fence against uncertainty in order to provide customers with the promised service level. Although a higher safety stock level guarantees a higher service level, it does increase the supply chain operating cost and thus these levels must be suitably optimized.

In most of the early literature dealing with inventory problems, either using deterministic or probabilistic models, lead time is often viewed as a prescribed constant or a stochastic variable, which therefore, is not subject to control. However, this may not be realistic. Lead time usually consists of the following components: order

preparation, order transit, supplier lead time, delivery time and setup time [38]. Further quality improvements and controllable lead time in stochastic environments can be studied through the works such as [13, 20, 21, 23, 29–32]. In some cases, lead time can be shortened at an added crashing cost; in other words, it is controllable. By shortening the lead time, we can lower the safety stock, reduce the loss caused by stockout, increase the service level to the customer, and gain the competitive advantages in business. Here a novel approach to safety stock management in an integrated supply chain with controllable lead time and ordering cost reduction using present value is to be discussed (Tab. 1).

## 2. LITERATURE REVIEW

Inventory models considering lead time as a decision variable have been developed by several researchers recently. Liao and Shyu [22] first presented a probabilistic inventory model in which the order quantity is predetermined and lead time is a unique decision variable. Ben-Daya and Raouf [2] extended Liao and Shyu's [22] model by considering both lead time and order quantity as decision variables. Ouyang *et al.* [27] generalized Ben-Daya and Raouf's [2] model by allowing shortages with partial back orders.

Moon and Choi [24] and Hariga and Ben-Daya [15] revised Ouyang *et al.*'s [27] model by considering the reorder point as one of the decision variables; they further developed a minimax distribution free procedure for the problems. In the above papers [2, 15, 22, 24, 27], that focus on deriving the benefits from lead time reduction, the ordering cost is treated as a fixed constant. In a recent article, Ouyang *et al.* [26] relaxed the fixed ordering cost assumption in Moon and Choi [24] and proposed a model to study the effects of lead time and ordering cost reductions.

We note that the lead time and ordering cost reductions in [26] are assumed to act independently, however, this is only one of the possible situations. In practices, the lead time and ordering cost reductions may be related closely; the reduction of lead time may accompany the reduction of ordering cost, and vice versa. For example, the implementation of electronic data interchange (EDI) can reduce both the lead time and ordering cost simultaneously. Therefore, it is more reasonable to assume that lead time and ordering cost reductions act dependently. The purpose of this paper is to study the effect of lead time reduction on continuous review inventory systems with partial back orders. Specifically, we modify Moon and Choi's [24] model to include the cases of the linear and logarithmic relationships between lead time and ordering cost reductions. The objective is to minimize the total related cost by simultaneously optimizing the order quantity, reorder point, and lead time.

Ouyang *et al.* [25] modified Moon and Choi's [24] continuous review inventory model with variable lead time and partial backorders by fuzzifying the backorder rate. A new analytical approach to safety stock management, within single buyer-single vendor framework under VMI with consignment agreement, was presented by Braglia *et al.* [10]. A novel approach to safety stock management in a coordinated supply chain with controllable lead time using present value was presented by Braglia [11]. Priyan and Uthayakumar [28] developed an integrated production-distribution inventory model for a single-vendor single-buyer supply chain system with the consideration of quality inspection errors at the buyer's end, the buyer's warehouse has limited capacity and there is an upper bound on the purchase of products.

Shaikh *et al.* [36] had developed an inventory model according to consideration of price, stock dependent, fully backlogged shortage and inflation. Bhunia *et al.* [3] had developed a price break inventory model for a single deteriorating item with imprecise inventory costs by considering all unit discount policy and variable demand rate dependent on displayed stock level under partially backlogging. Bhunia and Shaikh [4] had dealt with an inventory model, which considers the impact of marketing strategies such as pricing and advertising as well as the displayed inventory level on the demand rate of the system. Bhunia *et al.* [7] had given a memo on stock model with partial backlogging under delay in payments. Shaikh *et al.* [35] developed a two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions with shortages. Shaikh [33] had done an inventory model

for a deteriorating item with selling price and frequency of advertisement dependent demand of an item under the mixed type financial trade credit policy.

Bhunia *et al.* [6] formulated a production-inventory model to investigate the effects of partially integrated production and marketing policy of a manufacturing firm. Shaikh [34] introduced an inventory model for single deteriorating items with two separate storage facilities (own and rented warehouses) due to limited capacity of the existing storage, *i.e.*, own warehouse considering allowable delay in payment. Bhunia *et al.* [8] developed a deterministic inventory model for single deteriorating items with two separate storage facilities (owned and rented warehouse, RW) due to limited capacity of the existing storage (owned warehouse, OW). Bhunia and Shaikh [5] had dealt with an alternative approach for a two-warehouse inventory model for single deteriorating item considering allowable delay in payments with two separate warehouses having different preserving facilities.

Zavanella and Zanoni [40] proposed a research work for the way how a particular VMI policy, known as Consignment Stock (CS), may represent a successful strategy for both the buyer and the supplier. Battini *et al.* [1] proposed an innovative approach to supply and stock management based on a strong and continuous collaboration between vendor and buyer with demand variability, stock-out risk and limited warehouses space. Bowling *et al.* [9] gave a logistic approximation to the cumulative normal distribution. Jindal and Solanki [19] presented a single-vendor single-buyer integrated supply chain inventory models with inflation and time value of money under partial backlogging.

### 3. NOTATIONS AND ASSUMPTIONS

#### 3.1. Notations

We need the following notations and assumptions to develop the mathematical model of the proposed model. Additional notations and assumptions will be added up when required.

##### Decision variables

|     |                                                                            |
|-----|----------------------------------------------------------------------------|
| $q$ | Shipment quantity                                                          |
| $n$ | Number of shipments per production run from the vendor to the buyer        |
| $L$ | Length of the lead time to deliver a shipment from the vendor to the buyer |

##### Parameters

|            |                                                                                          |
|------------|------------------------------------------------------------------------------------------|
| $D$        | Average demand rate which is received by the buyer (units/unit time)                     |
| $P$        | Vendor's production rate (units/unit time)                                               |
| $A_B$      | Buyer's ordering cost per order (\$/order)                                               |
| $A_V$      | Vendor's setup cost per setup (\$/setup)                                                 |
| $V$        | Buyer's variable cost for order handling and receiving (\$/order)                        |
| $F$        | Fixed transportation cost borne by the buyer for each shipment (\$/order)                |
| $h_V$      | Vendor's stock holding cost per unit per unit time (\$/unit/unit time)                   |
| $H_V$      | Total holding cost at the first cycle of the vendor                                      |
| $h_B$      | Buyer's stock holding cost per unit per unit time (\$/unit/unit time)                    |
| $H_B$      | Inventory holding cost at the first cycle of the buyer                                   |
| $k$        | Number of admissible stockouts per unit time                                             |
| $r$        | Buyer's reorder point                                                                    |
| SL         | Service level                                                                            |
| $z_{SL}$   | SL – quantile of the standard normal distribution with reference to the service level SL |
| $\sigma_D$ | Standard deviation of demand rate                                                        |
| $\rho$     | Discount rate representing the time value of money                                       |
| $\eta$     | Inflation rate                                                                           |
| $i$        | Net constant discount rate of inflation                                                  |
| $TC_B$     | Buyer's total cost at the first cycle                                                    |

|         |                                                                    |
|---------|--------------------------------------------------------------------|
| $PTC_B$ | Buyer's present value of the total cost over an infinite horizon.  |
| $TC_V$  | Vendor's total cost at the first cycle.                            |
| $PTC_V$ | Vendor's present value of the total cost over an infinite horizon. |
| $JTC$   | Expected joint total cost                                          |

### Random variables

$X_D$  Lead time demand rate of the buyer, a Gaussian random variable

### Functions and operators

|            |                                                      |
|------------|------------------------------------------------------|
| $f(\cdot)$ | Standard normal probability density function (p.d.f) |
| $F(\cdot)$ | Standard normal cumulative density function (c.d.f)  |

### Sets

|              |                 |
|--------------|-----------------|
| $\mathbb{R}$ | Real numbers    |
| $\mathbb{N}$ | Natural numbers |

## 3.2. Assumptions

Some of the strategic characteristics become fundamental and the following hypothesis need to be considered:

