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GENERAL LOT-SIZING AND SCHEDULING FOR PERISHABLE FOOD
PRODUCTS

Zohreh Alipour1, Fariborz Jolai1,∗, Ehsan Monabbati2 and Nima Zaerpour3

Abstract. General lot-sizing and scheduling is a well-studied problem in the literature, but for perish-
able or time-sensitive products is less investigated. Also, most of studies on perishable product supply
chains focus on strategic and tactical decision levels rather than operational decision level and inte-
grated operational and tactical decision levels. We focus on a general lot-sizing and scheduling problem
faced by perishable food products. The lifespan and shelf life are two important key features of perish-
able products that are considered in the problem. This problem can be described as a multi-product,
multi-parallel line, multi-period general lot-sizing and scheduling problem with sequence dependent
change over time. The objective function is sum of production costs, inventory holding costs, waste
costs, and lifespan related cost function. We apply two mixed-integer programming based heuristics to
solve generated instances. The heuristics are compared in terms of solution quality and computational
time. Also, the sensitivity analysis is presented to analyze the effects of parameters’ changes.
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1. Introduction

Inspite of existence of many studies on general lot-sizing and scheduling problem in the literature, perishable or
time-sensitive products is less investigated. Also, the strategic and tactical decision levels are more concentrated
than the operational decision level in recent perishable products studies [29]. Some of perishable products that
are investigated for production scheduling problems in the literature are food, typically yogurt, newspapers,
blood bank, ready-mix concrete, chemical adhesive materials, so on. In light of customers’ tendency to consume
fresh and more healthily food, perishable food industry has received more attention in recent years. Fresh
agricultural products, fresh meat, fish, and some dairy products are examples of perishable food industries with
one day up to a month shelf life. There exists limited research on perishable food supply chains compared to
other nonperishable supply chains. Perishable food industry can be distinguished from other industries with its
characteristics such as, flow shop technology with sequence dependent set-up time (cost), and perishability with
limited fixed or random shelf life of raw materials, intermediate and final products [34]. The fixed shelf life means
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product has predefined lifespan, instead, when shelf life of product is strongly dependent on holding situations
such as temperature or humidity, the shelf life is considered random. Additionally, there is a predefined sequence
of products, based on their cup size, taste or fat [15].

Perishability is one of the most crucial factors in modeling of perishable food supply chains. Amorim et al.
[5] presented a new perishability classification with three dimensions, physical product deterioration (yes or
no), authority limits (fixed or loose) and customer value (constant or decreasing). Based on their framework,
perishable food physically deteriorates and we can classify perishable products in two dimensions: fixed shelf life
or random shelf life, constant customer value (willingness) or decreasing customer value. The customer value
means the value of product in each point of product lifespan in customer stand point. In this situation, to
encourage customer to buy a product, pricing and discount strategies are applied based on product lifespan
[40]. For example, yogurt as an important perishable food product, has fixed shelf life with decreasing customer
value based on its lifespan.

The limited shelf life and high sequence dependent change over time (cost) in the production of perishable
food, result in integrated lot-sizing and scheduling problem (LSP) [27]. The model changed to capacitated lot-
sizing and scheduling (CLSP) with considering capacity constraints. Also existence of multiple product families,
produced on single line or multiple parallel lines, led to general lot-sizing and scheduling problem (GLSP). In
GLSP, the finite planning horizon is divided into T macro periods and each macro period is divided into set of
micro periods with variable length. The number of micro periods in each macro periods is predefined. We refer
the interested reader to the work of Copil et al. [10] for more information and notice of lot-sizing and scheduling
problems’ classification.

In this paper, we focus on a general lot-sizing and scheduling problem faced by perishable food products.
The lifespan and shelf life are two key features of perishable products that are considered in the problem. This
problem can be described as a multi-product, multi-parallel line, multi-period general lot-sizing and scheduling
problem with sequence dependent change over time. The objective function is the sum of the production costs,
inventory holding costs, waste costs, and lifespan related cost function. Our model is an extension of Amorim
et al. [4] model, with considering quality control cost and storage possibility in the production plant. We
apply two mixed-integer programming based heuristics to solve randomly generated instances. The heuristics
are compared in terms of the solution quality and the computational time. Also, the sensitivity analysis is
presented to analyze the effects of parameters’ changes.

So, the main contributions of this paper are:

– An GLSP model considering lifespan related function in the objective.
– Considering quality control time in the model.
– Applying heuristics for proposed GLSP.

The paper is organized as follows: Section 2 presents a literature review on managing perishability as well as
production planning and scheduling in perishable food supply chains. In Section 3, an MILP model for GLSP is
proposed. Section 4 represents the solution method. Section 5 is dedicated to computational analysis. Finally,
Section 6 presents conclusions and suggestions for future research.

2. Literature review

According to the relevant literature, in Section 2.1, managing perishability in perishable food supply chains
is investigated, also in Section 2.2, we focus on production planning and scheduling in perishable food supply
chain with fixed shelf life. Finally, Section 2.3 presents MIP-based decomposition heuristics.

