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MULTI-CHOICE AND STOCHASTIC PROGRAMMING FOR
TRANSPORTATION PROBLEM INVOLVED IN SUPPLY OF FOODS AND

MEDICINES TO HOSPITALS WITH CONSIDERATION OF LOGISTIC
DISTRIBUTION

Deshabrata Roy Mahapatra1, Shibaji Panda2 and Shib Sankar Sana3,∗

Abstract. The objective of the proposed article is to minimize the transportation costs of foods and
medicines from different source points to different hospitals by applying stochastic mathematical pro-
gramming model to a transportation problem in a multi-choice environment containing the parameters
in all constraints which follow the Logistic distribution and cost coefficients of objective function are also
multiplicative terms of binary variables. Using the stochastic programming approach, the stochastic
constraints are converted into an equivalent deterministic one. A transformation technique is intro-
duced to manipulate cost coefficients of objective function involving multi-choice or goals for binary
variables with auxiliary constraints. The auxiliary constraints depends upon the consecutive terms of
multi-choice type cost coefficient of aspiration levels. A numerical example is presented to illustrate the
whole idea.
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1. Introduction

Timely supply of pharmaceutical products from different sources to different hospitals is extremely essential
for healthcare industry. A good transport service can fulfill the need that essentially requires reliability, efficiency
and safety. The problem for a transportation service is that there are multiple sources and demand points, where
availability and requirement of different types of medicines are not known exactly because depending upon the
patients condition and situation production at sources and requirement at hospitals are changed randomly. The
problem further intensifies as the decision makers have multiple number of choices of medicines. In such situation
transportation service provider has to approximate units of medicines from different sources to different hospitals
in the cost effective way such that total transportation cost is minimized given fulfillment of multiple choices.
The problem can be addressed by applying multi-choice stochastic programming for transportation problem.
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A stochastic transportation model in which the constraints are stochastic in nature and the cost coefficients are
multi choice type is considered. The transportation problem is well known problem of operations research, that
can be formulated and solved as a linear programm. The traditional transportation problem can be described
as a special case of linear programming problem. The available amounts at the supply points and the amounts
required at the demand points are the parameters of the transportation problem. These parameters are not
always stable and/or not known exactly. In such a situation,the parameters in all constraints are considered as
random variables to follow Logistic distribution.

Transportation model deals with the determination of minimization of the total cost during transportation
plan for transporting a commodity from a number of sources to a number of destinations. At the ith sources
(i = 1, 2, . . . ,m), there are si unit of commodity available. The demand at the jth destination (j = 1, 2, . . . , n),
is denoted by dj . The sources may be production facilities, warehouses, supply points and the destinations may
be consumption facilities, warehouse or demand points. The coefficient Ckij of the kth objective function could
represent the unit transportation cost of product from source i to destination j. Hitchcock [9] first considered
the problem of minimizing the cost of distribution of products from several factories to a number of customers.
He developed a procedure to solve the transportation problems, which have close resemblance with the primal
simplex transportation method developed by Dantzig [7].

Stochastic programming (SP) is an optimization technique in which constraints and/or objective functions
contain random variables, where stochastic element is present in the data. Then these numbers follow stochastic
distributions such as Logistic and others distribution. The random variables associated with the sources and
destinations may be many in number, depending on the nature and the type of model. More generally, such
models are formulated, solved analytically or numerically and analyzed in order to provide useful information
to the decision maker. Goicoechea et al. [8] presented the deterministic equivalents for some probabilistic pro-
gramming involving normal and other distributions. Mahapatra et al. [16], discussed the solution procedure
of multi-objective stochastic transportation problem involving normal distribution with joint constraints. The
probability density function of a random variable x, a Logistic distribution, is

f(x;α, β) =
1
β

e
x−α
β

[1 + ex−αβ ]2
; −∞ ≤ x ≤ ∞; and α > 0, β > 0. (1.1)

where α and β are the location parameter and scale parameter, respectively. Here,∫ +∞

−∞
f(x;α, β)dx = −

[
1

1 + e(x−α)/β

]∞
−∞

= 1.

The graph of the above pdf is symmetric about the location parameters. The Logistic distribution is a
continuous probability distribution. The shape of the logistic distribution is similar to that of normal distribution.
It has heavier tails than the normal distribution with negligible error in the respective models. The importance
of the Logistic distribution has already been felt in many areas of transportation distribution, warehousing,
materials handling, food procedures and companies, postal delivery utilities and public transportation, among
others. The Logistic distribution has been used in a variety of fields, for details description of the various
properties and applications are referred to the monograph of Balakrishnan [2]. The two-parameter Logistic
distribution was originally proposed as a generalization of the Logistic distribution by Ahuja and Nash [1],
Olapade [14].

