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COMPARISONS OF CUSTOMER BEHAVIOR IN MARKOVIAN QUEUES WITH
VACATION POLICIES AND GEOMETRIC ABANDONMENTS

WEI SUN, SHIYONG L1* AND NAISHUO TIAN

Abstract. This paper mainly studies customers’ equilibrium balking behavior in Markovian queues
with single vacation and geometric abandonments. Whenever the system becomes empty, the server
begins a vacation. If it is still empty when the vacation ends, the server stays idle and waits for new
arrivals. During a vacation, abandonment opportunities occur according to a Poisson process, and at an
abandonment epoch, customers decide sequentially whether they renege and leave the system or not.
We consider four information levels: the fully/almost observable cases and the almost/fully unobserv-
able cases, and get the customers’ equilibrium balking strategies, respectively. Then we also get their
optimal balking strategies for the almost observable and the almost/fully unobservable cases, and make
comparisons of customer strategies and social welfare for the almost observable and the almost/fully
unobservable queues with single vacation and multiple vacations. Because of abandonment, we find that
the customers’ equilibrium threshold in a vacation may exceed the one in a busy period in the fully
observable queues. However, it has little effect on their equilibrium threshold in the almost observable
queues, although frequent abandonment opportunity arrival inhibits their optimal threshold. Inter-
estingly, for the almost unobservable queues, customers who arrive in a busy period are not affected
by reneging that happened in the previous vacation when they make decisions of joining or balking,
whereas the social planner expects that the customers can take it into consideration for social optimiza-
tion. In the fully unobservable queues, because of no information, possible reneging surely influences
customers’ equilibrium and optimal balking behavior. For the almost observable and the almost/fully
unobservable queues, the optimal social welfare is greater in the queues with single vacation than that
in the queues with multiple vacations.
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1. INTRODUCTION

Queueing games models with various vacation policies have been studied by many literatures. For the classical
vacation policies, for instance, Burnetas and Economou [3] first presented several Markovian queues with setup
times and analyzed customers’ equilibrium balking strategies under four information levels. Economou et al.
[6] further discussed the unobservable and partially observable queues with general service time and vacation
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time. Then Guo and Hassin [10,11] studied fully observable and unobservable queues with homogeneous and
heterogeneous customers under N-policy. Liu and Wang [15] considered an Markovian queue with Bernoulli
vacation, and Wang et al. [22] considered a constant retrial queue under N-policy. For the working vacation
policies, Sun and Li [19] and Zhang et al. [25] first studied customers’ equilibrium or optimal balking strategies
in queues with multiple working vacations. Later, Sun et al. [20] focused on their equilibrium balking behavior
in queues with two-stage working vacations, and Wang et al. [21] considered the same issue in a discrete-time
queue with single working vacation. Then Guha et al. [8] investigated customers’ equilibrium balking threshold
strategies in a renewal input batch arrival queue with multiple and single working vacation, and Li et al. [14]
studied an M /M /1 queue with working vacations and vacation interruptions.

In view of the impatience of customers waiting in a vacation, some researchers were interested in studying
a reneging issue in the vacation queues. Altman and Yechiali [2] first comprehensively studied the customers’
independent abandonments in a vacation in some single-server and multi-server queues with single vacation and
multiple vacations, respectively. They assumed that the customers activate a random timer independently once
a vacation starts, and they abandon immediately when the timer expires. Subsequently, Yechiali [23] discussed
an M/M/c(c > 1) queue with catastrophes and independent abandonments during a repair time. Guha et al. [9]
considered an almost observable GI /M /c/N queue with customer reneging with or without multiple synchronous
vacations under state-dependent balking, and they derived customer’s equilibrium balking strategy for constant
balking as a special case of state-dependent balking. More recently, Panda et al. [18] studied customers’ balking
behavior in Markovian queues with independent abandonments and variant of working vacations, where they
assumed that the impatience is due to slow service rate and the server is allowed to take multiple adaptive
working vacations. The readers can also refer to Laxmi and Jyothsna [13], Maragathasundari and Srinivasan
[16], and Yue et al. [24] for the queues with independent abandonments. Besides the case of independent
abandonments, later, Adan et al. [1], Economou and Kapodistria [7] and Kapodistria [12] studied some vacation
queues where the customers perform synchronized abandonments. That is, the abandonment opportunities occur
according to a certain point process (i.e., Poisson Process) in a vacation and then all present customers decide
simultaneously but independently whether they abandon the system or not.

Based on the cases of independent and synchronized abandonments, Dimou et al. [4,5] complemented those
studies above by considering the case of geometric abandonments. The difference is that the customers decide
sequentially whether they will leave the system or not when the abandonment opportunities occur in a vacation.
They derived some classical system parameters, such as the queue length distribution, the customers’ expected
sojourn time and the expected busy period. On the other hand, from the economic viewpoint, Panda et al.
[17] first studied the customer equilibrium and optimal balking behavior in Markovian queues with multiple
vacations and sequential abandonment. Following [17], this paper studies customers’ balking behavior in queues
with single vacation and geometric abandonments.

