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SYMMETRIC DUALITY RESULTS FOR SECOND-ORDER
NONDIFFERENTIABLE MULTIOBJECTIVE PROGRAMMING PROBLEM

Ramu Dubey1 and Vishnu Narayan Mishra2,3,∗

Abstract. In this article, we study the existence of Gf -bonvex/Gf -pseudo-bonvex functions and
construct various nontrivial numerical examples for the existence of such type of functions. Furthermore,
we formulate Mond-Weir type second-order nondifferentiable multiobjective programming problem and
give a nontrivial concrete example which justify weak duality theorem present in the paper. Next, we
prove appropriate duality relations under aforesaid assumptions.
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1. Introduction

The vector optimization problem and its dual are said to be symmetric if the dual of the dual is the original
problem. Second-order duality is significant due to its computational importance as it provides more higher
bounds whenever approximation is used. Mangasarian [16] was the first one who introduced the concept of
second-order duality for non-linear programming. Furthermore, Gulati and Gupta [10] have been introduced
the concept of η1-bonvexity/η2-boncavity and derived duality results for a Wolfe type model. Several researchers
[5, 7] have done their work in the related areas.

Antczak [1] introduced the concept of G-invex function and derived some optimality conditions for constrained
optimization problem. Later Antzcak [2] extended his earlier work of Gf -invex function, he proved necessary and
sufficient optimality conditions for a multiobjective nonlinear programming problem. Ferrara and Stefaneseu
[9] discussed the conditions of optimality and duality for multiobjective programming problem. In last several
years, various optimality and duality results have been obtained for multi objective fractional programming
problems. In Chen [4], multi objective fractional problem and its duality theorems have been considered under
higher-order (F, α, ρ, d)-convexity.

Jayswal et al. [12] discussed multiobjective fractionl programming problem involving-invex function.
Kang et al. [13] defined G-invexity for a locally Lipschitz function and obtained optimality conditions for
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multiobjective programming problems. Recently, generalizing the notion of invexity to (p, r) − ρ − (η, θ)-invex
function, Mandal and Nahak [15] developed symmetric duality results for a Mond-Weir type model. Stefaneseu
and Ferrara [21] studied new invexities for multiobjective programming problem. Bhatia and Garg [3] discussed
the concept of (V, p)-invexity has been introduced for non-smooth vector functions and is used to establish du-
ality results for multi objective programs. Later on, Reuda et al. [18] generalized the concept of invex function
by introducing type-I and type-II functions.

In this paper, we construct several nontrivial numerical examples which illustrate the existence of such
type of functions and also formulate a pair of nondifferentiable multiobjective Mond-Weir type symmetric
primal-dual problems over arbitrary cones. Next, We construct numerical examples to illustrate the existence
of Gf -bonvex/Gf -pseudobonvex functions but it is neither η-bonvex/η-pseudobonvex functions nor η-invex/η-
pseudoinvex functions. Further, under the Gf -bonvex/Gf -pseudobonvex assumptions, we prove the weak, strong
and strict converse duality theorems. We also formulate an example which justifies the Weak duality theorem
presented in the paper.

2. Preliminaries and definitions

Definition 2.1. The positive polar cone S∗ of a cone S ⊆ Rs is defined by

S∗ = {y ∈ Rs : xT y ≥ 0}.

Consider the following vector minimization problem:

(P) Minimize f(x) =
{
f1(x), f2(x), . . . , fk(x)

}T

Subject to X0 = {x ∈ X ⊂ Rn : gj(x) ≤ 0, j = 1, 2, . . . ,m}

where f = {f1, f2, . . . , fk} : X → Rk and g = {g1, g2, . . . , gm} : X → Rm are differentiable functions defined on
X.

Definition 2.2. A point x̄ ∈ X0 is said to be an efficient solution of (P) if there exists no other x ∈ X0 such
that fr(x) < fr(x̄), for some r = 1, 2, . . . , k and fi(x) ≤ fi(x̄), for all i = 1, 2, . . . , k.
Let f = (f1, . . . , fk) : X → Rk be a vector-valued differentiable function defined on a non-empty open set
X ⊆ Rn, and Ifi

(X), i = 1, . . . , k, be the range of fi, that is, the image of X under fi.

Definition 2.3. Let f : X → Rk, (X ⊆ Rn) be a differentiable function. If there exists a vector valued function
η : X ×X → Rn such that ∀x ∈ X,

fi(x)− fi(u) ≥ ηT (x, u)∇xfi(u), for all i = 1, 2, . . . , k,

then f is called invex at u ∈ X with respect to η.
If the above inequality sign changes to ≤, then f is called incave at u ∈ X with respect to η.

Definition 2.4. Let f : X → Rk, (X ⊆ Rn) be a differentiable function. If there exists a vector valued function
η : X ×X → Rn such that ∀x ∈ X,

ηT (x, u)G′fi
(fi(u))∇xfi(u) ≥ 0⇒ Gfi

(fi(x))−Gfi
(fi(u)) ≥ 0, for all i = 1, 2, . . . , k,

then f is called Gf -pseudoinvex at u ∈ X with respect to η.
If the above inequality sign changes to ≤, then f is called Gf -pseudoincave at u ∈ X with respect to η.
Now, we give the definition of a differentiable vector valued Gf -bonvex/Gf -pseudobonvex functions.
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Definition 2.5. Let f : X → Rk be a vector-valued differentiable function. If there exists a differentiable
function Gf = (Gf1 , Gf2 , . . . , Gfk

) : R→ Rk such that every component Gfi
: Ifi

(X)→ R is strictly increasing
on the range of Ifi and a vector valued function η : X ×X → Rn such that ∀ x ∈ X and pi ∈ Rn,

Gfi
(fi(x))−Gfi

(fi(u))

≥ ηT (x, u)
[
G′fi

(fi(u))∇xfi(u) +
{
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T +G′fi
(fi(u))∇xxfi(u)

}
pi

]
− 1

2
pT

i

[
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T +G′fi
(fi(u))∇xxfi(u)

]
pi, for all i = 1, 2, . . . , k,

then f is called Gf -bonvex at u ∈ X with respect to η.
If the above inequality sign changes to ≤, then f is called Gf -boncave at u ∈ X with respect to η.

