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SYMMETRIC DUALITY RESULTS FOR SECOND-ORDER
NONDIFFERENTIABLE MULTIOBJECTIVE PROGRAMMING PROBLEM

RAaMU DUBEY! AND VISHNU NARAYAN MISHRAZ*

Abstract. In this article, we study the existence of Gj-bonvex/G s-pseudo-bonvex functions and
construct various nontrivial numerical examples for the existence of such type of functions. Furthermore,
we formulate Mond-Weir type second-order nondifferentiable multiobjective programming problem and
give a nontrivial concrete example which justify weak duality theorem present in the paper. Next, we
prove appropriate duality relations under aforesaid assumptions.
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1. INTRODUCTION

The vector optimization problem and its dual are said to be symmetric if the dual of the dual is the original
problem. Second-order duality is significant due to its computational importance as it provides more higher
bounds whenever approximation is used. Mangasarian [16] was the first one who introduced the concept of
second-order duality for non-linear programming. Furthermore, Gulati and Gupta [10] have been introduced
the concept of n;-bonvexity /ns-boncavity and derived duality results for a Wolfe type model. Several researchers
[5,7] have done their work in the related areas.

Antezak [1] introduced the concept of G-invex function and derived some optimality conditions for constrained
optimization problem. Later Antzcak [2] extended his earlier work of G y-invex function, he proved necessary and
sufficient optimality conditions for a multiobjective nonlinear programming problem. Ferrara and Stefaneseu
[9] discussed the conditions of optimality and duality for multiobjective programming problem. In last several
years, various optimality and duality results have been obtained for multi objective fractional programming
problems. In Chen [4], multi objective fractional problem and its duality theorems have been considered under
higher-order (F, «, p, d)-convexity.

Jayswal et al. [12] discussed multiobjective fractionl programming problem involving-invex function.
Kang et al. [13] defined G-invexity for a locally Lipschitz function and obtained optimality conditions for
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multiobjective programming problems. Recently, generalizing the notion of invexity to (p,r) — p — (1, #)-invex
function, Mandal and Nahak [15] developed symmetric duality results for a Mond-Weir type model. Stefaneseu
and Ferrara [21] studied new invexities for multiobjective programming problem. Bhatia and Garg [3] discussed
the concept of (V, p)-invexity has been introduced for non-smooth vector functions and is used to establish du-
ality results for multi objective programs. Later on, Reuda et al. [18] generalized the concept of invex function
by introducing type-I and type-II functions.

In this paper, we construct several nontrivial numerical examples which illustrate the existence of such
type of functions and also formulate a pair of nondifferentiable multiobjective Mond-Weir type symmetric
primal-dual problems over arbitrary cones. Next, We construct numerical examples to illustrate the existence
of G-bonvex /G ¢-pseudobonvex functions but it is neither n-bonvex/n-pseudobonvex functions nor n-invex/n-
pseudoinvex functions. Further, under the G y-bonvex /G ¢-pseudobonvex assumptions, we prove the weak, strong
and strict converse duality theorems. We also formulate an example which justifies the Weak duality theorem
presented in the paper.

2. PRELIMINARIES AND DEFINITIONS
Definition 2.1. The positive polar cone S* of a cone S C R? is defined by
S*={yeR*:zTy>0}.

Consider the following vector minimization problem:

T
@) Mivimize f(0) = {£12) o). ulo)
Subject to XO:{xEXCR”:gj(x) <0,7=1,2,...,m}

where f = {f1, fos.--, fx} : X — RF and g = {g1,92,--.,gm} : X — R™ are differentiable functions defined on
X.

Definition 2.2. A point # € X is said to be an efficient solution of (P) if there exists no other x € X° such
that f.(z) < fr(Z), for some r =1,2,...,k and fi(z) < fi(z), for all i = 1,2,... k.

Let f = (fi,--.,fx) : X — R* be a vector-valued differentiable function defined on a non-empty open set
X CR" and Iy, (X),i=1,...,k, be the range of f;, that is, the image of X under f;.

Definition 2.3. Let f: X — RF, (X C R") be a differentiable function. If there exists a vector valued function
n:X x X — R" such that Vz € X,

fi(z) = fi(uw) > 0" (2,u)Vafi(u), foralli=1,2,... k,

then f is called invex at u € X with respect to 7.
If the above inequality sign changes to <, then f is called incave at u € X with respect to 7.

Definition 2.4. Let f: X — R¥, (X C R") be a differentiable function. If there exists a vector valued function
7n: X x X — R™ such that Vz € X,

" (2, u)GY, (fi(w)Vafi(u) > 0= Gy, (filx)) = Gy, (fi(w)) > 0, for all i =1,2,....k,

then f is called Gy-pseudoinvex at v € X with respect to 7.
If the above inequality sign changes to <, then f is called G y-pseudoincave at v € X with respect to 7.
Now, we give the definition of a differentiable vector valued G ¢-bonvex/G ¢-pseudobonvex functions.
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Definition 2.5. Let f : X — RF be a vector-valued differentiable function. If there exists a differentiable
function Gy = (Gy,,Gy,,...,Gy,.) : R — RF such that every component Gy, : I1,(X) — R is strictly increasing
on the range of I, and a vector valued function 1 : X x X — R" such that V x € X and p; € R",

Gy, (fi(z)) = Gy, (fi(w))

z)
277 ( )[ fi(fi( ))V fl +{GH fz ))waz(u)(vwfz( )) +G/ (fl zwfz }pz]
- %p? (G (fi(u) Ve fi(u) (Vo fi(u)" + G, (fi(w) Var fi(u)] ps, for alli =1,2,... k,

then f is called G ¢-bonvex at v € X with respect to 7.
If the above inequality sign changes to <, then f is called G ¢-boncave at v € X with respect to 7.