Different with [17], however, we distinguish a customer’s reward if he reneges from which if he does not, and
actually, it is reasonable that the reward completing service is much higher than reneging. For example, in a
perishable inventory system, which was introduced and illustrated in reference [17], the products may be fresh
vegetables or fruits, and the value of a perished product is much lower than a qualified and served product,
whereas it does not mean that the perished items are surely worthless and they also possibly can be used in
other fields for earning, such as raw materials for livestock feed or organic fertilizer. Therefore, we provide a
range for the reward of a reneging customer which is non-negative but lower than that of a customer who finally
completes his service.

In this paper, we assume the server begins a vacation whenever the system becomes empty. If the system is
still empty when the vacation ends, the server stays idle. During a vacation, abandonment opportunities occur
according to a Poisson process and customers decide sequentially whether they renege or not. We consider four
information levels: the fully/almost observable cases and the almost/fully unobservable cases, respectively. We
obtain customers’ equilibrium balking strategy under each information level, and also get their optimal balking
strategy for the almost observable case and the almost/fully unobservable cases. Then we make comparisons of
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their strategies and the social welfare for the almost observable and the almost/fully unobservable queues with
single vacation and multiple vacations.

In the fully observable queues, because of reneging behavior, customers’ equilibrium threshold in a vacation
may exceed the one in a busy period, which is obviously not affected by reneging. In the almost observable
queues, surprisingly, we numerically find that what happened in a vacation that is related to reneging (e.g.,
the abandonment opportunity arrival process and the reneging probability) also have no effect on customers’
equilibrium threshold. However, frequent vacation or frequent abandonment opportunity arrival inhibits their
optimal threshold.

In the almost unobservable queues, like the fully observable case, customers who arrive in a busy period
are not affected by the reneging behavior that happened in the previous vacation when they make decisions of
joining or balking, while the social planner expects that the customers can take it into consideration for social
optimization. In the fully unobservable queues, because of no information, the abandonment opportunity arrival
and the reneging probability surely influences customers’ equilibrium and optimal behavior. Moreover, for both
the almost/fully unobservable cases, including the almost observable case, the optimal social welfare is greater
in the queues with single vacation than that in the queues with multiple vacations.

The paper is organized as follows: In Section 2, we describe the models and give some notations. Sections 3
and 4 are devoted to the customers’ equilibrium threshold strategy for the fully/almost observable cases, respec-
tively, and their optimal threshold strategy for the almost observable case is also derived. Then in Sections 5
and 6, besides customer’s equilibrium mixed strategies, we also get their optimal mixed strategies for the
almost /fully unobservable cases. In Section 7, we compare customers’ behavior and optimal social welfare in the
queues with single vacation and multiple vacations. Finally, brief conclusions of the paper are given in Section 8.

2. MODEL DESCRIPTIONS

In this paper, we mainly analyze an M /M /1 queue with single vacation and sequential abandonments. Assume
that the service demand is infinite, i.e., the customers’ potential arrival rate A is large enough, and the actual
arrival rate is A and the server’s service rate is . Whenever the system becomes empty, the server begins an
exponentially distributed vacation with rate . If it is still empty when the vacation ends, the server stays idle
and waits for new arrivals. During a vacation, abandonment opportunities occur according to a Poisson process
with rate £&. At an abandonment epoch, customers decide sequentially whether they will renege and leave the
system or continue to stay, and their decision order is consistent with their position in the queue, i.e., the
customer in front of the queue first makes his decision (early arrivals abandon first). Each one of them abandons
the system with probability p or remains in the system with probability ¢, where p+q = 1. The reneging process
stops at the first customer who continues to stay in the system, or when all present customers abandon the
system. Thus, obviously, at an abandonment epoch, the number of customers who leave the system follows a
geometric distribution with parameter p.

Let (L(t),I(t)) represent the system state at time ¢, where L(t) denotes the system occupancy and I(t)
denotes the server state at time ¢, and

I(t) = 0, the server is in a vacation;
“ 11, the server is idle or busy.

According to the information that customers can acquire before joining, we consider four information precision
levels in this paper. In the fully observable case, customers can observe both L(t) and I(t) at time ¢, whereas they
only can observe L(t) in the almost observable case. On the other hand, in the fully unobservable case, customers
can observe neither L(t) nor I(t) at time ¢, whereas they only can observe I(t) in the almost unobservable case.

For each customer who joins the system, he can receive a reward R after service completion while receive a
reward r (0 < r < R) if he reneges at an abandonment epoch in a vacation, and he has to bear a cost ¢ for waiting
a time unit. We adopt a linear cost function with respect to his expected sojourn time. Because each customer
can make individual decision to maximize his expected residual utility before joining, the system under each
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information level can be modeled as a noncooperative symmetric game among customers. We assume that the
arrival process, the abandonment opportunity process, the service and vacation times are mutually independent,
and the service order discipline is first in first out.