2.1. Managing perishability

Perishable food has limited shelf life, from one day to a month. Also, the possibility of quality reduction exists
through product lifespan. Quality reduction is strongly related to holding situation such as temperature and
humidity as well as storage time. Then, lifespan and quality have important role on perishable food supply chain
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planning. There are different viewpoints in classifying perishable products. Nahmias [28] classified perishable
products into two main categories based on the possibility of predetermining their shelf life; fixed shelf life and
uncertain shelf life. The shelf life of products with fixed lifespan is predetermined and after passing that time
the products will not have any value, such as some dairy products and yogurt. On the other hand, products
with uncertain shelf life, for instance, fruit, vegetables and fresh meat, don’t have any predefined shelf life and
their shelf life is dependent on storage conditions such as temperature and humidity. Because of public health
and waste reduction, quality and safety have an essential role on perishable food supply chain management [23].
Rong et al. [30] presented an MILP model for production and distribution planning of perishable food supply
chain with considering quality degradation in tactical level. In the aforementioned paper quality degradation is
computed based on a function proposed by Labuza and Man et al. [22, 25]. Tsiros and Heilman [37] presented
another classification, from the customer viewpoint, of perishable products categorized to constant and decreas-
ing customer value. They investigated purchasing behavior of customer and presented the willingness to pay
(WTP) functions for high or moderate quality risk products. Amorim et al. [5] presented a new perishability
classification with three dimensions, physical product deterioration (yes or no), authority limits (fixed or loose)
and customer value (constant or decreasing). Based on their framework, perishable food physically deteriorates
and we can classify perishable products in two dimensions: fixed shelf life or random shelf life, constant customer
value (willingness) or decreasing customer value. Consequently, Amorim et al. [4] presented three concave, linear
(for yogurt) and convex (for fresh meat) WTP functions for products with different quality risks (low, moderate,
high quality risks) based on their lifespan and remained shelf life.

2.2. Production planning and scheduling in perishable food supply chain with fixed shelf
life

Entrup et al. [24] introduced three models for production planning and scheduling for perishable food with
integrating shelf life in the objective function. They developed an MILP model with block planning approach.
Marinelli et al. [26] modeled parallel packaging machines with buffers as an CLSP with sequence independent
set up time and cost, then, applied two-stage optimization decomposition approach. Doganis and Sarimveis [11]
proposed an MILP scheduling model for a single machine packaging line with sequence dependent set up time
and cost, consequently, they extended their model in another paper [12] for multiple paralleled machines, also
they supplemented their model by considering shelf life related cost in the objective function and presented a new
model in [13]. Kopanos et al. [19] modeled fermentation and packaging line together with considering families
of products and sequence dependent set up time and cost. In the other paper, Kopanos et al. [20] presented a
deterministic model for production planning and scheduling of yogurt packaging lines with capacity constraints
in which the objective function is to minimize inventory holding costs, operating costs, changeover costs between
families, plus possibility of outsourcing cost as a penalty cost. Also because of the less manpower use policy, the
overlapping of production of families is minimized. Amorim et al. [3] proposed two multi-objective models for
make to order (MTO) and hybrid make to order- make to stock (MTO-MTS) strategy for LSP with considering
lifespan of products and block planning approach. They used Non-dominated Sorting Genetic Algorithm II
(NSGA II) as a solution method. In consequence, Amorim et al. [4] integrated production planning together
with perishability, and they defined demand function based on consumer behavior function which is related
to price and lifespan of perishable products. Then stochastic programming is applied to tackle with demand
uncertainty. Consequently, Amorim et al. [2], perceived the possibility of risk management in perishable food
planning. They presented two risk-neutral and risk-averse scenarios based on stochastic models with considering
demand, decay rate, consumer purchasing behavior uncertainties. In recent work, they made a review to all lot-
sizing and scheduling models presented for yogurt production. Bilgen and Celebi [8] addressed an MILP model
for production scheduling and distribution planning of yogurt production line based on the model presented by
Doganis and Sarimveis [11] and shelf life function presented by Entrup et al. [24]. They considered operation
times as dynamic factor and applied hybrid simulation- optimization approach. Finally, Sel et al. [33] presented
a complete review of yogurt planning papers, and presented an MILP model for integrated production and
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distribution planning and scheduling of yogurt packaging and incubation line. They used big bucket and small
bucket decomposition approach, and solved each sub model separately.

2.3. MIP-based decomposition heuristics

Finding optimal solution for real world LSP is a challenge for commercial solvers in computing time viewpoint
[6]. Many heuristics and meta-heuristics are presented in the literature, but MIP-based heuristics such as relax-
and-fix as well as fix-and-optimize are suitable approaches for LSP.

2.3.1. Relax-and-fix

Relax-and-fix heuristic “RF” is a constructive algorithm that can be used to obtain good initial solutions. In
RF variables are divided into three groups. First group is considered fixed, the second group is optimized and
the third one is relaxed. In this algorithm, at each iteration only the binary variables in optimized group should
be optimized and considered fixed at the next iteration. The remaining variables are considered relaxed. Araujo
et al. [6] presented RF to an LSP model. James and Almada-Lobo [18] presented a hybrid heuristic to solve
single and parallel-machine CLSP which is NP-hard problem. They applied RF to construct an initial solution,
and they performed a local search heuristic to improve the obtained initial solution.

2.3.2. Fix-and-optimize

The fix-and-optimize heuristic “FO” is an improvement heuristic and needs an initial solution. The variables
are divided into two groups. First group is considered fix, the second group is optimized. In this algorithm, at
each iteration only the binary variables in optimized group should be optimized and considered fixed at the
next iteration. The remaining variables are considered fixed. There are three decomposition approaches to divide
variables; product oriented decomposition, resource oriented decomposition, and time decomposition approach.
Also, heuristics and meta-heuristics are used to construct initial solutions. Additionally, some heuristics are com-
bined with FO to improve solution quality. Helber and Sahling [16] proposed several decomposition approaches
to solve multi-level CLSP. They extended this model in their next paper [17] and proposed its stochastic version
with considering demand uncertainty. They applied FO again. Lang and Shen [21] applied hybrid RF&FO to
solve CLSP with sequence dependent setups with time decomposition approach. Goren et al. [14] combined
Genetic Algorithm (GA) with FO to solve CLSP. Seeanner et al. [31] combined variable neighborhood search
(VNS) with FO to solve GLSP. Toledo et al. [35] combined multi-population GA with FO to solve multi-item
LSP with backlogging. Xiao et al. [39] proposed different hybrid heuristics based on RF&FO to solve CLSP.
Sel and Bilgen [32] applied hybrid RF&FO to solve production and distribution planning problem in the soft
drink industry. Chen [9] proposed FO to solve multi-level CLSP. Also, VNS is applied to improve the solution.
Belo-Filho et al. [7] presented a lot-sizing and scheduling as well as vehicle routing model for perishable food
supply chain. They applied the branch-and-bound tree to find an initial solution and use FO to improve the
initial solution. They also, combined adaptive large neighborhood search with FO to improve solution quality.
Wei et al. [38] proposed a tactical production and distribution planning model and used hybrid RF&FO joined
with VNS to solve the problem.