- (1) The system deals with a single vendor-buyer co-operation with a single product. The vendor and the buyer are in different corporate entities and are also enthusiastic to have an collaboration inventory system. Thus, both the members accept to minimize the integrated expected total cost in the joint strategy. The buyer prefers a continuous review inventory policy and the order is kept whenever the inventory level comes to the reorder point  $r$ .
- (2) The buyer orders a lot size  $nq$ . The vendor produces  $nq$  with finite production rate  $P$  ( $P > D$ ) at one setup and ships in quantity  $q$  to the buyer over  $n$  times. For each shipment, the buyer pays a fixed transportation cost  $F$ . The vendor has a setup cost  $A_V$  for each production run of size  $nq$ , and the buyer has an ordering cost  $A_B$  for each order of size  $nq$ .
- (3) The lead time demand  $X_D$  is Gaussian with mean  $DL$  and standard deviation  $\sigma_D\sqrt{L}$ .
- (4) The supplier's production rate and the demand rate on the buyer are constant.
- (5) The buyer pays transportation and order handling costs.
- (6) The production rate is greater than the demand rate.
- (7) Safety stock  $SS = z_{SL} \times$  standard deviation of the lead time demand. Hence,  $SS = z_{SL} \times \sigma_D\sqrt{L}$ .
- (8) If  $SL$  and  $z$  are the service level and the safety factor, respectively we have  $\frac{1}{2} \leq SL < 1$ , which is equivalent to the condition  $z \geq 0$ .
- (9) Shortages and backorders are not considered.
- (10) The time horizon is infinite.
- (11) The net constant discount rate of inflation is given as  $i \equiv \rho - \eta > 0$ .
- (12) The lead time  $L$  consists of  $m$  mutually independent components. The  $i$ th component has a normal duration  $a_i$  and crashing cost per unit time  $c_i$ . For convenience, we rearrange  $c_i$  such that  $c_1 < c_2 < \dots < c_m$ . The components of lead time are crashed one at a time starting from the first component because it has the minimum unit crashing cost, and then the second component, and so on. Let  $L_0 = \sum_{i=1}^m b_i$ , and  $L_i$  be the length of lead time with components  $1, 2, \dots, i$  crashed to their minimum duration, then  $L_i$  can be expressed as  $L_i = L_0 - \sum_{j=1}^i (b_j - a_j)$ ,  $i = 1, 2, \dots, m$  and the lead time crashing cost  $R(L)$  per cycle is given by  $R(L) = c_i(L_{i-1} - L) + \sum_{j=1}^{i-1} c_j(b_j - a_j)$ ,  $L \in [L_i, L_{i-1}]$ .

#### 4. A NOVEL STOCHASTIC JELS MODEL UNDER THE PV CRITERIA

##### 4.1. The safety factor as a function of the shipment quantity

In accordance to Braglia *et al.* [10], the safety stock is determined by taking into an account to the following logistic approximation of the standard normal cumulative distribution.

$$F(x) = \frac{1}{1 + e^{-\gamma x}}, \quad x \in \mathbb{R} \quad (1)$$

where  $\gamma = 1.702$ . Taking inverse for equation (1) we obtain

$$F^{-1}(u) = \gamma^{-1} \ln \left( \frac{u}{1-u} \right), \quad u \in (0, 1). \quad (2)$$

Therefore, we can write  $z_{\text{SL}}$  which is SL-quantile of the standard normal distribution as

$$z_{\text{SL}} = z(q) = \gamma^{-1} \ln \left( \frac{\text{SL}}{1-\text{SL}} \right), \quad \text{SL} \in [1/2, 1) \quad (3)$$

and the service level SL can be put in relation to the number of admissible stockouts per unit time  $k$

$$\text{SL} = 1 - \frac{k}{(Dn/nq)} = 1 - \frac{kq}{D}. \quad (4)$$

It has to be highlighted that the service level as well as the cost of safety stock are functions only of  $q$  and reminding that the lead-time demand is supposed to be a Gaussian random variable. Then the safety factor  $z(q)$  and the service level are ostensibly related through the following expression:

$$z(q) = \gamma^{-1} \ln \left( \frac{1 - (kq/D)}{1 - (1 - (kq/D))} \right) = \gamma^{-1} \ln \left( \frac{D}{kq} - 1 \right). \quad (5)$$

Clearly, it is acceptable to assume  $D/k > 1$  as the demand is often bulkier than the number of admissible stockouts per unit time. Thus it is possible to obtain a valid interval for the variable  $q$  as

$$0 < \frac{kq}{D} \leq \frac{1}{2} \quad \text{which implies} \quad 0 < q \leq \frac{D}{2k}. \quad (6)$$

##### 4.2. Buyer's perspective

Now we examine the relevant cost of the buyer. The buyer perceives a replenishment cycle with length equal to  $q/D$ . For given  $q \in (0, D/2k]$  and  $L \in [L_m, L_0]$ , the expected net inventory level just before the order arrival is  $z(q)\sigma_D\sqrt{L}$ , and the expected net inventory at the beginning of the cycle is  $q + z(q)\sigma_D\sqrt{L}$ , where  $z(q)$  is given by equation (5). Therefore, the expected inventory level at  $t \in [0, q/D]$  is  $z(q)\sigma_D\sqrt{L} - Dt$ . Let  $i$  be the net constant discount rate of inflation which is formulated as  $i \equiv \rho - \eta$ . Thus the inventory holding cost for the first cycle at  $t \in [0, q/D]$  using the PV approach is written as

$$\begin{aligned} H_B &= nh_B \int_0^{q/D} [q + z(q)\sigma_D\sqrt{L} - Dt] e^{-it} dt \\ &= \frac{nh_B}{i} \left\{ \left[ q + \frac{\sigma_D\sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] \left( 1 - e^{-iq/D} \right) \right. \\ &\quad \left. + qe^{-iq/D} - \frac{D}{i} \left( 1 - e^{-iq/D} \right) \right\}. \end{aligned} \quad (7)$$

The total cost for the buyer at the first cycle is the sum of the ordering cost, variable cost, holding cost and transportation cost. Thus we get the total cost for the first cycle relevant to the buyer as

$$\begin{aligned} \text{TC}_B(q, n, L) &= A_B + nF + \frac{nh_B}{i} \left\{ \left[ q + \frac{\sigma_D \sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] \left( 1 - e^{-iq/D} \right) \right. \\ &\quad \left. + qe^{-iq/D} - \frac{D}{i} \left( 1 - e^{-iq/D} \right) \right\} + nV + nR(L). \end{aligned} \quad (8)$$

Consequently, the present value of the total cost of the buyer over an infinite time horizon can be formulated as

$$\begin{aligned} \text{PTC}_B(q, n, L) &= \left( 1 - e^{-inq/D} \right)^{-1} \left\{ A_B + nF + \frac{nh_B}{i} \left\{ \left[ q + \frac{\sigma_D \sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] \right. \right. \\ &\quad \left. \left. \times \left( 1 - e^{-iq/D} \right) + qe^{-iq/D} - \frac{D}{i} \left( 1 - e^{-iq/D} \right) \right\} + nV + nR(L) \right\}. \end{aligned} \quad (9)$$

#### 4.3. Vendor's perspective

For each production period,  $q$  units are produced, and the vendor delivers those inventories to the buyer. After that the vendor will generate only the average inventory level  $\frac{q}{D}$  units for delivering the buyer until the inventory level reaches zero. Also the vendor manufactures  $nq$  quantity for a lot. Since the cycle length for the vendor is  $\frac{mq}{D}$ , the average inventory for the vendor can be given as

$$\left[ nq \left( \frac{q}{P} + (n-1) \frac{q}{D} \right) - \frac{n^2 q^2}{2P} - \frac{q^2}{D} \{ 1 + 2 + \dots + (n-1) \} \right] \frac{D}{nq} = \frac{q}{2} \left[ (n-1) - (n-2) \frac{D}{P} \right].$$

Therefore the total holding cost for the vendor at the first cycle in the interval  $t \in [0, \frac{nq}{D}]$  is expressed as

$$\begin{aligned} H_V &= h_v \int_0^{nq/D} \frac{q}{2} \left[ (n-1) - (n-2) \frac{D}{P} \right] e^{-it} dt \\ &= \frac{h_v}{i} \frac{q}{2} \left[ (n-1) - (n-2) \frac{D}{P} \right] \left( 1 - e^{-inq/D} \right). \end{aligned} \quad (10)$$

Thus the total cost of the vendor at first cycle which is a composition of setup cost and holding cost can be exhibited as

$$\text{TC}_V(q, n) = A_V + \frac{h_v}{i} \frac{q}{2} \left[ (n-1) - (n-2) \frac{D}{P} \right] \left( 1 - e^{-inq/D} \right) \quad (11)$$

Consequently, the present value of the total cost of the vendor over an infinite time horizon can be admitted as

$$\text{PTC}_V(q, n) = \left( 1 - e^{-inq/D} \right)^{-1} \left\{ A_V + \frac{h_v}{i} \frac{q}{2} \left[ (n-1) - (n-2) \frac{D}{P} \right] \left( 1 - e^{-inq/D} \right) \right\}. \quad (12)$$

## 5. JOINT OPTIMIZATION

On considering vendor and buyer cooperation to each other, we framed the expected joint total cost at the first cycle as

$$\begin{aligned}
\text{JTC}(q, n, L) &= \text{PTC}_B(q, n, L) + \text{PTC}_V(q, n) \\
&= \left(1 - e^{-inq/D}\right)^{-1} \left\{ A_B + nF + \frac{nh_B}{i} \left\{ \left[ q + \frac{\sigma_D \sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] \right. \right. \\
&\quad \times \left. \left( 1 - e^{-iq/D} \right) + qe^{-iq/D} - \frac{D}{i} \left( 1 - e^{-iq/D} \right) \right\} + nV + nR(L) \\
&\quad + A_V + \frac{h_V}{i} \frac{q}{2} \left[ (n-1) - (n-2) \frac{D}{P} \right] \left( 1 - e^{-inq/D} \right) \left. \right\} \tag{13}
\end{aligned}$$

with  $q \in (0, D/2k]$ ,  $n \in \mathbb{N}$  and  $L \in [L_m, L_0]$ .