3. FULLY OBSERVABLE QUEUES

In the fully observable queues, we can easily get the customers’ equilibrium balking threshold in the busy
state. Define the expected sojourn time of a marked customer who observes (n,1) and joins as F [Wlf °(n)], his
expected residual utility after service as Ulf °(n), and his equilibrium balking threshold as n¢. So obviously,

Ul°(n) = R — cE[W{°(n)] = R — C(”M“) (3.1)
which yields
n¢ = {JEUJ —1. (3.2)

Otherwise, if he observes (n,0) and joins, there are two possible outcomes he may encounter: completing his
service finally or reneging at an abandonment epoch in the vacation. If he completes his service, two kinds of
situation may arise: either no abandonment opportunity occurs or no more than n customers abandon during
a whole vacation; If he reneges at an abandonment epoch, there must more than n customers abandon in the
vacation. Define the probability that the marked customer completes his service as p{ ° and the probability that
he reneges as pgo. Summarily, we get

o o n n+1
fo _ / T — _¢t koot &p
pl° = e Stye dt+/ 1—e prgyve VAt =1 — , (3.3)
! 0 0 ( ) kz:% v+¢
o] n+1
fo _ / —&t\ . n+1_ _—~t _ fp
Py = 1—e Pt yeT VMt = . 3.4
0 0 ( ) v+E 34
Define the Laplace-Stieltjes transform (LST) of the marked customer’s sojourn time if he observes (n,0) and

joins as Wy ! °(s). If no abandonment opportunity occurs in a vacation, based on equations (3.3) and (3.4), his

sojourn time equals to a whole vacation and n + 1 customers’ service time; If & (0 < k < n) customers abandon
in a vacation, his sojourn time equals to a whole vacation and n + 1 — k customers’ service time; If he reneges
at an abandonment epoch, his sojourn time equals to the passed vacation time before reneging. So we have

oo n+1 o [e'e]
wifo(s :/ e Stye L <7> < H > +/ 1—e ¢ k e”tdt< v )
0’ (s) ; v ) Ui i ( ) > ey P

k=n-+1

) n v 7 n+l—k
1—e & k —Ww< )( ) 3.5
+/0 (1= > pravedt ( — ) (15 (3.5)

k=0

gl ( gl ( p )”1+ £q < p y”1M”L—@w+SW”1+&W“>.

s\ v tE\uts THE\uts prit —prp(pts) v +¢€
Then his expected sojourn time, denoted by E[W;°(n)], is

"sfo 1 1 1— n+1
B = W) = T

; (3.6)

and his expected residual utility, denoted by Ug °(n), is

_gpn+1>R+§Tpn+1 _C(n—l—l_’_l_fp(l_anrl)>~ (3.7)
v+¢€ T+¢

) = et ol BV 0] = (1 B
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Fi1cURE 1. Equilibrium thresholds with respect to p when R=5,r=2,c=1, p =2, v=0.5,
£E=4.

Based on equations (3.1) and (3.7), we can get the condition for the marked customer joining an empty
system in the fully observable case is

if he observes (0,1)

0,
&
R-——>4¢ & ) ,  if he observes (0,0)

a v+§€

st (3.8)
B=r)+ (v w(y +§)

which must be satisfied. Otherwise, no customer will join an empty system. Define the customer’s equilibrium
balking threshold in the vacation state as n§. Solving Ug °(n) = 0, we can get n§. Because we only get a
unique symmetric equilibrium result, customers avoid the crowd (ATC) in the fully observable case. As for the
relationship of n§ and n§, it does not necessarily hold that n§ < n{ because of reneging, and it depends on the
values of ~, £ and p.

Figures 1 and 2 show that n§ < n§, whereas it does not always hold in Figures 3 and 4. n§ shows bigger
fluctuation when p > 0.5, and it may decrease when p is close to 1 because, after all, 0 < r < R. Similar to p,
ng also possibly decreases and n§ = n{ when « is large enough, i.e., it nearly has no difference to customers
that whether the server takes a vacation or not when the vacation time is too short. Moreover, Figure 4 shows
that customers more prefer to join the queue although there is a fall in the number of customers present in the
system with £. One reason is that the reward after reneging can be positive, and the other is customers’ sojourn
time in the queue can be expected to be shortened because of increasing abandonment rate . So reneging is
not intuitively a bad choice for customers, and the shorter queue length will encourage subsequent customers
joining.

4. ALMOST OBSERVABLE QUEUES

For the almost observable queues, we first try to derive the stationary queue length distribution for studying
customer equilibrium behavior. Denote the customers’ equilibrium balking threshold as n®, and we get the
transition probability equations in equilibrium based on the transition rate diagram depicted in Figure 5:

n°+1
A+ +m0=pma+& > pmjo; (4.1)

Jj=0
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FI1cURE 2. Equilibrium thresholds with respect to r when R=5,c=1, u =2, 7= 0.5, £ =4,
p=0.1.
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FiGURE 3. Equilibrium thresholds with respect to vy when R=5,r=2,c¢c=1, u =2, £ =8,
p=0.8.

n+1
()‘ + v+ f)ﬂn,o = >\7Tn71,0 +§ Z pjinqﬂ—j,m 1<n< ne;

j=n
(v 4+ €p)Tnet1,0 = AMpe 0;
ATo,1 = Y70,0;
A+ )Ty = ATp_11 + Wng1,1 + Y700, 1 <n<n

HUTTpe 41,1 = ATpe 1 + YMpe 1,0
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FI1cURE 4. Equilibrium thresholds with respect to ¢ when R=5,r=2,c=1, u =2, v =3,
p=0.8.

