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THE DISASTERS QUEUE WITH WORKING BREAKDOWNS AND IMPATIENT
CUSTOMERS ∗

Mian Zhang∗ and Shan Gao

Abstract. We consider the M/M/1 queue with disasters and impatient customers. Disasters only
occur when the main server being busy, it not only removes out all present customers from the system,
but also breaks the main server down. When the main server is down, it is sent for repair. The substitute
server serves the customers at a slow rate(working breakdown service) until the main server is repaired.
The customers become impatient due to the working breakdown. The system size distribution is derived.
We also obtain the mean queue length of the model and mean sojourn time of a tagged customer. Finally,
some performance measures and numerical examples are presented.
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1. Introduction

Since the concept of negative customers introduced by Gelenbe [5], queue with negative customers (also
called G-queues) have attracted considerable interests due to some practical applications, such as computer,
communication networks and manufacturing systems. When a negative customer arrives at the system, it
immediately removes the positive customer in service if present. About detailed studies on negative customers,
readers may referred to Artalejo [2], Artalejo and Economou [3], Li and Zhao [12], Wang et al. [17], and reference
therein. If a negative customer removes all the positive customers in the queue at once, then it is called a disaster.
The queue with disasters are characterized by the phenomenon in which the occurrence of disasters not only
destroy all unfinished jobs but also break down the processor. Towsley and Tripathi [16] first studied the M/M/1
queue with disasters in order to describe the behavior of distributed database systems with site failure. Then
M/M/1 queue with disasters was extended to the M/G/1 queue by Jain and Sigman [6] and to the GI/M/1
queue by Yang and Chae [18]. Atencia and Moreno [4] studied the queue with negative customers and disasters.
Lee et al. [11] discussed the discrete-time queues with disasters and general repair times. Recently, Jiang et al.
[7] discussed M/G/1 queue in multi-phase random environment with disasters.

In all the models considered so far of queue systems with server breakdown, the underlying assumption has
been that a server breakdown disrupts the service completely in the system. Such a system with repair has been
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studied as a reliability model by many authors. However, in practical situations, the breakdown of a server may
not stop the service of a customer completely. For example, the presence of virus in the system may slow down
the performance of the computers system. Another example is provided by the machine replace problem. When
the machine (main server) break down, it is immediately replaced by another machine (substitute server). The
substitute machine works at a slower rate until the main machine is repaired. This is the concept of working
breakdowns first introduced by Kalidass and Kasturi [8]. Kim and Lee [9] discussed the M/G/1 queueing system
with disasters and working breakdown services, and obtained the system size distribution and the sojourn time
distribution.

Queue models with customers’ impatience have drawn significant attention in the past, where the source of
impatience was too long wait already experienced in the queue. Altman and Yechiali [1] studied the queue where
customers become impatient due to the absence of server, more precisely, due to the server vacation. Yechiali [19]
considered the M/M/1 queue with disasters where customers are impatient since no server is available. Sudhesh
[15] discussed the transient probability of M/M/1 queue with disasters and customer impatience successively.

Recently, Perel and Yechiali [13] studied the queue where the customer’s impatience is due to a slow service.
They have studied M/M/c queues (c = 1, 1 < c < ∞, and c = ∞) in a 2-phase (fast and slow) Markovian
random environment, with impatient customers. Yue et al. [20] have analyzed customer’s impatience in working
vacation queue where customers impatient is due to working vacation. Selvaraju and Goswami [14] discussed an
M/M/1 impatient customer queue with single and multiple working vacations. Further, Laxmi and Jyothsna
[10] studied the queue with impatient customers which incorporated the features of customers balking and
Bernoulli schedule vacation interruption.

In this paper, we study the M/M/1 queue with disasters and impatient customers, where the customer’s
impatient is due to working breakdowns.

The paper organizes as follows. In the next section, some basic assumption and the model are described. In
Section 3, we analyze the steady-state distribution of the model. Some performance measures and the mean
sojourn time of a tagged customer are obtained in Sections 4 and 5, respectively. In Section 6, we give some
numerical results. The conclusion and some suggestions for future research are given in Section 7.

2. Description of the model

In this paper, we consider a queue system with the following features. Customers arrive at a single server
system, according to Poisson process at a rate λ. The customers are served according to FCFS discipline and
the service times, denoted by S1, rendered by the main server are assumed to be exponentially distributed with
parameter µ1. Disasters only occur when the main server being busy, they not only remove out all present
customers from the system, but also break the main server down. The inter-arrival times between the successive
disasters, denoted by D, are exponentially distributed with parameter δ. As soon as the main server down, the
server is sent for repair immediately. The repair times have an exponential distribution with a parameter γ.
The server is as good as new after repair.

