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PRODUCTION INVENTORY MODEL FOR CONTROLLABLE DETERIORATION
RATE WITH SHORTAGES

UMAKANTA MISHRAY2, JACOBO TIJERINA-AGUILERA!, SUNIL TIWARI®
AND LEOPOLDO EDUARDO CARDENAS-BARRONY*

Abstract. This paper deals with an economic production quantity (EPQ) inventory model for de-
teriorating items under preservation technology. The preservation technology is used to protect the
items from deterioration. Three different production levels are considered. It is assumed that initially
the production rate is at a lower rate and it increases gradually over the period. This is just in order
to reduce the holding cost by avoiding the larger stock quantity at the beginning of the production
cycle. The shortages are permitted and fully backordered. The objective of the production inventory
model is to determine the optimal production policy which minimizes the manufacturer’s total cost.
Theoretical results are established in order to demonstrate the existence of the optimal solution and a
proper solution procedure is presented. A numerical example and sensitivity analysis are presented to
validate the theoretical results. Also, some managerial insights are provided.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1. Motivation

From the development of the economic order quantity and economic production quantity (EOQ/EPQ) inven-
tory models, a lot of research works have been made in the inventory management field. In today’s competitive
world, every manufacturing organization wants to deliver the best product to customers because they have
more concern about the quality of items that they are purchasing. This leads to manufacturers to invest more
on improvement of the manufacturing process. As now, it is a world known fact that one cannot ignore the
effect of deterioration of products. Therefore, in order to reduce the deterioration rate, the manufacturer can
use some different kind of technologies such as refrigerating the items. This technology is known as preservation
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technology. Many research works have been done considering the above said technology but very few consider
a production inventory model for deteriorating items having three different production rates and preservation
technology together. In most of the recent articles, it is considered that the production rate throughout the
period is same which is not quite realistic. This motivated us to consider such a manufacturing system having
different production rates over the cycle period. In this direction, this paper considers three different production
levels, it is assumed that initially the production rate is at lower rate and it rises progressively over the produc-
tion cycle. This is just with the aim to diminish the holding cost by evading the higher stock quantity initially.
Furthermore, this production inventory model considers that shortages occur and these are fully backordered.

1.2. Literature review

The primary research areas relevant to this paper are underline here. In this subsection, it is discussed about
the primary research done in the area of inventory models considering (1) deterioration, (2) economic production
quantity (EPQ) inventory model and (3) preservation technology.

In past it was assumed that items preserve its original quality over the period of time. However, Ghare
and Schrader [9] introduced the concept of deterioration and explained the importance of deterioration in
inventory models. Later, Covert and Philip [6] developed an economic order quantity (EOQ) inventory model
for deteriorating items whose time to deterioration follows a two-parameter Weibull distribution. After that,
many researchers derived so many inventory models for deteriorating items considering different situations that
can occur in real world. The most of the work done in inventory field considering deterioration is summarized in
the following literature review papers written by Raafat [19], Goyal and Giri [10], Bakker et al. [1], and Janssen
et al. [15].

Misra [18] built an EPQ inventory model. He obtained an approximate relation between the length of the
production time and that of the nonproduction time in a cycle for a constant rate of deterioration. Until today
there are lot of improved and efficient integrated inventory models that have developed by several researchers
and academicians. Goyal and Gunasekaran [12] introduced an EPQ inventory model for a multi-stage production
system. Balkhi and Benkherouf [3] formulated an EPQ inventory model for exponentially deteriorating items, in
which the production rate and the demand rate are functions of time. Balkhi [2] extended Balkhi and Benkherouf
[3]’s inventory model by considering deterioration rate as a function of time. Wee [24], Chang and Dye [5],
Goyal and Giri [11], and Wu et al. [26] proposed EOQ and/or EPQ inventory models with partial backordering.
Céardenas-Barrén [4] presented the derivation of EOQ/EPQ inventory models with two backorders costs using
analytic geometry and algebra. Sarkar and Moon [21] derived a production inventory model having imperfect
quality items and inflation. Widyadana and Wee [25] developed an EPQ inventory model for exponentially
deteriorating items with multiple production setups followed by one rework setup in each cycle.