Multi-choice programming is a mathematical programming problem, in which decision maker is allowed to
set multiple number of choices for a parameter. In recent years, methods of multi-choice stochastic optimization
become increasingly important in solving scientifically decision making problems arising in economics, industry,
health care, transportation, agriculture, military, engineering and technology. Biswal and Acharya [3] presented
the transformation of a multi-choice linear programming problem in which constraints are associated with multi-
choice parameters. A method for modeling the multi-choice programming problem, using the multiple terms
of binary variables was presented by Chang [4]. He considered a mathematical model where the multiplicative
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terms of binary variables were replaced by continuous variable [5]. He also proposed a revised method for multi-
choice goal programming model which did not involve multiplicative terms of binary variables to model the
multiple aspiration levels [6].

Considerable amount of researches were done addressing how to improve the quality of service to patients.
Based on data collection through interviews Mohapatra [11] discussed about the automation of business pro-
cesses in healthcare system. To minimize the treatment cost and improve quality of treatment in Indian context
Mohapatra and Murarka [13] identified different parameters that govern performance of hospitals. Mohapa-
tra [12] explained how hospital information system is used as a comprehensive integrated information system
designed to manage the administrative, financial and clinical aspects of a hospital in urban India.

All the aforementioned papers discuss about the improvement of patient care system, manage administrative
and financial goals in hospitals. But as indicated, timely availability of clinical materials is very important
for smooth running of a hospital. The papers mentioned in this literature did not consider these issues. This
paper considers the problem through multi-choice stochastic transportation problem. The multi-choice stochastic
transportation problem is presented with two different type of probabilistic constraints. Both the probabilistic
constraints involves inequality type associated with random variables which follow Logistic distribution. The
cost coefficients of the objective function are multi-choice type, where the transformation technique is used.
Binary variable and additional restrictions are introduced to formulate a non-linear mixed integer programming
model. A new methodology is proposed to solve multi-choice stochastic transportation problem.

2. Mathematical model

In this paper, a mathematical model for multi-choice stochastic transportation problem involving Ligistic
distribution is considered as follows:

Model 1:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , . . . , C

k
ij}xij , k = 1, 2, . . . ,K (2.1)

subject to Pr

 n∑
j=1

xij ≤ si

 ≥ 1− γi, i = 1, 2, . . . ,m (2.2)

Pr

(
m∑
i=1

xij ≥ dj

)
≥ 1− δj , j = 1, 2, . . . , n (2.3)

xij ≥ 0, ∀ i and j (2.4)

where 0 < γi < 1, ∀ i and 0 < δj < 1, ∀ j.
Assumed that si (i = 1, 2, . . . ,m) and dj (j = 1, 2, . . . , n) are Logistic random variables and Ckij =

{C1
ij , C

2
ij , . . . , C

k
ij} is a multi-choice parameter.

The following cases are to be considered

(1) Only si, (i = 1, 2, . . . ,m) follows Logistic distribution.
(2) Only dj , (j = 1, 2, . . . , n) follows Logistic distribution.
(3) Both si, (i = 1, 2, . . . ,m) and dj , (j = 1, 2, . . . , n) follow Logistic distribution.

2.1. Only si, (i = 1, 2, . . . , m) follows Logistic distribution

Assumed that s1, s2, . . . , sm are independent random variables and si, (i = 1, 2, . . . ,m) follows Logistic distri-
bution with location and scale parameters as αi and βi respectively, where γi, is the aspiration level, 0 < γi < 1.
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The constraints (2.2) of Model 1 can be rewritten as follows

Pr

 n∑
j=1

xij ≤ si

 ≥ 1− γi, i = 1, 2, . . . ,m.

The probability density function of si (i = 1, 2, . . . ,m) is given by

f(si;αi, βi) =
1
βi

e
si−αi
βi

[1 + e si−αiβi
]2

; si ≥ 0; and αi > 0, βi > 0. (2.5)

Hence the cumulative density function can be presented as:∫ ∞
∑n
j=1 xij

f(si;αi, βi)d(si) ≥ 1− γi. (2.6)

The above integral can be expressed as:∫ ∞
∑n
j=1 xij

1
βi

e
si−αi
βi

[1 + e si−αiβi
]2

d(si) ≥ 1− γi. (2.7)

It can be further simplified as:

e

∑n
j=1 xij−αi

βi ≤ γi
1− γi

· (2.8)

Taking logarithm in both sides twice,we have

n∑
j=1

xij − αi ≤ βi ln
γi

1− γi
· (2.9)

Thus finally, the probabilistic constraints (2.3) can be transformed into a deterministic linear constraints as:

n∑
j=1

xij ≤ αi + βi ln
γi

1− γi
· (2.10)

A multi-choice deterministic transportation problem has been obtained (see Model 2) instead of multi-choice
stochastic transportation model.