3. Model formulation

The formulation of our GLSP model is presented in this section.

3.1. General lot-sizing and scheduling model formulation

The main assumptions of the model are as follows:

– Perishable food industry.
– Parallel packaging lines.
– Multiple family of products, based on the recipe.
– Each family contains a predefined sequence of products.
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– Sequence dependent change over time (cost) between families.
– Sequence independent set up time (cost) for products.
– There is a quality control time after production to maintain product at the quality control room.
– There is a daily shut down time for the quality assurance
– Storage possibility in production plant.
– Products in inventory whose shelf life came to an end and cannot be sold are considered as wasted amount.
– Sequencing and scheduling is determined for families.

The notations are used in the model:
Indices and sets
t Time index for macro periods (days).
s Time index for micro periods, s ∈ {1, . . . , S} (h).
a Product lifespan (days).
f, f́ Product families index.
z Products index.
l Parallel production lines.
Zf Set of products belonging to family f .
Stl Set of micro periods in macro period t for production line l.
Costs and times
ccff́l(ctff́l) Sequence dependent change over cost (time) from family f to family f́ on line l

($ or h).
sczl(stzl) Sequence independent set up cost (time) to product z on line l ($ or h).
icz Inventory holding cost of product z ($/unit).
icQC
z Inventory holding cost of product z in quality control room ($/unit).

wcz Waste cost of product z ($/unit).
pczl(pzl) Production cost (time) of product z on line l ($/unit or h).
Other parameters
mfl Minimum lot-size of family f on line l (kg).
dzt Demand of product z on macro period t (unit).
M Maximum inventory storage capacity (kg).
prz Price of product z ($).
atlt Available time of line l on macro period t (h).
shtlt Daily shut down time in line l on macro period t (quality assurance time) (h).
Qt Quality control time after production (days).
wez Weight of product z (kg/unit).
slz Shelf life of product z (days).
lfz Loss factor of product z.
Ul Line (Machine) utility.
λ Customer sensitivity to product lifespan.
Binary variables
δfls Takes value 1, if line l is used for production of family f in micro period s, 0 otherwise.
ϕff́ls Takes value 1, if family f is immediately followed by family f́ on line l in the beginning

of micro period s, 0 otherwise.
ϑzls Takes value 1, if line l is used for production of product z in micro period s, 0

otherwise.
Decision variables
qzls Production quantity of product z on line l in micro period s.
Iazt Inventory of product z at macro period t with age a.
xazt Quantity of inventory Iazt used to satisfy in macro period t.
wzt Wasted amount of product z in macro period t.
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The objective functions and constraints are as follows:

MinimizeZ =
∑
f

∑
f́

∑
l

∑
s

ccff́lϕff́ls +
∑
z

∑
l

∑
s

(sczlϑzls + pczlqzls) +
∑
z

∑
t

min(t−1,Qt−1)∑
a=0

icQC
z Iazt

+
∑
z

∑
t>Qt

min(t−1,slz)∑
a=Qt

iczIazt +
∑
z

∑
t>Qt

wczwzt +
∑
z

∑
t>Qt

min(t−1,slz)∑
a=Qt

przx
a
zt

λa

slz − 1
·

(3.1)

Subject to
The time and production capacity constraints:

qzls ≤
(atlt − shtlt)

pzl
ϑzls ∀z, l, s, t (3.2)∑

z∈Zf

qzls ≥ mlf (δfls − δfl,s−1) ∀l, s, f (3.3)

∑
f

∑
f́

∑
s∈Stl

ctff́lϕff́ls +
∑
z

∑
s∈Stl

(pzlqzls + stzlϑzls) ≤ atlt − shtlt ∀l, t. (3.4)

(3.5)

The set up and change over constraints:∑
z∈Zf

ϑzls ≤ δfls |Zf | ∀f, l, s (3.6)

∑
f

δfls = 1 ∀l, s (3.7)

ϕff́ls ≥ δfl,s−1 + δf́ ls − 1 ∀l, f, f́ , s. (3.8)

Inventory balance constraints:∑
l

∑
s∈Stl

qzls = I0
z,t ∀z, t (3.9)

Ia+1
z,t+1 = I0

z,t ∀a = 0, . . . ,Qt− 1, z, t (3.10)

Ia+1
z,t+1 = (1− lfz) Iazt − xazt ∀z, t > Qt, a = Qt, . . . ,min(t− 1, slz) (3.11)

wzt = Islz+1
zt ∀z, t ≥ max{slz + 2,Qt + 1}. (3.12)

Demand satisfaction constraints:

min(t−1,slz)∑
a=Qt

xazt ≥ dzt ∀z, t > Qt. (3.13)

Binary and non-negative variables related constraints:

qzls ≥ 0, ∀z, l, s (3.14)
xazt ≥ 0, ∀z, t > Qt, a = Qt, . . . , min(t− 1, slz) (3.15)
Iazt ≥ 0, ∀z, t, a (3.16)
wzt ≥ 0, ∀z, t > Qt (3.17)

ϑzls, δfls, ϕff́ls ∈ {0, 1} ∀z, l, f, f́ , s. (3.18)
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The objective function in equation (3.1) is the sum of sequence dependent change over cost, sequence inde-
pendent set up cost, production cost, inventory holding costs and waste cost, and the lifespan related cost. Our
model takes into account fixed shelf life with decreasing linear function for customer value based on [4,37]. They
presented equation (3.19) to calculate price or value of a product based on its age in customer viewpoint, so we
will have:

prza = prz −
przλa
slz − 1

· (3.19)

In equation (3.19) prza is the value of a product based on its lifespan a. Since profit of product z with lifespan
a, (Bza), is equal to the price multiplied by the transmitted amount, we will have equation (3.20):

Bza = przax
a
zt = przx

a
zt −

przλa
slz − 1

xazt. (3.20)

And the lost profit, ∆Bza, is commutated by equation (3.21):

∆Bza = (prza − prz)x
a
zt = −przx

a
zt

λa

slz − 1
· (3.21)

Based on equation (3.21), the lost profit should be reduced for all z with all a in each time period t. This
equation is considered as lifespan related cost function in the objective function.