Based on (4.3) and the recursion equation (4.2), we can successively get the probabilities {m, 0,0 <n <n°}
in reverse order. That is,

_ 1t
Tine 0 = Twne-&-l,Ov
N n+1 (4.7
Tn—-1,0 = ‘;tg%j;éﬂni)Afgg ;g; P "m0 (n=nfn®—1,...,1).
From (4.1) and (4.4), we can get
_7
T01 = 70,0,
nil (4.8)

A+ + -
7T1,1=+€7T0,0—§ Zlﬂﬂj@
2 1% =0

Finally, based on (4.5), (4.6) and w1 1, 79,1, we can also get the probabilities {m,, 1,2 <n < n®+1} in normal
order. That is,

n®+1 n—1 n®+1
AbytE e </\+v 7) £N !
Tp,1 = To,0 — — P70 | + — < | To0 — — P70 | p
AN IS »l [ EUES w2

j=0 j=0
n-2J (4.9)
_fyzzpkﬂ-j-‘rl—kﬁv (n: 273’.“7”6)
=0 k=0

o Y
Tpet1,1 = PTnpe 1 + Eﬂ'ne—&-l,o-

It is obvious that all the probabilities derived above are related to m,c11,9. For m,c41,0, it can be solved by

the normalization equation:
nc+1

> (Tno + ) = 1. (4.10)

n=0
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FIGURE 5. Transition rate diagram for the almost observable queues in equilibrium.

Given that all other customers follow the equilibrium threshold strategy n¢, we define the expected residual
utility of a marked customer after service or after reneging who observes n customers and joins as U%2(n). So
based on (3.1) and (3.7), we get

Tn,1 fo Tn,0 fo
Use(n) = —L_p SITUG)
) = — o) + g

_ a1 (R— dnt )y, _ o ((1 - gan) Ry P (4.11)

Tn,1 +7Tn,0 Tn,1 +7Tn,0 ’Y+€ ’Y+£

_c<n+1+1 g/;)(l—pfbﬂ)))

0 ¥ pq(y +§)

Obviously, U22(n) decreases with n because a customer joining only has negative effect on customers arriving
later. Moreover, in order to make the analysis meaningful, we assure that the condition for joining an empty
system in the almost observable case is satisfied, that is,

woy_p_ C_ A (& (p ) ¢
U(0) =R . 7+A(7%(1«3 r ﬂ)+7)>o. (4.12)

Otherwise, no customer will join an empty system.

Similar to the analysis in the almost observable case in Reference [17], we define the sequences {U2°(n),n > 0}
and {U2%,(n),n > 1}. Obviously, lim, o U2°(n) = lim, .. U2 ,(n) = —oo. So there exists a finite non-
negative integer ny such that Ug°(0),U{°(1),U5°(2),...,Und (ny) > 0 and Uyd  (ny + 1) < 0. Moreover,
we have U (n) < Uj°(n) for n > 1 so that Us? (ny +1) < Ujo . (ny +1) < 0. Then for the sequence
{U321(n), n > 1}, similarly, there also exists a finite non-negative integer nr(< ny) such that US? (ny +
1), U8 1 (ny), UL _o(ny —1),..., U (ny +1) <0 and U2 4 (ng) > 0.

If the marked customer decides joining when he finds n(< n¢) customers, his expected residual utility is
equal to U22(n) > U22(n®) > 0 so that joining is beneficial for him. If he decides joining when he finds n® + 1
customers, his expected residual utility is equal to U%8(n® + 1) < 0 so that balking is more beneficial for him.
Therefore, n® € {np,nr +1,...,ny} which means the equilibrium threshold is generally not unique. Because
we can get multiple symmetric equilibria, customers follow the crowd (FTC) in the almost observable case.

Based on (3.1) and (3.7), we get the expected social welfare per time unit, denoted by SW5°(n), as

SW2(n) = A (Z (WMU({ °(k) + wk,lUlfO(k))> . (4.13)

k=0
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Threshold Strategy

FIGURE 6. Equilibrium and optimal thresholds with respect to p when R =5, r = 2, ¢ = 1,
A=3, p=2,v=05¢=4
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FiGURE 7. Equilibrium and optimal thresholds with respect to » when R =5, ¢ =1, A = 3,
u=2,~v=05&=4,p=0.1.

Solving the non-negative integer optimization problem max SW2°(n), we can obtain the customers’ socially
optimal threshold strategy n*, which is substituted into (4.13) for the optimal social welfare SW7;%°.