Definition 2.6. Let f : X — RF be a vector-valued differentiable function. If there exists a differentiable
function Gy = (Gy,,Gy,,...,Gy,) : R — RF such that every component Gy, : Ir,(X) — R is strictly increasing
on the range of Iy, and a vector valued function n : X x X — R" such that Vz € X and p; € R", for all
i=1,2,...,k

0" (2, w)[GY, (fi (W) Va fi(w) + { G} (fi(u) Va fi(u)(Va fi(w)”
+ G, (fi(w) Vo fi(u) } pi zoéGfi(fo))foi(fi(u))

T (G o)V o) (Vo o)) + G, (o)) Ve ()] i > 0,

then f is called G ¢-pseudobonvex at u € X with respect to 7.
If the above inequality sign changes to <, then f is called G y-pseudoboncave at u € X with respect to 7.
We now give an example of G g-bonvexity with respect to 7, which is neither n-bonvex nor 7-invex.

Example 2.1. Let f:[0,1] — R* be defined as

f(@) = {fi(2), fa(), f3(2), fa(2)},

where fi(z) = 28, fo(x) = arc (sinx), fs(z) = arc (tanx), fi(z) = arc (cotx) and Gy = {Gy,,Gy,, G, Gy, } ¢
R — R* be defined as:

G, (1) =17 +2, Gy, (t) = sint, Gy, (t) = tant, Gy,(t) = cott.
Let n: [0,1] x [0,1] — R be given as:

1 1
n(z,u) = —§x14 +x— Em7u3 4x2u2 + u.

For showing that f is Gy-bonvex at u = 0 with respect to 7, for this we have to claim that

mi = Gy, (fi(x)) — G, (fi(w) — 0" (z,u) [G, (fi(w) Va fi(u) + { G} (fi(w) Vo fi(u) (Vo fi(w)) "]

+ G, (fi(u) Vo fi(u) } pi + %pi (G (fi() Vo fi(u)(Va fi(w)T + G, (fi(u) Ve fi(w)] pi > 0,
i=1,2,3,4.
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Putting the values of fi, f2, f3, fa, Gy, Gy,, Gy, and Gy, in the above expressions, we have

1 1 1
7= (2 4+2) — (W +2)—72u™ ( - §xl4 +x— ﬁ:ﬂu?’ - Zzzuz + u) (u+ Tlpy) + 2556u"0p3,

1

1 1 1
7o = sin(arc(sinx)) — sin(arc(sinu)) — ( — oy — 2" — a4 u) <cos(arc(sinu)) X m
_u2)%

9 12 4

2
+ {1u2 + COS(arC(Slnu>> X w}p2) + 22{ 1 — u2 + COS(arC(Slnu)) X (1u2)§}’

1 1 1
w3 = tan(arc(tanx)) — tan(arc(tanu)) — ( - §xl4 +x— EI7US - Zz2u2 + u)

X (secz(arc(tanu)) X ! ] + {28662(arc(tanu)))tan(arc(tanu)) + sec(arc(tanu))

(14 u?

X (1—&_-2;2)2}233) + p;’{25602(arc(tanu))tan(arc(tanu)) + sec(arc(tanu)) x (1:_252)2})

and

1 1 1
m4 = cot(arc(cotx)) — cot(arc(cotu)) — ( - §xl4 +x— Ex7u3 — szug + u)

1
X <cosec2(arc(cotu)) X 7 w + {2005602(arc(cotu))cot(arc(cotu))
u
1 2
X <(1 e cosec? (arc(cotu)) x Tra +uu2) }p4>

i

2
+ 2{2cosec2(arc(cotu))cot(arc(cotu)) X — cosec?(arc(cotu)) x Y }

(14 u?)? 1+ u?
At the point u = 0 € [0, 1]. It is clear from figures (1) and (2), the above expressions hold the inequalities:
m >0, m >0, m3 >0and my >0, for all z € [0,1], V p;, i = 1,2,3,4.

Therefore, f is G¢-bonvex at u = 0 with respect to 7 and p.
Now, suppose

€ = Fa(@) — fa(w) — 17 (@) [V f3() — Vo f (w)ps] + = pF [V f(0)]p3

2
or
L 14 Lozs 1 oo 1 2ups up3
& = arc (tanx) — arc (tanu)—(—gx —&—x—ﬁmu % +u T 02| 0rud)?
1
& = arc (tanx)+§x14—x at u=0.

