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STRATEGIC BEHAVIOR IN THE CONSTANT RETRIAL QUEUE WITH A
SINGLE VACATION

YU ZHANG

Abstract. We study customers’ joining strategies in an M/M/1 constant retrial queue with a single
vacation. There is no waiting space in front of the server and a vacation is triggered when the system
is empty. If an arriving customer finds the server idle, he occupies the server immediately. Otherwise,
if the server is found unavailable, the customer enters a retrial pool called orbit with infinite capacity
and becomes a repeated customer. According to the different information provided for customers, we
consider two situations, where we investigate system characteristics and customers’ joining or balk
decisions based on a linear reward-cost structure. Furthermore, we establish the social welfare of the
system and make comparisons between the two information levels. It is found that there exist thresholds
of system parameters such that the social planner would prefer revealing more information when the
system parameter is greater than or less than the corresponding threshold.
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1. INTRODUCTION

In daily life, customers are natural to respond strategically to the service delay by deciding whether to join
the service systems or not, aiming to maximize their individual utility. During the past decades, equilibrium
analysis for queueing systems taking customers’ joining and balking decisions into consideration has been paid
significant attention, which applies to e-commerce and management in service systems. Initially, Naor [15]
studied an observable M/M/1 queue with a simple linear reward-cost function where arriving customers are
informed about the number of customers waiting in the queue, and based on that customers make their decisions
on whether to join the system or to balk. In this seminal paper, both the individual equilibrium strategy and
socially optimal strategy were investigated. Edelson and Hilderbrand [7] complemented Naor’s study by studying
the unobservable case with no information revealed to customers. From then on, there has been a growing volume
of literature regarding equilibrium analysis, and the fundamental problem is to identify customers’ equilibrium
strategy and socially optimal strategy. The comprehensive monographs by Hassin [12], and Hassin and Haviv
[13] summarized the main approaches and results on this topic. Interested readers can refer to them for more
details.
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In the literature, there are some works considering individual equilibrium joining and balking behavior in
queueing systems with retrials, which is rather common in industrial engineering, communication systems and
business management etc. In such systems, an arriving customer is served immediately if the server is available.
Otherwise, if the server is found busy, the customer has to retry after some random time. For the classical
M/M/1 retrial queue, the retrial rate of the orbit is proportional to the number of customers in the orbit. The
equilibrium and socially optimal balking strategies were investigated for a classical M/M/1 retrial queue in
Wang and Zhang [22]. To model a local area networking system, Wang and Zhang [23] studied a retrial queue
with delayed vacations and the optimal pricing issues were discussed. Zhang et al. [28] gave the optimal pricing
strategies in retrial queueing systems with two servers who provide complementary services. Taking the power
consumption into consideration, Zhang and Wang [29] built an M/G/1 retrial queue with reserved idle time
and setup time. The optimal reserved idle time was investigated. When the retrial rate is constant, Economou
and Kanta [5] studied an M/M/1 constant retrial queue where customers’ equilibrium strategy, social and
profit maximization problems were considered under two information levels. When the server may break down
at working states, Zhang et al. [26] investigated the partially observable case and fully observable case. Wang
et al. [24] studied the situation where there are two types of customers, i.e., primary customers and negative
customers. An arriving negative customer causes the failure of server and the primary customer being served is
then deleted. Recently, Wang et al. [25] proceeded the equilibrium analysis for an M /M /1 constant retrial queue
with N-policy. With the N-policy, the server is shut down when the system is empty and turned on again when
there are at least N customers in the system. Chapter 6 of Hassin [13] gives a detailed summary for equilibrium
analysis of retrial queueing systems. As for some discussions of retrial models and methods, interested readers
are referred to Artalejo and Gémez-Corral [2], and Falin and Templeton [8].

