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AN EXACT APPROACH FOR THE MULTICOMMODITY NETWORK
OPTIMIZATION PROBLEM WITH A STEP COST FUNCTION

IMEN MEJRI', MOHAMED HAOUARI?, SAFA BHAR LAYEBY* AND FARAH
ZEGHAL MANSOUR!

Abstract. We investigate the Multicommodity Network Optimization Problem with a Step Cost
Function (MNOP-SCF) where the available facilities to be installed on the edges have discrete step-
increasing cost and capacity functions. This strategic long-term planning problem requires installing at
most one facility capacity on each edge so that all the demands are routed and the total installation cost
is minimized. We describe a path-based formulation that we solve exactly using an enhanced constraint
generation based procedure combined with columns and new cuts generation algorithms. The main
contribution of this work is the development of a new exact separation model that identifies the most
violated bipartition inequalities coupled with a knapsack-based problem that derives additional cuts.
To assess the performance of the proposed approach, we conducted computational experiments on a
large set of randomly generated instances. The results show that it delivers optimal solutions for large
instances with up to 100 nodes, 600 edges, and 4950 commodities while in the literature, the best
developed approaches are limited to instances with 50 nodes, 100 edges, and 1225 commodities.
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1. INTRODUCTION

During the last two decades, and prompted by the rapid development of the telecommunications industry,
multicommodity network design problems have been extensively investigated and are still catching the interest
of both practitioners and researchers. Indeed, these problems have a wide range of applications mainly in
telecommunications, transportation, and logistic systems [4,22], and have a crucial impact on the business
profitability of network operators. Moreover, most multicommodity network design problems are N'P-hard [16]
and their exact solution poses redoubtable challenges.

In this paper, we investigate a very general network optimization model that is referred to as the Multi-
commodity Network Optimization Problem with a Step Cost Function (MNOP-SCF). This strategic long-term
planning problem is defined as follows. We are given a connected undirected graph G = (V, E) where V is a set
of n nodes, and F is a set of m edges. In telecommunication settings, each node may represent a customer that
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requires to exchange data flows with other customers, and each edge corresponds to a potential physical link on
which a transmission facility may be installed for routing the different traffic flows. Hence, we assume that for
each pair of nodes {i,7} C V? are defined two demand flows d;; and dj; that should be routed from 4 to j and
vice-versa, respectively. Each commodity may be routed along several different paths (i.e. flows are splittable).
The core problem requires designing a network that enables a simultaneous routing of all the point-to-point
demands while minimizing the network design cost. In this regard, a peculiar feature of the investigated model
is that the structure of the facility cost function is discrete, nonconvex, and step-increasing. More precisely,
we assume that L. different facilities may potentially be installed on each edge e € F. In telecommunications,
facilities may correspond to different transmission technologies that transport data at different speed rates and
incur different costs. For each edge e and each facility I, we are given a bidirectional capacity uj (expressed
in a given unit e.g. Mb/s) and a fixed installation cost f7 that are discrete step-increasing functions (i.e.,
uf < u§ < ... <ug,and ff < f§ < ... < ff ). This very general cost structure offers two significant
advantages. First, it allows to model economies of scale that are obtained through installing large capacities
when the cost per unit of a facility is a decreasing function of its capacity. Second, it enables advantageous
flexibility by explicitly considering a discrete set of multiple link capacities. The MNOP-SCF requires finding
which facility capacities should be installed on the edges so that all point-to-point flows are simultaneously
routed and the total installation cost is minimized. At this stage, it is worth emphasizing the fact that objective
function can readily accommodate flow-dependent, discrete, nonconvex, step-increasing node costs (see [23]).
Also, it is noteworthy that although our objective function includes fixed costs only with no variable traffic
costs, which models the common case where the total fixed link investment cost overwhelmingly dominates the
variable transmission costs, one would readily extend the model and solution approach that are proposed in
this paper to accommodate variable costs as well.

To the best of our knowledge, the first reference to the MNOP-SCF goes back to the later 1980s when Minoux
[22] introduced a simpler variant that is referred to as the Optimum Rented Lines Network Problem. Later,
several exact and approximate algorithms were investigated by many authors. In particular, Stoer and Dahl
[27] investigated a multicommodity network design problem with a general step-increasing cost function. They
derived valid inequalities and facet-defining inequalities and integrated them into a branch-and-cut approach
to obtain lower bounds. A rounding procedure is then used to generate approximate integer solutions. They
reported the solution of a single network structure with 27 nodes and 51 links with a very sparse demand matrix.
Gabrel et al. [10] presented a first exact approach for the MNOP-SCF. They proposed an integer-programming
formulation with exponentially many constraints (the so-called metric inequalities that shall be described in
Section 2), and solved it using a pure cutting-plane approach. This algorithm is also thoroughly analyzed in the
comprehensive study of the MNOP-SCF that is presented in Minoux [23]. In this paper, the author acknowledges
the flexibility and versatility of the MNOP-SCF by highlighting the fact that this model encompasses as special
cases many well-studied network design problems including the so-called single- and two-facility capacitated
network loading problem, where capacity expansion can be achieved by installing an integer number of a single
type or two types of facilities, respectively. Also, he presented different valid integer programming formulations
for the basic case as well a more general variant with survivability constraints where both link and node failures
have to be taken into consideration. Following the general solution framework of Gabrel et al. [10], Mrad and
Haouari [24] implemented a similar formulation and solution approach, but including several additional enhanced
features, yielding a more effective exact algorithm. They show that the conjunctive use of newly derived valid
inequalities, as well as the exact separation of metric inequalities makes it feasible to optimally solve instances
with up to 50 nodes and 100 edges.