Definition 2.6. Let f : X → Rk be a vector-valued differentiable function. If there exists a differentiable
function Gf = (Gf1 , Gf2 , . . . , Gfk

) : R→ Rk such that every component Gfi : Ifi(X)→ R is strictly increasing
on the range of Ifi

and a vector valued function η : X × X → Rn such that ∀ x ∈ X and pi ∈ Rn, for all
i = 1, 2, . . . , k,

ηT (x, u)[G′fi
(fi(u))∇xfi(u) +

{
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T

+ G′fi
(fi(u))∇xxfi(u)

}
pi] ≥ 0⇒ Gfi(fi(x))−Gfi(fi(u))

+
1
2
pT

i

[
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T +G′fi
(fi(u))∇xxfi(u)

]
pi ≥ 0,

then f is called Gf -pseudobonvex at u ∈ X with respect to η.
If the above inequality sign changes to ≤, then f is called Gf -pseudoboncave at u ∈ X with respect to η.
We now give an example of Gf -bonvexity with respect to η, which is neither η-bonvex nor η-invex.

Example 2.1. Let f : [0, 1]→ R4 be defined as

f(x) = {f1(x), f2(x), f3(x), f4(x)},

where f1(x) = x8, f2(x) = arc (sinx), f3(x) = arc (tanx), f4(x) = arc (cotx) and Gf = {Gf1 , Gf2 , Gf3 , Gf4} :
R→ R4 be defined as:

Gf1(t) = t9 + 2, Gf2(t) = sint, Gf3(t) = tant, Gf4(t) = cott.

Let η : [0, 1]× [0, 1]→ R be given as:

η(x, u) = −1
9
x14 + x− 1

12
x7u3 − 1

4
x2u2 + u.

For showing that f is Gf -bonvex at u = 0 with respect to η, for this we have to claim that

πi = Gfi(fi(x))−Gfi(fi(u))− ηT (x, u)
[
G′fi

(fi(u))∇xfi(u) +
{
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T
]

+ G′fi
(fi(u))∇xxfi(u)

}
pi +

1
2
pT

i

[
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T +G′fi
(fi(u))∇xxfi(u)

]
pi ≥ 0,

i = 1, 2, 3, 4.
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Putting the values of f1, f2, f3, f4, Gf1 , Gf2 , Gf3 and Gf4 in the above expressions, we have

π1 = (x72 + 2)− (u72 + 2)− 72u70

(
− 1

9
x14 + x− 1

12
x7u3 − 1

4
x2u2 + u

)
(u+ 71p1) + 2556u70p2

1,

π2 = sin(arc(sinx))− sin(arc(sinu))−
(
− 1

9
x14 + x− 1

12
x7u3 − 1

4
x2u2 + u

)(
cos(arc(sinu))× 1

(1− u2)
1
2

+
{
−u

1− u2
+ cos(arc(sinu))× u

(1− u2)
3
2

}
p2

)
+
p2
2

2

{
−u

1− u2
+ cos(arc(sinu))× u

(1− u2)
3
2

}
,

π3 = tan(arc(tanx))− tan(arc(tanu))−
(
− 1

9
x14 + x− 1

12
x7u3 − 1

4
x2u2 + u

)
×
(
sec2(arc(tanu))× 1

(1 + u2)
+
{

2sec2(arc(tanu)))tan(arc(tanu)) + sec(arc(tanu))

× −2u
(1 + u2)2

}
p3

)
+
p2
3

2

{
2sec2(arc(tanu))tan(arc(tanu)) + sec(arc(tanu))× −2u

(1 + u2)2

})
and

π4 = cot(arc(cotx))− cot(arc(cotu))−
(
− 1

9
x14 + x− 1

12
x7u3 − 1

4
x2u2 + u

)
×
(

cosec2(arc(cotu))× 1
1 + u2

+
{

2cosec2(arc(cotu))cot(arc(cotu))

×
(

1
(1 + u2)2

− cosec2(arc(cotu))× 2u
1 + u2

)}
p4

)
+
p2
4

2

{
2cosec2(arc(cotu))cot(arc(cotu))× 1

(1 + u2)2
− cosec2(arc(cotu))× 2u

1 + u2

}
·

At the point u = 0 ∈ [0, 1]. It is clear from figures (1) and (2), the above expressions hold the inequalities:

π1 ≥ 0, π2 ≥ 0, π3 ≥ 0 and π4 ≥ 0, for all x ∈ [0, 1], ∀ pi, i = 1, 2, 3, 4.

Therefore, f is Gf -bonvex at u = 0 with respect to η and p.
Now, suppose

ξ = f3(x)− f3(u)− ηT (x, u)[∇xf3(u)−∇xxf3(u)p3] +
1
2
pT
3 [∇xxf3(u)]p3

or

ξ = arc (tanx)− arc (tanu)−
(
− 1

9
x14 + x− 1

12
x7u3 − 1

4
x2u2 + u

)[
1

1 + u2
− 2up3

(1 + u2)2

]
− up2

3

(1 + u2)2
,

ξ = arc (tanx) +
1
9
x14 − x at u = 0.