It follows that
£#0,Vael0,1], (seethe Fig. 3).

Therefore, f3 is not n-bonvex at u = 0 with respect to ps. Hence, f = (f1, fo, f3, fa) is not n-bonvex at

u = 0 with respect to p = (p1, p2, ps, Pa)-
Next,

§ = fs(x) — fa(u) =" (z,u)Vafs(u)
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FIGURE 1. m; = 272, Vx € [0,1]

0.2

P,(P5 0rp,)

FIGURE 2. my = 73 = m4 = sin(arc(sinz)) = tan(arc(tanx)) = cot(arc(cot x)), Vv € [0, 1]
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X

FIGURE 3. £ = arc(tanz) + §a'* — z,Vz € [0, 1]

or

1 1 1 1
0 = arc (tanx) — arc (tanu) — ( - 53:14 +xz— Emju?’ - Zx2u2 + u) T
u

14

1
5:arc(tanx)+§x —z atu =0,

T 1
=—+--1 r=1.
1) 1 9 <0 at

Therefore, f3 is not n-invex at u = 0. Hence, f = (f1, f2, f3, fa) is not n-invex at u = 0.
We now give an example of G ¢-pseudobonvex with respect to n, which is neither n-pseudobonvex nor n-
pseudoinvex.

Example 2.2. Let f:[-1,1] — R? be defined as
f(x) ={f1(@), f2(2)},
where f1(z) = (e —e™®), fo(r) =2 and Gy = {Gy,,Gy,} : R — R? be defined as:
Gp(t) =t Gp(t) =1 +2.
Let n: [—1,1] x [-1,1] — R be given as:
n(z,u) = 22 4+ u’.
For showing that f is G y-pseudobonvex at u = 0 with respect to 7, for this we have to claim that, for i = 1,2
G = 07 (@) [G, (i) Vo i) + { G, i)V i) (Vi fi()T + G, (1)) Vo fi)} ]

2 0= G (fi(z)) = Gp(filuw) + %piT (G, (£i(w)Va fi(w) (Vo fi(w)T + G, (fi(w)) Ve fi(w)] pi 2 0,
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-0.5
X 1A pl

FIGURE 4. p; = (e —e @)%, Vo € [-1,1]

or (i =¢; >0=¢; >0, fori=1,2,
where, for i =1, 2,

i = 1" (x,u) [GF,(fi(w)Vafiw) + {GF, (fi(w) Va fi(u) (Vo fi(w)) T + G, (fi(1) Ve fi(u) } pi]

and

wi = G, (fi(x)) = G (fi(u) + %piT (G (fi()Va fi(w)(Va fi(w) " + G, (fi(u) Vaa fi(w)] pi-
Now ¢1 = 1" (z,u) [G, (f1(w)Vafi(uw) + {GF, (f1(w)Vafi(w) (Ve fi(u)” + G (f1(w)Vau fir(w) ]
= (:1; +u )(4(6“ — e*“)?’ x (e" +e ™)+ {12(e" — (f“)2 x (e* + 67“)2 +4(e* — e*“)4}p1).
At the point u = 0, we have

¢1 >0, Voe[-1,1], Vp.
Also,

1 =Gp(fi(2) = G (fi(w) + % 1 GH (@) Ve fi(u) (Ve fr(u)T + G, (fi(w) Ve fir(u)] p1
o1 = (ez o 679:)4 o (eu o efu)4 + %{12(6“ o efu)2 % (eu + efu)2 + 4(eu o eu)4}
which at u = 0, we get
pr = (" —e )
p1 >0, Voe[-1,1], V p; (see from the Fig. 4).
$2 = 1" (x,u) [G, (fo(w)) Ve fo(u) + { G, (fo(w) Vi fo(u) (Vo fo(u)T + G, (fo () Vs fo(u) } po]
b2 = (2% + u?)(6u® + 30u’py).
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FIGURE 5. ¢y = 2% Vx € [-1,1]

At the point u = 0, we get
$2 >0, Vae|[-1,1], V ps.

Also,

2 = Gp,(f2(2)) — Gy, (fa(u)) + %pzT |G, (f2(w)) Vo fo(w) (Vo fo(w)" + Gy, (f2(0) Vs fo(u)] pa
0o = 2% —u® + 15p3u’.
From the Figure 5, which at the point u = 0, we obtain
w2 >0, Vxel-1,1], V ps.
Clearly, (; =¢; > 0= ¢; >0, fori=1,2.

Hence, from the above expressions ¢1, ¢2, ¢1 and ¢, indicate that f is G y-pseudobonvex at u = 0 with respect
ton.
Next,
g3 =n" (2, u)[Va f2(u) + Vag fo(u)ps]
b3 = (2% + u?)[3u? + 6upy).
At the point u = 0, we have
¢3>0,Vaxe[-1,1], Vps € R.
Also,

05 = (@) ~ fo(u) + 5PV o)

w3 = 23 — u® + 3p2u.
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FIGURE 6. 3 = 23,Vz € [-1,1]

At the point u = 0, we obtain
03 20, Vae[-1,1], Vps (from Fig. 6).