In addition, efforts have been made for designing effective heuristic algorithms. A local search heuristic is
developed by Agarwal [2]. It allows solving instances with up to 20 nodes and 3 facilities within about 5% of
lower bound on average. Larger MNOP-SCF instances with up to 50 nodes and 90 links are approximately
solved by Gabrel et al. [11] using several greedy heuristics based on link-rerouting and flow-rerouting heuristics
as well as a heuristic implementation of their previous exact algorithm presented in Gabrel et al. [10]. Aloise and
Ribeiro [1] propose several effective multi-start heuristics that are based on shortest path and maximum flow
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algorithms combined with adaptive memory and vocabulary building intensification mechanism. Their approach
improve the best solutions of the instances tested by Gabrel et al. [11] by as much as 7.4%.

Recently, a robust optimization of the MNOP-SCF under uncertain demand was investigated by Lee et al. [19].
They use a Benders decomposition procedure combined with a cut generation scheme. They conduct experiments
on real-life telecommunication problems, with up to 27 nodes and 51 edges, and empirically demonstrate that
robust solutions with very small penalties in the objective values can be obtained.

A closely related network design problem is the so-called Network Loading Problem (NLP). By contrast
to the MNOP-SCF, where at most one facility can be installed on each edge, the NLP requires selecting an
integer number of facilities so that a preset of traffic demands can be routed simultaneously with a minimum
total linear cost [5]. Two problem variants are often considered: the nonbifurcated version, where each traffic
demand should be routed along a single path, and the splittable one. The NLP has been subject to a growing
interest in the literature and several exact and heuristic approaches have been used so far. Local search and
tabu search approaches were proposed by Gendron et al. [13] and Gendron et al. [14], respectively. In Avella
et al. [3], a complete description of the convex hull of integer feasible solutions using the so-called tight metric
inequalities, is provided. The exact separation of these inequalities is investigated in [21]. Ljubié et al. [20]
investigate a single-source variant. They introduce several mixed-integer models that they solve to optimality
using a Benders-based approach combined with a specific disaggregation technique.

In this paper, we propose a new enhanced cut generation-based approach that outperforms the best algorithms
presented in the literature and allows solving larger instances. A distinctive feature of our approach is that it
embeds a novel exact separation model that generates the most violated cutest inequalities, as well as a knapsack-
based problem that enables the generation of additional cuts. The obtained inequalities allow strengthening the
relaxed master problem and reducing the number of violated metric inequalities.

The remainder of this paper is organized as follows. Section 2 investigates several formulations for the MNOP-
SCF. Section 3 introduces the new bipartition inequality generators and Section 4 summarizes the overall
proposed procedure. Section 5 reports the results of extensive computational experiments. Finally, Section 6
draws conclusions and provides avenues for future research.

2. VALID FORMULATIONS FOR THE MNOP-SCF

In this section, we successively describe three valid textbook formulations: two mixed-integer programming
models and a binary model.

2.1. An arc-flow formulation

A natural mixed-integer programming formulation of the MNOP-SCF can be derived using a bidirected graph
B = (V, A) that is obtained from G by replacing each edge e = {i,j} € E by a pair of arcs having opposite
directions. Furthermore, we define a continuous flow variables xfj for each arc (4,5) € A and each commodity k
(k=1,...,K). This yields the following arc-flow model.

L.
(AF): Minimize ) Y ffys (2.1)
ecFEl=1
subject to:
L.
dwi <1, Ve€BE, (2.2)
=1

dk if i = Sk
dooah— Y ahi=q 0 ifieV\{suti), Vk=1,... K, (2.3)
jiig)eA ji(j,i) €A —dp ifi =1y
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K K LC
mej + Zmi < Zufyf, Ve=1{i,j} € E, (2.4)
k=1 k=1 1=1
xy; >0, V(i,j) € AVE=1,..., K, (2.5)
yy € {0,1}, Yee E,l=1,...,Le. (2.6)

The objective function (2.1) requires minimizing the total fixed installation costs. Constraints (2.2) enforce
that at most one facility is installed on each edge. Constraints (2.3) are the standard flow conservation equality.
The bundle constraints (2.4) require that the bidirectional flow that circulates on each edge does not exceed the
installed capacity. Constraints (2.5) define the non-negativity of the flow variables and constraints (2.6) impose
the integrality of the design variables.

Clearly, Model (AF) exhibits a bloc-diagonal structure and includes O(n?®) constraints. Furthermore, if the
underlying graph is complete then it includes O(n*) flow variables and O(Igleaé({Le}nQ) binary variables.

It is noteworthy that Gabrel et al. [10] and Minoux [23] used an alternative arc-flow formulation using different
design binary variables. Indeed, they defined s as a binary variable that takes value 1 if the facility loaded on
edge e is | > t, and 0 otherwise. Actually, using the following identities

yp = — gy, Vl=1,...,L -1, VecE, (2.7)
yi = #f, Ve € E, (2.8)

one would readily check that this latter formulation is equivalent to Model (AF).

Remark 2.1. Model (AF)can easily be extended to the case where multiple facilities of the same type might
be installed on the same edge. Indeed, in this case constraint (2.2) should be dropped, and constraint (2.6)
should be replaced by

ywelN VecE, l=1,..., L. (6"

2.2. A path-based formulation

An alternative formulation of the MNOP-SCF is the so-called path-based formulation. To describe this
formulation, we begin first by introducing some additional notation. We denote by Py the set of all feasible
paths between nodes s and t, (k = 1,...,K). Let acri be a binary constant that equals 1 if path r € P
includes edge e, and 0 otherwise. We define a continuous nonnegative variable z* that represents the flow of
commodity k to be routed along path r € Py. Given these definitions, a path-based formulation (PF) for the
MNOP-SCF can be stated as follows.