It follows that
ξ � 0, ∀ x ∈ [0, 1], (see the Fig. 3).

Therefore, f3 is not η-bonvex at u = 0 with respect to p3. Hence, f = (f1, f2, f3, f4) is not η-bonvex at
u = 0 with respect to p = (p1, p2, p3, p4).

Next,
δ = f3(x)− f3(u)− ηT (x, u)∇xf3(u)
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Figure 1. π1 = x72,∀x ∈ [0, 1]

Figure 2. π2 = π3 = π4 = sin(arc(sinx)) = tan(arc(tanx)) = cot(arc(cotx)),∀x ∈ [0, 1]
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Figure 3. ξ = arc(tanx) + 1
9x

14 − x,∀x ∈ [0, 1]

or

δ = arc (tanx)− arc (tanu)−
(
− 1

9
x14 + x− 1

12
x7u3 − 1

4
x2u2 + u

)
1

1 + u2
,

δ = arc (tanx) +
1
9
x14 − x at u = 0,

δ =
π

4
+

1
9
− 1 < 0 at x = 1.

Therefore, f3 is not η-invex at u = 0. Hence, f = (f1, f2, f3, f4) is not η-invex at u = 0.
We now give an example of Gf -pseudobonvex with respect to η, which is neither η-pseudobonvex nor η-
pseudoinvex.

Example 2.2. Let f : [−1, 1]→ R2 be defined as

f(x) = {f1(x), f2(x)},

where f1(x) = (ex − e−x), f2(x) = x3 and Gf = {Gf1 , Gf2} : R→ R2 be defined as:

Gf1(t) = t4, Gf2(t) = t2 + 2.

Let η : [−1, 1]× [−1, 1]→ R be given as:

η(x, u) = x2 + u2.

For showing that f is Gf -pseudobonvex at u = 0 with respect to η, for this we have to claim that, for i = 1, 2

ζi = ηT (x, u)
[
G′fi

(fi(u))∇xfi(u) +
{
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T +G′fi
(fi(u))∇xxfi(u)

}
pi

]
≥ 0⇒ Gfi

(fi(x))−Gfi
(fi(u)) +

1
2
pT

i

[
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T +G′fi
(fi(u))∇xxfi(u)

]
pi ≥ 0,
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Figure 4. ϕ1 = (ex − e−x)4,∀x ∈ [−1, 1]

or ζi = φi ≥ 0⇒ ϕi ≥ 0, for i = 1, 2,
where, for i = 1, 2,

φi = ηT (x, u)
[
G′fi

(fi(u))∇xfi(u) +
{
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T +G′fi
(fi(u))∇xxfi(u)

}
pi

]
and

ϕi = Gfi(fi(x))−Gfi(fi(u)) +
1
2
pT

i

[
G′′fi

(fi(u))∇xfi(u)(∇xfi(u))T +G′fi
(fi(u))∇xxfi(u)

]
pi.

Now φ1 = ηT (x, u)
[
G′f1

(f1(u))∇xf1(u) + {G′′f1
(f1(u))∇xf1(u)(∇xf1(u))T +G′f1

(f1(u))∇xxf1(u)}p1

]
,

φ1 = (x2 + u2)(4(eu − e−u)3 × (eu + e−u) + {12(eu − e−u)2 × (eu + e−u)2 + 4(eu − e−u)4}p1).

At the point u = 0, we have
φ1 ≥ 0, ∀ x ∈ [−1, 1], ∀ p1.

Also,

ϕ1 = Gf1(f1(x))−Gf1(f1(u)) +
1
2
pT
1

[
G′′f1

(f1(u))∇xf1(u)(∇xf1(u))T +G′f1
(f1(u))∇xxf1(u)

]
p1

ϕ1 = (ex − e−x)4 − (eu − e−u)4 +
p2
1

2

{
12(eu − e−u)2 × (eu + e−u)2 + 4(eu − e−u)4

}
which at u = 0, we get

ϕ1 = (ex − e−x)4

ϕ1 ≥ 0, ∀ x ∈ [−1, 1], ∀ p1 (see from the Fig. 4).

φ2 = ηT (x, u)
[
G′f2

(f2(u))∇xf2(u) +
{
G′′f2

(f2(u))∇xf2(u)(∇xf2(u))T +G′f2
(f2(u))∇xxf2(u)

}
p2

]
φ2 = (x2 + u2)(6u5 + 30u4p2).
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Figure 5. ϕ2 = x6,∀x ∈ [−1, 1]

At the point u = 0, we get
φ2 ≥ 0, ∀ x ∈ [−1, 1], ∀ p2.

Also,

ϕ2 = Gf2(f2(x))−Gf2(f2(u)) +
1
2
pT
2

[
G′′f2

(f2(u))∇xf2(u)(∇xf2(u))T +G′f2
(f2(u))∇xxf2(u)

]
p2

ϕ2 = x6 − u6 + 15p2
2u

4.

From the Figure 5, which at the point u = 0, we obtain

ϕ2 ≥ 0, ∀ x ∈ [−1, 1], ∀ p2.

Clearly, ζi = φi ≥ 0⇒ ϕi ≥ 0, for i = 1, 2.
Hence, from the above expressions φ1, φ2, ϕ1 and ϕ2 indicate that f is Gf -pseudobonvex at u = 0 with respect
to η.

Next,

φ3 = ηT (x, u)[∇xf2(u) +∇xxf2(u)p2]
φ3 = (x2 + u2)[3u2 + 6up2].

At the point u = 0, we have
φ3 ≥ 0, ∀ x ∈ [−1, 1], ∀ p2 ∈ R.