To establish an exact optimization procedure which is to minimize  $\text{JTC}(q, n, L)$  under the constraints  $q \in (0, D/2k]$ ,  $n \in \mathbb{N}$  and  $L \in [L_m, L_0]$ , we seek to define the properties which are satisfied by  $\text{JTC}(q, n, L)$ .

At first, for fixed  $(q, n)$  and  $L \in [L_j, L_{j-1}]$ ,  $\text{JTC}(q, n, L)$  is strictly concave in  $L$  due to the fact that

$$\begin{aligned}
\frac{\partial}{\partial L} \text{JTC}(q, n, L) &= -nc_i + \frac{nh_B}{2i} \frac{\sigma_D}{\gamma \sqrt{L}} \ln \left( \frac{D}{kq} - 1 \right) \frac{(1 - e^{-iq/D})}{(1 - e^{-inq/D})} \quad \text{and} \\
\frac{\partial^2}{\partial L^2} \text{JTC}(q, n, L) &= -\frac{nh_B}{4i} \frac{\sigma_D}{\gamma \sqrt{L}} \ln \left( \frac{D}{kq} - 1 \right) \frac{(1 - e^{-iq/D})}{(1 - e^{-inq/D})} < 0.
\end{aligned}$$

Therefore, for fixed  $(q, n)$  and  $L \in [L_j, L_{j-1}]$ , the minimum of  $\text{JTC}(q, n, L)$  in  $L$  lies on the end points of the interval  $L \in [L_j, L_{j-1}]$ .

Basically, we are granted to write the following equality:

$$\min_{(q, n, L)} \text{JTC}(q, n, L) = \min \left\{ \min_{(q, n)} \text{JTC}(q, n, L_j) \mid j = 0, 1, \dots, m \right\}.$$

Secondly, if we relax the integer constraint on  $n$ , it is possible to note that  $\text{JTC}(q, n, L)$  is strictly convex in  $n$ , for fixed  $(q, L)$ . In fact, putting in evidence the terms that depending on  $n$ , substantially  $\text{JTC}(q, n, L)$  can be written as follows:

$$\text{JTC}(q, n, L) = C_1 \frac{1}{(1 - e^{-inq/D})} + C_2 \frac{n}{(1 - e^{-inq/D})} + C_3 n + C_4 \tag{14}$$

where

$$\begin{aligned}
C_1 &= A_B + A_V \\
C_2 &= F + V + R(L) + \frac{nh_B}{i} \left\{ \left[ q + \frac{\sigma_D \sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] \left( 1 - e^{-iq/D} \right) \right. \\
&\quad \left. + qe^{-iq/D} - \frac{D}{i} \left( 1 - e^{-iq/D} \right) \right\} \\
C_3 &= \frac{h_V q}{2i} \left( 1 - \frac{D}{P} \right) \\
C_4 &= \frac{h_V q}{2i} \left( \frac{2D}{P} - 1 \right)
\end{aligned}$$

and noticing that

$$\frac{\partial^2}{\partial n^2} \frac{1}{(1 - e^{-inq/D})} = \left(\frac{qi}{D}\right)^2 \frac{e^{inq/D} (e^{inq/D} + 1)}{(e^{inq/D} - 1)^3} > 0 \quad (15)$$

and

$$\frac{\partial^2}{\partial n^2} \frac{n}{(1 - e^{-inq/D})} = \left(\frac{nqi}{D}\right)^2 \frac{e^{inq/D} (e^{inq/D} + 1)}{(e^{inq/D} - 1)^3} > 0. \quad (16)$$

The equations (15) and (16) suggest that the expected joint total cost is strictly convex in  $n$  for  $(q, L)$  fixed.

Finally, for fixed  $(n, L)$  we relax the constraint on  $q \in (0, \xi/2]$ , it is possible to note that  $\text{JTC}(q, n, L)$  is strictly convex in  $q$ , for fixed  $(n, L)$ . By taking account of the equation (14) we could be able to investigate the convexity of the expected joint total cost  $\text{JTC}(q, n, L)$ .

Now, for fixed  $(n, L)$  we take the derivatives of  $\text{JTC}(q, n, L)$  with respect to  $q$  and obtain

$$\begin{aligned} \frac{\partial \text{JTC}}{\partial q} = & \frac{-ine^{-inq/D}}{D(1 - e^{-inq/D})^2} \left\{ A_B + A_V + n \left[ F + V + R(L) + \frac{nh_B}{i} \left\{ \left[ q + \frac{\sigma_D \sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] \right. \right. \right. \\ & \times \left( 1 - e^{-iq/D} \right) + qe^{-iq/D} - \frac{D}{i} \left( 1 - e^{-iq/D} \right) \left. \right\} \left. \right\} + \frac{nh_B}{i} \left\{ \left[ 1 - \frac{D\sigma_D \sqrt{L}}{\gamma q(D - kq)} \right] \right. \\ & \times \left( 1 - e^{-iq/D} \right) + \frac{i\sigma_D \sqrt{L}}{D\gamma} \ln \left( \frac{D}{kq} - 1 \right) e^{-iq/D} \left. \right\} \times \frac{1}{(1 - e^{-inq/D})} \\ & + \frac{h_V}{2i} \left( n - 1 - \frac{D}{P}(n - 2) \right), \end{aligned} \quad (17)$$

and

$$\begin{aligned} \frac{\partial^2 \text{JTC}}{\partial q^2} = & \left\{ \left( \frac{qi}{D} \right)^2 \frac{e^{inq/D} (e^{inq/D} + 1)}{(e^{inq/D} - 1)^3} (C_1 + nC_2) + \frac{nh_B}{i} \left\{ \frac{ie^{-iq/D}}{D} \right. \right. \\ & + \frac{\sigma_D \sqrt{L} D (D - 2kq)}{\gamma q^2 (D - kq)^2} (1 - e^{-iq/D}) - \frac{2\sigma_D \sqrt{L} i}{\gamma q (D - kq)} e^{-iq/D} \\ & - \frac{i^2 \sigma_D \sqrt{L}}{D^2 \gamma} \ln \left( \frac{D}{kq} - 1 \right) e^{-iq/D} \left. \right\} \times \frac{1}{(1 - e^{-inq/D})} \\ & + \frac{2n}{(1 - e^{-inq/D})} \times \frac{h_B}{i} \left\{ \left[ 1 - \frac{D\sigma_D \sqrt{L}}{\gamma q (D - kq)} \right] (1 - e^{-iq/D}) \right. \\ & \left. \left. + \frac{i\sigma_D \sqrt{L}}{D\gamma} \ln \left( \frac{D}{kq} - 1 \right) e^{-iq/D} \right\} \right\} > 0. \end{aligned} \quad (18)$$

By examining the second order sufficient conditions (SOSC), it can be verified that the expected joint total cost  $\text{JTC}(q, n, L)$  is strictly convex in  $n$  for  $(n, L)$  fixed.

Thus, for fixed  $(n, L)$  the minimum value of  $\text{JTC}(q, n, L)$  occurs at the point  $q$  which satisfies  $\frac{\partial \text{JTC}}{\partial q} = 0$ . Solving this equation, we yield the value of  $q$  as

$$\begin{aligned} q = & \frac{D(1 - e^{-inq/D})}{ine^{-inq/D}} \left\{ \left[ 1 - \frac{D\sigma_D\sqrt{L}}{\gamma q(D - kq)} \right] (1 - e^{-iq/D}) \right. \\ & + \frac{i\sigma_D\sqrt{L}}{D\gamma} \ln \left( \frac{D}{kq} - 1 \right) e^{-iq/D} \left. \right\} + \frac{h_V D (1 - e^{-inq/D})^2}{2ih_B n^2 e^{-inq/D}} \\ & \times (n - 1 - \frac{D}{P}(n - 2)) - \frac{i}{nh_B} [A_B + A_V + n(F + V + R(L)) \\ & + \frac{nh_B}{i} \left\{ \left[ \frac{\sigma_D\sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] . - \frac{D}{i} \right\} (1 - e^{-iq/D})] \end{aligned} \quad (19)$$

The equations (17) and (18) suggest that the expected joint total cost is strictly convex in  $q$  for  $(n, L)$  fixed.