L.
(PF): Minimize ) > ffyf (2.9)
ecEl=1
subject to: (2.2),(2.6),
| Pr|
> 2k =dy, Vk=1,...,K, (2.10)
r=1
K | Pl Le
ZZaemzf <> ufyr, Ve € E, (2.11)
k=1r=1 =1

2k >0, Vk=1,....K, r € P. (2.12)
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Constraint (2.10) requires routing all the flow demands. Constraint (2.11) represents capacity constraints for
each edge: the bidirectional flow that circulates on each edge should not exceed the installed capacity. Constraint
(2.12) defines the nonnegativity of variables z.

Obviously, Model (PF) includes the same number of binary variables as Model (AF), an exponential number
of (continuous) variables, but much fewer constraints (O(n?) vs O(n?)).

Fact 1: Models (AF) and (PF) yield the same linear programming relaxations.

It is noteworthy that, from a computational perspective, large arc flow formulations, that arise embedded
within real-world MNOP-SCF instances, are unlikely to be solved directly using commercial LP solvers. By
contrast, the path-based formulation exhibits a structure that makes it amenable to be solved by column
generation.

2.3. A pure 0-1 programming model

Assume that each edge e € F is assigned a nonnegative capacity 4. > 0. A necessary and sufficient condition
that there exists a multiflow z satisfying (2.3)—(2.5) (or equivalently, a vector z satisfying (2.10)—(2.12)), is given
by Farkas Lemma for linear programming duality as follows

Theorem 2.2. A capacity vector u is feasible for a multiflow if and only if

K
> Aetie = > dipp(N), VA€ RY,
ecE k=1

where pi(AN) (k=1,...,K) is the value of the shortest path between s, and ti in G with respect to the distance
matric (Ne)eck-

Proof. See Onaga and Kakusho [17] and Croxton et al. [8]. O

Hence, a valid formulation for the MNOP-SCF using only binary variables is the following

L
MI: Minimize Y 3 feye (2.13)
ecEl=1
subject to: (2.2),(2.6),
L. K
SN uty > Y dii(), VA€ R (214)
c€E I=1 k=1

In the literature, constraint (2.14) is referred to as metric inequalities. A particularly interesting subset of
metric inequalities includes the so-called bipartition inequalities (or cutset inequalities) that are defined as
follows. Assume that vector A is the incidence vector of a cutset 6(W) of G that connects a node subset W C V/
to its complementary subset W = V \ W. In this case, the LHS of (2.14) is equal to the cumulative capacity of
the cutset §(WW). That is, we have

L. L.
DAY ufyi = D> D ujyi-

ecE =1 e€d(W)l=1
On the other hand, pj(A) = 1if [{sk, tx} N W| =1, and pj(A) = 0, otherwise. Hence, the RHS of (2.14) is equal
to the cumulative demand that traverses cutset §(W). Defining d(W) = > dy for all W C V, we get

k:f{sk.tx nW[=1

K
Yodem N = D de.
k=1

k::|{sk,tk}ﬁW|:1
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Therefore, the bipartition inequalities can be written as follows:

Le
S ufyp =d(Ww), YW V. (2.15)
ecd(W)l=1

The significance of bipartition inequalities stems from the following empirical observation: this subclass of
inequalities defines a fairly good representation of the convex hull of the set of feasible solutions [10].

It is worth emphasizing that all exact approaches that were proposed so far for the MNOP-SCF are based on
solving Model (MI) using a constraint-generation procedure. Within this framework, at each stage, a violated
metric inequality is generated by solving the following separation problem:

Given a binary vector  that is feasible to (2.2) find A € R, such that

K
ZAeEe < deUZ(/\) (216)
k=1

eclE

or prove that no such vector exists.

Mrad and Haouari [24] show that the exact separation of a metric inequality can be achieved through finding
a feasible multiflow using the arc-flow formulation. Since this separation is cumbersome and thereby viable for
relatively small-sized (sparse) graphs only, Gabrel et al. [10] and Mrad and Haouari [24] resorted to a much
simpler, though inezract, separation approach that is based on subgradient optimization.

On the other hand, since the exact separation of bipartition inequalities is AN'P-hard [10], this problem has
been approximately solved using tailored heuristics. In this regard, Gabrel et al. [10] restated the separation of
bipartition inequalities as a mazimum ratio cut problem that is defined as follows

Maximi W) =
aximize p(W)

and derived approximate solutions using a variable-depth local search heuristic.

A different heuristic strategy for generating bipartition inequalities was implemented by Mrad and Haouari
[24]. This strategy requires solving K maximum flow problems.
2.3.0.1. Reformulation of Model (MI) Model (MI) can be slightly restated as follows. First, we observe that

if the metric inequality
L. K
D A ufyf = drpi(V),
k=1

ecE =1
holds for some vector A € R, then it is also valid for vector X' = m)\ and wvice-versa. Consequently, we
ecE .
shall restrict the set of multipliers to the hypercube [0, 1]™.
Second, we set 1, = pj(A) for each A € [0,1]™. Hence, n, = min‘P l)\taf (recall that a® denotes the
r=1,..,| Py
incidence vector of a path from si to tp,k=1,...,K,r =1,...,|P|). Thus, we have

e < Zaerk/\ea Vr = 1a-~'7|Pk"
ecl

Therefore, the metric inequality (2.14) shall be restated as follows

L. K
DoAY ufyi =Y dim, (2.17)
k=1

eckE =1
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where (A, 7) are points of the polyhedron Ay defined by

nkfzaerkAe <0, V7ﬁ:1a---a|13k|7
ecE

0<A<1,Ve€E.

Define IIj;, as the set of extreme points of Ag. We observe that if (2.17) holds for any extreme point of Ay then
it holds for any point of Aj. Therefore, constraint (2.14) can be replaced by the following inequality

L. K
Z)\ezuleyle > denlw V(Aank) € Hka k= 13 teey K. (218)
ecE =1 k=1

Fact 2: Model (MI) is equivalent to a Benders reformulation of Model (PF).
Proof. See Costa [9] and Mrad and Haouari [24]. O
Consequently, Benders cuts are equivalent to metric inequalities.