Hence, fo is not n-pseudobonvex at u = 0 € [—1,1]. Hence, f = (f1, f2) is not n-pseudobonvex at u = 0 €
[-1,1].
Finally,

¢s=n"(2,u)Vq fa(u)
b4 = 3(2* + u?)u?.

At the point u = 0, we have
¢4 >0, Vze[-1,1], V ps.

Also,
1 = f2(x) — fa(u)

03 = 3 — ud.

At the point v = 0, we obtain
04 20, Vael[-1,1].

Hence, f5 is not n-pseudoinvex at « = 0 € [—1, 1]. Hence, f = (f1, f2) is not n-pseudoinvex at u =0 € [—1,1].

Definition 2.7. Let C be a compact convex set in R™. The support function of C' is defined by

5 (z|C) = max{zTy : y € C}.
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The subdifferential of s(z|C') is given by
ds(z|C) ={z € C: 2w = s(2|C)}.
For any convex set S C R", the normal cone to S at a point z € S is defined by
Ns(z)={ye R":y" (2 —x) <0 forall z€ S}.
It is readily verified that for a compact convex set S, y is in Ng(x) if and only if
s(ylS) = 2"y.

Suppose that S; C R™ and So C R™ are open sets such that C7; x Cy C S7 x S5.

3. N-G-MoOND-WEIR TYPE SYMMETRIC DUAL PROGRAM

Suneja et al. [19] formulated a pair of symmetric dual multiobjective programs over arbitrary cones in which
the objective function is optimized with respect to an arbitrary closed convex cone by assuming the function
involved to be cone convex. Mishra and Lai [17] extended the results of Khurana [14] to second-order and proved
duality theorems under cone-second-order pseudoinvexity assumptions. Recently, Dubey et al. [6, 8]-extended
the concept of Gg-bonvexity and proved the duality theorems under generalized assumptions.

In this section, we formulate a nondifferentiable multiobjective Mond- Weir type primal-dual model over arbi-
trary cones:

T
(MPP) Minimize U($7 yap) = (Ul ((E, y7p1)7 UZ(xu y7p2)v U3(£L', y7p3)a vy Uk(xv vak))

Subject to
k
= X G (fil@, )V filw,y) — v+ {GF (fil, ) Vy fil,y)
=1
< (Vyfilzm,y)T + G, (fi(z, 1)) Vyy filz,y) } pi] € C3, (3.1)

k

=1
N>0,reF, xeCy,i=1,2,...,k. (33)

T
(MDP) Maximize V(U, v, q) = (Vl (U, v, QI)a ‘/2(u7 v, QZ)a V3(u7 v, q3)7 ceey Vk(u’a v, Qk))

Subject to
k

Z Ai [Gl)Q(fz(ua ’U))fol(u, U) +i+ {G/Jé(fz(u7 U)>vzfz(u7 U)

=1
X (Vo fi(u,0)" + G, (fi(4,0))Vaa fi(u, v) }ai] € CF, (3.4)
k

u ( S NG, (Filat,0)Va fil,0) + 5 + (G (fi(u, 0)) V. filu, o)

i=1
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x (Va fi(u, U))T + G/fl- (fi(u,0))Vaa fi(u, 'U)}ql]> <0, (3.5)
ANi>0,t, €B,velCy i=1,2,...,k, (36)

where, for i =1,2,... k,

Ui(z,y, 7, pi) = Gy, (fi(z,y)) + S(=|B;) — y"ri — %pﬂG}i (fi(z,y))Vy fi(z,y)
X (Vyfl(w,y)) + G, (fi(@,9))Vyy fi(@, y)|pi

and

Vi(x7y7t’ Qi) = Gfi (fl(uvv)) - S(UlFl) + uTti - %q;r[Gl;b (fi(u7v))vwfi(ua U)
X (vwfz(u7v)) +G/ (fz(u U)) wwfi(uav)]qh

where S; C R™ and Sy C R™, C7 and Cy are arbitrary cones in R"™ and R™, respectively such that C; x Cy C
S1 % 82, fi : S1 x S2 — R is differentiable function,Gy, : Iy, — R is differentiable strictly increasing function on
its domain, C} and Cj are positive polar cones of C; and Cs, respectively.

Next, we prove weak, strong and converse duality theorems for (MFP) and (MFD), respectively. Let r =
(ri,72,...,71) and t = (t1,t2,...,tx).

Theorem 3.1. (Weak duality theorem). Let (z,y,r,A\,p) and (u,v,t,\,q) be feasible solution of (MPP) and
(MDP), respectively. Let

(i) f(.,v) be Gy-bonvex and (.)Tt be invex at u with respect to m,
(ii) f(z,.) be Gy,-boncave and (.)Tr be invex at y with respect to na,
(ili) 71 (2, u) +u e Cr and na(v,y) +y € Co.