## 6. LEAD TIME REDUCTION

### 6.1. Linear function case

In this section, we assume that lead time and ordering cost reductions act dependently with the following relationship

$$\frac{L_0 - L}{L_0} = \alpha \left( \frac{A_{B0} - A_B}{A_{B0}} \right) \quad (20)$$

where ( $\alpha > 0$ ) is a constant scaling parameter which describes the linear relationship between percentages of reductions in lead time and ordering cost.

By considering the relationship (20), the ordering cost  $A_B$  can be formulated as a linear function of  $L$ , that is,

$$A_B(L) = u + vL \quad (21)$$

where  $u = (1 - \frac{1}{\alpha}A_{B0})$  and  $v = \frac{A_{B0}}{\alpha L_0}$ . Using (21) in (13) we get the problem as

$$\begin{aligned} \text{JTC}_1(q, n, L) = & (1 - e^{-inq/D})^{-1} \left\{ u + vL + nF + \frac{nh_B}{i} \left\{ \left[ q + \frac{\sigma_D\sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] \right. \right. \\ & \times (1 - e^{-iq/D}) + qe^{-iq/D} - \frac{D}{i} (1 - e^{-iq/D}) \left. \right\} + nV + nR(L) \\ & + A_V + \frac{h_v}{i} \frac{q}{2} \left[ (n - 1) - (n - 2) \frac{D}{P} \right] (1 - e^{-inq/D}) \left. \right\}. \end{aligned} \quad (22)$$

To minimize  $\text{JTC}_1(q, n, L)$  under the constraints  $q \in (0, D/2k]$ ,  $n \in \mathbb{N}$  and  $L \in [L_m, L_0]$ , we need to find the partial derivatives of  $\text{JTC}_1(q, n, L)$  with respect to  $q$ ,  $n$ ,  $L$ .

$$\begin{aligned} \frac{\partial}{\partial L} \text{JTC}_1(q, n, L) &= v - nc_i + \frac{nh_B}{2i} \frac{\sigma_D}{\gamma\sqrt{L}} \ln \left( \frac{D}{kq} - 1 \right) \frac{(1 - e^{-iq/D})}{(1 - e^{-inq/D})} \quad \text{and} \\ \frac{\partial^2}{\partial L^2} \text{JTC}_1(q, n, L) &= -\frac{nh_B}{4i} \frac{\sigma_D}{\gamma\sqrt{L}} \ln \left( \frac{D}{kq} - 1 \right) \frac{(1 - e^{-iq/D})}{(1 - e^{-inq/D})} < 0. \end{aligned}$$

Since the first and second partial derivatives of  $\text{JTC}_1(q, n, L)$  with respect to  $q$ ,  $n$  are as same as the partial derivatives of  $\text{JTC}(q, n, L)$  with respect to  $q$ ,  $n$  respectively. There is no oscillation in the formulation of  $q$ .

## 6.2. Logarithmic function case

In this section, we assume that lead time and ordering cost reductions act dependently with the following relationship

$$\frac{A_{B0} - A_B}{A_{B0}} = \tau \left( \frac{L}{L_0} \right) \quad (23)$$

where ( $\tau < 0$ ) is a constant scaling parameter which describes the logarithmic relationship between percentages of reductions in lead time and ordering cost.

By considering the relationship (23), the ordering cost  $A_B$  can be formulated as a logarithmic function of  $L$ , that is,

$$A_B(L) = d + e \ln L \quad (24)$$

where  $d = A_{B0} + \tau A_{B0} \ln L_0$  and  $e = -\tau A_{B0}$ . Using (24) in (13) we get the problem as

$$\begin{aligned} \text{JTC}_2(q, n, L) = & \left( 1 - e^{-inq/D} \right)^{-1} \left\{ d + e \ln L + nF + \frac{nh_B}{i} \left\{ \left[ q + \frac{\sigma_D \sqrt{L}}{\gamma} \ln \left( \frac{D}{kq} - 1 \right) \right] \right. \right. \\ & \times \left( 1 - e^{-iq/D} \right) + qe^{-iq/D} - \frac{D}{i} \left( 1 - e^{-iq/D} \right) \left. \right\} + nV + nR(L) \\ & + A_V + \frac{h_v}{i} \frac{q}{2} \left[ (n-1) - (n-2) \frac{D}{P} \right] \left( 1 - e^{-inq/D} \right) \left. \right\}. \end{aligned} \quad (25)$$

To minimize  $\text{JTC}_2(q, n, L)$  under the constraints  $q \in (0, D/2k]$ ,  $n \in \mathbb{N}$  and  $L \in [L_m, L_0]$ , we need to find the second partial derivatives of  $\text{JTC}_2(q, n, L)$  with respect to  $q$ ,  $n$ ,  $L$ .

$$\begin{aligned} \frac{\partial}{\partial L} \text{JTC}_2(q, n, L) &= \frac{e}{L} - nc_i + \frac{nh_B}{2i} \frac{\sigma_D}{\gamma \sqrt{L}} \ln \left( \frac{D}{kq} - 1 \right) \frac{(1 - e^{-iq/D})}{(1 - e^{-inq/D})} \quad \text{and} \\ \frac{\partial^2}{\partial L^2} \text{JTC}_2(q, n, L) &= -\frac{e}{L^2} - \frac{nh_B}{4i} \frac{\sigma_D}{\gamma \sqrt{L}} \ln \left( \frac{D}{kq} - 1 \right) \frac{(1 - e^{-iq/D})}{(1 - e^{-inq/D})} < 0. \end{aligned}$$

Since the first and second order partial derivatives of  $\text{JTC}_2(q, n, L)$  with respect to  $q$ ,  $n$  are as same as the partial derivatives of  $\text{JTC}(q, n, L)$  with respect to  $q$ ,  $n$  respectively, there is no variation in the formulation of  $q$ .

### Algorithm

**Step 1:** Set  $n = 1$  and  $q = 100$ .

**Step 2:** Determine  $q$  from equation (5). Using this  $q$  find the values of SL and  $z$ .

**Step 3:** Determine the value of  $q$  from equation (19) by substituting the value of  $z$ .

**Step 4:** Using this  $q$  find the values of SL and  $z$ . Also repeat the step 3 until the value of  $q$  remains unchanged.

**Step 5:** Then calculate the expected joint total cost  $\text{JTC}(q, n, L)$ .

**Step 6:** Increase the value of  $n$  to  $n + 1$  and repeat the steps from (1) to (5).

**Step 6:** Repeat the step 6 until the convexity of the expected joint total cost  $\text{JTC}(q, n, L)$  is achieved. The place where the convexity is achieved will give us the optimal values for  $n$  and  $q$ .

The above algorithm is same for all the three cases constructed.

## 7. NUMERICAL APPLICATION

In this section the model has been practiced to a large number of consumable items like metallic and plastic small parts, personal protective equipment, packaging components, etc. All these items are circumscribed, by

TABLE 2. Lead time data.

| Component - $j$ | Duration (days) |                 | Unit Crashing Cost (\$/day) |
|-----------------|-----------------|-----------------|-----------------------------|
|                 | Normal - $b_j$  | Minimum - $a_j$ |                             |
| 1               | 12              | 7               | 0.3                         |
| 2               | 12              | 7               | 2.1                         |
| 3               | 10              | 8               | 5.3                         |

TABLE 3. Values of Parameters considered in the numerical study.

| Parameters                | Values      |                      |                           |
|---------------------------|-------------|----------------------|---------------------------|
|                           | Normal case | Linear function case | Logarithmic function case |
| $D$ (units/unit time)     | 500         | 500                  | 500                       |
| $P$ (units/unit time)     | 1000        | 1000                 | 1000                      |
| $A_V$ (\$/setup)          | 200         | —                    | —                         |
| $A_B$ (\$/order)          | 100         | —                    | —                         |
| $A_{V0}$ (\$/setup)       | —           | 200                  | 200                       |
| $A_{B0}$ (\$/order)       | —           | 100                  | 100                       |
| $V$ (\$/order)            | 3           | 3                    | 3                         |
| $F$ (\$/order)            | 20          | 20                   | 20                        |
| $h_B$ (\$/unit/unit time) | 30          | 30                   | 30                        |
| $h_V$ (\$/unit/unit time) | 10          | 10                   | 10                        |
| $\rho$                    | 0.15        | 0.15                 | 0.15                      |
| $\eta$                    | 0.07        | 0.07                 | 0.07                      |
| $k$                       | 0.5         | 0.5                  | 0.5                       |
| $\sigma_D$ (unit/week)    | 5           | 5                    | 5                         |
| $\gamma$                  | 1.702       | 1.702                | 1.702                     |