Figures 6-9 show that the equilibrium balking thresholds are invariable with the parameters such as p, r, v
or &, and n* < np < ny < n§ compared with Figures 1-4. So interestingly, it indicates that all the parameters
related to the customer reneging behavior that may occur in the following vacation has little effect on customer
balking threshold strategy decided before joining in the almost observable queues. That is, customers are only
concerned about the queue length but nearly do not take the possible state of the server to consideration before
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Threshold Strategy

FI1cURE 8. Equilibrium and optimal thresholds with respect to v when R =5, r = 2, ¢ = 1,
A=3, u=2£6=4,p=0.1.
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FIGURE 9. Equilibrium and optimal thresholds with respect to & when R =5, r = 2, ¢ = 1,
A=3, p=2,v=05p=0.1.

making decision. The possible reason may be that customers are more likely to believe that the server is busy
in case they can not observe the server’s state before joining (generally the probability that the server is busy
is much larger), which dilutes the effect of reneging on customers’ decision. Moreover, Figures 8 and 9 show
that n* decreases with v or &, i.e., the social planner expects that frequent vacation or frequent occurrence of
abandonment opportunity can inhibit customers from joining.

5. ALMOST UNOBSERVABLE QUEUES

Similar to the almost observable queues, for the almost unobservable queues, we still first derive the stationary
queue length distribution for studying customer behavior. Because customers can observe the server’s state at
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F1GURE 10. Transition rate diagram for the almost unobservable queues.

their arrival time, they have different joining rates under the two states, denoted by Ay and Ai, respectively.
Obviously, the process {L(t),I(t)} is a quasi-birth-and-death process with the state space Q = {(k,j) : k >
0,7 =0,1}. Let (L, I) be the limit of the process {L(t),I(t)}. Denote the stationary queue length distribution
as

Tk = P{L =k, I =3} = lim P{L(t) =k, I(t) = j}, (k. j) €

So we get the transition probability equations based on the transition rate diagram depicted in Figure 10:

(o)
(Ao +7 +Emo0 = pmia + €Y 'm0 (5.1)
=0
i .
o +7+ETno = Xomn-10+E€ D> P gm0, n =1 (5.2)
j=n
A1T0,1 = 70,05 (5.3)
(A1 + ) Tn1 = MTn11 + W11 + Y0, 1> 1 (5.4)

Theorem 5.1. For an almost unobservable queue with single vacation and geometric abandonments, if p =
A1/p < 1, the stationary queue length distribution is

Tn,0 = T0,0% n > 0;
! n VT n (5.5)
+ x| mo.0, M >0,
( (I—x wl—m)p (1~ 1) (pw1 — 1) )
where
2y = o0 40) +7+6p) = V(L +p) +7+p) —dphoho +7 40 (5.:6)
2p(Xo + 7 +§) ’
and

1 ol YTy ) 1 yT1 >_1
T — + L _ —|— 57
o= (2 + G~ Tt ) T+ T (51)

Proof. First, we can rewrite (5.2) as follows:

€0 Y Pm0— Mo+ +Ep)Tno + Aoa10=0, n>1. (5.8)
j=n+1
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Obviously, its characteristic equation is a homogeneous linear difference equation with constant coefficients:
o]
€g Y, P T = Mo+ v +Ep)r+ X0 = 0. (5.9)
j=n+1
Simplifying (5.9), we obtain a second-order characteristic equation:
P&+ Xo+7)2* — (Mo(1+p) +Ep+7)z+ Ao = 0. (5.10)

Solving (5.10), we get the two roots as:

Mo(L+p) +7+Ep) FvVNo(L+p) +7+Ep)% — dpro(ho + 7 + &)

2= 200 7+ ) ’ (5:11)
where 0 < 21 < 1 and 25 > 1. The general solution of (5.2) is
o = A127 + Bizy, n >0,
where A; and B can be determined. Because z2 > 1, it must hold that B; = 0. So Ay = my o, and
Tn,0 = To,027, n >0. (5.12)

Similarly, the characteristic equation of (5.4) is a nonhomogeneous linear difference equation with constant
coefficients:

pr? — (A + p)T + A\ = —yTn0 = —y2 1 70,0- (5.13)
Therefore, the general solution of (5.4) is m,,1 = Th%" + 7P (n > 0), where mh" = Ag + Bep™ and 7,7}
is a specific solution of (5.4). Because the nonhomogeneous part of (5.13) is geometric with parameter x1, we

consider a specific solution 7,7 = Cx}. Substituting it into (5.4), we get

gia!
C= 70,0- 5.14
(=) (es = A 44
Based on (5.1) and (5.3), we get A2 = 0 and
2 e
By =|—— T0.0- 5.15
’ <>\1 (1—$1)(M$1—>\1)) e (5.15)
So we get
T = Bop™ + Cal, n >0, (5.16)
where By and C' are given by (5.14) and (5.15), and 7 ¢ can be solved by the normalization equation:
Z(Wn,oJrWn,l) =1, (5.17)
n=0
which is given in (5.7). O

Now define the partial probability generating functions of the stationary queue length distribution in the
vacation state and in the busy state as IIy(z) and II1(2) (]z] < 1), respectively. Based on the result given in
Theorem 5.1, we get