Model 2:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , . . . , C

k
ij}xij , k = 1, 2, . . . ,K (2.11)

subject to
n∑
j=1

xij ≤ αi + βi ln
γi

1− γi
(2.12)

m∑
i=1

xij ≥ dj , j = 1, 2, . . . , n (2.13)

xij ≥ 0, ∀ i and j (2.14)

where
∑n
j=1 αi + βi ln γi

1−γi ≥
∑n
j=1 dj (feasibility condition).
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2.2. Only dj, (j = 1, 2, . . . , n) follows Logistic distribution

It is assumed that d1, d2, . . . , dn are independent random variables and dj(j = 1, 2, ...n) follows Logistic
distribution with location and scale parameters as α′j and β′j respectively, where the aspiration levels is δj ,
0 < δj < 1. The constraint of Model 1 is rewritten as follows.

Pr

(
m∑
i=1

xij ≥ dj

)
≥ 1− δj , j = 1, 2, . . . , n.

Rearranging the above constraints, we write

Pr

(
m∑
i=1

xij ≤ dj

)
≤ δj , j = 1, 2, . . . , n. (2.15)

The probability density function of dj (j = 1, 2, . . . , n) is given by

f(dj ;α′j , β
′
j) =

1
β′j

e

dj−α
′
j

β′
j

[1 + e
dj−α′j
β′j

]2
; dj ≥ 0; and α′j > 0, β′j > 0. (2.16)

Hence the cumulative density function can be presented as:∫ ∞
∑m
i=1 xij

f(dj ;α′j , β
′
j)d(dj) ≤ δj . (2.17)

The above integral can be expressed as:

∫ ∞
∑m
i=1 xij

1
β′j

e

dj−α
′
j

β′
j

[1 + e
dj−α′j
β′j

]2
d(dj) ≤ δj . (2.18)

It can be further simplified as:

e

∑n
j=1 xij−α

′
j

β′
j ≥

δ′j
1− δ′j

· (2.19)

Taking logarithm in both sides twice,we have

n∑
j=1

xij − α′j ≥ β′j ln
δ′j

1− δ′j
· (2.20)

Thus finally, the probabilistic constraints (2.3) can be transformed into a deterministic linear constraints as:

n∑
j=1

xij ≥ α′j + β′j ln
δ′j

1− δ′j
· (2.21)

Thus, a multi-choice deterministic transportation problem has been obtained (see Model 3) instead of multi-
choice stochastic transportation problem.
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Model 3:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , . . . , C

k
ij}xij , k = 1, 2, . . . ,K (2.22)

subject to
n∑
j=1

xij ≤ si, i = 1, 2, . . . ,m (2.23)

n∑
j=1

xij ≥ α′j + β′j ln
δ′j

1− δ′j
(2.24)

xij ≥ 0, ∀ i and j (2.25)

where
∑m
i=1 si ≥

∑m
i=1 α

′
j + β′j ln δ′j

1−δ′j
(feasibility condition).

2.3. Both si, (i = 1, 2, . . . , m) and dj, (j = 1, 2, . . . , n) follow Logistic distributions

The location and scale parameters of the random variables si and dj are known and previously defined. In
this case, both si and dj follow Logistic distribution. Model 1 is transferred into an equivalent deterministic
model as:

Model 4:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , . . . , C

k
ij}xij , k = 1, 2, . . . ,K (2.26)

subject to
n∑
j=1

xij ≤ αi + βi ln
γi

1− γi
(2.27)

n∑
j=1

xij ≥ α′j + β′j ln
δ′j

1− δ′j
(2.28)

where
∑n
j=1[αi + βi ln γi

1−γi ] ≥
∑n
j=1[α′j + β′j ln δ′j

1−δ′j
], (feasibility condition).

3. Transformation of the multi-choice cost parameter to an equivalent
model

The proposed model is derived for maximum of ten choices of any cost coefficients of the objective function.
Ten cases are presented below for k = 2, 3, . . . , 10.

Case 1: When k = 2.
The objective function (2.1) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij}xij .

The cost coefficients have two choices as {C1
ij , C

2
ij}, out of these two choices one is to be selected. Since the

total number of elements of the set is 2, only one binary variable is required. Taking the binary variable as z1
ij ,

the objective function is formulated as:

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ij + C2

ij(1− z1
ij)}xij , (3.1)

zpij = 0/1, p = 1, for all i and j. (3.2)
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Case 2: When k = 3.
The objective function (2.1) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , C

3
ij}xij .