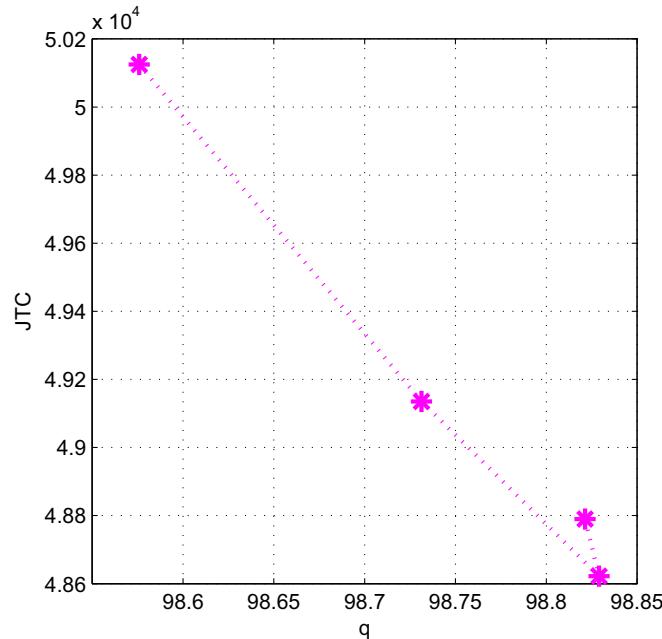


FIGURE 1. The convexity of the expected joint total cost when the ordering cost is fixed to be a constant.

TABLE 4. The change in the value of JTC when the reduction parameters are represented by the values as  $\alpha = 0.75$  and  $\tau = -1$ .

| $L$ | $n$ | Normal case |       | Linear case |          |         | Logarithmic case |        |          |         |                  |
|-----|-----|-------------|-------|-------------|----------|---------|------------------|--------|----------|---------|------------------|
|     |     | $q$         | JTC   | $\alpha$    | $A_{B0}$ | $q$     | JTC <sub>1</sub> | $\tau$ | $A_{B0}$ | $q$     | JTC <sub>2</sub> |
| 34  | 2   | 98.5759     | 50125 | 0.75        | 100      | 98.5759 | 50125            | -1     | 100      | 98.5759 | 50125            |
| 29  | 2   | 98.7313     | 49135 | 0.75        | 80.3922  | 98.8645 | 48514            | -1     | 84.0935  | 98.8393 | 48631            |
| 24  | 2   | 98.8290     | 48622 | 0.75        | 60.7843  | 99.0954 | 47381            | -1     | 65.1693  | 99.0657 | 47520            |
| 22  | 2   | 98.8213     | 48790 | 0.75        | 52.9412  | 99.1412 | 47301            | -1     | 56.4682  | 99.1172 | 47413            |

TABLE 5. The change in the value of JTC when the reduction parameters are represented by the values as  $\alpha = 1$  and  $\tau = -0.8$ .

| $L_0$ | $n$ | Linear case |          |         | Logarithmic case |        |          |         |                  |
|-------|-----|-------------|----------|---------|------------------|--------|----------|---------|------------------|
|       |     | $\alpha$    | $A_{B0}$ | $q$     | JTC <sub>1</sub> | $\tau$ | $A_{B0}$ | $q$     | JTC <sub>2</sub> |
| 34    | 2   | 0.75        | 100      | 98.5759 | 50125            | -0.2   | 100      | 98.5759 | 50125            |
| 29    | 2   | 0.75        | 80.3922  | 98.8645 | 48514            | -0.2   | 96.8187  | 98.7529 | 49034            |
| 24    | 2   | 0.75        | 60.7843  | 99.0954 | 47381            | -0.2   | 93.0339  | 98.8762 | 48401            |
| 22    | 2   | 0.75        | 52.9412  | 99.1412 | 47301            | -0.2   | 91.2936  | 98.8805 | 48514            |

TABLE 6. The change in the value of JTC when the reduction parameters are represented by the values as  $\alpha = 1.25$  and  $\tau = -0.5$ .

| $L_0$ | $n$ | Linear case |          |         | Logarithmic case |        |          |         |                  |
|-------|-----|-------------|----------|---------|------------------|--------|----------|---------|------------------|
|       |     | $\alpha$    | $A_{B0}$ | $q$     | JTC <sub>1</sub> | $\tau$ | $A_{B0}$ | $q$     | JTC <sub>2</sub> |
| 34    | 2   | 1.25        | 100      | 98.5759 | 50125            | -0.5   | 100      | 98.5759 | 50125            |
| 29    | 2   | 1.25        | 88.2353  | 98.7683 | 48759            | -0.5   | 92.0468  | 98.7853 | 48883            |
| 24    | 2   | 1.25        | 76.4706  | 98.9888 | 47877            | -0.5   | 82.5847  | 98.9473 | 48070            |
| 22    | 2   | 1.25        | 71.7647  | 99.0132 | 47896            | -0.5   | 78.2341  | 98.9692 | 48101            |

TABLE 7. The change in the value of JTC when the reduction parameters are represented by the values as  $\alpha = 2.5$  and  $\tau = -0.2$ .

| $L_0$ | $n$ | Linear case |          |         | Logarithmic case |        |          |         |                  |
|-------|-----|-------------|----------|---------|------------------|--------|----------|---------|------------------|
|       |     | $\alpha$    | $A_{B0}$ | $q$     | JTC <sub>1</sub> | $\tau$ | $A_{B0}$ | $q$     | JTC <sub>2</sub> |
| 34    | 2   | 2.5         | 100      | 98.5759 | 50125            | -0.2   | 100      | 98.5759 | 50125            |
| 29    | 2   | 2.5         | 94.1176  | 98.7713 | 48949            | -0.2   | 96.8187  | 98.7529 | 49034            |
| 24    | 2   | 2.5         | 88.2353  | 98.9089 | 48249            | -0.2   | 93.0339  | 98.8762 | 48401            |
| 22    | 2   | 2.5         | 85.8824  | 99.9172 | 48343            | -0.2   | 91.2936  | 98.8805 | 48514            |

TABLE 8. The change in the value of JTC when the reduction parameters are represented by the values as  $\alpha = 5$  and  $\tau = 0$ .

| $L_0$ | $n$ | Linear case |          |         | Logarithmic case |        |          |         |                  |
|-------|-----|-------------|----------|---------|------------------|--------|----------|---------|------------------|
|       |     | $\alpha$    | $A_{B0}$ | $q$     | JTC <sub>1</sub> | $\tau$ | $A_{B0}$ | $q$     | JTC <sub>2</sub> |
| 34    | 2   | 5           | 100      | 98.5759 | 50125            | 0      | 100      | 98.5759 | 50125            |
| 29    | 2   | 5           | 97.0588  | 98.7513 | 49042            | 0      | 100      | 98.7313 | 49135            |
| 24    | 2   | 5           | 94.1176  | 98.8690 | 48435            | 0      | 100      | 98.8290 | 48622            |
| 22    | 2   | 5           | 92.9412  | 98.8693 | 48566            | 0      | 100      | 98.8213 | 48790            |

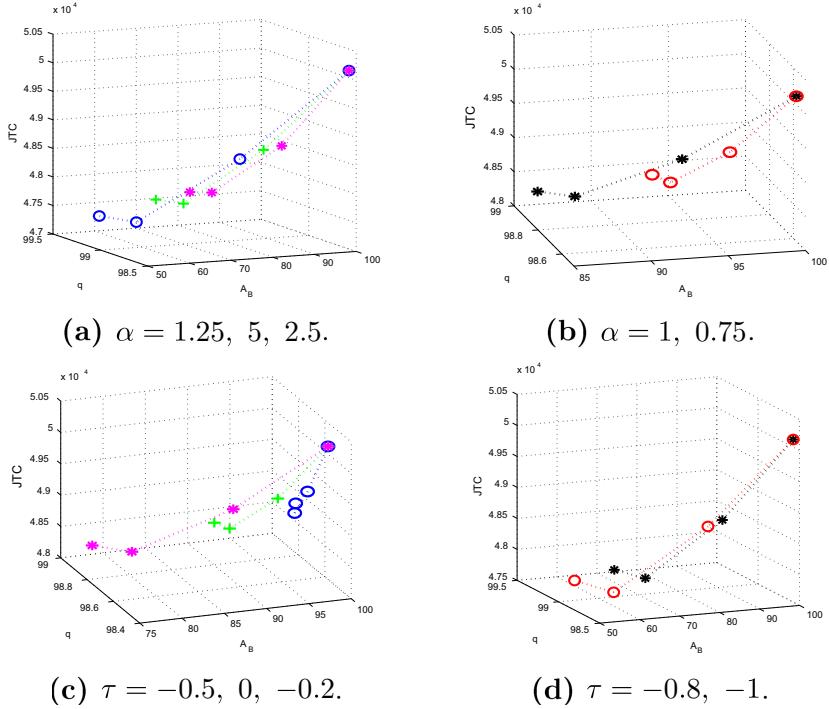


FIGURE 2. Convexity of JTC with the variable  $q$  for both the linear and logarithmic cases respectively.