Then, the following cannot hold:
Ui(z,y,r,p) < Vi(u,v,t,q), foralli=1,2,...,k (3.7)

and
U.(z,y,r,p) < Vi(u,v,t,q), for somer=1,2,... k. (3.8)

Proof. Suppose that (3.7) and (3.8) hold, then using A > 0, we have

> |:Gfi(fi(mv y)) =i — %p?[G}’i(fi(w, VIV i@, 9)(Vy fi(z, )T + G (fi(z,y)
=1

< Vo il (G i) + 6 = 3 (Gl 0) Vi)

% (Vs 0)) + G, (fo(ut 0)) Ve fi, )] q)] <0 (3.9)

For the dual constraint (3.4) and hypothesis (iii), we get

k
(m (w,w) + )" (G (filw,0) Vi filu,0) + 5 + (G (fi(u, 0) Va fi(u, v)
=1

X (szl(uﬂ))) +G/ (ft(u U)) mwfi(uav))%] > 0.
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Using the constraint (3.5) in the above inequality, we have

k
Z (G, (fi(u,v))Va fi(w,0) + t; + (G, (fi(u, 0)) Vo filu, v)
X ( o fi(u, )T + G (fi(u,0) Vae fi (1, v))gs] > 0.

From hypothesis (i), vield Gp,(fi(@,0) — Gn(fiwv) = ol (2.w)G (filuw,0)Vafiluw) +
{Glf/l (fl(uvU))vxfl(u)v)(vwfz(ua U))T + G/'i(fi(u7v))vﬂcasfi(u,v)}pi] - %P?[G}:(fz(uvU))szz(uvv)

(Vafilu,v)t + G’ (fi(u,0)) Ve fi(u,v)ps, foralli=1,2,... k,

and
ot —uTt; > nf (z,u)t;, foralli=1,2,...,k.

Further, it follows from A > 0 that
k
D N Gr(filw,v) + 2"t = Gy (filu,v) — u"t,]
i=1

k
<l ( ZA{G’ (i (0, 0DV £, 0) + s + (G (i (0, 0) Vo i, 0)

X (Vo filu,0))" + G (il ) Vo i) o] = 507 16 (i, 0) Vi 0)

X (foz(u,v)) +G, (fz(u ’U)) aca:fi(u7v)]pi '

Using (3.5) and hypothesis (iii) in above inequality becomes
: 1
Do [Gfi (Fiw,0)) + 27t = G (filu,0)) = u"t: + 5 (G, (filu,v)
i=1

X vzfz(uv U)(vzfz(ua U))T + G}l (fz(ua v))meZ(u, U)] pl:| Z 0. (310)

Similarly, by hypotheses (ii)-(iii), the constraints (3.1)—(3.2), we obtain

k
Z |: Gf fz z v))+UTTi+Gfi(fi(x’y))_yTTi_ %pzT {G/]é(fl(xvy))

i=1

X Vyfi(x’y)(vyfi(x7y)>T +G/fl(fz(xvy))vyyfz<x7y)}pz:| > 0. (3'11)

Adding (3.10) and (3.11), we get
k
Z Ai |:Gfi(f’i(xay)> + a7t —yTr — %pzT [G}i(fi(x’ Y)Vy fi(z,y)(Vy fi(z,y)"
=1
k
+ G )Tl )] 1] 2 YN Gahitu, ) = o+ T

=1
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- %qu [Glfll(fz<uﬂv))vwfz(uvU)<vwfl(uvv)) +G/ (fl(u U)) mcfz(uﬁv)] qi|- (3'12)

Finally, 27t; < s(x|B;) and vTr; < s(v|F;), 1 <i < n, we have

k
Z |:GfL fz &€ y) + S($|Bz) - yTTi - %pzT [ yl(fz(xvy))vyfz<x’y)(vyf1(x’y))T

i=1

+ G (fila,y)Vyy fila,y)] p } E:A%% (fi(u,v)) — s(v|Fy) + u”t;

i=1
1
- 5(1? (G}, (fi(u, 0)) Vo fi(u,0) (Vo fi(u, )" 4+ G (fi(w, 0) Ve fi(u,v)] @, (3.13)
which contradicts the inequality (3.9). Thus, we get desired conclusion. O

Example 3.1. Let n=m =1, k =2 and S; = S5 = R. The functions fi, fo:51 X S2 — R be defined as:

fl(xay) = 1’5, f2(x7y) = _yﬁ'
Suppose Gy, (t) = t1, Gy, (t) = t3 and By = By = F; = F» = {0}. Further, let 01,72 : S1 X Sa — R be defined
as:
m(z,u) = 2%u® +u, 2(v,y) = 0° +y* + 1,

Assuming that C; = Cy = R4, then C7 = C5 = R4. Obviously, C; x Cy C 51 x Ss.
Substituting these expressions in the problems (GMP) and (GMD), we obtain

(ENGMP) Minimize x(z,y,\,p) = {#*, —y*® + 153p3y*}
subject to
Aoy (y — 5lp2) 2 0,
Aoy (y — 5lpg) £ 0,
A, A2 >0, z>0.

(EGMD) Maximize ¥ (u,v, A, q) = ( — 190¢%u'® —v18)
Subject to
Aut®(u+19¢1) 2 0,
Aut?(u+19¢1) £0,
A1, A2 >0, v>0.