The cost coefficients have three choices as {C1
ij , C

2
ij , C

3
ij}, out of which one is to be selected. Since 21 < 3 < 22,

so the total number of elements of the set is 3. Denoting the binary variables by z1
ij , z

2
ij and introducing additional

constraints, two models are obtained as:

Model 2(a):

min : z =
m∑
i=1

n∑
j=1

{C1
ij(1− z1

ij)(1− z2
ij) + C2

ijz
1
ij(1− z2

ij) + C3
ij(1− z1

ij)z
2
ij}xij (3.3)

z1
ij + z2

ij ≤ 1 (3.4)
zpij = 0/1, p = 1, 2, for all i and j.

Model 2(b):

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ijz

2
ij + C2

ijz
1
ij(1− z2

ij) + C3
ij(1− z1

ij)z
2
ij}xij (3.5)

z1
ij + z2

ij ≥ 1 (3.6)
zpij = 0/1, p = 1, 2, for all i and j.

Case 3: When k = 4.
The objective function (2.1) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , C

3
ij , C

4
ij}xij .

The cost coefficients of the objective function have four choices as {C1
ij , C

2
ij , C

3
ij , C

4
ij}, out of which one is to

be selected. Here the total number of choices is 4 = 22. Denoting the binary variables by z1
ij , z

2
ij , the following

problem is obtained as below:

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ijz

2
ij + C2

ijz
1
ij(1− z2

ij) + C3
ij(1− z1

ij)z
2
ij + C4

ij(1− z1
ij)(1− z2

ij)}xij (3.7)

zpij = 0/1, p = 1, 2, for all i and j.

Case 4: When k = 5.
The objective function (2.1) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij}xij .

The cost coefficients have five choices as {C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij}, out of which one is to be selected. Since

22 < 5 < 23, we need three binary variables as: z1
ij , z

2
ij , z

3
ij . The restriction is imposed to remaining three terms

(8− 5) by introducing additional constraints and obtain three different models expressed below:
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Model 4(a):

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ij(1− z2

ij)(1− z3
ij) + C2

ij(1− z1
ij)z

2
ij(1− z3

ij)

+ C3
ij(1− z1

ij)(1− z2
ij)z

3
ij + C4

ijz
1
ijz

2
ij(1− z3

ij) + C5
ij(1− z1

ij)z
2
ijz

3
ij}xij (3.8)

1 ≤ z1
ij + z2

ij + z3
ij ≤ 2 (3.9)

z1
ij + z3

ij ≤ 1 (3.10)
zpij = 0/1, p = 1, 2, 3, for all i and j.

Model 4(b):

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ij(1− z2

ij)(1− z3
ij) + C2

ij(1− z1
ij)z

2
ij(1− z3

ij)

+ C3
ij(1− z1

ij)(1− z2
ij)z

3
ij + C4

ijz
1
ijz

2
ij(1− z3

ij) + C5
ijz

1
ij(1− z2

ij)z
3
ij}xij (3.11)

1 ≤ z1
ij + z2

ij + z3
ij ≤ 2 (3.12)

z2
ij + z3

ij ≤ 1 (3.13)
zpij = 0/1, p = 1, 2, 3, for all i and j.

Model 4(c):

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ij(1− z2

ij)(1− z3
ij) + C2

ij(1− z1
ij)z

2
ij(1− z3

ij)

+ C3
ij(1− z1

ij)(1− z2
ij)z

3
ij + C4

ij(1− z1
ij)z

2
ijz

3
ij + C5

ijz
1
ij(1− z2

ij)z
3
ij}xij (3.14)

1 ≤ z1
ij + z2

ij + z3
ij ≤ 2 (3.15)

z1
ij + z2

ij ≤ 1 (3.16)
zpij = 0/1, p = 1, 2, 3, for all i and j.

Case 5: When k = 6.
The objective function (2.1) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij , C

6
ij}xij .

The cost coefficients of the objective function have six choices as {C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij , C

6
ij}, out of which

one is to be selected. Since 22 < 6 < 23, three binary variables are needed as z1
ij , z

2
ij , z

3
ij . Then the restriction is

imposed to remaining two terms (8− 6) by introducing auxiliary constraints to get the mathematical model as
given below:

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ij(1− z2

ij)(1− z3
ij) + C2

ij(1− z1
ij)z

2
ij(1− z3

ij)

+ C3
ij(1− z1

ij)(1− z2
ij)z

3
ij + C4

ijz
1
ijz

2
ij(1− z3

ij)

+ C5
ijz

1
ij(1− z2

ij)z
3
ij + C6

ij(1− z1
ij)z

2
ijz

3
ij}xij (3.17)

1 ≤ z1
ij + z2

ij + z3
ij ≤ 2 (3.18)

zpij = 0/1, p = 1, 2, 3, for all i and j.



MULTI-CHOICE AND STOCHASTIC PROGRAMMING FOR TRANSPORTATION PROBLEM 1127

Case 6: When k = 7.
The objective function from (2.1) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij , C

6
ij , C

7
ij}xij .