The substitute server renders service to customers while the main server is repaired. The service rendered
by the substitute server is defined as the working breakdown service. The working breakdown service times are
also assumed to be exponentially distributed with a parameter µ0(≤ µ1). During a repaired period, the stream
of new customers arrival continuously. If the main server returns from its repair and finds there are customers in
the system, the substitute server stops service and the main server restarts and operates at its service rate µ1.
Meanwhile, if there are no customers in the system at the end of the repair, the main server returns to system,
stays idle, and waits for arriving customers.

The customers are assumed to be impatient during the period of working breakdown. That is, whenever a
customer arrives to system and realizes that the system is in working breakdown, each customer activates an
“impatient timer” T independently, which is exponential with rate η. If the substitute server is available during
working breakdown before the time T expires, the customer is served with rate µ0. If the working breakdown
finishes (i.e. the main server returns from his repair) before the time T expires, the main server restarts and the
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Figure 1. State transition rate diagram.

customer is served with rate µ1. However, if T expires while the main server is still under repair, the customer
abandons the system and never returns.

3. Analysis of the model

In this section, we will carry out the analysis of M/M/1 queue with disasters and inpatient customers.

3.1. Balance equations

Let N(t) be the number of customers in the system and J(t) be the state of the server with

J(t) =
{

0, the main server is under repair at t,
1, the main server is available at t.

Then, the two-dimensional continuous-time discrete-state process {(N(t), J(t)), t ≥ 0} becomes a Markov chain
with state space E = {(i, j), i ≥ 0, j = 0, 1}. Figure 1 provides with the state transition rate diagram of the
system.

Let pi,j = lim
t→∞

P (N(t) = i, J(t) = j) denote the stationary probabilities of Markov process {(N(t), J(t)), t ≥
0}. Then, the balance equations are

(λ+ γ)p0,0 = (µ0 + η)p1,0 + δ

∞∑
n=1

pn,1, (1)

(λ+ γ + µ0 + nη)pn,0 = [µ0 + (n+ 1)η]pn+1,0 + λpn−1,0, n ≥ 1, (2)
λp0,1 = µ1p1,1 + γp0,0, (3)

(λ+ δ + µ1)pn,1 = µ1pn+1,1 + λpn−1,1 + γpn,0, n ≥ 1. (4)

Define the Probability Generating Functions

P0(z) =
∞∑

n=0

znpn,0, P1(z) =
∞∑

n=1

znpn,1,

with P0(1) + p0,1 + P1(1) = 1 and P
′

0(z) =
∞∑

n=1
nzn−1pn,0.
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Multiplying equations (1), and (2) by 1, zn, respectively, summing over n and rearranging the terms, we get

ηz(1− z)P
′

0(z)− [λz(1− z)− µ0(1− z) + γz]P0(z) = µ0(1− z)p0,0 − δzP1(1). (5)

If z 6= 0 and z 6= 1, (5) can be written as

P
′

0(z) =
[λz(1− z)− µ0(1− z) + γz]P0(z) + µ0(1− z)p0,0 − δzP1(1)

ηz(1− z)
· (6)

In a similar manner we obtain from (3)–(4)

[λz(1− z)− µ1(1− z) + δz]P1(z) = −λz(1− z)p0,1 + γzP0(z). (7)

We get

P1(z) =
−λz(1− z)p0,1 + γzP0(z)
λz(1− z)− µ1(1− z) + δz

· (8)

Setting z = 1 in (8), we obtain

δP1(1) = γP0(1). (9)

Remark 3.1. If η = 0, the current model reduce to M/M/1 queue with disasters and working breakdowns,
which is a special case of Kim and Lee [9].

3.2. Solution of the differential equation

Multiplying both sides of (6) by e
∫

[−λη +
µ0
ηz−

γ
η(1−z) ]dz = Ce−

λ
η z(1 − z)

γ
η z

µ0
η , where C is a constant, we give

the following

d
dz

[
e−

λ
η z(1− z)

γ
η z

µ0
η P0(z)

]
=
µ0(1− z)p0,0 − δzP1(1)

ηz(1− z)
e−

λ
η z(1− z)

γ
η z

µ0
η . (10)

Integrating both sides of (10) from 0 to z and rearranging terms gives

P0(z) = (1− z)−
γ
η z−

µ0
η

∫ z

0

µ0(1− t)p0,0 − δtP1(1)
ηt(1− t)

e
λ
η (z−t)(1− t)

γ
η t

µ0
η dt. (11)

Set

U =
∫ 1

0

e
λ
η (1−t)(1− t)

γ
η t

µ0
η −1dt,

V =
∫ 1

0

e
λ
η (1−t)(1− t)

γ
η−1t

µ0
η dt.