2.4. Generation of violated metric cuts

To solve Model (MI), we use a constraint generation approach, where violated metric cuts are added on
the fly until no violated cut is found. More precisely, starting from an initial relaxed master program (RMP)
(this initialization process shall be described in Sect. 4.1), we solve it using a general-purpose solver and derive
a solution gy . Next, we check whether the installed capacities allow to simultaneously route all the required
commodity flow demands. Actually, a necessary and sufficient condition that g is feasible is that the following
problem

SPF(9): h(g) = Minimize ) e, (2.19)
ecE
subject to: (2.12),
| Py |
> 2k =dy, Vk=1,...,K, (2.20)
r=1
K |Pk| Le
ZZ%N@ZT e < Uiy, Vee E, (2.21)
k=1r=1 1=1
€e >0, Ve e E, (2.22)

exhibits a zero objective, where €., e € F, is a continuous nonnegative variable that expresses the unrouted
demand on edge e, e € E. Thus, we solve SPF(g) which allows to generate a violated metric cut, if any, or to
prove the optimality of solution §. This process is repeated until an optimal solution is found.

Since SPF(3) includes an exponentially large number of variables, a column generation algorithm is invoked
for its exact solution. For each commodity k, £k = 1,..., K, the reduced cost §,; of a path r, r € P can be
written as follows:

Ok = Zaerk/\e_nkv Vk=1,...,K,Vr € B. (2.23)
ecE

The reduced cost of a path in (2.23) can be derived by associating to each arc (¢,j) € A a cost ¢;; = A\jj =
Aji = Ae, € = {i,j} € E. Hence, the pricing subproblem reduces to a sequence of shortest path problems,
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one for each commodity k,k = 1,..., K , over digraph B. These subproblems can be efficiently solved using
Dijkstra algorithm since all the arc costs are nonnegative. The solution to these pricing subproblems provides
a set of columns that are added to the subproblem if they have negative reduced costs. The column generation
algorithm iterates until no negative reduced cost column exists. Optimal primal and dual solutions (¢*, z*) and
(n*, A*) to subproblem SPF(7) are thus obtained and a violated metric cut is identified if the objective function
has a non-zero value (i.e., h(g) > 0).

By duality, we have

K Le
h(G) = Y dinp — Y ALY _ufii- (2.24)
k=1 ccE  1=1
Thus, the design variable § is feasible for (PF) if and only if the inequality
L. K
DoAY Supyi = Y dui (2.25)
ecE =1 k=1

holds. This metric cut is then appended to the relaxed master program when violated.

3. BIPARTITION INEQUALITIES

Polyhedral properties of Network Design Problem formulations have been received extensive attention in the
literature (e.g., [5,15,26]). More precisely, Chouman et al. [7]) have proposed five classes of valid inequalities
for the special case where a single facility and a per unit cost are considered on each edge.

To accelerate the convergence of the proposed constraint-generation approach, we generate multiple biparti-
tion inequalities based on an original exact separation procedure. By contrast to previous authors [10,24], we
propose to solve an exact separation problem of the bipartition inequalities.

3.1. Exact separation of bipartition inequalities

Given a solution to the relaxed master program ¢, we derive the most violated bipartition inequality (2.15)
by solving an appropriate 0-1 linear program. This program aims at finding a subset W C V such that d(W)—
L

> iufg}f is maximal. Toward this end, we define the following decision variables:
e€s(W)l=1

— «; = 1 if node i is selected in the subset W, and 0 otherwise, i € V,
— Be =1 if edge e is selected in the cutset §(W), and 0 otherwise, e € E,
— ¢k = 1 if the flow demand between s and tj crosses the cutset §(W), and 0 otherwise, k = 1,... K.

The separation problem reads as follows:

SB()): g(§) = Maximize 3> gy — 3 .0, (3.1)
k=1 c€E
subject to:
Vi — g, —ay, <0, Vk=1,...,K, (3.2)
Ok + as, +ay, <2, Vk=1,...,K, (3.3)
Be —o; —ay <0, Ve=1{i,j} € E, (3.4)
Be + i +aj <2, Ve ={i,j} € E, (3.5)
Be — |a; — a;| >0, Ve=1{i,j} € E, (3.6)
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ay =1, (3.7)
dai<n-1, (3.8)
eV

a; € {0,1}, VieV, (3.9)

8. €{0,1}, VeecE, (3.10)

ern € {01}, Vk=1,... K, (3.11

Le
where @, = D> ufys is the installed capacity on edge e € E.
=1

The objective function (3.1) maximizes the difference between the total flow that crosses the cutset and the
installed cutset capacity. Constraints (3.2) and (3.3) require, for each commodity &, that if flow demand between
sk and ty crosses the cutset (that is, ¢ = 1) then either the source node sj or the sink node ¢; (but not both
of them) belongs to W (that is, a5, + ¢, = 1). Constraints (3.4)—(3.6) express similar relations between an
edge e € E and its adjacent nodes. Indeed, for each edge e = {i,j} € E, if nodes ¢ and j are both in subset
W (W) then o; + aj = 0 (a; + aj = 2), and constraints (3.4) (respectively (3.5)) prevent edge e to be in the
cutset (3. = 0). Otherwise, nodes i and j are in different subsets (i.e., (i € W and j € W) or (i € W and j €
W)) then, o; + o; = 1, and constraints (3.4) and (3.5) together with constraints (3.6) enforce edge e to be in
the cutset (8. = 1). Constraint (3.7) breaks symmetry by setting node 1 in subset W (and thereby reducing
the set of feasible solutions). Relation (3.8) enforces W to be a proper subset of V. Finally, (3.8)—(3.10) are the
integrality constraints.

Clearly, constraints (3.6) can be linearized as follows:

a,—aj+0.>0, Ve={ij}eFE, (3.12)
a,—o;—f. <0, Ve={ij}ekE. (3.13)

The obtained separation problem can be solved using a general-purpose MIP solver.