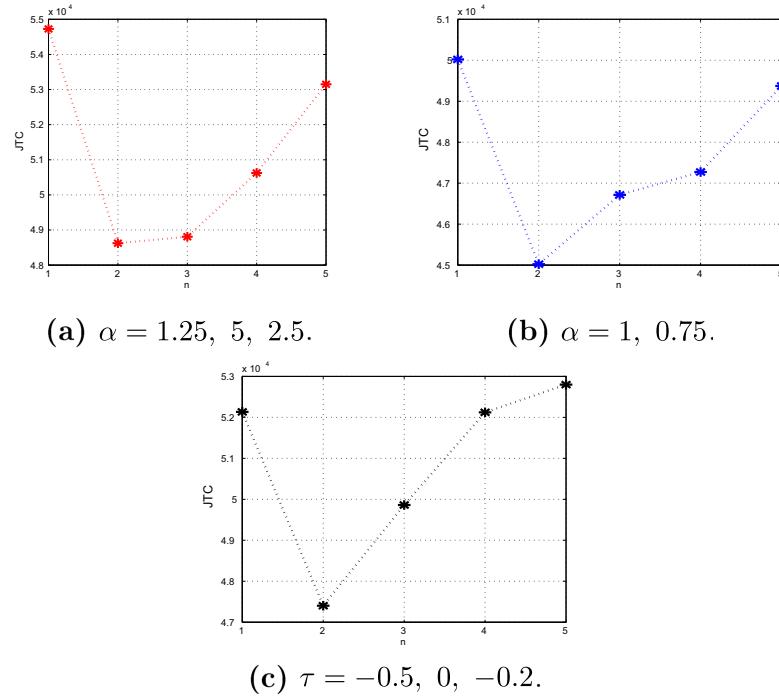


FIGURE 3. Convexity of JTC with the variable  $n$  for all the three cases.

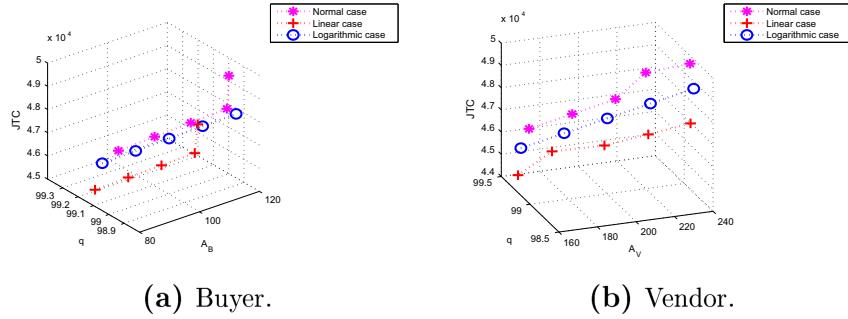


FIGURE 4. Sensitivity on Ordering cost of buyer and vendor respectively.

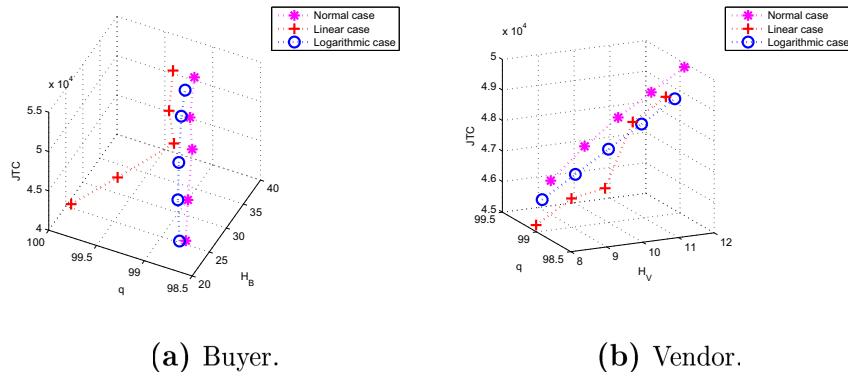


FIGURE 5. Sensitivity on holding cost of buyer and vendor.

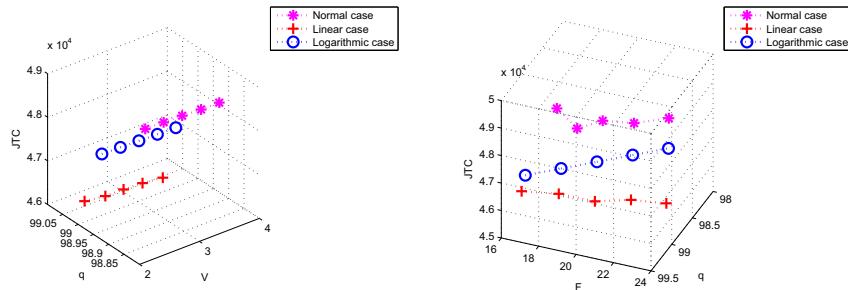


FIGURE 6. Sensitivity on Buyer's variable cost and Transportation cost respectively.

low price, high annual consumption, small dimensions and ease of storage, but, they achieve a considerable annual monetary volume when considered cumulatively.

In order to illustrate the proposed model, we follow the data used in Braglia *et al.* [11] which is shown in Table 2 and some newly introduced parameters are included in Table 3.

The variation of the expected joint total cost and the ordering cost of the buyer can be observed through the following figures when there is an oscillation in the values of  $\alpha$  and  $\tau$ :

The sensitivity analysis has been conducted based on the variation of the following parameters:

- (i) Standard deviation in market demand (in % of the average monthly demand).
- (ii) Average demand rate.

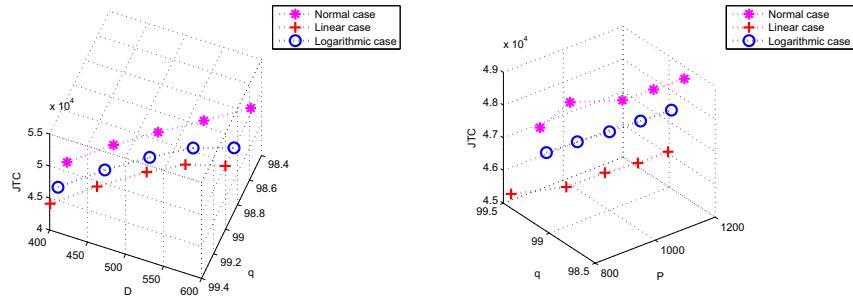


FIGURE 7. Sensitivity on Demand rate and Production rate respectively.

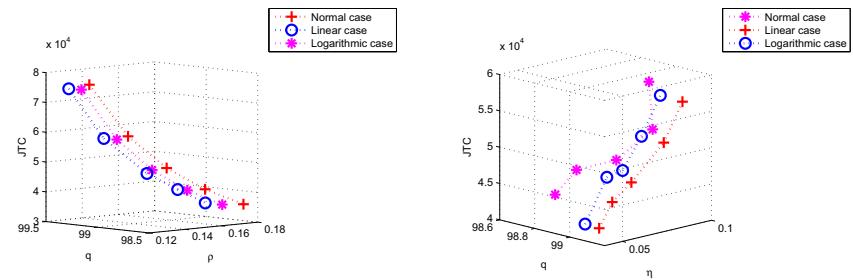


FIGURE 8. Sensitivity on Discount rate and Inflation rate.

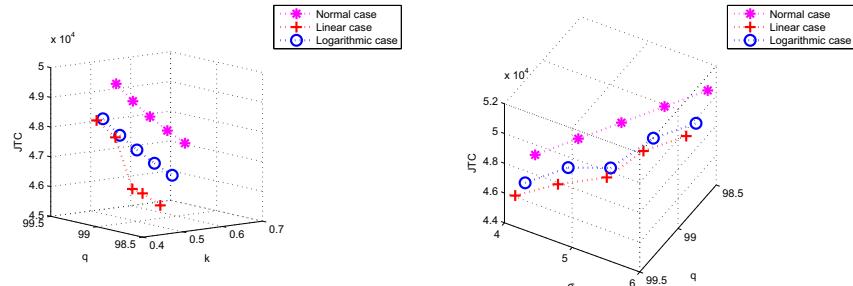


FIGURE 9. Sensitivity on number of admissible stockouts and standard deviation of demand rate.

- (iii) Various cost used by both vendor and buyer.
- (iv) Inflation rate and discount rate of present value.