Constraints (3.2) ensure that production quantity is less than available capacity of line l at period s. Con-
straints (3.3) satisfy minimum production quantity (minimum lot size) of family f . Additionally, constraints
(3.5) guarantee that total time consumed to set up, change over and production is less than total available
time minus daily shut down time for quality assurance, on each line in each macro period t. Constraints (3.6)
show that the sum of products types produced in line l in micro period s must not exceed the total number of
product types of this particular family. Moreover, using the line in period s for production of the product types
is possible only if the line l is used for production of this family f in micro period s. Constraints (3.7) ensure
that each family is assigned only to one line at each micro period s. Constraints (3.8) guarantee that the change
over from family f to family f́ on line l in micro period s is taken place, if family f has been assigned to micro
period s − 1, besides family f and f́ have been set up on the same line l. According to constraints (3.9), the
total amount of production quantity of product z on each line l and in each micro period s in macro period t,
is considered as inventory of product z with age zero. Constraints (3.10) show the amount of inventory after
quality control time. Constraints (3.11) ensure that inventory of product z in each period is equal to previous
period inventory minus quantity transmitted at period t for different ages. Also, Constraints (3.12) determine
wasted amount of products. Constraints (3.13) satisfy demands. Finally, constraints (3.14)–(3.18) show binary
and non-negative variables related constraints.

4. Solution method

Because of the commercial solvers inability to find the optimal solution for real world cases within a reasonable
computational time, we apply two MIP-based heuristics to solve the presented model. First, we apply RF as a
constructive heuristic to find an initial feasible solution. In the second approach, a hybrid heuristic presented,
we use FO to improve the obtained initial solution with RF. Then the quality of solutions as well as performance
of heuristics are analyzed. Also, the sensitivity analysis is implemented to show heuristics parameters’ changes.

4.1. RF heuristic

In this method, the main problem is decomposed to sub-problems. The time horizon divided into three sub
time windows. In the first time window, known as fixed window, the binary variables are fixed. In the second
time window, the optimized window, the binary variables should be optimized and in the latest time window,
relaxed window, the binary variables are relaxed. For instance, the time decomposition approach is shown in
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t=1 t=3t=2

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9

l=1

Fixed Window Optimized Window Relaxed Window

Figure 1. The time decomposition approach in RF heuristic.

t=3

s
s

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9

l=1

s
f

s
s s

f

Figure 2. Two consecutive optimized windows.

Figure 1, for a hypothetical GLSP problem with a line l, 3 macro periods t, and 9 micro periods s. Each macro
period is divided into three micro periods. The fixed window includes micro periods 1–3, the optimized window
includes micro periods 4,5 and finally, the relaxed window includes micro periods 6–9.

Both micro and macro periods can be considered as time window unit. For the presented model in this paper
we consider micro periods as time unit based on Seeanner et al. [31]’s paper. We show the starting point and the
end point of the optimized window respectively with ss and sf , then the optimized window period is (ss, sf ).
In the same way, the fixed window period will be (1, ss − 1), and the relaxed window period is (sf + 1, S).
Where the planning horizon spans from 1 to S. To determine each window, two parameters should be defined;
the overlapped periods, β, and the interval length, α. The parameter α shows the number of time units in
the optimized window and the parameter β indicates the number of intervals that are re-optimized. In fact, it
shows the amount of overlap between two optimized windows in two consecutive iterations. Figure 2 presents
a planning horizon with 9 micro periods for line l. Two consecutive optimized windows are shown with time
windows (ss, sf ). The parameter α is 3 and the parameter β is 2.

The RF starts with first micro period, then defines the optimized window and relaxed window based on
the parameter α (in the first iteration there is no fixed window). The binary variables in the relaxed window
are considered relaxed. The obtained sub problem is solved. The computed binary variables’ measures for the
optimized window in the feasible solution are considered fixed in the next iteration. The new fixed window,
optimized window and relaxed window are defined based on parameters α and β. This algorithm is repeated
until the end of the planning horizon.

In our model, there are three types of binary variables. The binary variable ϑzls, takes value 1 if product z
is produced on line l in micro period s. The binary variable δfls, takes value 1 if family f is produced on line l in
micro period s and finally, the binary variable ϕff́ls, indicates the production change over from family f to f́
from micro period s−1 to s. Because of this binary variable, ϕff́ls, considering overlap between two consecutive
optimized windows is necessary.

In each iteration the obtained values for three binary variables ϑzls, δfls, ϕff́ls, in optimized window will be
named with ϑ̄zls, δ̄fls, ϕ̄ff́ls and will be fixed in the fixed window for the next iteration. So, ϑ̄zls, δ̄fls, ϕ̄ff́ls
are the optimized value of binary variables ϑzls, δfls, ϕff́ls. In each iteration of the relax-and-fix algorithm,
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Table 1. The new constraints added to the main GLSP problem.

ϑzls = ϑ̄zls, δfls = δ̄fls, ϕff́ls = ϕff́ls s ∈ {1, ss − 1} , ∀z, l, f For the fixed window

ϑzls, δfls, ϕff́ls ∈ {0, 1} s ∈
{
ss, sf

}
, ∀z, l, f For the optimized window

ϑzls, δfls, ϕff́ls ∈ [0, 1] s ∈
{
sf + 1, S

}
,∀z, l, f For the relaxed window

t=1 t=3t=2

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9

l=1

Fixed Window Optimized Window Fixed Window

Figure 3. The time decomposition approach in FO heuristic.

some new constraints are appended to the main GLSP problem to construct a new mixed integer sub problem,
SubMIPRF . These constraints are shown in Table 1.