First, we will claim that the functions defined above satisfy the hypotheses of the Theorem 3.1.
(i) fi(.,v) is Gy,-bonvex at u = 0 with respect to 7; since

Gp, (fi(z,0)) = Gy, (fi(u,0) = i (2,u) [Gf, (fi(w, ) Va fr(u,0) + {GF, (fi(u, v))
X va:fl(uav)(vzfQ(uvv)) +Gll(fl(uav))vxzfl(uvv)}ql] +EQ1 [ ']ﬁl(fl(u,v))

2
X Vo fi (1, 0) (Vo (,0))T + G, (Fa(,0)) Voo fr (u, vﬂ 0
= 2% — u? — (u22? + u?) 200" + 380u'®q1] + 190¢3u
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=220 atu=0

=0V q.

Obviously, (.)Tw; = 0 is invex at u = 0 with respect to 7.
Next, we prove that fa(.,v) is Gy,-bonvex at v = 0 with respect to ;.

Gf2(f2(x7v)) - sz(fQ(ua'U)) —771T(»’U7U) [ (f2(u U))V f2 u,v +{ f2 u, U))
X vme(ua 'U)(foQ(u,’U))T + G/2(f2(u, v))vmrf2(uvv)}qQ] + %QQ [ f2(f2(7.l,,11))
X vmf?(ua v)(meQ(u,v))T + G/Q(fQ(u’ v))mez(u,v)] qz
= — o 4! — (WP2? +u?) x 0
=0atu=0andV g.

Clearly, (.)Tws = 0 is invex u with respect to 7y, Hence, hypothesis (i) of the theorem holds.
(ii) fi(z,.) is Gf,-boncave at y = 0 with respect to 7, since

G, (fiz,0)) = Gp, (filz,9) =3 (0,9) [G, (f1(2,9)Vy iz, y) + {GF (fi(z,y)
X Vyfl(x’y)(vyfl(xay))T + Gll(fl(l‘vy))vyyfl(x7y>}pl] + %p{ [ ,/)gl (fl(x,y))
X Vy fi(@,y)(Vy fr(a,y)" +G’1(f1(fv Y Vyyfi(z.y)] 1
=22 — 4?0 — (0 + 2 +1) x
=0aty=0andV p;.
Now, we show that fa(z,.) is G¢,-boncave at y = 0 with respect to 72. The expression
G, (fo(,0)) = Gp, (f2(2,9)) = 13 (0,9) [G, (fo(2,9))Vy oz, y) + { G, (fa(,y))
X Vyfa(z,y)(Vyfolz,y))" + G, (fa(2,9))Vyy folz,y) } p2] + %pz (G7, (fa(z,y))
X Vo fo(2,9)(Vy fo(@,9))" + G, (f2(2,9)) Vyy fo(,y)] P
= — 0¥+ y" — (0¥ + 47 + 1)[-18y"" — 306y ®p2] — 153y p5
—v®aty=0
S0V py.

(iii) Since X C R therefore 1y (z,u) + v =2 0 and na(v,y) +y = 0.
Hence, all the hypotheses of Theorem 3.1 are satisfied.

1
Validation: The point (z =2,y = 0, = ok X2 = 1,p1 = 1,p3 = 1) is a feasible solution of primal problem

1
and (u=0,v=1,A\1 = =, A2 = 1,q1 = 3,¢2 = 2) is a feasible solution of dual problem. To validate our result,

it’s sufficient to prove that the inequality (3.9) does not hold. Now, the expression
2
1
D NG (filw,y) - 51?? (G (fiz, )V fila, ) (Vo filz,y) T + Gl (fi(2,9)) Vyy filz, )] p
i=1

= Cnliadh) - S (G ot 0) Ve ot 0) (Ve ot 0)) + G (i, 0)) Ve o, 0)] )]
=1 [2%0 = u®® — 190¢7u'®] + Ao [—y"® + 108p3y"® + 8]

=220 11 £ 0 (at the above mentioned feasible points).

Hence, the Theorem 3.1 has been verified.
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Theorem 3.2. (Weak duality theorem). Let (z,y, A,r,p) and (u,v,\,t,q) be feasible solution of (MPP) and
(MDP), respectively. Let

(i) f(.,v) be Gy-pseudobonver and (.)Tt be pseudoinvezr at u with respect to 0y,
(ii) f(x,.) be Gy,-pseudoboncave and (.)Tr be pseudoinvex at y with respect to ns,
(iil) M (z,u) +u € C1 and n2(v,y) +y € Co.

Then, the following cannot hold:
Ui(z,y,r,p) < Vi(u,v,t,q), foralli=1,2,... k

and
U-(z,y,r,p) < Ve(u,v,t,q), for somer=1,2,... k.