As deterioration plays a vital role while making inventory control decision, so every organization wants to
reduce the deterioration rate of products as much as possible. Therefore, preservation technology investment
plays a significant role to control deterioration rate. In present day, preservation technology is drawing increasing
attention from researchers and academicians. Hsu et al. [14] proposed an inventory model for a deteriorating
item considering preservation technology to decrease deterioration rate. Lee and Dye [16] developed an inventory
model having preservation technology investment, with allowable shortages and stock-dependent selling rate.
Dye [7] studied the effect of preservation technology investment on inventory policy for a non-instantaneous
deteriorating item. Hsieh and Dye [13] established an EPQ inventory model for deteriorating items under
preservation technology with time-varying demand and finite replenishment rate. Zhang et al. [28] provided
an effective algorithm for an inventory model considering pricing, preservation technology investment and in-
ventory control for deterioration items. Liu et al. [17] developed the joint dynamic pricing and preservation
technology investment inventory model. They assumed that the demand rate of items depends on price and
quality. Furthermore, Zhang et al. [29] investigated a two-echelon supply chain model for deteriorating items
where both manufacturer and retailer jointly invest in preservation technology to reduce deterioration rate.
Researchers such as Dye and Hsieh [8], Yang et al. [27], Tsao et al. [22], Zhang et al. [30], and Saha et al. [20]
studied inventory models with preservation technology investment for deteriorating items.
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In this work, a production inventory model for controllable deteriorating items in which three different levels
of production are derived, and it is possible that production starts at one rate, after some time, it changes over
to another rate and afterwards, it switches again to another rate. Such a situation is desirable in the sense that
by starting at a low rate of production, a large quantum stock of manufactured item at the first stage is avoided
and consequently leading to reduction in the holding cost.

The rest part of the paper is organized as follows. Section 2 describes the notation and assumptions that
have been used in the development of the production inventory model for controllable deterioration rate with
shortages. Then, Section 3 establishes the mathematical model of the production inventory model. Section 4
derives the theoretical results and with these proposes an algorithm to obtain the global optimal solution.
Section 5 solves a numerical example and proves graphically that the total cost function is convex. Section 6
presents a sensitivity analysis. Finally, Section 7 provides some conclusions and future research directions.

2. NOTATION AND ASSUMPTIONS
The production inventory model is developed with the following notation and assumptions.

2.1. Notation

This section defines the notation that is used in the production inventory model for controllable deterioration
rate with shortages.

p: Production rate in units per unit time.

d: Demand rate in units per unit time.

qi: On-hand inventory level at time ¢; in units.
q2: On-hand inventory level at time t2in units.
qs: On-hand inventory level at time t3 in units.
q: Production quantity in units.

Cp: Production cost per unit.

Ch: Holding cost per unit per unit time.

Cst Shortage cost per unit per unit time.

co: Setup cost per setup.

t;: Time in period ¢ (1 =1,2,3,4,5,6).

PC: Production cost per unit time.

OC: Setup cost per unit time.

HC: Total holding cost per unit time.

DC: Deteriorating cost per unit time.

PTC: Preservation technology cost per unit time.
SC: Shortage cost per unit time.

TC: Total cost per unit time.

2.2. Assumptions

(i) The demand rate is known, constant, and continuous.

) Items are produced and added to the inventory.

) Three rates of production are considered as in Viji and Karthikeyan [23].

v) A single product is considered; the product does not interact with any other inventory items.
)
)

—~
—
=
—

The production rate is always greater than or equal to the sum of the demand rate and defective items.

The deterioration rate is assumed continuous, decreasing and convex function of capital investment in
preservation technology ¢, i.e. AN(¢)/¢ < 0, 9*A(¢)/0¢? > 0. It is considered that A\(¢) = A\pe "¢, where
“C” is a decision variable. Here, A(¢) is the deterioration rate after investing on preservation technology,
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Ao is the deterioration rate without preservation technology investment, and 7 is a coefficient that represents
the increasing in A(¢) per $/unit/time. )
(vii) The cost of preservation technology investment per unit time is restricted to ¢ € [0, ¢ ] .