Based on our numerical results, we achieve the following managerial phenomena:

- (1) From Figure 1 the convexity of the expected joint total cost JTC can be observed clearly with reference to the values tabulated in the Table 4.
- (2) From Tables 4–8, we observe the results of sensitivity analysis of the change in the parameters  $\alpha$  and  $\tau$  and the optimized values are figured out in Figure 2.
- (3) We can find that that the demand  $D$  and  $P$  have not a significant impact on the expected joint total cost per unit time JTC in both the cases.
- (4) For both the cases, we could see a moderate significance for the role of inflation rate  $\eta$ , number of admissible stockouts per unit time.

TABLE 9. Sensitivity of various cost used by both vendor and buyer when  $\alpha = 0.75$ ,  $L_0 = 22$  and  $\tau = -1$ ,  $L_0 = 22$ .

| Parameters | Values | Normal case |       | Linear case |                  | Logarithmic case |                  |
|------------|--------|-------------|-------|-------------|------------------|------------------|------------------|
|            |        | $q$         | JTC   | $q$         | JTC <sub>1</sub> | $q$              | JTC <sub>2</sub> |
| $A_{B0}$   | 80     | 98.9373     | 47986 | 99.0902     | 45722            | 99.0431          | 47043            |
|            | 90     | 98.8969     | 48305 | 99.0688     | 45893            | 99.0203          | 47223            |
|            | 100    | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 110    | 98.8160     | 48943 | 99.0260     | 46228            | 98.9746          | 47583            |
|            | 120    | 98.9990     | 49229 | 99.2018     | 46357            | 98.9517          | 47762            |
| $A_V$      | 160    | 99.0182     | 47349 | 99.2091     | 44787            | 99.1593          | 46130            |
|            | 180    | 98.9373     | 47986 | 99.2885     | 45423            | 99.0784          | 46766            |
|            | 200    | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 220    | 98.9990     | 49229 | 98.9546     | 46555            | 98.9165          | 48040            |
|            | 240    | 98.8987     | 49650 | 98.8913     | 46976            | 98.8356          | 48678            |
| $H_V$      | 8      | 98.7940     | 46945 | 99.0074     | 45214            | 98.9184          | 46163            |
|            | 9      | 98.8233     | 47876 | 99.0145     | 45921            | 98.9579          | 46783            |
|            | 10     | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 11     | 98.8959     | 49243 | 99.1663     | 47921            | 99.0370          | 48022            |
|            | 12     | 98.9354     | 49862 | 99.2059     | 48542            | 99.0765          | 48642            |
| $H_B$      | 24     | 98.7083     | 41235 | 99.9083     | 41235            | 98.7753          | 40941            |
|            | 27     | 98.7944     | 44267 | 99.5297     | 44267            | 98.8988          | 43871            |
|            | 30     | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 46402            |
|            | 33     | 98.9871     | 50334 | 99.2059     | 50334            | 99.0781          | 50148            |
|            | 36     | 99.0487     | 53368 | 99.2720     | 53368            | 99.1453          | 51363            |
| $K$        | 16     | 98.1545     | 47125 | 99.0084     | 45754            | 98.9184          | 46163            |
|            | 18     | 98.5684     | 47493 | 99.0148     | 45971            | 98.9579          | 46783            |
|            | 20     | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 22     | 99.0057     | 49124 | 99.0784     | 46471            | 99.0370          | 48022            |
|            | 24     | 99.0681     | 49721 | 99.1294     | 46745            | 99.0765          | 48642            |
| $V$        | 2.4    | 98.8596     | 48624 | 99.0574     | 46059            | 99.0007          | 47403            |
|            | 2.7    | 98.8580     | 48624 | 99.0483     | 46059            | 98.9990          | 47403            |
|            | 3      | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 3.3    | 98.8532     | 48624 | 99.0444     | 46059            | 98.9958          | 47402            |
|            | 3.6    | 98.8528     | 48624 | 99.0368     | 46059            | 98.9942          | 47402            |

- (5) For both the cases, there is a high impact in the discount rate representing the time value of money  $\rho$  when the values have some changes.
- (6) In both the cases, we could be able to observe a moderate impact in the expected joint total cost with the change in various cost used by vendor and buyer (Figs. 3–9).

## 8. CONCLUSION

In this paper we presented a novel approach to safety stock management and investigated the impact of lead time reduction within an integrated vendor–buyer supply chain framework using present value where lead time and ordering cost reductions act dependently. The cost of the safety stock is determined by adopting a logistic approximation to the standard normal cumulative distribution and the service level is formulated in relation

TABLE 10. Sensitivity of Average demand rate  $D$  and Production rate  $P$  when  $\alpha = 0.75$ ,  $L_0 = 22$  and  $\tau = -1$ ,  $L_0 = 22$ .

| Parameters | Values | Normal case |       | Linear case |                  | Logarithmic case |                  |
|------------|--------|-------------|-------|-------------|------------------|------------------|------------------|
|            |        | $q$         | JTC   | $q$         | JTC <sub>1</sub> | $q$              | JTC <sub>2</sub> |
| $D$        | 400    | 99.1103     | 45037 | 99.3913     | 43940            | 99.2611          | 44018            |
|            | 450    | 98.9670     | 46869 | 99.2421     | 45657            | 99.1124          | 45747            |
|            | 500    | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 550    | 98.7281     | 49850 | 99.0351     | 48886            | 98.9062          | 49000            |
|            | 600    | 98.5789     | 50847 | 99.0020     | 49925            | 98.8582          | 49999            |
| $P$        | 800    | 99.1010     | 48041 | 99.4157     | 45434            | 99.0310          | 47405            |
|            | 900    | 99.1001     | 48467 | 99.1416     | 45801            | 99.0213          | 47404            |
|            | 1000   | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 1100   | 98.8442     | 48623 | 99.0151     | 46062            | 98.9852          | 47401            |
|            | 1200   | 98.8341     | 48622 | 99.0128     | 46062            | 98.9751          | 47401            |

TABLE 11. Sensitivity of various factors used for inflation and admissible stockouts when  $\alpha = 0.75$ ,  $L_0 = 22$  and  $\tau = -1$ ,  $L_0 = 22$ .

| Parameters | Values | Normal case |       | Linear case |                  | Logarithmic case |                  |
|------------|--------|-------------|-------|-------------|------------------|------------------|------------------|
|            |        | $q$         | JTC   | $q$         | JTC <sub>1</sub> | $q$              | JTC <sub>2</sub> |
| $\rho$     | 0.1200 | 99.0793     | 77539 | 99.2787     | 75429            | 99.1562          | 75592            |
|            | 0.1350 | 98.9672     | 59745 | 99.2020     | 58119            | 99.0761          | 58245            |
|            | 0.15   | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 0.1650 | 98.7469     | 41014 | 99.0128     | 39898            | 98.9202          | 39984            |
|            | 0.1800 | 98.6388     | 35480 | 99.0091     | 34514            | 98.8444          | 34589            |
| $\eta$     | 0.056  | 98.7542     | 43446 | 99.0057     | 40318            | 98.9253          | 40405            |
|            | 0.063  | 98.8052     | 46746 | 99.0092     | 43528            | 98.9784          | 46766            |
|            | 0.07   | 98.9612     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 0.077  | 99.0980     | 53245 | 99.1616     | 51796            | 99.0340          | 51908            |
|            | 0.084  | 99.0054     | 58846 | 99.1969     | 57245            | 99.0708          | 57368            |
| $k$        | 0.4    | 98.7894     | 49953 | 99.0023     | 48573            | 98.9332          | 48675            |
|            | 0.45   | 98.8249     | 49255 | 99.0145     | 47905            | 98.9672          | 48007            |
|            | 0.5    | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 47402            |
|            | 0.55   | 98.8846     | 48046 | 99.1537     | 45747            | 99.0245          | 46850            |
|            | 0.6    | 98.9101     | 47513 | 99.1781     | 45237            | 99.0489          | 46339            |
| $\sigma_D$ | 4      | 99.1000     | 46231 | 99.3601     | 45013            | 99.2307          | 45113            |
|            | 4.5    | 98.9782     | 47427 | 99.2434     | 45914            | 99.1104          | 46258            |
|            | 5      | 98.8564     | 48624 | 99.0474     | 46059            | 98.9974          | 46402            |
|            | 5.5    | 98.7347     | 49821 | 99.0100     | 48445            | 98.8809          | 48548            |
|            | 6      | 98.6131     | 51020 | 98.8934     | 49590            | 98.7644          | 49694            |

to the dimension of the single shipment, to the average demand of the buyer and to the number of admissible stockouts (Tabs. 9–11).

We then developed an exact algorithm that permits the optimization of inventory replenishment and lead time. Numerical application conferred that this optimization approach achieves a high level of efficiency, which

may offer promising application in practice. One of the repercussions of this work is that if the ordering cost per order could be reduced effectively, then the expected joint total cost per unit time could be automatically minimized.