The RF is presented in Algorithm 1.
Algorithm 1. Relax-and-Fix heuristic (α, β).
2: ss ← 1, sf ← α
4: while sf ≤ S do

5: Solve Sub MIPRF

6: ϑ = ϑ̄, δ = δ̄, ϕ = ϕ̄
7: ss ← sf − β, sf ← sf + α− β
8: if sf > S then
9: sf ← S
10: end if
11: end while

To improve the initial feasible solution obtained by RF, we can apply some improvement heuristics. In the
next section the FO is presented as improvement heuristic.

4.2. Hybrid RF& FO

In the FO two time windows, fixed window and optimized window, are defined. Figure 3 represents a planning
horizon with 9 micro periods, the optimized window’s length is assumed 2, and all of the remaining micro periods
are considered as the fixed window. As it is known to implement this algorithm, we first need an initial feasible
solution. In each iteration an optimized window is chosen and the remained ones are considered as fixed windows.
In this paper we use time decomposition approach to decompose the binary variables.

There are two parameters in the time decomposition approach; time interval α and time overlapping β. The
FO starts with first micro period, then defines the optimized window and fixed window based on the parameter
α. The binary variables in the fixed window are considered fixed based on the initial solution, “Ini SolRF ”,
obtained by RF. Firstly, the initial solution considered as the best solution, “BestSol”. The obtained sub problem
is solved. If the current solution in the iteration, “IterSol”, is better than “BestSol”, then “BestSol” will be
replaced. The computed values for binary variables the “BestSol” are considered fixed in the next iteration for
the optimized window. The new fixed window and optimized window are defined based on parameters α and
β. This algorithm is repeated until the end of the planning horizon. For three binary variables ϑzls, δfls, ϕff́ls,
consider the obtained values in “BestSol” with ϑ̄zls, δ̄fls, ϕ̄ff́ls. In each iteration of FO, some new constraints
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Table 2. The new constraints added to construct Sub MIPFO.

ϑzls = ϑ̄zls, δfls = δ̄fls, ϕff́ls = ϕ̄ff́ls ∀s ∈ {S} \
{
ss, sf

}
, ∀z, l, f For the fixed window

ϑzls, δfls, ϕff́ls ∈ {0, 1} ∀s ∈
{
ss, sf

}
,∀z, l, f For the optimized window

are appended to the main GLSP problem to construct a new mixed integer sub problem, Sub MIPFO. These
constraints are shown at Table 2.

The hybrid RF&FO is presented in Algorithm 2.
Algorithm 2. hybrid relax-and-fix & fix-and-optimize heuristic (Ini SolRF , α, β).
1: BestSol=Ini SolRF

2: ss ← 1, sf ← α
4: while sf ≤ S do

5: Solve Sub MIPFO

6: Obtain IterSol
7: If IterSol<BestSol then
8: ϑ = ϑ̄, δ = δ̄, ϕ = ϕ̄
9: BestSol=IterSol
10: end if
11: ss ← sf − β, sf ← sf + α− β
12: if sf > S then
13: sf ← S
14: end if
15: end while

5. Computational analysis

The problem is an GLSP with L parallel lines, to produce F families and Z products. The problem parameters
are presented in Table 3 that are extended based on the literature [1].

The values of heuristics parameters (α and β) are considered at each next sections separately. To investigate
the heuristics performance three approaches are presented in three subsections. Subsection 5.1 reviews the
presented heuristic solution quality for problems with different sizes; small-size, medium-size and large-size
problem. Subsection 5.2 investigates the heuristic performance based on changes in key input parameters, for
instance, demand variation, setup costs and so on. Finally, subsection 5.3 presents sensitivity analysis based on
changes in heuristic parameters α and β.

5.1. The heuristic solution quality

The heuristic solution quality is investigated with three indices, objective value, computation time, and GAP,
for generated instances. To evaluate the performance of presented heuristics, the problems are solved by FR,
FR&FO and the CPLEX solver directly. The time limit for CPLEX solver is 3600 s. Goren et al. [14] introduce
the index GAP to compare solution quality between different heuristics. GAP is the relative difference between
the heuristic solution and the best feasible solution by the CPLEX solver within the CPU time limitation. The
equation (5.1) shows computation method of GAP:

GAP =
heuristic obj.− best obj.

best obj.
· (5.1)
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Table 3. The values of parameters.

Description Parameter Values

Change over time from family f to family f́ on line l (h) ctff́l ∼ U [2, 5]

Change over cost from family f to family f́ on line l ($) ccff́l ccff́l = 50 ∗ ctff́l

ccff́l = 0 for f = f́

Set up time for products (h) stzl ∼ U [0.5, 1]
Set up cost for products ($) sczl 50 ∗ stzl

Product price (value) ($) prz 2
Inventory holding cost ($/unit) icz 0.1 ∗ prz

Inventory holding cost in quality control room ($/unit) icQC
z 0.15 ∗ prz

Waste cost ($/unit) wcz prz

Production time (h) pzl 1
Production cost ($/unit) pczl 0.5 ∗ pzl

Minimum production capacity (unit) mfl 1
Demand (unit) dzt ∼ U [40, 60].
Line (machine) utility Ul 0.7

Available time (h) atlt atlt =
∑

z dztpzl

Ul

Shut down time (h) shtlt 1
Quality control time (day) Qt 1
Product shelf life (day) slz ∼ U [1, T ]
Loss factor of product z lfz 0.1
Customer sensitivity to product lifespan λ 0.5
Number of micro periods s in macro period t for production line l |Stl| F
Total number of micro periods S T × |Stl|
FR heuristics parameters
The fixed window s s ∈ {1, ss − 1}
The optimized window s s ∈

{
ss, sf

}

The relaxed window s s ∈
{
sf + 1, S

}

FO heuristics parameters

The fixed window s s ∈ {1, · · · , S} \
{
ss, sf

}

The optimized window s s ∈
{
ss, sf

}

Also, the GAP cumulative distribution function can be applied to compare different heuristic solutions quality
based on Belo-Filho et al. [7] paper. The equation (5.2) represents the formula:

FGAP
a (λ) =

∣∣{i ∈ I : GAPa,i ≤ λ}
∣∣

|I|
∀ a ∈ A, λ ∈ [0, 1] (5.2)

where, A is set of applied heuristics, I is a set of instances with cardinality |I|, a is the studied heuristic, λ is a
scalar in [0,1], GAPa,i is the GAP of heuristic a for instancei, and FGAP

a (λ) is the GAP cumulative distribution
function value for heuristic a and λ.