Taking limit as z → 1 in (11), we get

P0(1) =
[µ0

η
p0,0 U −

δ

η
P1(1)V

]
lim
z→1

(1− z)−
γ
η .
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Since P0(1) =
∞∑

n=0
pn,0 < 1 and lim

z→1
(1− z)−

γ
η =∞, we must have that

µ0

η
p0,0 U −

δ

η
P1(1)V = 0. (12)

From (12), we get

P1(1) =
µ0U

δV
p0,0. (13)

Substituting (13) into (11) we get

P0(z) =
µ0

η
p0,0(1− z)−

γ
η z−

µ0
η

∫ z

0

V − (U + V )t
V

e
λ
η (z−t)(1− t)

γ
η−1t

µ0
η −1dt. (14)

Consider the denominator of P1(z), we define β(z) = λz(1− z)− µ1(1− z) + δz. Since

β(0) = −µ1 < 0, β(1) = δ > 0, β(+∞) < 0.

The two roots of β(z) = 0 lie in (0, 1) and (1,+∞). Hence β(z) = 0 has only one root between 0 and 1. Let
the root be z1. Since P1(z) ≥ 0 for 0 ≤ z ≤ 1, the numerator of P1(z) must vanish at z = z1. From (8) we have

p0,1 =
γP0(z1)
λ(1− z1)

. (15)

From the normalizing condition P0(1) + p0,1 + P1(1) = 1, we have

p0,0 =
ληγδV

µ0

[
λη(δ + γ)U + δγ2V k(z1)

] , (16)

where

k(z1) = (1− z1)−
γ
η−1z

−µ0
η

1

∫ z1

0

(
1− U + V

V
t

)
e
λ
η (z1−t)(1− t)

γ
η−1t

µ0
η −1dt.

The probabilities pn,0(n ≥ 1) and pn,1(n ≥ 1) can be evaluated in terms of p0,0.

pn+1,0 =
λ+ γ + µ0 + nη

µ0 + (n+ 1)η
pn,0 −

λ

µ0 + (n+ 1)η
pn−1,0, n ≥ 2,

p1,0 =
(λ+ γ)V − µ0U

(µ0 + η)V
p0,0.

where p0,0 is given in (16).

pn+1,1 =
λ+ δ + µ1

µ1
pn,1 −

λ

µ1
pn−1,0 −

γ

µ1
pn,0, n ≥ 1,

p1,1 =
γµ0k(z1)− γµ1η

µ1η
p0,0,

and p0,1 is given in (15).

Remark 3.2. In our study, the inequality δ > 0 is necessary and sufficient condition for the system to be
stable. This result can be seen in Kim and Lee [9]. In fact, all customers in the system are flushed out wherever
the disaster arriving, which means that the number of customers at arbitrary epochs does not go to infty.
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4. Performance measures

In this section, we give expressions for some useful performance measures of the system. The probability that
the server is under repair and available, denote by P0, P1, respectively, is given by

P0 = P0(1) =
µ0U

γV
p0,0,

P1 = p0,1 + P1(1) = 1− µ0U

γV
p0,0.

Let E(L0), E(L1) denote the average number of customers in the system when the main server is under repair
and available, respectively. Setting z → 1 and using L’Hospital rule in the right of equation (6), the expression
for E(L0) is obtained as

E(L0) = P
′

0(1) =
(λ− µ0)U + γV

γ(γ + η)V
µ0p0,0.

Differentiation of z in both sides of equation (7) and taking z = 1 yield E(L1) as

E(L1) =
λ− µ1

δ
P1(1) +

γ

δ
P
′

0(1) +
λ

δ
p0,1

=
λ− µ1

δ2
U

V
µ0p0,0 +

γk(z1)
δη

µ0p0,0 +
γ

δ
E(L0).

Therefore, the average numbers of customer in the system, denoted by E(L), is give by

E(L) = E(L0) + E(L1) =
(
λ− µ1

δ2
U

V
+
γk(z1)
δη

+
δ + γ

δ

(λ− µ0)U + γV

γ(γ + η)V

)
µ0p0,0.

The average reneging rate is

R.R. =
∞∑

n=1

nηpn,0 = ηE(L0).

5. Sojourn time

In this section, we turn our attention to the sojourn time W of a test customer (TC), which is defined as the
overall time since the arrival till the departure from the system, either after completion of service, the occurrence
of a disaster or as the result of an abandonment.