Also,

ϕ3 = f1(x)− f2(u) +
1
2
p2
2∇xxf2(u)

ϕ3 = x3 − u3 + 3p2
2u.
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Figure 6. ϕ3 = x3,∀x ∈ [−1, 1]

At the point u = 0, we obtain

ϕ3 � 0, ∀ x ∈ [−1, 1], ∀ p2 (from Fig. 6).

Hence, f2 is not η-pseudobonvex at u = 0 ∈ [−1, 1]. Hence, f = (f1, f2) is not η-pseudobonvex at u = 0 ∈
[−1, 1].

Finally,

φ4 = ηT (x, u)∇xf2(u)
φ4 = 3(x2 + u2)u2.

At the point u = 0, we have
φ4 ≥ 0, ∀ x ∈ [−1, 1], ∀ p2.

Also,

ϕ4 = f2(x)− f2(u)
ϕ3 = x3 − u3.

At the point u = 0, we obtain
ϕ4 � 0, ∀ x ∈ [−1, 1].

Hence, f2 is not η-pseudoinvex at u = 0 ∈ [−1, 1]. Hence, f = (f1, f2) is not η-pseudoinvex at u = 0 ∈ [−1, 1].

Definition 2.7. Let C be a compact convex set in Rn. The support function of C is defined by

s (x|C) = max{xT y : y ∈ C}.
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The subdifferential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zTx = s(x|C)}.

For any convex set S ⊂ Rn, the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT (z − x) 5 0 for all z ∈ S}.

It is readily verified that for a compact convex set S, y is in NS(x) if and only if

s(y|S) = xT y.

Suppose that S1 ⊆ Rn and S2 ⊆ Rm are open sets such that C1 × C2 ⊂ S1 × S2.

3. N-G-Mond-Weir type symmetric dual program

Suneja et al. [19] formulated a pair of symmetric dual multiobjective programs over arbitrary cones in which
the objective function is optimized with respect to an arbitrary closed convex cone by assuming the function
involved to be cone convex. Mishra and Lai [17] extended the results of Khurana [14] to second-order and proved
duality theorems under cone-second-order pseudoinvexity assumptions. Recently, Dubey et al. [6, 8]-extended
the concept of Gf -bonvexity and proved the duality theorems under generalized assumptions.
In this section, we formulate a nondifferentiable multiobjective Mond- Weir type primal-dual model over arbi-
trary cones:

(MPP) Minimize U(x, y, p) =
(
U1(x, y, p1), U2(x, y, p2), U3(x, y, p3), . . . , Uk(x, y, pk)

)T

Subject to

−
k∑

i=1

λi

[
G′fi

(fi(x, y))∇yfi(x, y)− ri +
{
G′′fi

(fi(x, y))∇yfi(x, y)

× (∇yfi(x, y))T +G′fi
(fi(x, y))∇yyfi(x, y)

}
pi

]
∈ C∗2 , (3.1)

yT

( k∑
i=1

λi

[
[G′fi

(fi(x, y))∇yfi(x, y)− ri +
{
G′′fi

(fi(x, y))∇yfi(x, y)

× (∇yfi(x, y))T +G′fi
(fi(x, y))∇yyfi(x, y)

}
pi

])
≥ 0, (3.2)

λi > 0, ri ∈ Fi, x ∈ C1, i = 1, 2, . . . , k. (3.3)

(MDP) Maximize V (u, v, q) =
(
V1(u, v, q1), V2(u, v, q2), V3(u, v, q3), . . . , Vk(u, v, qk)

)T

Subject to
k∑

i=1

λi[G′fi
(fi(u, v))∇xfi(u, v) + ti + {G′′fi

(fi(u, v))∇xfi(u, v)

× (∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)}qi] ∈ C∗1 , (3.4)

uT

( k∑
i=1

λi[G′fi
(fi(u, v))∇xfi(u, v) + ti + {G′′fi

(fi(u, v))∇xfi(u, v)
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× (∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)}qi]

)
≤ 0, (3.5)

λi > 0, ti ∈ Bi, v ∈ C2, i = 1, 2, . . . , k, (3.6)

where, for i = 1, 2, . . . , k,

Ui(x, y, r, pi) = Gfi
(fi(x, y)) + S(x|Bi)− yT ri −

1
2
pT

i [G′′fi
(fi(x, y))∇yfi(x, y)

× (∇yfi(x, y))T +G′fi
(fi(x, y))∇yyfi(x, y)]pi

and

Vi(x, y, t, qi) = Gfi(fi(u, v))− S(v|Fi) + uT ti −
1
2
qT
i [G′′fi

(fi(u, v))∇xfi(u, v)

× (∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)]qi,

where S1 ⊆ Rn and S2 ⊆ Rm, C1 and C2 are arbitrary cones in Rn and Rm, respectively such that C1 × C2 ⊆
S1×S2, fi : S1×S2 → R is differentiable function,Gfi

: Ifi
→ R is differentiable strictly increasing function on

its domain, C∗1 and C∗2 are positive polar cones of C1 and C2, respectively.
Next, we prove weak, strong and converse duality theorems for (MFP) and (MFD), respectively. Let r =
(r1, r2, . . . , rk) and t = (t1, t2, . . . , tk).

Theorem 3.1. (Weak duality theorem). Let (x, y, r, λ, p) and (u, v, t, λ, q) be feasible solution of (MPP) and
(MDP), respectively. Let

(i) f(., v) be Gf -bonvex and (.)T t be invex at u with respect to η1,
(ii) f(x, .) be Gfi

-boncave and (.)T r be invex at y with respect to η2,
(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2.