Iy(2) = Z Tn,02" = o0 Z(mlz)”
n=0 n=0 (518)

B 1 ( 1 +<’y_ v ) 1 N yI1 )1
1—x12 \1—124 M (T—mz)(uzr — X)) 1—p (1 —x1)2(uzy — A1) ’
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nzoﬂn 12" = Moo Z (( (1- xl)’y(zlﬂfl - )\1)) (pa)” + (1- xliz; - A1) (xlz)n>
N ((11 (- 331)7(213?1 - /\1)) 1 —102 - 331)7(21331 - M)l _1”712> 1)

1 x 1 x -t
(= G- T )
1—$1 /\1 (1—%‘1)(/.1])1—/\1) 1—/) (1—&31) (u1‘1—/\1)
Next we begin to study the customers’ balking strategy. If a marked customer joins the system during a busy
period, his conditional expected sojourn time, denoted by E[W{%“(Ag, A1)], is

B a0 = S () = 4 () + )

n=0 K

= l l - B2t p YT1 T .
T (<)\1 (1—x1)(ﬂx1—)\1)> (1—p)2 + 1 —20) (g — ) (1—x1)2> 1 (5.20)

v 1 1 Y1 -
X o + :
(1—% ()\1 (1—$1)(M$1—>\1)> L—p  (1—a1)?(pz1 — A1)
On the other hand, if the marked customer joins the system during a vacation, similar to the fully observable

case, there are also two possible outcomes he may encounter: completing his service finally or reneging at an
abandonment epoch in the vacation. Define the LST of the customer’s sojourn time as Wi (s), and we have

00 0o n+1
Wit (s n _5t e "Ytdt( > —|—/ e Stye L <7 ) < a )
ZW ()</ ZPQ'Y Ts . v Tt s it s

k=n+1
M n+l1—k
+/ 1—e” gt p qye Wdt( )< )
0 ( kZO Y+s n+s
Y Y Iz §ng Iz L
- I + I —pll +épll :
(v + ) (v + &) <u+8 O<u+8> pgq = sp <u+s °(u+8) ! O(p)) gp 0(p)> (5.21)
5.21
So his conditional expected sojourn time, denoted by E[W§*(\o)], is
~Wor(0) _ 1 1 123 ( p(1 —w1)>
E[W*(N)] = —= =+ - 1— : 5.22
T (A CE= A S ey 22

Define the probability that the marked customer completes his service finally as p§i’ and the probability that
he reneges at an abandonment epoch in the vacation as pg§. So we have

oo 1 _
ot = Z TF" 0 (/ Sy tdt —|—/ (1—e) Zp qye “dt) =1- vpi—ff : _pg;ll, (5.23)
0

k=0

> Tn,0 o —¢t - k —~t p§ 11—z
pau: / 1—e pqe'ydt = == . 5.24
L .
Obviously, p§i = 1 — piy. The expected residual utility of the marked customer who joins in the vacation
state, denoted by U§*(Ao), is
Ug™(Xo) = poi B+ pior — cE[WG™ (Xo)], (5.25)
and the expected residual utility of the customer who joins in the busy (or idle) state, denoted by U (Ao, A1),
is
U{lu()\o,)q) :R—CE[Wlau(/\(),)\l)]. (526)
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FicUrE 11. Equilibrium arrival rates with respect to & when R =5, r =2, ¢ =1, u = 2,
v=0.5p=0.2.

Define the positive equilibrium arrival rate of customers in the busy (or idle) state and in the vacation state as
¢, and \%)?, respectively. Solving Ug%(A\g) = 0 and U{*(\g, A1) = 0, we can get \¢; and )%, and the expected
social welfare per time unit, denoted by SW2*(\g, A1), is

SW™ (Ao, A1) = AoTlo (1) (P61 B + pog 7 — cE[WG™ (Ao)]) + MILi (1) (R — cE[W™ (Ao, A)]) - (5.27)

Solving the optimization problem max SW¢"*(Ag, A1) subject to A\; < p, we can obtain the optimal arrival
rates A%, and A%y, which is substituted into (5.27) for the optimal social welfare SW;“.

Figures 11 and 12 show that A¢, increases linearly with £, whereas it increases convexly with p. Comparing
Figure 12 with Figure 1, we find that A, does not decrease under the same conditions when p is close to 1.
This indicates that the information precision indeed affects customers’ equilibrium strategies. As for A, we
numerically observe that it is not influenced by & or p (A% = 1.643 given that \¢, is first solved)®. That is,
in an almost unobservable queue, all the things happened in a vacation are not taken into consideration by
the customers who arrive in the next busy period when they make decisions of joining or balking, although
they may affect the queue length at the beginning of the busy period. Moreover, A%, > A¢;, which is generally
impossible in case reneging is prohibited.

6. FULLY UNOBSERVABLE QUEUES

In the fully unobservable queues, customers can not observe the server’s state at their arrival time, so we
can get the stationary queue length distribution based on Theorem 5.1 by replacing A\p and A\; with A, and the
transition rate diagram is depicted in Figure 13.