3. MATHEMATICAL FORMULATION OF THE PRODUCTION INVENTORY MODEL FOR
CONTROLLABLE DETERIORATION RATE WITH SHORTAGES

This section develops the production inventory for controllable deterioration rate with shortages. The pro-
duction inventory model for controllable deterioration rate with shortages is depicted in Figure 1. The cycle
starts at ¢ = 0 and the inventory accumulates at a rate of p — d. During the time ¢;the production rate is p and
the demand rate is d. During the time t5 —¢; the production rate is “a(> 1)” times of p, i.e. ap and demand rate
is also “a(> 1)” times of d, i.e. ad where “a(> 1)” is a constant. Consequently, the inventory is accumulated
at a rate of a(p — d). During the time t3 — to the production rate is “b(b > a > 1)” times of p, i.e. bp and
demand rate is also “b(b > a > 1)” times of d, i.e. bd where “b(b > a > 1)” is a constant. Hence, the inventory
is accumulated at a rate of b(p — d). This kind of three production rates was used also by Viji and Karthikeyan
[23]. During the whole time ¢4, the product deteriorates. Therefore, a care must be taken to control the amount
of stocks of the product. During time ¢4 — t3 the maximum inventory level starts to decrease due to demand at
a rate of d and the inventory level is zero at time t4. At time ¢, shortages start to accumulate at a rate d up to
time t5. Thus, the time ¢5 — t4 is needed to build up S units of items. The production restarts again at time t5
at a rate of p — d to satisfy both the shortages of previous cycle and current demand during the time tg — t5.
Time tg is required to consume all units ¢ at demand rate; where ¢ = dtsg.

Let ¢(t)denotes the inventory level at time ¢. The differential equations that describe the inventory behaviour
in the interval [0, 5] are given below.

dq(t)

S 7t = (- o), 0<t<t (3.1)
WO | Q) = alp — d). h<t<t (3.2)
) A Qatt) = bp — ), 2SS ts 33
WD | 7 Catt) = ts <t <ty (3.4)
d‘(ITg) ) ty<t<ts (3.5)
d‘cfli(t”:(p_d% ts <t < tg. (3.6)

The boundary conditions are ¢(0) = 0, ¢(t1) = q1, q(t2) = qo, q(t3) = g3, q(ts) =0, q(t5) = —S and ¢(ts) = 0.
Solving the equations (3.1)—(3.6) yields,

q(t) = (71(2;1) [1 - e—A(Ot} 7 0<t<t (3.7)
q(t) = “(f(g)d) [1 - e—A@)t] : <t <t (3.8)
q(t) = b(i(g)d) [1 - e**(Ot} , ty <t <ts (3.9)
q(t) = /\(dC) {eMC)(tH) - 1} : ts<t<ty (3.10)

q(t) = —d[ts — t], ty <t <ts, (3.11)
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FIGURE 1. The production inventory model for controllable deterioration rate with shortages.

and
qt)=(p—d)fte —t], t5<t<ts
—d
The maximum inventory during timet1isq(t1) = q1 = ¢1 = (p)\(o ) [1 _ e—A(()tl}
—d
The maximum inventory during timetsis q(t2) = g2 = g2 = a(f\(g)) [1 — e*)\(C)t‘z}

b(p—d
The maximum inventory during timetsis q(t3) = g3 = g3 = L) {1 — e_)‘(otﬂ .