The cost coefficients of the objective function have seven choices as {C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij , C

6
ij , C

7
ij}, and one

of them is to be selected. Since 22 < 7 < 23, we need three binary variables as: z1
ij , z

2
ij , z

3
ij . Then the restriction

is imposed to remaining one term (8− 7) by introducing additional constraint in the mathematical model. Two
different models are formulated as given below:

Model 6(a):

min : z =
m∑
i=1

n∑
j=1

{C1
ij(1− z1

ij)(1− z2
ij)(1− z3

ij) + C2
ijz

1
ij(1− z2

ij)(1− z3
ij)

+ C3
ij(1− z1

ij)z
2
ij(1− z3

ij) + C4
ij(1− z1

ij)(1− z2
ij)z

3
ij + C5

ijz
1
ijz

2
ij(1− z3

ij)

+ C6
ijz

1
ij(1− z2

ij)z
3
ij + C7

ij(1− z1
ij)z

2
ijz

3
ij}xij (3.19)

z1
ij + z2

ij + z3
ij ≤ 2 (3.20)

zpij = 0/1, p = 1, 2, 3, for all i and j.

Model 6(b):

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ij(1− z2

ij)(1− z3
ij) + C2

ij(1− z1
ij)z

2
ij(1− z3

ij)

+ C3
ij(1− z1

ij)(1− z2
ij)z

3
ij + C4

ijz
1
ijz

2
ij(1− z3

ij) + C5
ijz

1
ij(1− z2

ij)z
3
ij

+ C6
ij(1− z1

ij)z
2
ijz

3
ij + C7

ijz
1
ijz

2
ijz

3
ij}xij (3.21)

z1
ij + z2

ij + z3
ij ≥ 1 (3.22)

zpij = 0/1, p = 1, 2, 3, for all i and j.

Case 7: When k = 8.
The objective function from (2.1) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij , C

6
ij , C

7
ij , C

8
ij}xij .

The cost coefficients of the objective function have eight choices as {C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij , C

6
ij , C

7
ij , C

8
ij}, out

of which one is to be selected. Since the total number of elements of the set is 8 = 23. Taking the help of three
binary variables as: z1

ij , z
2
ij , z

3
ij , then only one model is formulated as given below:

min : z =
m∑
i=1

n∑
j=1

{C1
ijz

1
ijz

2
ijz

3
ij + C2

ij(1− z1
ij)z

2
ijz

3
ij + C3

ijz
1
ij(1− z2

ij)z
3
ij

+ C4
ijz

1
ijz

2
ij(1− z3

ij) + C5
ij(1− z1

ij)(1− z2
ij)z

3
ij + C6

ijz
1
ij(1− z2

ij)(1− z3
ij)

+ C7
ij(1− z1

ij)z
2
ij(1− z3

ij) + C8
ij(1− z1

ij)(1− z2
ij)(1− z3

ij)}xij (3.23)
zpij = 0/1, p = 1, 2, 3, for all i and j.

Case 8: When k = 9.
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The objective function from equation (2.1) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij , C

6
ij , C

7
ij , C

8
ij , C

9
ij}xij .

The cost coefficients of the objective function have nine choices as {C1
ij , C

2
ij , C

3
ij , C

4
ij , C

5
ij , C

6
ij , C

7
ij , C

8
ij , C

9
ij},

out of which one of them is to be selected. Since 23 < 9 < 24, so four binary variables z1
ij , z

2
ij , z

3
ij , z

4
ij are

required. Then the restriction is imposed to the introducing of auxiliary and additional constraints in two
different mathematical models. Then the two models are expressed in respect to the consecutive terms of
binomial coefficients as:{C1

ij , C
2
ij} and {C2

ij , C
3
ij}, whose sum is 10. The auxiliary constraints are also depend

upon the range of coefficients in each sets. But the additional constraints are expressed as the difference between
sum of above with aspiration levels. In each model will be performed six ype of similar models. In this case,
only one model has stated as given below:

Model 9(a):

min : z =
m∑
i=1

n∑
j=1

{C1
ij(1− z1

ij(1− z2
ij)z

3
ijz

4
ij) + C2

ij(1− z1
ij)z

2
ij(1− z3

ij)

z4
ij + C3

ij(1− z1
ij)z

2
ijz

3
ij(1− z4

ij) + C4
ijz

1
ij(1− z2

ij)(1− z3
ij)z

4
ij + C5

ijz
1
ij (3.24)

(1− z2
ij)z

3
ij(1− z4

ij) + C6
ijz

1
ijz

2
ij(1− z3

ij)(1− z4
ij) + C7

ij(1− z1
ij)z

2
ij

z3
ijz

4
ij + C8

ijz
1
ij(1− z2

ij)z
3
ijz

4
ijxij + C9

ijz
1
ijz

2
ij(1− z3

ij)z
4
ij} (3.25)