Let Wn,j denote the conditional sojourn time of the TC, given that upon arrival he observes the state
(n, j), n ≥ 0, j = 0, 1. Let D1 be the times between the TC arrival and the next disaster arrival. Clearly, it has
the same distribution with D. So the conditional mean sojourn time of the TC arriving at the system in state
(0, 1) is follow as

E(W0,1) = E(min{S1, D1}) =
1

µ1 + δ
· (17)

Assume that the TC arrives at the system in state (n, 1). LetX be the time of the unfinished work immediately
after the arrival epoch of the TC. Then X is equal to the remaining normal service time plus the sum of n
normal service times. Note that the remaining normal service time is stochastically equal to a new normal
service due to memoryless property. So, we have

E(Wn,1) = E(min{X,D1}) =
(µ1 + δ)n+1 − µn+1

1

δ(µ1 + δ)n+1
· (18)



THE DISASTERS QUEUE WITH WORKING BREAKDOWNS AND IMPATIENT CUSTOMERS 821

Assume that the TC arrives at the system in state (n, 0). By conditioning on the next future event, we find
that

E(Wn,0) =
1

λ+ µ0 + γ + (n+ 1)η
+

λ

λ+ µ0 + γ + (n+ 1)η
E(Wn,0)

+
µ0

λ+ µ0 + γ + (n+ 1)η
E(Wn−1,0) +

γ

λ+ µ0 + γ + (n+ 1)η
E(Wn,1)

+
(n+ 1)η

λ+ µ0 + γ + (n+ 1)η
( 1
n
× 0 +

n

n+ 1
E(Wn−1,0)

)
,

This expression can be further rewritten as

E(Wn,0) =
1 + (µ0 + nη)E(Wn−1,0) + γE(Wn,1)

µ0 + γ + (n+ 1)η
· (19)

We also have

E(W0,0) =
1

λ+ γ + η
+

λ

λ+ γ + η
E(W0,0) +

γ

λ+ γ + η
E(W0,1),

implying that

E(W0,0) =
µ1 + δ + γ

(µ1 + δ)(γ + η)
· (20)

Iterating (19) and using (18) and (20), we obtain, for n ≥ 1

E(Wn,0) = In+1 +
n∑

k=2

n∏
i=k

µ0 + iη

µ0 + γ + (i+ 1)η
Ik +

n∏
i=1

µ0 + iη

µ0 + γ + (i+ 1)η
E(W0,0)

+
1

µ0 + γ + (n+ 1)η

(
1 +

n∑
k=2

n∏
i=k

µ0 + iη

µ0 + γ + iη

)
,

where

Ik =
γ
[
(δ + µ1)k − µk

1

]
δ(δ + µ1)k+1[µ0 + γ + (k + 1)η]

,

and with the conventions
n∑

k=2

ak = 0 for n = 1.

Finally, we get the mean sojourn time of the TC as

E(W ) =
∞∑

n=0

pn,0E(Wn,0) +
∞∑

n=0

pn,1E(Wn,1).

However, more important measure of system performance is Sserved, defining the total sojourn time of a
customer who completes his service. Let Sn,j denote the conditional sojourn time of a TC who does not leave
system before completing his service, given that the state upon arrival is (n, j). Then, for j = 1 and n = 0,

E(S0,1) = P (S1 < D1)E(S1|S1 < D1) =
µ1

(µ1 + δ)2
·

and for n ≥ 1,

E(Sn,1) =
µ1

µ1 + δ

(
1

µ1 + δ
+ E(Sn−1,1)

)
. (21)
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Iterating (21) we get

E(Sn,1) =
µ1

[
(µ1 + δ)n+1 − µn+1

1

]
δ(µ1 + δ)n+2

· (22)

We now turn to calculate E(S0,n) for n = 0, 1, 2, . . .

E(S0,0) =
µ0

(µ0 + γ + η)2
+

γ

µ0 + γ + η

(
1

µ0 + γ + η
+ E(S0,1)

)
. (23)

For n ≥ 1,

E(Sn,0) =
µ0

µ0 + γ + (n+ 1)η

(
1

µ0 + γ + (n+ 1)η
+ E(Sn−1,0)

)
+

γ

µ0 + γ + (n+ 1)η

(
1

µ0 + γ + (n+ 1)η
+ E(Sn,1)

)
(24)

+
(n+ 1)η

µ0 + γ + (n+ 1)η
n

n+ 1

(
1

µ0 + γ + (n+ 1)η
+ E(Sn−1,0)

)
.