Proof. The proof follows on the lines of Theorem 3.1. O

Theorem 3.3. (Strong duality theorem). Let (Z,9,7, A, p) be an efficient solution of (MPP); fixt A = X in (MDP)
and suppose that

(i) either {G'Jﬁi(fi(x,y))Vyfi(gc,y)(Vyfi(x,y))T + G}1(fz(x,y))vyufz(x7y)} is positive definite, for all i =

1,2,k and Y Nip! [G,(fi(2,9) Yy fi(@,9) = 7:] = 0 or

K
(ii) {G/fi(fi('fag))vyfi(jag) -7+ {G/f (i@, 9))Vy fi(Z, 9)(Vy fi(z,9)" + G, (fi(fyg))vyyfi(fyy)} Z_h'}

1s linearly independent.

i=1

Then, there exists t; € B;,i = 1,2,...,k such that (Z,7,t,\,q1 = @2 = ... = @ = 0) is feasible solution of
(MDP) and the objective values of (MPP) and (MDP) are identical. Moreover, if the hypotheses of Theorem 3.1
or 3.2 are satisfied for all feasible solutions of (MPP) and (MDP), then (Z,7,{,A\,¢1 =G = ... =g, = 0) is an

efficient solution of (MDP).
Proof. Since (7,7, \,p) is an efficient solution of (MPP), by the Fritz John necessary conditions [20], then
there exist « € Ry, € RT, y€ Ry, § € RY and {; € R, i =1,2,...,k such that
~ 1
(—2)" ai[ 5 i@ 0) Ve fi(@,9) + 6 = 5P Ve [{GF(£:(2,9) Vo £i(7,9)

k
% (Vy i@ + G (fi(5,9) Yy fil3 9)}] pz} BTSN [ " (i)
X vxfz(j:7g)vyfz(£7g) + G/L(fz(jvg))vafl(jvg) + Vg [{ }/1 fz(j’g))

k
> {G}i(ﬂ(m))%fi(a‘:,g) —7i - %@Tvy {GF (fi@ 9) Vo fil@ 9) (Vo £i(7,9)"
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k
O )V e} 3| + 30 |G DIV @D (T o)
+ G (fi(@,9) Vo [i(2,9) + Vy [{G} (Fi(@,0) Vo fi(2,9)(V fi(2,5))"
k

+{G (i@, 9))Vy fi(2,9)(Vy fi(7,9))" + G, (fz( DIVyyfi(2.9)} Bi] =0, (3.15)
(/6 - ’yg)T [G/fl(fz(jvg)) yfz(7 y) —Ti + {G/fl(fz(jvg))vyfz(jvg)(vyfz(jvg)),r
+ GY,(fi(Z, 7)) yyfl 9} pi] —6; =0, i=1,2,...k (3.16)

(8 =i — aidi) G (i@, ) Vo i@ 5) (Vo i@, 7)) T

+ G (fi(@,9)Vyy fi(z, )] =0, i=1,2,... k, (3.17)
Kk
Z DIV fi(®,9) =7 + { G, (fi(2,9)Vy [i(Z,9)
h < (Vyfi(z, )" + G (fi(@,9))Vyy fi(z.9)} Bi] =0, (3.18)
Kk
Z DIV fi(@,5) = 7 + { G (fi(Z,9))Vy fi(7,9)
h < (Vyfi(z, )" + G (fi(@,9))Vyy fi(z.9)} Bi] =0, (3.19)
sTx =0, (3.20)
ti€ By, € F, 27t =5(2/By), i =1,2,...,k, (3.21)
i+ M(B =)\ € Np, . =12,k (3.22)
(e, 3,7, 8) # (0,0,0,0), (e, 3,7,6) > (0,0,0,0). (3.23)

As A > 0, then from (3.20), that § = 0. Therefore from (3.16), we obtain
(8 =79 G, (fi@, 9V fi(@,9) + 7 + { G (Fi(@ 9)Vy i@ ) (Vy £i(2, 9))"
+ G4, (fi(Z,9)Vyy fi(z,9)} pi] =0, i = 1,2,... k. (3.24)
By hypothesis (i), it follows from (3.17) that
(B =9\ = cips, Vi=1,2,... k. (3.25)

Now, we claim that o; # 0, Vi = 1,2,..., k. Indeed, if for some kg, ay, = 0, then it follows from A, > 0
and (3.25) that

B =y (3.26)
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From (3.15), we get

k
> (o= A6, )T 2.9) — 7] + 35 [{G’,ﬁxfz-(f,g))vyfi(ae,y)(vyfi@,y))T
i—1 P

k
+ G, (fi(@,9)) Vyy fi@ }pz} B =y —pi) Z [ {G}.(fi(z,9)Vy fi(, )

< (V@) + G (@ D)V (@) 7 [ 5=~ yain] =0,
Using (3.25), it follows that
k
> (e =[G} (@, 9) Vi@, 5) = i + { G (fi(7 9) Vo Ju(@, D) (Vo fi(7, 7))

k
G (il 9)) Vo i RN [{G}@(ﬁ(@g))vyﬁ( (Y, f:(E.5)

+ G (fi(@,9)Vyy fi(2 }Pz] (B —29) =0.

l\D\H

The above equation together with (3.26) yields

Z(ai — YA (G (i 9)Vy fi(@,9) — 7 + { G} (2. 9)Vy fi(2, 9)(Vy fi(2,5) "