2 ≤ z1
ij + z2

ij + z3
ij + z4

ij ≤ 3 (3.26)

z1
ij + z2

ij + z3
ij ≤ 2 (3.27)

xij ≥ 0, ∀ i, ∀ j, ∀ k, and zpij = 0/1, p = 1, 2, 3, 4. (3.28)

Model 9(b):

min : z =
m∑
i=1

n∑
j=1

{C1
ij(1− z1

ij)(1− z2
ij)(1− z3

ij)z
4
ij) + C2

ij(1− z1
ij)(1− z2

ij)z
3
ij(1− z4

ij)

z4
ij + C3

ij(1− z1
ij)z

2
ij(1− z3

ij)(1− z4
ij) + C4

ijz
1
ij(1− z2

ij)(1− z3
ij)(1− z4

ij)

+ C5
ij(1− z1

ij)(1− z2
ij)z

3
ijz

4
ij + C6

ij(1− z1
ij)z

2
ij(1− z3

ij)z
4
ij + C7

ij(1− z1
ij)z

2
ij

z3
ij(1− z4

ij) + C8
ijz

1
ij(1− z2

ij)(1− z3
ij)z

4
ijxij + C9

ijz
1
ij(1− z2

ij)z
3
ij(1− z4

ij}) (3.29)

1 ≤ z1
ij + z2

ij + z3
ij + z4

ij ≤ 2 (3.30)

z1
ij + z2

ij ≤ 1 (3.31)
xij ≥ 0, ∀ i, ∀ j, ∀ k, and zpij = 0/1, p = 1, 2, 3, 4. (3.32)

Case 9 (c): When k = 10.
The objective function from ( 2.2 ) is presented as follows:

min : z =
m∑
i=1

n∑
j=1

{C1
ij , C

2
ij , . . . , C

10
ij }xij .

The cost coefficients of the objective function have ten choices as {C1
ij , C

2
ij , . . . , C

10
ij }, out of which one of

them is to be selected in the multi-choice stochastic transportation problem. Since 23 < 10 < 24, so four binary
variables as: z1

ij , z
2
ij , z

3
ij , z

4
ij are established. The set of binomial coefficients {C4

1 , C
4
2} and {C4

2 , C
4
3} are expressed
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of whose sum is equal to 10 which is the same of goals as ki = 10 in respect to the different models. So there
does not arise any additional restriction. Two different models are formulated as given below:

Model 10(a):

min : z =
m∑
i=1

n∑
j=1

{C1
ij(1− z1

ij)(1− z2
ij)(1− z3

ijz
4
ij + C2

ij(1− z1
ij)

(1− z2
ij)z

3
ij(1− z4

ij) + C3
ij(1− z1

ij)z
2
ij(1− z3

ij)(1− z4
ij) + C4

ijz
1
ij(1− z2

ij)

(1− z3
ij)(1− z4

ij) + C5
ij(1− z1

ij)(1− z2
ij)z

3
ijz

4
ij + C6

ij(1− z1
ij)z

2
ij(1− z3

ij)z
4
ij (3.33)

+ C7
ij(1− z1

ij)z
2
ijz

3
ij(1− z4

ij) + C8
ijz

1
ij(1− z2

ij)(1− z3
ij)z

4
ij + C9

ijz
1
ij(1− z2

ij)

z3
ij(1− z4

ij) + C10
ij z

1
ijz

2
ij(1− z3

ij)(1− z4
ij)}xij (3.34)

1 ≤ z1
ij + z2

ij + z3
ij + z4

ij ≤ 2 (3.35)
xij ≥ 0, ∀ i, ∀ j and zpij = 0/1, p = 1, 2, 3, 4. (3.36)

Model 10(b):

min : z =
m∑
i=1

n∑
j=1

{C1
ij(1− z1

ij)(1− z2
ij)z

3
ijz

4
ij + C2

ij(1− z1
ij)z

2
ij

(1− z3
ij)z

4
ij + C3

ij(1− z1
ij)z

2
ijz

3
ij(1− z4

ij) + C4
ijz

1
ij(1− z2

ij)

(1− z3
ij)z

4
ij + C5

ijz
1
ij(1− z2

ij)z
3
ij(1− z4

ij) + C6
ijz

1
ijz

2
ij(1− z3

ij(1− z4
ij)

+ C7
ij(1− z1

ij)z
2
ijz

3
ij(1− z4

ij) + C8
ijz

1
ij(1− z2

ij)z
3
ij(1− z4

ij) + C9
ijz

1
ij

z2
ij(1− z3

ij)z
4
ij + C10

ij z
1
ijz

2
ijz

3
ij(1− z4

ij)}xij (3.37)