Then, the following cannot hold:

Ui(x, y, r, p) ≤ Vi(u, v, t, q), for all i = 1, 2, . . . , k (3.7)

and
Ur(x, y, r, p) < Vr(u, v, t, q), for some r = 1, 2, . . . , k. (3.8)

Proof. Suppose that (3.7) and (3.8) hold, then using λ > 0, we have

k∑
i=1

λi

[
Gfi

(fi(x, y))− ri −
1
2
pT

i [G′′fi
(fi(x, y))∇yfi(x, y)(∇yfi(x, y))T +G′fi

(fi(x, y))

×∇yyfi(x, y)]pi −
(
Gfi(fi(u, v)) + ti −

1
2
qT
i

[
G′′fi

(fi(u, v))∇xfi(u, v)

× (∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)

]
qi

)]
< 0. (3.9)

For the dual constraint (3.4) and hypothesis (iii), we get

(η1(x, u) + u)T
k∑

i=1

[
G′fi

(fi(u, v))∇xfi(u, v) + ti + (G′′fi
(fi(u, v))∇xfi(u, v)

× (∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v))qi

]
≥ 0.
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Using the constraint (3.5) in the above inequality, we have

ηT
1 (x, u)

k∑
i=1

λi

[
G′fi

(fi(u, v))∇xfi(u, v) + ti + (G′′fi
(fi(u, v))∇xfi(u, v)

× (∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v))qi

]
≥ 0.

From hypothesis (i), yield Gfi(fi(x, v)) − Gfi(fi(u, v)) ≥ ηT
1 (x, u)[G′fi

(fi(u, v))∇xfi(u, v) +
{G′′fi

(fi(u, v))∇xfi(u, v)(∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)}pi]− 1

2p
T
i [G′′fi

(fi(u, v))∇xfi(u, v)

(∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)]pi, for all i = 1, 2, . . . , k,

and
xT ti − uT ti ≥ ηT

1 (x, u)ti, for all i = 1, 2, . . . , k.

Further, it follows from λ > 0 that

k∑
i=1

λi

[
Gfi

(fi(x, v)) + xT ti −Gfi
(fi(u, v))− uT ti

]
× ηT

1 (x, u)
k∑

i=1

λi

[
[G′fi

(fi(u, v))∇xfi(u, v) + ti + {G′′fi
(fi(u, v))∇xfi(u, v)

× (∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)}pi]−

1
2
pT

i [G′′fi
(fi(u, v))∇xfi(u, v)

× (∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)]pi

]
·

Using (3.5) and hypothesis (iii) in above inequality becomes

k∑
i=1

λi

[
Gfi

(fi(x, v)) + xT ti −Gfi
(fi(u, v))− uT ti +

1
2
pT

i

[
G′′fi

(fi(u, v))

× ∇xfi(u, v)(∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)

]
pi

]
≥ 0. (3.10)

Similarly, by hypotheses (ii)-(iii), the constraints (3.1)–(3.2), we obtain

k∑
i=1

λi

[
−Gfi

(fi(x, v)) + vT ri +Gfi
(fi(x, y))− yT ri −

1
2
pT

i

{
G′′fi

(fi(x, y))

× ∇yfi(x, y)(∇yfi(x, y))T +G′fi
(fi(x, y))∇yyfi(x, y)

}
pi

]
≥ 0. (3.11)

Adding (3.10) and (3.11), we get

k∑
i=1

λi

[
Gfi

(fi(x, y)) + xT ti − yT ri −
1
2
pT

i

[
G′′fi

(fi(x, y))∇yfi(x, y)(∇yfi(x, y))T

+ G′fi
(fi(x, y))∇yyfi(x, y)

]
pi

]
≥

k∑
i=1

λi

[
Gfi

(fi(u, v))− vT ri + uT ti
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− 1
2
qT
i

[
G′′fi

(fi(u, v))∇xfi(u, v)(∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)

]
qi

]
· (3.12)

Finally, xT ti ≤ s(x|Bi) and vT ri ≤ s(v|Fi), 1 ≤ i ≤ n, we have

k∑
i=1

λi

[
Gfi(fi(x, y)) + s(x|Bi)− yT ri −

1
2
pT

i

[
G′′fi

(fi(x, y))∇yfi(x, y)(∇yfi(x, y))T

+ G′fi
(fi(x, y))∇yyfi(x, y)

]
pi

]
≥

k∑
i=1

λi

[
Gfi

(fi(u, v))− s(v|Fi) + uT ti

− 1
2
qT
i

[
G′′fi

(fi(u, v))∇xfi(u, v)(∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)

]
qi

]
, (3.13)

which contradicts the inequality (3.9). Thus, we get desired conclusion. �

Example 3.1. Let n = m = 1, k = 2 and S1 = S2 = R. The functions f1, f2 : S1 × S2 → R be defined as:

f1(x, y) = x5, f2(x, y) = −y6.

Suppose Gf1(t) = t4, Gf2(t) = t3 and B1 = B2 = F1 = F2 = {0}. Further, let η1, η2 : S1×S2 → R be defined
as:

η1(x, u) = x2u2 + u, η2(v, y) = v2 + y2 + 1.

Assuming that C1 = C2 = R+, then C∗1 = C∗2 = R+. Obviously, C1 × C2 ⊆ S1 × S2.
Substituting these expressions in the problems (GMP) and (GMD), we obtain

(ENGMP) Minimize χ(x, y, λ, p) =
{
x20, −y18 + 153p2

2y
16
}

subject to
λ2y

16(y − 51p2) = 0,
λ2y

17(y − 51p2) 5 0,
λ1, λ2 > 0, x ≥ 0.

(EGMD) Maximize ψ(u, v, λ, q) =
(
u20 − 190q21u

18, −v18
)

Subject to
λ1u

18(u+ 19q1) = 0,
λ1u

19(u+ 19q1) 5 0,
λ1, λ2 > 0, v ≥ 0.