One way to evaluate the performance of the presented solution approaches is to generate problems of different
sizes and to analyze the GAPs and the computational time. By giving different values to the effective parameters,
iterations with different size can be generated. In this problem the number of families (F ), the total number of
products (Z), the number of lines (L), and the planning horizon (T ) have major impact on the problem size as
well as computational time needed to verify the optimal solutions. The given measures to these parameters are
shown in Table 4.
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Table 4. The effective parameters values on problem size.

Parameter’s name # of families (F ) Total # of products (Z) # of lines (L) Planning horizon (T )

Parameter’s value 5,10 10,15,20 5,10 7,15

Table 5. Summary of the results for all instances (α = 10, β = 5).

Instances (i) # of bin. V RF FR&FO CPLEX
F ∗ Z ∗ L ∗ T Obj. GAP Time(s) Obj. GAP Time(s) Obj. Time(s)

2 ∗ 10 ∗ 2 ∗ 7 392 1852.71 0 0.328 1852.71 0 0.171 1852.71 1.50
5 ∗ 10 ∗ 5 ∗ 7 6125 1642.08 0.353 3.869 1636.8 0.030 3.229 1562.212 2.11
5 ∗ 15 ∗ 5 ∗ 7 7000 2644.01 0.390 4.056 2633.73 0 10.904 2633.845 5.79
5 ∗ 20 ∗ 5 ∗ 7 7875 3283.45 0.246 6.816 3275.51 0.004 8.221 3275.383 10.86
5 ∗ 10 ∗ 5 ∗ 15 13 125 4457.04 0.269 8.345 4445.07 0 8.905 4445.069 14.37
5 ∗ 15 ∗ 5 ∗ 15 15 000 6685.5 0.400 11.31 6659.33 0.007 14.585 6658.844 21.09
5 ∗ 20 ∗ 5 ∗ 15 16 875 8197.45 0.330 14.367 8170.59 0.002 23.385 8170.44 73.11
10 ∗ 10 ∗ 10 ∗ 7 77 000 1526.56 0.970 51.716 1511.91 0.001 24.286 1511.891 81.49
10 ∗ 20 ∗ 10 ∗ 7 84 000 3246.36 0.690 51.776 3224.11 0 75.552 3224.11 286.699
10 ∗ 10 ∗ 10 ∗ 15 165 000 4084.68 0.521 258.666 4066.92 0.084 581.04 4063.5 >3600

In this section, the number of micro periods in each macro period is considered equal to the number of
families, so the number of micro periods will be S = F ∗ T . Each problem runs 10 times and the average value
are shown in Table 5.

Table 5 shows, the RF heuristic in spite of having more GAP than the FR&FO heuristic, could find near
optimal solution in less computational time. This means that both of heuristics are applicable and competitive
for large-size problems to obtain the near optimal solutions in reasonable time and with acceptable GAP.

Figure 4 illustrates the cumulative distribution functions for the computed GAPs. It shows that the hybrid
relax-and-fix & fix-and-optimize heuristic (RF-FO) has less gaps in comparison with the relax-and-fix [36]
heuristic.

5.2. The heuristic performance based on scenarios

Another way to evaluate the heuristics performances is to generate scenarios by changing the key parameters
values for a typical problem. For this typical problem, based on the literature and the expert views, the main
parameters are listed in Table 6. Two levels for each parameter are determined, L for low level and H for high
level.

In this subsection, we consider problem 5 ∗ 10 ∗ 5 ∗ 7 from the previous subsection. The number of generated
scenarios based on five parameters’ levels is equal to 25 = 32. Each scenario runs 10 times and the obtained
averages are considered in Table 7.

The importance of parameters and their impact need to be analyzed. For this purpose, the average GAPs for
different parameters levels are computed based on data from Table 7. Table 8 shows these average GAPs for
scenarios.

According to the Table 8, the FR heuristics again has more average GAP than FR&FO heuristic in different
scenarios for a specific problem. The maximum GAP is for line utility at low level and the minimum GAP
belongs to inventory holding cost at its high level for FR heuristic. Also, for the next heuristic the maximum
GAP is for demand variation at high level and the minimum GAP belongs to line utility at high level. These
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Figure 4. The performance of heuristics.

Table 6. Notations and settings of key parameters.

Notations Settings

Families change over time (ctff́l) L:∼ U [2, 5], H: ∼ U [10, 25]

Inventory holding cost (icz) L: 0.1 ∗ prz, H: 1 ∗ prz

Lose factor (lfz) L: 0.1, H: 0.5
Demand variation (dzt) L:∼ U [40, 60], H: ∼ U [0, 100]
Line utility (Ul) L: 0.7, H:0.9

results show that the performance of the presented heuristics are related to key parameters changes and in
different scenarios they could have variant performance.

To analyze Table 8 accurately, a new index called the relative increase in GAPs, Rel.IncGAP , is defined. It
shows the effect of parameter changes on the average GAPs changes. The relative deviation of average GAP
for parameter’s high level, ave.GAPH , from average GAP for parameter’s low level, ave.GAPL, is defined as
relative increase in GAPs, Rel.IncGAP , and is shown in equation (5.3).