For a specific solution ¢, when the optimal solution has a nonnegative value (i.e., g(g) > 0), a new constraint
that corresponds to the most violated bipartition inequality (2.16) is derived and appended to the relaxed master
program.

In our computational experiments, we found that this separation problem can be very quickly solved using a
general purpose solver.

3.2. Multiple generation of bipartition inequalities

In addition to the generation of the most violated bipartition inequality, we included a procedure that allows
the multiple generation of violated inequalities. Indeed, given a solution g of the relaxed master program, and
after identifying the most violated bipartition inequality, additional violated bipartition inequalities can be
derived by iteratively updating y and solving again the exact separation problem, until no violated constraint
exists. More precisely, assume that the most violated bipartition inequality is induced by the node set W and

L.
that d(W) < > > ufgf. Then, a new solution g"°V can by derived from g by setting g2°v = g, for all
ees(W)l=1
e € E\ §(W), and computing the values of g2V for e € 6(W) by solving the following 0-1 knapsack-type
problem.

L.
KP(W): Minimize > Y ffyf (3.14)
ecs(W)l=1
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subject to:

L.
Sy <, Ve € 5(W), (3.15)
=1

Le
> ufyp = d(w), (3.16)

ecd(W)l=1
ye € {0,1}, Veed(W),Vi=1,...,Le. (3.17)

This problem requires selecting a minimum-cost subset of edges in §(W), such that at most one facility is
selected for each edge and the cutset capacity is larger than or equal to the total demand. In other words, gLV is
derived from § by making feasible the capacity of the cutset 6(W') at a minimum cost. Next, the exact separation
problem can be solved for the updated solution y2°¥ and a new violated bipartition inequality, that is induced
by a node set WV can be derived and appended to the relaxed master program. Again, a new knapsack-type
problem KP(W"?") is solved and the process is reiterated until no violated bipartition inequality is found. In
so doing, starting from any solution of the relaxed master program, multiple bipartition inequalities are derived
and appended to the relaxed master program.

4. THE OVERALL APPROACH

In this section, we begin by detailing how we initialized the relaxed master program, then, we summarize the
overall proposed approach.

4.1. Initialization of the relaxed master program

It is well-documented in the network design literature that adding initial valid inequalities to the relaxed
master program is an effective strategy for accelerating the constraint generation process (see, e.g., [9,20]).
Following Mrad and Haouari [24], we implemented two simple (yet effective) valid inequalities that enforce
installing a non-empty set of facilities and thereby prevent the initial zero optimal solution of the master
problem.

The first constraint (VI1) enforces the connectivity of the graph that is induced by any feasible solution as

follows.
L
S>> wizn-1. (4.1)
eckEl=1
The second valid inequalities (VI2) are bipartition inequalities that are generated as follows. For each com-
modity k, k =1,..., K, at the first iteration, set W contains only the source node si. Then, at each iteration,

set W is expanded by adding its adjacent nodes, until reaching the sink node t;. For each set W, a cut is
identified and a corresponding bipartition inequality (2.15) is derived.

4.2. Synthesis of the constraint-generation approach

A synthesis of the overall proposed approach is given below:

Step 0: Initialization
1.1 Input a MNOP-SCF instance defined on an undirected graph G.
1.2 Initialize the relaxed master program (RMP;) with the valid
inequalities VI1 and VI2 that are described in Section 4.1. Set t = 1.
Step 1: Solution of the relaxed master program
Solve Model RMP;. Let §; be an optimal solution.
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Step 2: Exact separation of a bipartition inequality
2.1 Solve Model SB(#;) defined by (3.1)—(3.11).
Let §(W;) be the optimal cutset.
2.2 If (g(9:) < 0) then Go to Step 4.
2.3 Append to RMP; the bipartition inequality that is induced by §(W;).
Step 3: Generation of additional bipartition inequalities
3.1 Solve Model K P(W;) defined by (3.14)—(3.17).
Let ™V be an optimal solution.
3.2 Solve Model SB(y™") defined by (3.1)—(3.11).
Let §(W™*%) be the optimal cutset.
3.3 If (g(y™™) < 0) then Set t — ¢t + 1, Go to Step 1.
3.4 Append to RMP; the bipartition inequality that is induced by §(W™eW).
3.5 Set W; «— W% Go to Step 3.1.
Step 4: Exact separation of a metric inequality
4.1 Solve Model SPF(§;) defined by (2.19)—(2.22)
using column-generation. Let (A!,n') denote the optimal dual solution.
4.2 Tf (h(g:) < 0) then Output g; as optimal solution. Stop.
4.3 Append to RMP; the metric inequality (2.25) that is induced by (A, 7).
4.4 Set t — t+ 1, Go to Step 1.

5. COMPUTATIONAL RESULTS

To assess the empirical performance of the proposed constraint generation based approach, we conducted
three sets of experiments. The first of these investigates the effectiveness of the proposed approach in terms of
required computational effort to solve different sets of instances. For the second set of experiments, we analyze
the impact of the new generated bipartition inequalities. Finally, in a third set of experiments, we examine the
performance of the proposed approach on the Network Loading Problem.

Toward this end, we implemented all the algorithms using C# language in concert with the commercial MIP
solver CPLEX (version 12.5). All the computational experiments were carried out on an ¢7 dual core 2.4 GHz
Personal Computer with 12.0 GB RAM. It is worthy mentioning that the datasets used in the experimentation
are freely available at [18].