A(Q)
Using the boundary condition in equation (3.11), then shortage level S is
q(ts) = =S = d(ts — t4) = —S.
Using the boundary condition in equation (3.12),
q(ts) = =S = (p—d)(ts —t5) = —5.

dt —d)t
%WWV4O—@—®%—%L¢Q_Zf+@Ij@

Next, the total cost of the inventory system is computed using the following cost terms:

(i) Production cost per unit time:

PC = dc,,.
(ii) Setup cost per unit time:
¢
oc =2
te

(iii) Holding cost per unit time:

(3.12)

(3.13)
(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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HC = C—Z Uotl q(t)dt+/:2 q(t)dt—i—/: q(t)dt—l—/:lq(t)dt}

t1 (p—d) ts a(p—d) .
HC = {fol t§(§3p_[dl)—e A :] ctlt+f ’ 5@) 1 A—(e(t (czt] dt }
o I S 1 - a0 -1

HC = Ch [ (p=d) {/\(C)tl L e MOt 1} + a(p—d) {/\ 2 _ tl _|_e—>\(€)t2 _ e—)\(C)h}

t5 LNQY Doy
M=) INQ) (ks 1) 4 e O] Ly a0t 4 () (1 - t3)}](3'19)
MO) en

(iv) Deteriorating cost per unit time:

DC :% Uot q(t)dt+/t:2q(t)dt+/t:3 q(t)dt+/: q(t)dt}
DC — )\(C)Cp {/tl (p—d) [1 _ e—A(()t} d + /t2 a(p —d) {1 _ ef)\(c)t} da

A(C) u o AQ)
/ “ b(p _ —A(C)t} at + / " % [ex(om—t) _ 1} dt}
DC = [ b4 e MO 1} n m {A(C) (ts — t1) + 6= Ot2 _ ed(@)tl}
— i3 . to d ta—13
{A( e {/\(C) (ts — o) + e MOts _ =20 } SR TVATE {1 — MOt 4 \(¢) (ty — Q)}](S.QO)

(v) Shortage cost per unit time:

c t5 t6
SC=-=2 U q(t)dt+/ q(t)dt]
6 ta ts
c ts t6
SsC=-= U d [t —t4] dt+/ (p—d)[te — 1] dt]
t6 ta ts
¢ = desp=3) lts — ta]? . (3.21)
Dte
(vi) Preservation technology cost per unit time:
PTC = CttG (3.22)
6

Hence, the total cost is: TC=PC+OC+HC+DC+SC+PTC

te 2Oy DOF | 42Otz _ g=A (Ot
blp—d - - - 3.23
- ;\i’&)}i“(@ (ts ~t2) + ¢ N0t — A0t} - s (1 - O 4\ (- ty)}] B2
+(’S(p_)|:t6_t4} +%'

pte

TC = de, + 00 n (ch+A(Q)ep) [ (p—d) {)\<C)t1 L e MOh _ 1} n a(p—d) {A(O (ta —t1)

4. THE THEORETICAL RESULTS AND OPTIMAL SOLUTION

This section derives the theoretical results and with these develops an algorithm to determine the optimal
solution.
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4.1. Theoretical results

Proposition 4.1. If preservation technology cost ( € [0, ﬂ then the total cost TC is convex in time ¢y, to, t3,
t4 and tﬁ.

Proof. See Appendix A |

Proposition 4.2. For known t1, to, t3, t4 and tg, the following is established:

(1) If As(t1,ta,ts,t4,ts) < 0 then TC(t1,t2,1s,ta, ts, () has maximum value at ¢* = 0.

(2) If Ay(ts,ta,t3,ts,ts) > 0 then TC(ty1,to,t3, L4, 6, ¢) has minimum value at ¢ = (.

(3) If As(ty,to,ts,ta,te) > 0 and Ay(ty,te,ts,ts,t6) < O then TC(t1,t2,ts,t4,%6,¢) is convex and reaches its
global minimum at point ¢* € (0,¢), and it can be obtained setting a(TC(tl’%ES’t“’tG’C)) =0.

Proof. See Appendix B a

Combining Propositions 4.1 and 4.2 then Proposition 4.3 is stated.

Proposition 4.3. The optimal solution (¢3,t5,t%, ¢, t§, ¢*) that minimizes the total cost TC(t1,t2, t3, %4, 6, ()
exists and is unique.

Moreover, the convexity of the total cost TC(t1,ts,ts,t4,ts,() is proved numerically and graphically (see
Section 5).