+ G (fi(@,9) Vi £i(@,9) } pi] =0,
which from hypothesis (ii) yields

a; =N, Vi=1,2... k. (3.27)
From \; > 0, i = 1,2,...,k and ay, = 0, for some ky, it follows that v = 0. Now from (3.26), (3.27) and
v =0, we have 8 =0, a; =0, ¢ =1,2,...,k, which contradicts (3.23). Therefore, «;, i € K.
Pre-multiplying by A; in (3.24), using (3.25) and noting «;; >0, i = 1,2,...,k, we get
pi (G, (fi(2,9)Vy fi(Z,9) — 7 + {G}.( (fi(Z.9))Vy fi(Z9)(Vy fi(z, 9)"
+ G/ (fz(x y)) yyfz i }Pz] =0.
that is

Z )V fz(x y) — T+ {GH fz ))Vyfz(fag)(vyfz(fag))T

+ G (fi(Z,9))Vyy fi(Z,9) } Bi] = 0.

(3.28)
We now claim that p; =0, Vi=1,2

., k. From hypotheses (i), we have
Z DIV fil@,5) = 7 + { G (fi(2, )V fi(2,5)(V, fi(7,5))

+ G (fi(@,9) Vi £i(@.9)} pi] #0, (3.29)
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which contradicts (3.28). Hence, p; =0, Vi =1,2,..., k. It follows that from \; >0, p; =0, fori=1,2,...,k
and (3.25) that

B =y (3.30)

Using (3.30) and p; =0, ¢ =1,2,...,k in (3.15), it follows that
> (e =y G, (fi(2,9))Vy fi(E,5) — 73] = 0.
By condition (iii), we get

a; =N, i=1,2,... k. (3.31)

Therefore, v > 0.
Using (3.30), (3.31) and v > 0 in (3.14), we have

k
{Z i Ve fi(Z, ) +a} >0, Vo € Cy. (3.32)

i=1

Let x € C7. Then z + Z € Cy as C1 is a closed convex cone. On substituting  + Z in place of = in (3.32), we
get

[ﬁ:/_\ (@, (fi(@.9)V z)fi(mvy)+fi:| > 0.

Hence,
k
IR CATER I ATIET R e (3.33)
i=1
Also, by letting = 0 and = = 2Z simultaneously in (3.32), we have
k
Z (G, (fi(2,5))Va) fi(#.9) + ;] = 0. (3.34)
Since f =~y and v > 0, we get
y= g € Cs. (3.35)

Next, a > 0, by (3.22) and the fact that 8 = vy, we get § € Np.,, ©=1,2,3,..., k. This gives

g'r =s(g/F), i=1,2,3,... k. (3.36)

Hence, we find that (Z, 7,1, /_\, g1 =q = = @ = 0) satisfies (3.4) and (3.5) which is feasible solution for
(MDP). Using, (3.30), (3.36), p; =0, i = 1 2 ,nand (Z,9,\,t,q1 = @2 =,...,= g, = 0), we get

U(z,y,7,p) =V(Z,9.t,q). (3.37)

Hence, we get the desired result. O

Theorem 3.4. (Converse duality). Let (4,v,t,\,q) be an efficient solution of (MDP); fixt A\ = X\ in (MPP) and
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suppose that
(i) either {G’)ﬁ (fi(4,0))V o fi(,0) (Ve fi(a, 0))T + G',(fi(ﬂ 6))szfi(ﬂ,75)} is positive def-
inite,  for all 1 = 1,2,...,k and Z NGt Gf (fi(@, )V fi(u,v) + ] > 0 or

{ ' (fi(@,0))V, fi(a, ) (Ve fi(u,0)T + G, (fi(w,0)) Ve fi(a, v)} is negative definite, for allt =1,2,....k

k
and Z XGi (G, (fil, 0)) Ve fi(1,0) + 1] <0,
(ii> the set {G’IfZ (fi(ﬂ?T}))Va:fi(a?ﬁ) + [G}c(fl(a’ @))vwfi(aaﬂ)(vwfi(a’/v))T + G/fl(fz(aa ’U))V:mcfi(uav)]qi}

18 linearly independent.

[

k

=1

Then, (@, 9, \,7,p1 = p2 =, ...,= pr = 0) is feasible solution for (MPP) and the objective values of (MDP)
and (MPP) are equal. Moreover, Weak duality Theorem 3.1 or 3.2 hold, then (@, v,7, A\, p1 = p2 =,...,= pr = 0)
is an efficient solution of (MPP).

Proof. Tt follows on the lines of Theorem 3.3. (]

4. CONCLUDING REMARKS

In this paper, we have formulate a second-order symmetric nondifferentiable Mond-Weir type dual for
a nonlinear multiobjective optimization problem. Number of duality relations are further established under
Gs-bonvexity /G j-pseudobonvexity assumptions on the function f. We have discussed various numerical ex-
amples to show the existence of G y-bonvex/G p-pseudobonvex functions. Also, we have justified weak duality
theorem by a suitable example. The question arises as to whether the duality results developed in this paper
hold for Mond-Weir type higher-order nondifferentiable multiobjective optimization problems. This may be the
future direction for the researchers working in this area.
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