5.1. Performance of the proposed approach

The objective of the first set of experiments is to test the performance of the proposed approach on large
instances and to compare it to previous works. For that aim, we conducted computational experiments on three
test-beds of instances. The first one consists of 40 instances that were randomly generated using Mrad and
Haouari’s MNOP-SCF instances generator described in Mrad and Haouari [24]. These instances have different
sizes ranging from 10 to 100 nodes, and from 15 to 1000 edges. For all instances, commodities between all pair
of nodes should be routed (i.e., K = @) and the number of available facility types is L. = 3, for each edge
e € E. The results are summarized in Table 1. For each instance, we provided the value of the optimal solution
(Sol), the required total CPU time in seconds (Time (s)), the percentage of CPU time spent in Step i of the
overall approach described in Section 4.2 (Primesi), ¢ = 1,...,4, the number of Metric Inequalities (MI), and
the number of Bipartition Inequalities (BI).

We see from Table 1 that instances having up to 100 nodes and 600 edges are exactly solved, and that the
average CPU time is 32.52min and the maximum CPU time is 2h 40 min. It is noteworthy that the column
generation procedure is consuming an average of 56.4% of the total CPU time. In addition, we observe that
the overall approach provides optimal solutions for all instances with up to 85 nodes and 430 edges within
less than 1h of CPU time. These results show that our approach is competitive with previous state-of-the-art
procedures. Indeed, to the best of our knowledge, the solution of such large instances has never been reported
in the literature. Compared to the work of Mrad and Haouari [24], their exact constraint generation approach
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TABLE 1. Performance of the proposed approach on Mrad and Haouari’s MNOP-SCF instances.

Inst. n m K Sol Time ()  Primest  Primes2  Primess  Primessa MI  BI
MHO01 10 15 45 1215 2.76 34.42% 10.87% 6.52% 48.19% 0 16
MHO02 15 20 105 2444 3.50 15.14% 6.00% 2.57% 76.29% 0 10
MHO03 15 25 105 3187 2.44 32.38% 19.26% 9.84% 38.52% 0 6
MHO04 15 30 105 3481 1.87 29.95% 17.65% 10.70% 41.71% 0 5
MHO5 30 60 435 16 445 13.29 29.27% 18.43% 8.50% 43.79% 0 13
MHO06 35 70 595 28142 17.20 39.30% 5.29% 2.15% 53.26% 0 7
MHO7 45 80 990 43032 82.56 24.99% 5.92% 2.79% 66.30% 0 36
MHO08 50 90 1225 55820 87.58 35.61% 0.53% 0.15% 63.71% 0 11
MHO09 50 100 1225 59671 105.57 36.84% 15.64% 8.68% 38.85% 0 28
MH10 50 400 1225 59466 246.08 31.94% 7.34% 3.86% 56.86% 0 6
MHI11 55 230 1485 72572 719.49 34.71% 2.66% 0.77% 61.86% 0 30
MH12 55 240 1485 66930 224.79 40.91% 3.66% 2.38% 53.05% 0 8
MH13 55 250 1485 81741 231.79 21.81% 6.82% 4.09% 67.29% 0 5
MH14 55 450 1485 89516 382.11 25.56% 3.59% 2.24% 68.61% 0 5
MH15 60 260 1770 157019 328.93 38.11% 5.36% 2.61% 54.05% 0 10
MH16 60 280 1770 141989 791.77 41.50% 3.00% 0.24% 55.26% 0 31
MH17 60 600 1770 112325 700.42 31.30% 2.23% 1.66% 64.81% 0 15
MH18 65 290 2080 214 355 695.08 33.95% 1.62% 1.26% 63.17% 0 22
MH19 65 300 2080 229260 593.76 30.36% 2.42% 1.82% 65.41% 0 18
MH20 65 310 2080 186 004 657.66 33.65% 2.49% 1.72% 62.14% 0 9
MH21 65 700 2080 133474 1200.66 44.60% 1.83% 1.18% 52.39% 0 6
MH22 70 330 2415 258 516 905.43 36.33% 2.19% 1.95% 59.53% 0 7
MH23 70 750 2415 213193 2000.54 49.37% 1.66% 1.34% 47.63% 0 20
MH24 75 360 2775 359943 1620.09 49.15% 1.63% 1.26% 47.96% 0 25
MH25 75 370 2775 388775 1300.90 44.96% 2.29% 1.96% 50.79% 0 5
MH26 75 800 2775 238880 2800.05 35.01% 1.58% 1.32% 62.09% 0 5
MH27 80 380 3160 397327 2284.39 33.69% 1.54% 1.03% 63.74% 0 13
MH28 80 390 3160 438138 2003.37 49.93% 1.29% 0.67% 48.11% 0 8
MH29 80 400 3160 429075 1949.44 49.54% 2.14% 1.37% 46.94% 0 19
MH30 80 950 3160 321676 3400.20 39.29% 0.88% 0.55% 59.28% 0 9
MH31 85 410 3570 488589 2841.34 36.00% 2.66% 1.36% 59.97% 0 31
MH32 85 420 3570 470112 3232.38 46.09% 2.93% 1.14% 49.85% 0 14
MH33 85 430 3570 478810 3047.78 52.28% 2.52% 0.39% 44.81% 0 27
MH34 85 1000 3570 381612 4811.62 39.05% 1.23% 1.01% 58.70% 0 19
MH35 90 440 4005 551247 3867.81 46.37% 2.83% 1.68% 49.12% 0 29
MH36 90 450 4005 748934 3600.79 31.11% 1.92% 0.92% 66.06% 0 14
MH37 90 460 4005 754492 3843.91 32.75% 2.03% 0.91% 64.31% 0 35
MH38 100 300 4950 1063958  9059.9 32.76% 2.04% 2.86% 62.34% 0 147
MH39 100 500 4950 959200 8813.58 34.21% 1.01% 0.72% 64.07% 0 23
MH40 100 600 4950 826168 9581.02 40.36% 2.69% 1.05% 55.90% 0 27

is limited to solve instances having up to 50 nodes and 100 edges with 2 instances remained unsolved after one
hour of CPU time.