Similar to the fully observable and almost unobservable cases, if a marked customer joins, there are also two
outcomes he may encounter: completing service or reneging. Define the probability that he completes service as

2The subscript “s” of A\¢; and A%, is to differentiate the notations of the customers’ equilibrium (or optimal) arrival rates in
queues with single vacation and in queues with multiple vacations.

3Denote the customers’ equilibrium arrival rates in queues with multiple vacations as A} ; and \;,,. We have verified that under

the same conditions with Figures 11 and 12, A? o = A%, and A7 ; = 1.634 < \¢; = 1.643 given that A\ , is first solved.
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Equilibrium Arrival Rate

FicURE 12. Equilibrium arrival rates with respect to p when R =5, r =2, ¢c =1, up = 2,
v=10.5, £ =4.

FIGURE 13. Transition rate diagram for the fully unobservable queues.

p{“ and the probability that he reneges as pg“. Based on (3.3) and (3.4),

%) 00
p{u = Z Tn,1 + Z Wn,Op{O
n=0 n=0

L (6.1)
1 23 1 ( 1 N (’y B v > 1 N v >
oy +Elepr \l—x \X (I-2)(pz-N))1-p (A—2)(pz-A))
pgu — Zﬂn,optjjo
n=0 (6.2)

LS 1 (1 +<’Y_ Yy ) 1 n v )1
Cy+El-pr\1-z  \A (Q-a2)(pz-A))1-p (1-2)2pz-N)) ’
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where p = \/p and

o MHP) +7+8p) = VL +p) +7+Ep)° — XA+ +9) (63)
a 2p(A+7y+¢) '

Obviously, p{u =1- pgu. Define the LST of the customer’s sojourn time as W*/%(s), and

n+1 oo [ n+l1—k
Wfu(s T + T / 1 —e ft e~ 7t ( ) ( )
Z 1( ) z:: ’0<o Zp o Y+s) \pu+s

k=0

%) n+1 %)
14 t t
+ e [ —— +/ 1—e %) 7dt< )
/ el <v+s><u+s> , (e quve p

k=n-+1
( ((Ay v ) p+s n vz H+s )
w+s A (-2 (px—N) ) p+s—X (Q—z)(pz—\)ul—z)+s
n gl o pts g 0 pts p ) &p )>
(rHs)y+O \ptsp(l—a)+s  pg—sp\ptsp(l-a)+s 1-pz) 1-pz
1 (1 v 1 n v B
1—xz A Q=—2)(px—XN) ) 1—p (1—x)2(ux—N)
(6.4)
So his expected sojourn time, denoted by E[W*()\)], is
/ 1 ¥ YT p YT T
E[W/u())] = —W'*/%(0) = ((— ) + )
) O=0 A Ty a2 T T -Na-22
+1+1p5<1p>)> (6.5)
Y1-2z) pl-2)2 pg(y+& \1—-z 1-px X '
1 Y v 1 v B
X<1—$+(A (1—x)(uw—A)>1—p+(1—w)2(/w—k)> ’
and his expected residual utility, denoted by U7%()), is
U(\) = pl“R + pl“r — cE[WT())). (6.6)

Define the positive equilibrium arrival rate of customers as A¢. Solving U/%()\) = 0, we can get \¢. As for
ATC or FTC behavior of customers in the fully unobservable case, including the almost unobservable case, we
numerically find a unique symmetric mixed equilibrium, so we conjecture that customers adopt ATC.

Then the expected social welfare per time unit, denoted by SW?; (), is

SW/U(\) = A (p{“R +pltr — cE[Wf"()\)]) . (6.7)

Solving the optimization problem max SW?“()\) subject to A < p, we can get the optimal arrival rate A%,
which is substituted into (6.7) for the optimal social welfare SW*/*.

7. NUMERICAL COMPARISONS

In this section, for the almost/fully unobservable queues, we compare customers’ behavior and optimal social
welfare between the queues with single vacation and the queues with multiple vacations®. Moreover, for the
almost observable queues, we also compare optimal social welfare under the two vacation policies, and discuss
the price of anarchy.

4For the fully observable case, the customers’ equilibrium behavior have no difference under the two types of vacation policies;
For the almost observable case, the difference is also can be neglected.
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FIGURE 14. Comparison of A%, and A% ,: (1) with respect to { when R=5,r=2,¢=1, u =2,
v = 0.5, p=0.2; (2) with respect to p when R=5,r=2,¢=1,u=2,7=0.5,£ =4.

Similar to the definitions in the queues with single vacation, we define the customers’ optimal arrival rates
in the vacation state and in the busy state as A%, and A%, (XS, and Af,; have been defined in footnote 2),
respectively, and the optimal social welfare as SW " in the almost unobservable queues with multiple vacations.
Define the customers’ equilibrium and optimal arrival rates as A§, and A}, , respectively, and the optimal social
welfare as SVV:;{c * in the fully unobservable queues with multiple vacations. Then define the optimal social
welfare as SW:?° in the almost observable queues with multiple vacations®.