4.2. Algorithm for finding the optimal solution
Based on the mathematical results presented in Section 4.1, the following iterative algorithm is proposed.
Algorithm

Step 1. Set i = 0, initialize the value of ¢; and establish the calculation accuracy equal to 107%.
Step 2. Determine the initial solution of 1, to, t3, t4, and tg from equation (A.6) when

Step 3. Calculate As(ty1,ta,ts,tq,ts), As(t1,ta,ts,ts,ts) and execute one of following three cases:

(1) If A3(t1;t2;t37t47t6) S 0 then C’L = Q
(2) If Ay(ty,ta,t3,ta,t6) > 0 then ¢; = (.
(3) If As(t1,ta,t3,ta,t6) > 0 and Ay(ty,ta,ts,ts,ts) < 0, obtain the value of (;+1 by solving equation (B.3).

Step 4. If |¢ir1 — ¢;| < 1074 then set (* = (1 therefore the (t1,t5,t5, 5, t5,(*) is the optimal solution and go
to Step 5. Otherwise, set i =7 4+ 1 and go to Step 2.

Step 5. Calculate TC(¢7, 5,15, t5,t5, ¢*) from equation (3.23).

Step 6. Calculate t£, 47, ¢5,q5, ¢°, S* and report the optimal solution.

Step 7. Stop.

4.3. A special case: The production inventory model for controllable deterioration rate
without shortages

It is worth mentioning that if ¢, — oo (i.e. no shortage), then the proposed inventory model reduces to
without shortages case and equation (3.23) reduces to:

_ (entA(Qep) [ (p—d) At a(p—d) | Q) (t2 —t1)
TC = de CU + C o £ |:{Ap(<)}2 {A(C)tl +e OLI 1} + {)\1(2)}2 {+6A(C)t2 _ e*)‘(C)tl

(4.1)
b d — —
{/(\I()O})z {)\ (ts —t2) + e BN UL )‘(O“} - {)\(ﬁ)}z {1 — MO (tats) 4 A(Q) (ta — t3)}} + %
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F1GURE 2. Convexity of TC with respect to t4 and tg.

5. NUMERICAL EXAMPLE

This section presents a numerical example that illustrates the application of the production inventory model
for controllable deterioration rate with shortages.

Example. Let ¢y = $700 per setup, p = 400 units/week d = 20 units/week, a = 2,b = 2.5, ¢;, = $0.2 /unit/week,
¢, = $0.8 /unit, ¢ = $0.8 /unit/week, A\g = 0.2unit, { = 14 and n = 0.7. By applying the algorithm, the
following optimal solution is determined: ¢ = 0.237589 weeks, t5 = 0.263965 weeks, t5 = 2.63737 weeks,
t3 = 3.51353 weeks, tf = 3.62312 weeks, t5 = 3.62889 weeks, ¢* = $12.5585, ¢ = 90.2835 units, ¢5 =

200.613 units, ¢5 = 2505.4 units, ¢* = 72.5778 units, S* = 2.1918 units, TC* = $403.088, 9°TC _ 62.8363 >

ot3
02LC = 94.2544 > 0, 2LC = 53.4622 > 0, ZEE = 9.47965 > 0, ZLC = 64.7257 > 0, 2L = 0.0086353 >
2 3 4 6

0, Ag (tl, to, ts, 1q, tﬁ) = —53.7513 < 0 and Ag (tl, to,t3,tq, tﬁ) =0.995584 > 0.