Iterating (24) and using (22) yields

E(Sn,0) = αn +
n∑

k=2

αk−1

n∏
i=k

µ0 + iη

µ0 + γ + (i+ 1)η
+

n∏
i=1

µ0 + iη

µ0 + γ + (i+ 1)η
E(S0,0),

where

αk =
µ0 + kη

(µ0 + γ + (k + 1)η)2
+ µ1Ik.

Finally, the expected sojourn time of the TC that is served may be calculated using the expression

E(W ) =
∞∑

n=0

pn,0E(Sn,0) +
∞∑

n=0

pn,1E(Sn,1).

6. Sensitivity analysis

In this section, we present the effect of the model parameters on the system performance measures through
some numerical results.

In the first two figures, we have examined the effect of λ on the probabilities p0,0, p0,1 for various values of
µ0. From the Figure 2, it is seen that, the three curves displayed in Figure 2(a) up to some special points, p0,0

increases. After these points, the value of the p0,0 gradually decreases. This because as λ increases, the number of
the customers n increases, so does the instantaneous reneging rate nη during the working breakdown period. The
transition rate during the working breakdown period equal the service rate µ0 plus the instantaneous reneging
rate. If the transition rate is smaller than λ, p0,0 increases with the increase of λ, otherwise, it decreases with
the increase of λ. It is also seen that for a fixed λ, p0,0 is increases with µ0. This is to expected, since µ0 is the
service rate in the working breakdown period and p0,0 is the probability of server is idle in working breakdown
period. Figure 2(b) presents that the probability of the server being idle decreases with increase values of the
arrival rate λ. For the same values of λ, p0,0 is increases with µ0. However, the working breakdown service rate
µ0 has the little effect on p0,1.

From Figure 3, we can observe that the mean numbers of customers in the system E(L) increases
monotonously with the increasing of arrive rate λ and decreases with the increasing of µ0, respectively.
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Figure 2. λ vs. p0,0, p0,1 with µ1 = 2, δ = 1.5, γ = 1.6, η = 1. (a) the effect λ on p0,0, (b) the
effect λ on p0,1.
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Figure 3. λ vs. E(L) with µ1 = 2, δ = 1.5, γ = 1.6, η = 1.

Figure 4(a) examines the variations in the mean numbers of customers E(L) for the increasing values of γ.
It is seen that E(L) decreases with increasing values of the γ for µ1 = 2.5 and µ1 = 3 respectively. But E(L)
increases slowly with the increase of γ for µ1 = 2. And E(L) increases more faster for µ1 = 1.8 than it does for
µ1 = 2 when the the repair rate γ increases. From Figure 4(b), we can observe that the ratio of µ1 and µ0 is less
than a special point, E(L) is increase when γ increase, otherwise it decrease when the repair rate γ increase.
Clearly, the increasing rate of E(L) is depend on the ratio of µ1 and µ0.

Figure 5 present the effect of γ on the probabilities p0,0, p0,1 for various values of µ1. From Figure 5(a) we
can observe that as increase of γ, p0,0 and p0,1 decreases and increases, respectively. This is intuitive because
the lager repair rate γ leads to a smaller number of customers who are provided with the working breakdown
service at a rate that is lower than that of the normal service. For a fixed γ, p0,0, p0,1 decreases and increases
with the increase of µ1, respectively.

Figure 6(a) reveals that p0,0 increases with an increase of δ. This indicates that the larger value of δ causes
more customers to be forced leaving the system by a disaster, thus increasing the probability of server is idle
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Figure 5. γ vs. p0,0, p0,1 with λ = 2, µ0 = 1.8, δ = 1.6, η = 1.6. (a) the effect γ on p0,0, (b) the
effect γ on p0,1.

during the working breakdown period. The effect of δ on E(L) is presented in Figure 6(b) For any η, the averages
system length E(L) decreases with the increase of δ. For fixed δ, E(L) decreases with the increase of η and it is
highest for η = 0 implying that model without impatient customers yield longer system lengths when compared
to models with impatient customers (η > 0).

7. Conclusion

In this paper, we have carried out an analysis M/M/1 queue with working breakdowns and impatient cus-
tomers. We have obtained the queue length distribution. Various performance measures such as the probability
of server state, the average queue length, the sojourn time in the queue are also carried out. For future, we
can extend this paper to complex models such as queues with batch arrivals or M/G/1 case with generally
distributed impatience times.
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Figure 6. δ vs. p0,0, E(L) with λ = 2, µ1 = 2.5, µ0 = 1.5, γ = 1.6. (a) the effect δ on p0,0,
(b) the effect δ on E(L).
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