Figure 14 shows that A%, and A, all increase with £ or p. Comparing it with Figures 11 and 12, we find that
the optimal arrival rates have the similar increasing trend with the equilibrium arrival rates, whereas A\, and
Ao are no longer equal to each other but A¥; < A¥,,. It indicates that higher value of £ or p could have positive
effect on the social welfare, i.e., the social planner and customers could have the same preference (A%, has lower
increasing rate than A\¢,). This is resulted by the assumption 0 < r < R. That is, although reneging customers
receive lower reward, high probability of reneging cuts down customers’ expected sojourn time meanwhile. On
the other hand, Figure 15 shows that both A%, and A} ; decrease with £ or p, except that p is large, whereas
both A¢; and A, are invariable with £ or p shown in Figures 11 and 12. This indicates that different with the
customers’ equilibrium behavior, for social optimization, the social planner expects customers arriving in the
busy state to consider their reneging behavior happened in the previous vacation before joining. Obviously, it
holds that A%, < AS, and A, < AS. (i =0,1).

For customers’ behavior in the fully unobservable queues, Figures 16 and 17 show that Ay, < A{ while
A, > AX. Hence, customers and the social planner have disagreement on the preference of vacation policies.
And it also holds that A% < AS and A%, < AS,. Comparing customer equilibrium behavior between the almost
unobservable queues and the fully unobservable queues, we find that A\J; < A{ < Ay and XS, < AL, < A% .
For the almost unobservable queues, the social planner expects that the customers prefer the multiple vacation
policy to the single vacation policy, which coincides with his expectation in the fully unobservable queues, in
the vacation state while the opposite in the busy state.

Next, we compare the optimal social welfare for the almost observable and almost/fully unobservable queues.
Figures 18-20 show that the optimal social welfare per time unit in the queues with multiple vacations is
always lower than that in the queues with single vacation, especially in the fully unobservable queues. So it is
best for the social planner to persuade (or command) the server to select single vacation policy before taking

5The analysis process on the queues with multiple vacations are omitted.
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FIGURE 16. Comparison of A\¢ and AS,: (1) with respect to § when R=5,r=2,c=1, p =2,
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measures to reduce customers’ equilibrium arrival rate(s). It is obvious that SW*/* < SW% < SW*% and
SWH/* <« SWa < SW*? which is determined by the extent of the information asymmetry.

Finally, we discuss the price of anarchy in the almost observable case, which is herein defined as the ratio
between the optimal social welfare and the worst residual utilities in equilibrium per time unit. We observe from
Figure 21 that it monotonically increases with £ whereas first increases then decreases with p. This indicates
that generally customers’ frequent reneging behavior indeed rapidly degrades the system efficiency, except that
the optimal social welfare itself decreases with high reneging probability.

8. CONCLUSIONS

Under four levels of system information precision, this paper studied customers’ equilibrium balking behavior
in Markovian queues with single vacation and geometric abandonments. For the fully observable queues, we
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N =05, ¢ =4

found that customers’ equilibrium threshold in the vacation state possibly exceeds the one in the busy state
because of customers’ reneging, while it has little effect on their equilibrium threshold strategy in the almost
observable queues. Moreover, generally, the customers’ frequent reneging behavior raises the price of anarchy
in the almost observable case. On the other hand, for the almost unobservable queues, customers’ equilibrium
arrival rate in the vacation state also can exceed the one in the busy state, and customers who arrive in a
busy period are not influenced by the reneging behavior (such as the abandonment opportunity arrival process
and the reneging probability) that happened in the previous vacation time when they select joining or balking
in equilibrium, whereas the social planner expects that the customers can take it into consideration for social
optimization. Furthermore, for the almost observable and the almost/fully unobservable queues, we found that
the single vacation policy is more beneficial to maximizing social welfare than the multiple vacation policy.
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Summarily, we list out the main contributions and the differences of this paper with those of other literatures
below:

— From the economic viewpoint, we discussed customers’ equilibrium and optimal balking behavior based on
most literatures on reneging studying from the classical viewpoint. Moreover, we comprehensively considered
four information levels and compared customers’ equilibrium and optimal behavior under different vacation
policies.

— We distinguished a reneging customer’s reward from which of a customer completing service, and gave a
range for their reward representing their remaining value. This assumption involves many types of practical
queueing systems in which reneging is not necessarily unrewarded.
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— We found that reneging has obvious effect on customer’ equilibrium behavior if they have no information.
However, it has no effect on their equilibrium behavior in busy period as long as they can observe the server
state. Furthermore, it also has no effect on their equilibrium behavior although they can access the queue
length information but not the server state.

In this paper, we assumed that the customers who arrive in a vacation time make their decisions of whether
reneging or not in normal order (early arrivals abandon first) at an abandonment epoch, and the number
of customers who leave the system follows a geometric distribution (sequential abandonments). On the other
hand, if customers make their decisions in reverse order (late arrivals abandon first) or in random order at
an abandonment epoch, or if the number of leaving customers follows a binomial distribution (synchronized
abandonments), whether these factors can distinctly influence the customers’ balking strategies? So this type
of topics would become future work.
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