First, we will claim that the functions defined above satisfy the hypotheses of the Theorem 3.1.
(i) f1(., v) is Gf1-bonvex at u = 0 with respect to η1 since

Gf1(f1(x, v))−Gf1(f1(u, v))− ηT
1 (x, u)

[
G′f1

(f1(u, v))∇xf1(u, v) +
{
G′′f1

(f1(u, v))

× ∇xf1(u, v)(∇xf2(u, v))T +G′f1
(f1(u, v))∇xxf1(u, v)

}
q1
]

+
1
2
qT
1

[
G′′f1

(f1(u, v))

× ∇xf1(u, v)(∇xf1(u, v))T +G′f1
(f1(u, v))∇xxf1(u, v)

]
q1

= x20 − u20 − (u2x2 + u2)
[
20u19 + 380u18q1

]
+ 190q21u

18
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= x20 at u = 0
= 0 ∀ q1.

Obviously, (.)Tw1 = 0 is invex at u = 0 with respect to η1.
Next, we prove that f2(., v) is Gf2 -bonvex at u = 0 with respect to η1.

Gf2(f2(x, v))−Gf2(f2(u, v))− ηT
1 (x, u)

[
G′f2

(f2(u, v))∇xf2(u, v) +
{
G′′f2

(f2(u, v))

× ∇xf2(u, v)(∇xf2(u, v))T +G′f2
(f2(u, v))∇xxf2(u, v)

}
q2
]

+
1
2
qT
2

[
G′′f2

(f2(u, v))

× ∇xf2(u, v)(∇xf2(u, v))T +G′f2
(f2(u, v))∇xxf2(u, v)

]
q2

= − v18 + v18 − (u2x2 + u2)× 0
= 0 at u = 0 and ∀ q2.

Clearly, (.)Tw2 = 0 is invex u with respect to η1, Hence, hypothesis (i) of the theorem holds.
(ii) f1(x, .) is Gf1-boncave at y = 0 with respect to η2 since

Gf1(f1(x, v))−Gf1(f1(x, y))− ηT
2 (v, y)

[
G′f1

(f1(x, y))∇yf1(x, y) +
{
G′′f1

(f1(x, y))

× ∇yf1(x, y)(∇yf1(x, y))T +G′f1
(f1(x, y))∇yyf1(x, y)

}
p1

]
+

1
2
pT
1

[
G′′f1

(f1(x, y))

× ∇yf1(x, y)(∇yf1(x, y))T +G′f1
(f1(x, y))∇yyf1(x, y)

]
p1

= x20 − u20 − (v2 + y2 + 1)× 0
= 0 at y = 0 and ∀ p1.

Now, we show that f2(x, .) is Gf2 -boncave at y = 0 with respect to η2. The expression

Gf2(f2(x, v))−Gf2(f2(x, y))− ηT
2 (v, y)

[
G′f2

(f2(x, y))∇yf2(x, y) +
{
G′′f2

(f2(x, y))

× ∇yf2(x, y)(∇yf2(x, y))T +G′f2
(f2(x, y))∇yyf2(x, y)

}
p2

]
+

1
2
pT
2

[
G′′f2

(f2(x, y))

× ∇yf2(x, y)(∇yf2(x, y))T +G′f2
(f2(x, y))∇yyf2(x, y)

]
p2

= − v18 + y18 − (v2 + y2 + 1)[−18y17 − 306y16p2]− 153y16p2
2

= − v18 at y = 0
5 0 ∀ p2.

(iii) Since X ⊆ R+ therefore η1(x, u) + u = 0 and η2(v, y) + y = 0.
Hence, all the hypotheses of Theorem 3.1 are satisfied.

Validation: The point (x = 2, y = 0, λ1 =
1
2
, λ2 = 1, p1 = 1, p2 = 1) is a feasible solution of primal problem

and (u = 0, v = 1, λ1 =
1
2
, λ2 = 1, q1 = 3, q2 = 2) is a feasible solution of dual problem. To validate our result,

it’s sufficient to prove that the inequality (3.9) does not hold. Now, the expression

2∑
i=1

λi

[
Gfi

(fi(x, y))− 1
2
pT

i

[
G′′fi

(fi(x, y))∇yfi(x, y)(∇yfi(x, y))T +G′fi
(fi(x, y))∇yyfi(x, y)

]
pi

−
(
Gfi

(fi(u, v))− 1
2
qT
i

[
G′′fi

(fi(u, v))∇xfi(u, v)(∇xfi(u, v))T +G′fi
(fi(u, v))∇xxfi(u, v)

]
qi
)]

= λ1

[
x20 − u20 − 190q21u

18
]

+ λ2

[
−y18 + 108p2

2y
16 + v18

]
= 220 + 1 ≮ 0 (at the above mentioned feasible points).

Hence, the Theorem 3.1 has been verified.
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Theorem 3.2. (Weak duality theorem). Let (x, y, λ, r, p) and (u, v, λ, t, q) be feasible solution of (MPP) and
(MDP), respectively. Let

(i) f(., v) be Gf -pseudobonvex and (.)T t be pseudoinvex at u with respect to η1,
(ii) f(x, .) be Gfi

-pseudoboncave and (.)T r be pseudoinvex at y with respect to η2,
(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2.

Then, the following cannot hold:

Ui(x, y, r, p) ≤ Vi(u, v, t, q), for all i = 1, 2, . . . , k

and
Ur(x, y, r, p) < Vr(u, v, t, q), for some r = 1, 2, . . . , k.