2 ≤ z1
ij + z2

ij + z3
ij + z4

ij ≤ 3 (3.38)
xij ≥ 0, ∀ i, ∀ j and zpij = 0/1, p = 1, 2, 3, 4. (3.39)

4. Case study

A reputed medicine supplier Agency transports a variety of medicines from two sources points by lorry or train
to the four hospitals center through the six routes. The main objective is minimization of the transportation
cost and maximization of the profit against the market price at different market. The production of materials
at sources points and delivery of goods at the demands points are randomly changed in situation as term in
Logistic distribution. The transportation costs to carry medicines from sources to destinations are multi-choice
parameters and are related with fluctuation in road condition, distance of destination point from source point,
consumption of fuel, and durability or lifetime of particular brand of tires used etc. The problem can not be
solved without using the multi-choice programming methodology. They are appended below in Table 1.

A multi-choice stochastic transportation problem where the objective function and the constraints are for-
mulated as:

min : z =
2∑
i=1

3∑
j=1

{C1
ij , C

2
ij , . . . , C

k
ij}xij , k = 1, 2, . . . , 6 (4.1)

subject to Pr

 4∑
j=1

xij ≤ si

 ≥ 1− γi, i = 1, 2 (4.2)

Pr

(
3∑
i=1

xij ≥ dj

)
≥ 1− δj , j = 1, 2, 3 (4.3)
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Table 1. Unit transportation cost in different routes.

Sl. No. Route: xij Transportation cost (in Rupees) Ck
ij : per unit (1 unit= 20 Kg)

1 (1, 1): x11 10 or 11 or 12
2 (1, 2): x12 15 or 16
3 (1, 3): x13 17 or 18 or 19 or 20
4 (2, 1): x21 30 or 33 or 35 or 37 or 40 or 45
5 (2, 2): x22 20 or 21 or 22 or 23 or 24 or 25 or 26
6 (2, 3): x23 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33

Table 2. Probability levels, location and scale parameter values of supplies.

Parameters si Location parameters Scale parameters Specified prob.levels

s1 α1= 40 β1= 5.0 γ1=0.09
s2 α2=32 β2= 3 γ2=0.08

Table 3. Probability levels, location and scale parameter values of demands.

Parameters bj Shape parameters Scale parameters Specified prob.levels

b1 α′1 = 10 β′1 = 2 δ1=0.05
b2 α′2 = 8 β′2 = 1 δ2 = 0.04
b3 α′3 = 5 β′3 = 1 δ3 = 0.03

where, xij ≥ 0, i = 1, 2; j = 1, 2, 3 and 0 < γi < 1, 0 < δj < 1.
Assume that two parameters s1, s2 with Logistic distribution. The specified probability levels and the location

and the scale parameters of supplies s1, s2 are given in the Table 2.
Further, the specified probability levels and the location and the scale parameters of demands parameters

d1, d2, d3 which follow Logistic distribution are given in Table 3.
Using the data provided in Tables 1–3 the following deterministic multi-choice transportation problem is

formulated as:

min : z = {10, 11, 12}x11 + {15, 16}x12 + {17, 18, 19, 20}x13

+ {30, 33, 35, 37, 40, 45}x21 + {20, 21, 22, 23, 24, 25, 26}x22

+ {25, 26, 27, 28, 29, 30, 31, 32, 33}x23 (4.4)

subject to
3∑
j=1

x1j ≤ 28.43182535 (4.5)

3∑
j=1

x2j ≤ 20.23061186 (4.6)

2∑
j=1

xi1 ≥ 15.88887796 (4.7)

2∑
i=1

xi2 ≥ 11.17805383 (4.8)
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2∑
i=1

xi3 ≥ 8.47609869 (4.9)

xij ≥ 0, i = 1, 2 and j = 1, 2, 3.

Now using a new transformation technique, a multi-choice deterministic transportation problem is obtained
as below:

min : z = t11x11 + t12x12 + t13x13 + t21x21 + t22x22 + t23x23 (4.10)
subject to (4.74)− (4.78)
where, t11 = 10z1

11z
2
11 + 11z1

11(1− z2
11) + 12(1− z1

11)z2
11 (4.11)

t12 = 15z1
12 + 16(1− z1

12) (4.12)
t13 = 17z1

13z
2
13 + 18z1

13(1− z2
13) + 19(1− z1

13)z2
13 + 20(1− z1

13)(1− z2
13) (4.13)

t21 = 30z1
21(1− z2

21)(1− z3
21) + 33(1− z1

21)z2
21(1− z3

21) + 35(1− z1
21)