Notice that it can be shown graphically that the total cost function TC is a convex function and this
demonstrates that the solution is a global optimal solution. If the total cost function (23) is plotted with some
values of t4 and tg such that ¢4 is 1-6 and tg is 3-25 then it is obtained a strictly convex graph of total cost
function TC given by the Figure 2. From Figure 2, it can be observed that the optimal solution for ¢4 and tg
exists and the total cost of the inventory system is a convex function. Additionally, the convexity of the total
cost function TC is shown in Figure 3 with respect to ¢4 and ¢ such that ¢4 is 1-6 and ¢ is 0-14 then a strictly
convex graph of the total cost function TC is obtained. From Figure 3, it can be noted that the optimal solution
for t4 and ( exists and the total cost of the inventory system is a convex function. Furthermore, the convexity
of the total cost function TC is shown in Figure 4 with respect to tg and ¢ such that tg is 3-25 and ¢ is 0-14
then a strictly convex graph of total cost function TC is observed. The convexity of the total cost function TC
is shown in Figure 5 with respect to t4 considering fixed values for tg = 3.62889 and { = 12.5585. The convexity
of the total cost function TC is shown in Figure 6 with respect to tg taking into consideration fixed values for
ty = 3.51353 and ¢ = 12.5585. The convexity of the total cost function T'C' is shown in Figure 7 with respect
to ¢ taking into account fixed values for t4 = 3.51353 and tg = 3.62889. Then, according to Figures 2-7, it is
verified that that the total cost TC is strictly a convex function.
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FI1GURE 4. Convexity of TC with respect to ts and (.

6. SENSITIVE ANALYSIS

This section presents a sensitivity analysis, which studies the effects of changes in the parameters
o, p,d,a,b, ch, cp, cs, Ao and n by modifying each parameter, considering one parameter at a time, and leaving
the rest of parameters unchanged. Table 1 presents the sensitive analysis results with respect to the numerical
example.

Based on the results of Table 1, the following observations are made.



S12 U. MISHRA ET AL.

TC

430

425+

420 +

415+

410+

405+

14

FI1GURE 5. Convexity of TC with respect to t4.
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FIGURE 6. Convexity of TC with respect to tg.

— With the increase in the value of setup cost (¢p) ; the production lot size (¢*), the maximum inventory (g3,
g3 and ¢%), production time (t1,t2,13), time (¢4 and ¢5), cycle time (tg) and total cost (TC) increase but
preservation cost (¢) decreases and shortage level (S*) does not change.

— With the increase of production rate (p) then production lot size (¢*), maximum inventory (¢f, ¢5 and ¢3),
production time (t1,2,t3), time (¢4 and ¢5), cycle time (¢g), shortage level (S*) and total cost (TC) decrease
but preservation cost (¢) increases. The preservation cost (¢) increased because the manufacturing company
invests more funds into the improvement of preservation technology to reduce the item’s deterioration.

— When the value of demand rate (d) increases, it can be observed that the production lot size (¢*), maximum
inventory (¢7, ¢5 and ¢3), production time (¢, t2,t3), time (t4 and t5), cycle time (¢g), shortage level (S*)
and total cost (TC) increase but preservation cost (¢) decreases. This implies that when the market demand
rate increases, it in turn makes the manufacturing company increases the production lot size (g*).



PRODUCTION INVENTORY MODEL FOR CONTROLLABLE DETERIORATION RATE S13
TC

430 1
425
420
415
410
405

400 F

F1GURE 7. Convexity of TC with respect to (.

— With the increase in rate of a times of production p and demand rate d, production lot size (¢*), maximum
inventory (¢f, g5 and ¢3), production time (t1,t2,t3), time (¢4 and t5), and cycle time (¢g), preservation cost
(¢) and total cost (T'C) decrease but shortage level (5*) does not change.

— With the increase in rate of b times of production p and demand rate d, production lot size (¢*), maximum
inventory (¢f, ¢5 and ¢3), production time (¢,t2,t3), time (t4 and t5), cycle time (¢g), shortage level (S*)
and total cost (T'C) decrease but preservation cost ({) increases, and shortage level (5*) does not change.

— With an increase in holding cost (cp) then the production lot size (¢*), maximum inventory (¢}, ¢5 and
q3), production time (t1,%2,t3), time (4 and t5), cycle time (tg), preservation cost (¢) and total cost (TC)
decrease but shortage level (S*) and preservation cost () increase. This result reveals that while facing
a higher holding cost, the manufacturing company tends to reduce the length of replenishment cycle and
produce a smaller lot size each time for keeping the firm’s inventory level as low as possible. From this sense,
in order to enhance the competitiveness, the manufacturing company must pay more attention to storage
process control to reduce the holding cost.