Proof. The proof follows on the lines of Theorem 3.1. �

Theorem 3.3. (Strong duality theorem). Let (x̄, ȳ, r̄, λ̄, p̄) be an efficient solution of (MPP); fix λ = λ̄ in (MDP)
and suppose that

(i) either
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T + G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
is positive definite, for all i =

1, 2, ..., k and
k∑

i=1

λ̄ip̄
T
i

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i
]
≥ 0 or{

G′′fi
(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T + G′fi

(fi(x̄, ȳ))∇yyfi(x̄, ȳ)
}

is negative definite, for all i = 1, 2, ..., k

and
k∑

i=1

λ̄ip̄
T
i

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i
]
≤ 0,

(ii)
{
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
[
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T +G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

]
p̄i

}k

i=1
is linearly independent.

Then, there exists t̄i ∈ Bi, i = 1, 2, . . . , k such that (x̄, ȳ, t̄, λ̄, q̄1 = q̄2 = . . . = q̄k = 0) is feasible solution of
(MDP) and the objective values of (MPP) and (MDP) are identical. Moreover, if the hypotheses of Theorem 3.1
or 3.2 are satisfied for all feasible solutions of (MPP) and (MDP), then (x̄, ȳ, t̄, λ̄, q̄1 = q̄2 = . . . = q̄k = 0) is an
efficient solution of (MDP).

Proof. Since (x̄, ȳ, r̄, λ̄, p̄) is an efficient solution of (MPP), by the Fritz John necessary conditions [20], then
there exist α ∈ R+, β ∈ Rm

+ , γ ∈ R+, δ ∈ Rk
+ and t̄i ∈ Rn, i = 1, 2, . . . , k such that

(x− x̄)T
k∑

i=1

αi

[
G′fi

(fi(x̄, ȳ))∇xfi(x̄, ȳ) + t̄i −
1
2
p̄T

i ∇x

[{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)

× (∇yfi(x̄, ȳ))T +G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}]
p̄i

]
+ (β − γȳ)T

k∑
i=1

λ̄i

[
G′′fi

(fi(x̄, ȳ))

×∇xfi(x̄, ȳ)∇yfi(x̄, ȳ) +G′fi
(fi(x̄, ȳ))∇xyfi(x̄, ȳ) +∇x

[{
G′′fi

(fi(x̄, ȳ))

×∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T +G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

] ]
≥ 0, ∀x ∈ C1, (3.14)

k∑
i=1

αi

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i −
1
2
p̄T

i ∇y

[{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T



554 R. DUBEY AND V.N. MISHRA

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}]
p̄i

]
+

k∑
i=1

λ̄i

[
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ) +∇y

[{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

] ]
(β − γȳ)− γ

k∑
i=1

λ̄i

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)

+
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T +G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
= 0, (3.15)

(β − γȳ)T
[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
− δi = 0, i = 1, 2, . . . , k, (3.16)

[
(β − γȳ)λ̄i − αip̄i

]T [
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

]
= 0, i = 1, 2, . . . , k, (3.17)

βT
k∑

i=1

λ̄i

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)

× (∇yfi(x̄, ȳ))T +G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
= 0, (3.18)

γȳT
k∑

i=1

λ̄i

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)

× (∇yfi(x̄, ȳ))T +G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
= 0, (3.19)

δT λ̄ = 0, (3.20)

t̄i ∈ Bi, r̄i ∈ Fi, x̄
T t̄i = s(x̄/B̄i), i = 1, 2, . . . , k, (3.21)

αiȳ + λ̄i(β − γȳ)λ̄i ∈ NF ¯(ri)
, i = 1, 2, . . . , k, (3.22)

(α, β, γ, δ) 6= (0, 0, 0, 0), (α, β, γ, δ) ≥ (0, 0, 0, 0). (3.23)

As λ̄ > 0, then from (3.20), that δ = 0. Therefore from (3.16), we obtain

(β − γȳ)T
[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ) + r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
= 0, i = 1, 2, . . . , k. (3.24)

By hypothesis (i), it follows from (3.17) that

(β − γȳ)λ̄i = αip̄i, ∀ i = 1, 2, . . . , k. (3.25)

Now, we claim that αi 6= 0, ∀ i = 1, 2, . . . , k. Indeed, if for some k0, αk0 = 0, then it follows from λ̄k0 > 0
and (3.25) that

β = γȳ. (3.26)
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From (3.15), we get

k∑
i=1

(αi − γλ̄i)
[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i
]

+
k∑

i=1

λ̄i

[ {
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
(β − γȳ − γp̄i) +

k∑
i=1

λ̄i∇y

[ {
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)

× (∇yfi(x̄, ȳ))T +G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

][
(β − γȳ)λ̄i −

1
2
αip̄i

]
= 0.

Using (3.25), it follows that

k∑
i=1

(αi − γλ̄i)
[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
+

1
2

k∑
i=1

λ̄i∇y

[{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
(β − γȳ) = 0.