(1− z2
21)z3

21 + 37z1
21z

2
21(1− z3

21) + 40z1
21(1− z2

21)z3
21 + 45(1− z1

21)(1− z1
21)z2

21z
3
21 (4.14)

t22 = 20(1− z1
22)(1− z2

22)(1− z3
22) + 21z1

22(1− z2
22)(1− z3

22) + 22(1− z1
22)

z2
22(1− z3

22) + 23(1− z1
22)(1− z2

22)z3
22 + 24z1

22z
2
22(1− z3

22)
+ 25z1

22(1− z2
22)z3

22 + 26z1
22(1− z2

22)z3
22 (4.15)

t23 = 25(1− z1
23)(1− z2

23z
3
23z

4
23 + 26z1

23(1− z2
23)z3

23(1− z4
23)

+ 27(1− z1
23)z2

23z
3
23(1− z4

23) + 28z1
23(1− z2

23)(1− z3
23)z4

23 + 29z1
23(1− z2

23)
z3
23(1− z4

23) + 30z1
23z

2
23(1− z3

23)(1− z4
23) + 31(1− z1

23)z2
23z

3
23z

4
23

+ 32z1
23(1− z2

23)z3
23z

4
23 + 33z1

23z
2
23(1− z3

23)z4
23 (4.16)

1 ≤ z1
11 + z2

11 ≤ 2 (4.17)
1 ≤ z1

21 + z2
21 + z3

21 ≤ 2 (4.18)
z1
22 + z2

22 + z3
22 ≤ 2 (4.19)

2 ≤ z1
23 + z2

23 + z3
23 ≤ 3 (4.20)

z1
23 + z2

23 + z3
23 ≤ 2 (4.21)

where, xij ≥ 0, i = 1, 2 and j = 1, 2, 3.

5. Result and discussion

To find the optimal solutions the problem is solved by Lingo package developed by Schrage [17] The optimal
solutions are x11 = 15.88888, x12 = 4.066849, x13 = 8.476099, x22 = 7.111205, and rest of the decision variables
are zero. The minimum cost of the objective function is 506.2093. The optimal value for multi-choice cost
coefficients xij to the objective function are 10, 15, 17, 20, 27, 30 per hundred rupees respectively.

The introduction of binary variables is an important concept in multi-choice programming for selection of
one choice from the set of multi-choice. To formulate the proposed model in this paper, the additional/ auxiliary
constraints involve the binary variables. The number of binary variables for each choice or goal are dependent
on the relation ln(p)

ln(2) , where p is the number of choice or goals. Depending on the number of choice or goals,
different models can be formulated for the proposed problem.

It is quite natural that requirement of a variety of medicines in hospitals is completely random and their timely
availability to apply on patients is a big challenge. Generally medicines are available in different units at different
sources and the requirements are also different in different hospitals. The primary objective of a transporter is
to transport medicine timely from different sources to different hospitals such that total transportation cost is
minimized. The problem for the transporter is complicated to some extent because there is a menu of choices
of routes based on transportation cost. The model presented here provides an idea about how a transporter
supplies medicines timely by minimizing total transportation cost by suitably choosing best routes based on
transportation cost.
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6. Conclusion

This paper develops an optimization model of transportation problem having uncertainties as multi-choice
type and Logistic distribution. There are two uncertainties in the problem. Firstly, the cost coefficients of the
objective function are multi-choice rather than of single choice. The second uncertainty involves in supply and
demand which are all followed by Logistic distribution. Initially, the stochastic constraints are transformed into
equivalent deterministic constraints by applying the stochastic programming. Then, a transformation technique
selects only one choice from a set of multi-choice for each coefficient of the objective function and provides
an optimal solution. This article explores three types of mathematical models of multi-choice transportation
problem involving Logistic distribution in the demand, in the source and in both.

Although the model provides idea about how the random requirements of medicines in hospitals can be
fulfilled by a transporter by suitably choosing parameters from sets of parameters, still it has some limitations.
For example, during the entire transportation process if the requirement of a medicine arises suddenly then how
can it be supplied? In emergency system of healthcare, time is the most precious component for better service.
The model does not take it into consideration. For better applicability of the model, in future an extended model
can be developed by considering the time while a transporter will take to supply the medicine. Obviously, the
time a transporter will take will depend on various factors such as type of the carrier, choice of route, distances
between sources and hospitals, etc. Certainly, in such case, the model will be more realistic and robust with
higher grade of complicity. Furthermore, degree of emergency of different medicines are different. Thus choice
of routes aiming at minimizing transportation cost is not acceptable always. Consequently, it is a big challenge
that how urgently required medicines can be transported without cost minimization independently and the rest
can be transported by fulfilling the transportation cost minimization objective.

Acknowledgements. Authors are thankful to Associate Editor and two anonymous referees for their valuable comments
and suggestions on the earlier version for the improvement of the paper.
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