Rel.IncGAP =
ave.GAPH − ave.GAPL

ave.GAPL
∗ 100. (5.3)

The relative increase in GAPs, Rel.IncGAP , for five key parameters are summarized in Table 9. Based on
Table 9, the change over time between families, loss factor and demand variations have more relative increase in
GAPs in comparison with the other parameters. Based on this analysis, the changes of these parameters might
effect on the heuristics performance more than the other parameters.

5.3. Sensitivity analysis of heuristic’s parameters

The third way to evaluate the performance of the heuristics is sensitivity analysis of heuristics parameters.
The sensitivity analysis is applied to evaluate the effect of heuristic’s parameters α and β on computation time,
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Table 7. The parameters effect and scenarios.

Scenarios Obj. in 3600 s Mean GAP (%) in 3600 s Time
ct-ic-lf-d-U FR FR&FO Cplex FR FR&FO FR FR&FO Cplex

H-H-H-H-H 9770.67 9770.67 9770.67 0.00000% 0.00000% 2.309 2.434 1.888
H-H-H-H-L 8947.92 8943.25 8942.72 0.05222% 0.00593% 3.151 2.091 1.435
H-H-H-L-H 9941.6 9937.49 9937.49 0.04136% 0.00000% 1.903 2.589 7.005
H-H-H-L-L 9290.47 9285.71 9285.71 0.05126% 0.00000% 33.134 9.705 45.568
H-H-L-H-H 5555.81 5554.71 5554.19 0.02917% 0.00936% 3.604 2.451 1.638
H-H-L-H-L 5373.8 5372.06 5371.73 0.03239% 0.00614% 3.261 4.945 1.934
H-H-L-L-H 5531.53 5529.75 5529.75 0.03219% 0.00000% 2.138 3.619 1.482
H-H-L-L-L 5202.61 5199.43 5199.43 0.06116% 0.00000% 2.543 12.839 1.488
H-L-H-H-H 2788.75 2786.96 2786.92 0.06566% 0.00144% 2.497 5.226 16.364
H-L-H-H-L 2797.39 2796.43 2795.45 0.06940% 0.03506% 62.51 10.109 393.528
H-L-H-L-H 2541.8 2539.72 2539.65 0.08190% 0.00276% 3.229 3.508 1.482
H-L-H-L-L 2675.36 2670.17 2670.17 0.19437% 0.00000% 3.885 14.383 767.432
H-L-L-H-H 1596.08 1592.42 1592.42 0.22984% 0.00000% 1.824 4.96 2.606
H-L-L-H-L 1723.96 1715.78 1715.75 0.47851% 0.00175% 3.448 3.231 3.51
H-L-L-L-H 1714.29 1711.9 1711.82 0.13961% 0.00467% 3.119 2.981 1.778
H-L-L-L-L 1672.86 1663.82 1663.82 0.54333% 0.00000% 3.728 5.678 3.229
L-H-H-H-H 8983.13 8981.12 8980.73 0.02672% 0.00434% 3.259 2.854 2.074
L-H-H-H-L 8783.52 8781.59 8781.59 0.02198% 0.00000% 12.87 4.273 4.774
L-H-H-L-H 9865.77 9862.8 9862.8 0.03011% 0.00000% 2.448 6.054 17.394
L-H-H-L-L 8633.13 8628.44 8627.94 0.06015% 0.00580% 2.45 5.711 9.282
L-H-L-H-H 5411.49 5400.24 5400.09 0.20832% 0.00278% 3.79 2.075 1.326
L-H-L-H-L 5149.95 5143.76 5143.76 0.12034% 0.00000% 1.996 2.886 2.184
L-H-L-L-H 5220.84 5215.53 5215.53 0.10181% 0.00000% 3.541 6.115 239.134
L-H-L-L-L 5346.81 5343.08 5343.08 0.06981% 0.00000% 1.918 2.091 1.919
L-L-H-H-H 2638.48 2637.37 2637.37 0.04209% 0.00000% 3.37 4.258 6.989
L-L-H-H-L 2656.68 2651.27 2651.27 0.20405% 0.00000% 2.528 8.361 77.408
L-L-H-L-H 2691.85 2688.84 2688.84 0.11194% 0.00000% 3.602 6.007 2.106
L-L-H-L-L 2714.76 2712.14 2712.14 0.09660% 0.00000% 3.416 3.12 1.591
L-L-L-H-H 1683.54 1678.43 1678.43 0.30445% 0.00000% 3.385 4.243 59.452
L-L-L-H-L 1787.25 1781.59 1781.59 0.31769% 0.00000% 2.667 2.652 1.748
L-L-L-L-H 1744.05 1736.29 1736.29 0.44693% 0.00000% 2.823 4.541 8.736
L-L-L-L-L 1629.26 1624.46 1624.46 0.29548% 0.00000% 2.45 2.963 2.153
Mean 0.14232% 0.00090%

solution quality as well as GAP index for two different size typical problems In RF, we defined time interval α
and window overlapping β based on the problem parameters. They are computed based on equation (5.4).

α =
[
T × |Stl| × L

4

]
, β = [0.3× α] . (5.4)

In contrast, for FO the time interval α and time overlapping β have different values based on equation (5.5).

α = 10, 20, 30, 40, . . . , T × |Stl| β = 0, . . . , α− 1. (5.5)

For problem instance 5∗10∗5∗7 the initial optimal objective value from RF algorithm is 1709.24. This value
is improved by FO to 1699.13. By changing the parameters α, β, the objective function did not change, but the
computational time changed. The computation time changes based on different values of parameters are shown
in Table 10.
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Table 8. The average gaps based on parameters levels.

Average gap%
Parameter Level FR FR&FO

Families change over time (ctff́l) H 0.132617 0.002975

L 0.15383 0.000634
Inventory holding cost (icz) H 0.059616 0.001219

L 0.226831 0.00239
Lose factor (lfz) H 0.072407 0.002914

L 0.21404 0.000694
Demand variation (dzt) H 0.138606 0.003247

L 0.147841 0.000362
Line utility (Ul) H 0.118896 0.000946

L 0.167551 0.002663
Mean 0.143224 0.001804

Table 9. The relative increase in gaps.