— With an increase in production cost (¢,) then the production lot size (¢*), maximum inventory (¢f, ¢5 and
q3), production time (t1,t2,t3), time (¢4 and t5), cycle time (¢g) increase but preservation cost (¢), shortage
level (S*) and total cost (TC) decrease.

— If shortage cost (c;) increases then the production lot size (¢*), maximum inventory (g7, ¢5 and ¢3), pro-
duction time (1, t2,t3), time (¢4 and ¢5), cycle time (tg) and total cost (TC) increase but preservation cost
(¢) and shortage level (S*) decrease.

— With an increase in deterioration rate Ag, the production lot size (¢*), maximum inventory (¢i, ¢4 and ¢3),
production time (¢1,%2,t3), time (¢4 and ts5), cycle time (t¢) and total cost (T'C) decrease but preservation
cost (¢) and shortage level (S*) increase. This is due to the increment of the deteriorated quantity, so manu-
facturing company has to invest more on the preservation technology in order to decrease the deterioration.

— With the increase in coefficient 7, the production lot size (¢*), maximum inventory (q3, ¢5 and ¢3), production
time (t1,t2,t3), time (¢4 and ¢5) and cycle time (tg) increase but preservation cost (¢), shortage level (S*)
and total cost (TC) decrease. Notice that when 7 increases it is reduced the deterioration rate A(¢) because
it is a decreasing function and that is why total cost (T'C) decreases. As ¢ increases then the total cost (TC)
also decreases. Since there is less deterioration rate, more sales and more profit will be done.
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7. CONCLUSION

This paper deals with an inventory production system that has different types of production rates over the
production cycle, where the manufacturer invests money on the implementation of preservation technologies to
control the deterioration of manufactured products. Specifically, the inventory model considers three different
production rates, it is considered that initially the production rate is at lower rate and it increases gradually
over the production period. This is just in order to decrease the holding cost by avoiding the larger stock
quantity initially. The shortages are permitted and fully backordered. The proposed inventory model can be very
useful/handful for manufacturing companies that fabricate items that are deteriorating in nature; for example
food and beverage companies. Theoretical results are derived in order to prove that the optimal solution for the
given problem not only exists but it is also unique.

For the future research, one can extend this inventory model by considering integrated/joint inventory model
for both manufacturer’s and retailer’s perspectives. One can also incorporate imperfect production systems.
Additionally, it would be interesting to consider the effect of carbon emissions at manufacturer’s facility under
partial backlogging.

APPENDIX A.

The first and second partial derivatives of the function TC with respect to t1, ts, t3, t4, and tg are as follows:
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FIGURE A.1. H; with respect to ( when t; = 0.237589, to = 0.263965, t3 = 2.63737, t4 =
3.51353, tg = 3.62889.

APPENDIX B.
The first and second partial derivatives of the total function TC(t4, ts, () with respect to ¢ are given by:
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For simplicity, set H(¢) = L(t1, t2, t3,t4, ts, ¢) and define
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AB(t17t27t37t47t6) = H(<)|C:O = L(t17t27t3at4at6ag)7A4(t17t27t37t47t6) = H(O‘)|<:§ = L(t17t27t37t47t67C)'
It is obvious that H'(¢) > 0. So H(() is strictly increasing in .
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If A3(t1,t2,t3,t47t6) S O,H(C) S 0 and VC (S [O,C_] then TC(tl,tQ,tg,t4,t6,<) is increasing in C S [O,ﬂ
Consequently the optimal preservation cost is (* = 0.

If Ay(t1,to,t3,t4,t6) > 0,H(¢) > 0 and V¢ € [(_), E] then TC(¢1,t2,t3,t4,t6,() is decreasing in ¢ € [0,@.
Therefore the optimal preservation cost is (* = (.

If As(ty,ta,ts, ta,te) > 0 and Ay(ty,te,ts,ts, ts) < Othen according to the intermediate value theorem, there
exists a unique value ¢ € [0,¢] to satisfy H(¢*) = 0, that is,

L(t17t27t37t47t67<) _O (BS)
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