The above equation together with (3.26) yields

k∑
i=1

(αi − γλ̄i)
[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
= 0,

which from hypothesis (ii) yields
αi = γλ̄i, ∀ i = 1, 2, . . . , k. (3.27)

From λ̄i > 0, i = 1, 2, . . . , k and αk0 = 0, for some k0, it follows that γ = 0. Now from (3.26), (3.27) and
γ = 0, we have β = 0, αi = 0, i = 1, 2, . . . , k, which contradicts (3.23). Therefore, αi, i ∈ K.
Pre-multiplying by λ̄i in (3.24), using (3.25) and noting αi > 0, i = 1, 2, . . . , k, we get

p̄T
i

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
= 0.

that is

k∑
i=1

p̄T
i

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
= 0. (3.28)

We now claim that p̄i = 0, ∀ i = 1, 2, . . . , k. From hypotheses (i), we have

k∑
i=1

p̄T
i

[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i +
{
G′′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)(∇yfi(x̄, ȳ))T

+ G′fi
(fi(x̄, ȳ))∇yyfi(x̄, ȳ)

}
p̄i

]
6= 0, (3.29)
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which contradicts (3.28). Hence, p̄i = 0, ∀ i = 1, 2, . . . , k. It follows that from λ̄i > 0, p̄i = 0, for i = 1, 2, . . . , k
and (3.25) that

β = γȳ. (3.30)

Using (3.30) and p̄i = 0, i = 1, 2, . . . , k in (3.15), it follows that

k∑
i=1

(αi − γλ̄i)
[
G′fi

(fi(x̄, ȳ))∇yfi(x̄, ȳ)− r̄i
]

= 0.

By condition (iii), we get
αi = γλ̄i, i = 1, 2, . . . , k. (3.31)

Therefore, γ > 0.
Using (3.30), (3.31) and γ > 0 in (3.14), we have

(x− x̄)T

[ k∑
i=1

λ̄i(G′fi
(fi(x̄, ȳ))∇xfi(x̄, ȳ)) + t̄i

]
≥ 0, ∀x ∈ C1. (3.32)

Let x ∈ C1. Then x+ x̄ ∈ C1 as C1 is a closed convex cone. On substituting x+ x̄ in place of x in (3.32), we
get

xT

[ k∑
i=1

λ̄i(G
′

fi
(fi(x̄, ȳ))∇x)fi(x̄, ȳ) + t̄i

]
≥ 0.

Hence,
k∑

i=1

λ̄i

(
G

′

fi
(fi(x̄, ȳ))∇x)fi(x̄, ȳ) + t̄i

)
∈ C∗1 . (3.33)

Also, by letting x = 0 and x = 2x̄ simultaneously in (3.32), we have

x̄T
k∑

i=1

λ̄i[(G
′

fi
(fi(x̄, ȳ))∇x)fi(x̄, ȳ) + t̄i] = 0. (3.34)

Since β = γȳ and γ > 0, we get

ȳ =
β

γ
∈ C2. (3.35)

Next, α > 0, by (3.22) and the fact that β = γȳ, we get ȳ ∈ NF(r̄i) , i = 1, 2, 3, . . . , k. This gives

ȳT r̄i = s(ȳ/Fi), i = 1, 2, 3, . . . , k. (3.36)

Hence, we find that (x̄, ȳ, t̄, λ̄, q̄1 = q̄2 =, . . . ,= q̄k = 0) satisfies (3.4) and (3.5) which is feasible solution for
(MDP). Using, (3.30), (3.36), p̄i = 0, i = 1, 2, . . . , n and (x̄, ȳ, λ̄, t̄, q̄1 = q̄2 =, . . . ,= q̄k = 0), we get

U(x̄, ȳ, r̄, p̄) = V (x̄, ȳ, t̄, q̄). (3.37)

Hence, we get the desired result. �

Theorem 3.4. (Converse duality). Let (ū, v̄, t̄, λ̄, q̄) be an efficient solution of (MDP); fix λ = λ̄ in (MPP) and
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suppose that

(i) either
{
G′′fi

(fi(ū, v̄))∇xfi(ū, v̄)(∇xfi(ū, v̄))T +G′fi
(fi(ū, v̄))∇xxfi(ū, v̄)

}
is positive def-

inite, for all i = 1, 2, ..., k and
k∑

i=1

λ̄iq̄
T
i

[
G′fi

(fi(ū, v̄))∇xfi(ū, v̄) + t̄i
]

≥ 0 or{
G′′fi

(fi(ū, v̄))∇xfi(ū, v̄)(∇xfi(ū, v̄))T +G′fi
(fi(ū, v̄))∇xxfi(ū, v̄)

}
is negative definite, for all i = 1, 2, ..., k

and
k∑

i=1

λ̄iq̄
T
i

[
G′fi

(fi(ū, v̄))∇xfi(ū, v̄) + t̄i
]
≤ 0,

(ii) the set
{
G′fi

(fi(ū, v̄))∇xfi(ū, v̄) + [G′′fi
(fi(ū, v̄))∇xfi(ū, v̄)(∇xfi(ū, v̄))T +G′fi

(fi(ū, v̄))∇xxfi(ū, v̄)]q̄i

}k

i=1
is linearly independent.

Then, (ū, v̄, λ̄, r̄, p̄1 = p̄2 =, . . . ,= p̄k = 0) is feasible solution for (MPP) and the objective values of (MDP)
and (MPP) are equal. Moreover, Weak duality Theorem 3.1 or 3.2 hold, then (ū, v̄, r̄, λ̄, p̄1 = p̄2 =, . . . ,= p̄k = 0)
is an efficient solution of (MPP).

Proof. It follows on the lines of Theorem 3.3. �

4. Concluding remarks

In this paper, we have formulate a second-order symmetric nondifferentiable Mond-Weir type dual for
a nonlinear multiobjective optimization problem. Number of duality relations are further established under
Gf -bonvexity/Gf -pseudobonvexity assumptions on the function f . We have discussed various numerical ex-
amples to show the existence of Gf -bonvex/Gf -pseudobonvex functions. Also, we have justified weak duality
theorem by a suitable example. The question arises as to whether the duality results developed in this paper
hold for Mond-Weir type higher-order nondifferentiable multiobjective optimization problems. This may be the
future direction for the researchers working in this area.

Acknowledgements. The authors are grateful to the anonymous referees for their useful comments and suggestions which
have improved the presentation of the paper.
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