Rel.Incgap

Parameter’s change FR FR&FO

ct(L→H) −13.7898 369.5619
ic(L→H) −73.7179 −49.0071
lf(L→H) −66.1713 319.6815
d(L→H) −6.24696 796.3685
U(L→H) −29.0391 −64.4601

Table 10. Sensitivity analysis for problem (5 ∗ 10 ∗ 5 ∗ 7).

Parameters’ value Computation time for hybrid heuristic
α β

10 5 2.714
15 5 4.119

10 5.538
20 5 2.73

10 3.542
15 4.928

25 15 7.144
20 8.3

As Table 10 shows, by increasing the time interval value (α), which means the larger optimized window, the
consumption time is increased. Also, for a specific value of α, by increasing the overlap time (β), which leads to
smaller optimized window, the consumption time would be decreased. The relationship between two paramers
α and β with computation time is shown in Figure 5.

This analysis would be helpful to find the best values for α and β with considering computational time. For
instance, for this specific problem the best values for time interval (α) is 10 and for time overlap (β) is 5 and the
worst values are α = 25 and β = 20. For the next problem instance 5 ∗ 10 ∗ 5 ∗ 15 the initial optimal objective
value obtained from RF is 4364.81. The optimal solution obtained by CPLEX is 4354.87. The improved solutions
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Figure 5. Sensitivity analysis of parameters for problem (5 ∗ 10 ∗ 5 ∗ 7).

Table 11. Sensitivity analysis for instance (5*10*5*15).

α β FR&FO α β FR&FO α β FR&FO α β FR&FO

Obj. Time Obj. Time Obj. Time Obj. Time

10 5 4355.42 14.57 30 5 4354.87 7.442 40 5 4354.87 11.95 50 25 4354.98 11.638

15 5 4355.1 10.795 10 4354.87 8.003 10 4354.87 13.385 30 4354.87 13.478

10 4354.87 17.253 15 4354.87 14.57 15 4354.87 20.686 35 4354.87 17.706

20 5 4354.87 8.626 20 4354.87 15.489 20 4354.97 13.166 40 4354.87 18.86

10 4355.65 28.532 25 4354.87 27.346 25 4354.87 17.566 45 4354.87 33.946

15 4354.87 21.03 35 5 4354.87 7.379 30 4354.87 20.873 55 35 4355.07 18.393

25 5 4355.03 6.911 10 4354.97 8.16 35 4354.87 29.716 40 4354.9 24.071

10 4354.87 8.704 15 4355.22 8.581 45 15 4354.87 11.217 45 4354.87 24.632

15 4354.87 11.637 20 4354.87 11.387 20 4354.87 13.992 50 4354.87 41.34

20 4354.87 23.024 25 4354.87 14.445 25 4355.18 13.088 60 45 4354.97 14.665

30 4358.06 13.151 30 4354.87 16.677 50 4354.87 22.886

35 4354.87 20.779 55 4354.87 33.37

40 4354.87 63.365 65 55 4354.87 18.86

60 4354.87 36.349

70 65 4354.87 18.986

by FO for different values of α and β are shown at Table 11. By changing the parameters α and β, the objective
function and computation time are changed.

Relationship between different values of α and β with computation time are shown in Figure 6 and with
objective GAP in Figure 7.

As mentioned above, by considering computational time, for this specific problem the best values for time
interval (α) is 35 and for time overlap (β) is 5 with computation time 7.379 s and the worst values are α = 45
and β = 40 with computation time 63.365s.
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Figure 6. Relationship between different values of α and β with computation time.

Figure 7. Relationship between different values of α and β with objective gap.

The objective GAP, Obj.GAP , is defined with equation (5.6).

Obj.GAP =
heuristic obj.− best obj.

best obj.
∗ 100. (5.6)
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According to the Figures 6 and 7, there are meaningful relationships between heuristics parameters values
and computation time and parameter determination has major effect on heuristics performance. It should be
noted here that the MILP formulations are modeled in ILOG’s OPL Studio as a modelling environment and
are solved by CPLEX as the standard optimization software, on a PC, 64-bit windows 8, with CPU Intel (R)
CoreTM i7-2600 K 3.40 GHz and 4.00 GB RAM.

6. Conclusions and future research

In this paper firstly, we developed an MILP model for multi- family, multi-product, multi-parallel line GLSP
for perishable food industry with limited lifespan and fixed shelf life. The main contribution of this paper is
presenting a new lifespan cost function as an objective with extra assumptions such as possibility of storage
finished products at plant and quality control time.

Because of the commercial solvers inability to find the optimal solution for real world cases within a reasonable
time, we apply two MIP-based heuristics to solve the presented model. Then the quality of solutions as well
as performance of heuristics are analyzed. Also, the sensitivity analysis is implemented to show heuristics
parameters’ changes.

Our model can be extended and applied to the other types of perishable products such blood bank, chemical
adhesive materials and newspapers, and food. Further research could be on presenting multi objective models
with quality, safety, or sustainability related objective functions. Furthermore, the uncertainty of parameters
could be taken into account and the model would be more realistic. Moreover, because of limited shelf life and
quality degradation, the model could be extended and distribution planning and scheduling could be integrated
with the presented model.

Acknowledgements. The authors would like to thank the reviewers for their helpful and effective comments which help
us to improve this paper scientifically.
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[36] S. Transchel, S. Minner, J. Kallrath, N. Löhndorf and U. Eberhard, A hybrid general lot-sizing and scheduling formulation for
a production process with a two-stage product structure. Int. J. Prod. Res. 49 (2011) 2463–2480.

[37] M. Tsiros and C.M. Heilman, The effect of expiration dates and perceived risk on purchasing behavior in grocery store
perishable categories. J. Market. 69 (2005) 114–129.
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