The second test-bed comprises 7 instances of Gabrel and Minoux [12] that were solved optimally by Gabrel
et al. [10] and already tested in previous works [1,11]. For these instances, the numbers of nodes and edges
range from 15 to 20 and from 26 to 37 respectively. As in the first set of instances, the number of commodities is
K= @ However, more facilities are available, reaching 8 facility types for each edge. Table 2 displays the
computational results of this test-bed. Column Time G (s) denotes the CPU time in seconds reported by Gabrel
et al. [11] using a Sun UltraSparc 10. Column Time G (s) denotes the CPU time in seconds required by our
approach’s code run on a virtual machine with the same characteristics. Columns Time (s), MI and BI present
the CPU time in seconds, the number of Metric Inequalities and the number of Bipartition Inequalities obtained
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TABLE 2. Performance of the proposed approach on Gabrel et al.’s MNOP-SCF instances.

Inst. n m K Sol TimeG(s) TimeV (s) Time (s) MI BI

rmlb; 15 26 105 401 207 126 40 0 28
rnlde 15 26 105 646 467 292 20 0 92
rnlsy 15 27 105 678 1041 457 30 0 45
20y 20 35 190 884 10799 931 47 0 45
rn20;0 20 34 190 977 1235 617 229 0 181
m2022 20 37 190 799 49478 11893 1401 0 252
m20¢1 20 35 190 785 5994 252 20 0 29

TABLE 3. Performance of the proposed approach on SNLib MNOP-SCF instances.

Inst. N m K Sol Time (s) MI BI
Pdh_sndlib 11 34 24 11233089 103.66 0 231
Yuan 11 42 22 656 600 198.67 0 169
nobel_us_sndlib 14 21 91 260 234.08 0 248
nobel_germany_sndlib 17 26 121 320 60.46 0 65

by our approach, respectively. Taking into account the difference between computers speeds, we observe from
Table 2 that our approach outperforms Gabrel et al.’s algorithm in terms of CPU time effort.

The third test-bed is composed of 4 instances derived from the Survivable Network Design Library (SNDIib
[25]). These instances have fewer commodities to route compared with the two previous test-beds, ranging from
22 to 121. The corresponding networks have between 11 and 17 nodes, and 21 and 42 edges. Table 3 illustrates
the results of our proposed approach. All the instances are solved to optimality within an average CPU time of
149.22 seconds.

From Tables 1-3, we notice that our approach generates a reasonable number of Bipartition Inequalities
that allow deriving optimal solutions without requiring metric inequalities (MI = 0). This point will be further
discussed in Section 5.2.

In order to highlight the performance of our approach using path-based model (PF), we implemented a
basic Benders decomposition procedure with the widely used arc flow model (AF), where the restricted master
problem and the subproblem are solved by CPLEX (version 12.5). We compared the two approaches on 10
instances of the first test-bed and displayed their results in Table 4. Columns Time (s) and Time ratio present
the arc flow basic approach CPU time in seconds and its ratio over our proposed approach CPU time (indicated
in Table 1), respectively. Not surprisingly, the arc flow based approach lags far behind our procedure and fails
to solve instances beyond 30 nodes. It is worthy to mention that solving the commonly used arc flow model
(AF) using straightly the general MIP solver CPLEX (version 12.5) as well as the aforementioned basic Benders
decomposition procedure fail to solve all instances of Table 3 within 1h of CPU Time.

5.2. Impact of bipartition inequalities

The objective of this second set of experiments is to assess the impact of the new bipartition inequalities on the
performance of the proposed procedure. For that aim, we considered Mrad and Haouari’s MNOP-SCF instances.
We first dropped all the proposed bipartition inequalities and tested the obtained basic variant. The results
obtained within 1h of CPU time are displayed in Table 5. For each instance, it indicates the solution obtained
by the basic variant (Sol), and its gap to the optimal solution (Gap (%)). The last three columns provide the
number of Metric Inequalities (MI) generated by the basic variant, its CPU time in seconds (T'ime(s)) and the
ratio of this time over the complete proposed approach CPU time (Time ratio).
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TABLE 4. Performance of the arc flow formulation on Mrad and Haouari’s MNOP-SCF instances.

Inst. Sol Time (s) Time ratio
MHO01 1215 1.95 0.70
MHO02 2444 8.58 2.45
MHO03 3187  35.07 14.37
MHO04 3481 109.73 58.67
MHO05* - - -
MHO06* — - -
MHO7* - - -
MHO08* — - -
MHO09* - - -
MH10* - - -

Notes. *)No feasible solution has been obtained.

TABLE 5. Performance of the variant without bipartition inequalities (maximum CPU time =1h).

Inst. Sol Gap (%) MI Time(s) Time ratio
MHO01 1215 0.00 9 10.9 3.94
MHO02 2444 0.00 39 183.31 52.37
MHO03 3187 0.00 31 217.76 89.24
MHO04 3481 0.00 45  1051.67  562.39
MHO05 16106 2.06 26 >3600 -
MHO06 27705 1.55 23 >3600 -
MHO7 41112 4.46 13 >3600 -
MHO08 54899 1.65 8 >3600 -
MHO09 57976 2.84 8 >3600 -
MH10 59466 0.00 4 >3600 -
MH11 72064 0.70 5 >3600 -
MH12 66930 0.00 4 >3600 -
MH13 81126 0.75 3 >3600 -
MH14 89516 0.00 3 >3600 -
MH15 156137 0.56 1 >3600 -
MH16 141029 0.68 3 >3600 -
MH17 112325 0.00 2 >3600 -
MH18 211946 1.12 3 >3600 -
MH19 224302 2.16 2 >3600 -
MH20 186004 0.00 3 >3600 -

Table 5 illustrates the effectiveness of the new cutset inequalities. Indeed, it shows that, within the time
limit, the basic variant provides the optimality proof for only 4 over the 20 instances and approximate solutions
that are within 1.7% of the optimal values in average are derived for the other instances. These latter instances
remain unsolved after several hours of computing. This yields to decline the insight that the performance of the
proposed approach is due to the path based formulation suggested from Table 4 results.