Further one can extend this work by using various other reduction factors, service level constraints and variable transportation cost. Also one can deal with multi item, trade credit policy, various dependent demand rates, and shortages with partial backorder, etc. A plausible future work deals with the multi-echelon supply chains such as: single vendor-multi buyer, multi vendor-single buyer and multi vendor-multi buyer framework adopting the CS perspective. In this case, the model has either fuzzy or stochastic nature.

## REFERENCES

- [1] D. Battini, A. Grassi, A. Persona and F. Sgarbossa, Consignment stock inventory policy: methodological framework and model. *Int. J. Prod. Res.* **48** (2010) 2055–2079.
- [2] M. Ben-Daya and A. Raouf, Inventory models involving lead time as a decision variable. *J. Oper. Res. Soc.* **45** (1994) 579–582.
- [3] A.K. Bhunia, S.K. Mahato, A.A. Shaikh and C.K. Jaggi, A deteriorating inventory model with displayed stock-level-dependent demand and partially backlogged shortages with all unit discount facilities via particle swarm optimisation. *Int. J. Syst. Sci. Oper. Logist.* **1** (2014) 164–180.
- [4] A. Bhunia and A. Shaikh, A deterministic model for deteriorating items with displayed inventory level dependent demand rate incorporating marketing decisions with transportation cost. *Int. J. Ind. Eng. Comput.* **2** (2011) 547–562.
- [5] A.K. Bhunia and A.A. Shaikh, An application of PSO in a two-warehouse inventory model for deteriorating item under permissible delay in payment with different inventory policies. *Appl. Math. Comput.* **256** (2015) 831–850.
- [6] A.K. Bhunia, A.A. Shaikh and L.E. Cárdenas-Barrón, A partially integrated production-inventory model with interval valued inventory costs, variable demand and flexible reliability. *Appl. Soft Comput.* **55** (2017) 491–502.
- [7] A. Bhunia, A. Shaikh, S. Pareek and V. Dhaka, A memo on stock model with partial backlogging under delay in payments. *USCM* **3** (2015) 11–20.
- [8] A.K. Bhunia, A.A. Shaikh, G. Sharma and S. Pareek, A two storage inventory model for deteriorating items with variable demand and partial backlogging. *J. Ind. Prod. Eng.* **32** (2015) 263–272.
- [9] S.R. Bowling, M.T. Khasawneh, S. Kaewkuekool and B.R. Cho, A logistic approximation to the cumulative normal distribution. *J. Ind. Eng. Manage.* **2** (2009) 114–127.
- [10] M. Braglia, D. Castellano, and M. Frosolini, Safety stock management in single vendor-single buyer problem under VMI with consignment stock agreement. *Int. J. Prod. Econ.* **154** (2014) 16–31.
- [11] M. Braglia, D. Castellano, and M. Frosolini, A novel approach to safety stock management in a coordinated supply chain with controllable lead time using present value. *Appl. Stoc. Mod. Bus. Ind.* **32** (2016) 99–112.
- [12] M. Braglia, and L. Zavarella, Modelling an industrial strategy for inventory management in supply chains: The “Consignment Stock” case. *Int. J. Prod. Res.* **41** (2003) 3793–3808.
- [13] B. Ganguly, S. Pareek, B. Sarkar, M. Sarkar, and M. Omair, Influence of controllable lead time, premium price, and unequal shipments under environmental effects in a supply chain management. *RAIRO: OR* **53** (2019) 1427–1451.
- [14] M. Gümüs, E.M. Jewkes and J.H. Bookbinder, Impact of consignment inventory and vendor-managed inventory for a two-party supply chain. *Int. J. Prod. Econ.* **113** (2008) 502–517.
- [15] M. Hariga and M. Ben-Daya, Some stochastic inventory models with deterministic variable lead time. *Eur. J. Oper. Res.* **113** (1999) 42–51.
- [16] R.M. Hill, The single-vendor single-buyer integrated production-inventory model with a generalised policy. *Eur. J. Oper. Res.* **97** (1997) 493–499.
- [17] R.M. Hill, The optimal production and shipment policy for the single-vendor singlebuyer integrated production-inventory problem. *Int. J. Prod. Res.* **37** (1999) 2463–2475.
- [18] W. Iqbal and B. Sarkar, Recycling of lifetime dependent deteriorated products through different supply chains. *RAIRO: OR* **53** (2019) 129–156.
- [19] P. Jindal and A. Solanki, Integrated vendor-buyer inventory models with inflation and time value of money in controllable lead time. *Decis. Sci.* **5** (2016) 81–94.
- [20] M.S. Kim and B. Sarkar, Multi-stage cleaner production process with quality improvement and lead time dependent ordering cost. *J. Clean. Prod.* **144** (2017) 572–590.
- [21] S.J. Kim and B. Sarkar, Supply chain model with stochastic lead time, trade-credit financing, and transportation discounts. *Math. Prob. Eng.* **2017** (2017) 6465912.
- [22] C.J. Liao and C.H. Shyu, An analytical determination of lead time with normal demand. *Int. J. Oper. Prod. Manage.* **11** (1991) 72–78.
- [23] A.I. Malik and B. Sarkar, Optimizing a multi-product continuous-review inventory model with uncertain demand, quality improvement, setup cost reduction, and variation control in lead time. *IEEE Access* **6** (2018) 36176–36187.
- [24] I. Moon and S. Choi, A note on lead time and distributional assumptions in continuous review inventory models. *Comp. Oper. Res.* **25** (1998) 1007–1012.

- [25] L.Y. Ouyang and H.C. Chang, The variable lead time stochastic inventory model with a fuzzy backorder rate. *J. Oper. Res. Soc. Jpn.* **44** (2001) 19–33.
- [26] L.Y. Ouyang, C.K. Chen and H.C. Chang, Lead time and ordering cost reductions in continuous review inventory systems with partial backorders. *J. Oper. Res. Soc.* **50** (1999) 1272–1279.
- [27] L.Y. Ouyang, N.C. Yeh and K.S. Wu, Mixture inventory model with backorders and lost sales for variable lead time. *J. Oper. Res. Soc.* **47** (1996) 829–832.
- [28] S. Priyan and R. Uthayakumar, Mathematical modeling and computational algorithm to solve multi-echelon multi-constraint inventory problem with errors in quality inspection. *J. Math. Model. Algor. Oper Res.* **14** (2015) 67–89.
- [29] B. Sarkar, H. Gupta, K. Chaudhuri and S.K. Goyal, An integrated inventory model with variable lead time, defective units and delay in payments. *Appl. Math. Comput.* **237** (2014) 650–658.
- [30] B. Sarkar and A. Majumder, Integrated vendor-buyer supply chain model with vendor's setup cost reduction. *Appl. Math. Comput.* **224** (2013) 362–371.
- [31] B. Sarkar, A. Majumder, M. Sarkar, B.K. Dey and G. Roy, Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. *J. Ind. Manage. Opt.* **13** (2017) 1085–1104.
- [32] B. Sarkar, B. Mandal and S. Sarkar, Quality improvement and backorder price discount under controllable lead time in an inventory model. *J. Manuf. Syst.* **35** (2015) 26–36.
- [33] A.A. Shaikh, An inventory model for deteriorating item with frequency of advertisement and selling price dependent demand under mixed type trade credit policy. *Int. J. Logist. Syst. Manage.* **28** (2017) 375–395.
- [34] A.A. Shaikh, A two warehouse inventory model for deteriorating items with variable demand under alternative trade credit policy. *Int. J. Logist. Syst. Manage.* **27** (2017) 40–61.
- [35] A.A. Shaikh, L.E. Cárdenas-Barrón, and S. Tiwari, A two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions. *Neur. Comput. Appl.* **31** (2019) 1931–1948.
- [36] A.A. Shaikh, A.H.M. Mashud, M.S. Uddin and M.A.A. Khan, Non-instantaneous deterioration inventory model with price and stock dependent demand for fully backlogged shortages under inflation. *Int. J. Bus. Forecast. Mark. Intell.* **3** (2017) 152–164.
- [37] D. Shin, R. Guchhait, B. Sarkar and M. Mittal, Controllable lead time, service level constraint, and transportation discounts in a continuous review inventory model. *RAIRO: OR* **50** (2016) 921–934.
- [38] R.J. Tersine, Principles of Inventory and Materials Management. North Holland, New York, NY (1982).
- [39] G. Valentini and L. Zavanella, The consignment stock of inventories: industrial case and performance analysis. *Int. J. Prod. Econ.* **81** (2003) 215–224.
- [40] L. Zavanella and S. Zanoni, A one-vendor multi-buyer integrated production-inventory model: the Consignment Stock case. *Int. J. Prod. Econ.* **118** (2009) 225–232.