Interestingly, Table 5 shows that only few metric inequalities were appended to the relaxed master program
for instances with more than 50 nodes within the time limit of 1h. It confirms that their generation process is
time consuming within the overall procedure.

Moreover, we tested the proposed constraint generation approach with the exact separation of the most
violated bipartition inequalities, but without appending additional cuts generated by the knapsack heuristic
(discussed in Section 3.2). The results obtained by this augmented variant within 1h of CPU time are displayed
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TABLE 6. Performance of the variant without multiple bipartition inequalities generation (max-
imum CPU time=1h).

Inst. Sol Gap (%) MI Bl  Time(s) Time ratio
MHO1 1215 0.00 4 4.97 1.80
MHO02 2444 0.00 8 7.73 2.21
MHO03 3187 0.00 6 3.25 1.33
MHO04 3481 0.00 5 4.66 2.49

MHO05 16445 0.00
MHO06 28142 0.00
MHO07 43032 0.00
MHO08 55820 0.00
MHO09 59671 0.00
MH10 59466 0.00
MH11 72572* 0.00
MH12 66930 0.00
MH13 81741 0.00
MH14 89516 0.00
MH15 157019 0.00
MH16 141989 0.00
MH17 112325*% 0.00
MH18 214355% 0.00
MH19 229260* 0.00
MH20 186 004 0.00

13 32.33 2.43
7 76.94 4.47
54 954.57 11.56
16 847.84 9.68
49 2316.95  21.95
813.1 3.30
161 >3600 -

5 2036.99  9.06
5 706.23 3.05
5 618.4 1.62
11 1679.71  5.11
31 3539.34  4.47
18 >3600 -

31 >3600 -

17 >3600 -

8 2745.31  4.17

OO OO OO OO OOOOC OO
(=)}

Notes. (*)Optimality was not proved after 1h CPU time.

in Table 6. For each instance, it indicates the obtained solution (Sol), the gap to the optimal solution (Gap(%)),
the number of Metric Inequalities (M1T) the number of Bipartition Inequalities (BI), the CPU time in seconds
(Time(s)) and the ratio of this time over the complete proposed approach CPU time (Time ratio).

Table 6 indicates that augmenting the relaxed master program with only the most violated cuts allows to
derive optimal solutions for 16 out of the 20 instances, without generating any metric inequality. For the four
remained instances, this augmented variant yields to optimal solution but without optimality proof. Further-
more, we observe that bipartition inequalities derived from knapsack heuristics positively impacts the overall
efficacy of the proposed approach. Indeed, these additional inequalities enhance the performance of the overall
procedure and make it 5.51 times faster in average.

5.3. Performance on the network loading problem

The last set of experiments examines the performance of the proposed approach on Network Loading Problem
instances. As the NLP requires finding minimum cost integer facilities that allows simultaneous routing all the
point-to-point demands without exceeding any of the installed capacities, then we adopt the proposed approach
by mainly considering y integer variables in the path-based model (PF) and replacing constraints (2.11) by

K | Pl

ZZaersz <., Ve e E. (5.1)

k=1r=1

The numerical experiments, summarized in Table 7, were carried on a set of network topologies extracted from
the Survivable Network Design Library (SNDIib [25]). These instances are similar to those already tested by
Mattia [21]. We observe from this table, that the proposed approach still exhibit a good performance, being
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TABLE 7. Performance of the proposed approach on NLP instances.

Inst. n m K Sol MI BI  Time (s)
New York 16 49 54 4 516400 0 5 3.57
France 25 45 300 22200%* 1 73 >3600
Norway 27 51 210 960430 0 8 6.33
Nobel-eu 28 41 378 1426 800 0 414 130.55
Cost266 37 57 1244 15359400* 1 811  >3600

Notes. *)Optimality was not proved after 1h CPU time.

able to solve exactly medium-size instances within a reasonable CPU effort. Indeed, 3 out of 5 instances are
solved to optimality in an average time of 46.8 seconds and without generating any metric inequality.

6. CONCLUSION

In this paper, we addressed the Multicommodity Network Optimization Problem with a Step Cost Function.
This challenging problem has a wealth of pertinence to many areas including telecommunications, transporta-
tion, and logistics. We presented an exact separation model that generates the most violated cutest inequalities
as well as a knapsack-based problem that derives additional cuts. The obtained inequalities where embedded
in a cut generation-based approach that enabled to solve instances with up to 100 nodes, 600 edges, and 4950
commodities within less than 2h 40 min of CPU time, while in the literature, the best developed approaches
are limited to the optimal solution of instances with 50 nodes, 100 edges, and 1225 commodities.

As a direction for future research, we recommend investigating the nonbifurcated variant of the MNOP-SCF
where commodities are routed along single paths. A valid formulation for this variant can readily be derived
from Model (PF) and reads as follows:

L.
(NB): Minimize ) > ffyf (6.1)
ecEl=1
subject to: (2.2),(2.6),
| P
> 2k =1, VE=1,...,K, (6.2)
r=1
K | Pyl L
SO acrndizt <Y ufyi,  Ve€E, (6.3)
k=1r=1 =1
zk e {0,1}, Vk=1,...,K, r € P, (6.4)

where zF is a binary variable that takes value 1 if path r € Py is used for routing all the demands of commodity

k, and 0 otherwise (k = 1,...,K). Clearly, this model can be strengthened by appending the bipartition
inequalities (2.15). Hence, the resulting model includes an exponential number of variables and constraints. It
would be interesting solving it using a branch-and-cut-and-price approach, where bipartition inequalities are
generated using the proposed exact model. Whether this sophisticated implementation would prove effective
remains an open question.
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