This paper aims to study customers’ strategic behavior in an M/M/1 constant retrial queue with a single
vacation policy. Vacation policies (summarized in Tian and Zhang [20]) apply to the situation where the server
is unavailable to customers for some occasional periods of time. During such periods of time, the server may
take up some other work, such as maintenance work, scanning for viruses and serving secondary customers etc.
Queueing systems with server vacations are often used to model the process of many production, computer
and communication systems. The vacation of server leads to the unavailability of the service, and consequently
increases customers’ waiting time and the complexity of the analysis for customers’ equilibrium joining strategies.
For this reason, queueing systems with a vacation policy have been investigated for decades. Among them, there
are mainly four kinds of vacation policy; that is, single vacation policy (e.g. see [14]), multiple vacation policy
(e.g. see [3] and [16] for the Markovian case, and see [6] for the non-Markovian case), N-vacation policy (e.g.
see [9]-[11], [21]) and working vacation policy (e.g. see [17]-[19] and [27]). However, all these works are devoted
to queueing systems without retrials. To the best of our knowledge, the only work taking customers’ retrial
and server’s vacation into consideration is Do et al. [4] which studied customers’ joining or balk decision in an
M/M/1 constant retrial queue under the working vacation policy. In this paper, we assume the server takes
a vacation once there is no customer in the system and the vacation ends after a period of time following an
Exponential distribution; that is, our analysis is under a single vacation policy.

There is clearly a practical situation that motivates us to study the system described. For example, a firm has a
production facility which is mainly operated in a “produce to order” mode in a competitive market environment.
If the production facility is idle upon a customer’s arrival, this customer can be served immediately. Otherwise, if
the production facility is found unavailable, this customer will try to access it some time later. Customers decide
whether or not to place their orders with this firm based on either the lead time (wait time) and production
facility status (fully observable case) or long-term lead time statistics when the facility is unavailable (almost
unobservable case). While processing the customer orders is the top priority, the manager also wants to reduce
the idle time of the production facility which can be expensive, and take up some maintenance work after
processing the orders. Such a production model can be characterized by retrial queueing systems with a single
vacation policy. Although the firm can reduce the idle time and improve the utilization of the production facility
with such a vacation policy, it may still want to maximize the social welfare of customers placing orders. Thus, to
maximize the social welfare of customers who can decide to place an order under different information scenarios,
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one important issue is which information scenario is more profitable for the social planner. To gain insights into
the effects of information, we consider an M /M /1 constant retrial queue with a single vacation policy. We derive
customers’ equilibrium joining strategies that offer the insights to this issue.

In summary, in addition to the modelling contribution to the queueing-game literature, our paper contains
the following findings: (i) We study customers’ equilibrium joining strategies under two information levels, i.e.,
the almost unobservable case and fully observable case. In the almost unobservable case, arriving customers are
only informed whether the server is idle or not, and we obtain customers’ equilibrium joining strategy, which is
either a pure strategy (join or balk) or a mixed strategy (join with a certain probability). In the fully observable
case, both the server’s state and the number of customers in the orbit are communicated to the customers
upon arrival. In this situation, when the server is unavailable, there exists an optimal joining threshold policy
such that a customer chooses to join if the queue length (i.e., the number of customers in the orbit) is less
than the threshold. In addition, when customers follow the equilibrium policy, some system characteristics and
the social welfare of the system are given. (ii) Through numerical examples, we compare the two information
levels in terms of social welfare. We find there exist thresholds of arrival rate, service rate, retrial rate and
completion rate of the vacation such that the fully observable case benefits the social planner more than the
almost unobservable case when the system parameter is beyond or below the corresponding threshold.

The rest of the paper is organized as follows. In Section 2, we give a detailed description of the model. In
Section 3, we investigate customers’ equilibrium behavior in the almost unobservable case and fully observable
case and the social welfare in each case is established. In Section 4, numerical examples are illustrated to examine
the effects of system parameters on customers’ equilibrium strategy and we compare the two information levels
to indicate which case is better from the perspective of the social planner. Finally, a brief conclusion is given in
Section 5.

2. DESCRIPTION OF THE MODEL

We consider an M/M/1 retrial queueing system with a single vacation policy. We assume customers arrive
according to a Poisson process with rate A and the service times are exponentially distributed with rate p. If an
arriving customer finds the server idle, he occupies the server immediately and starts being served; otherwise, if
the server is unavailable upon a customer’s arrival, this customer goes into a retrial pool with infinite capacity
and becomes a repeated customer. The service discipline for customers in the retrial orbit is first-come-first-
served (FCFS); that is, only the customer at the head of the orbit queue can repeat his request for service, which
is common in literature, e.g. see [5], [26]. The inter-retrial times of customers follow an Exponential distribution
with rate 6 and the customer at the head of orbit queue continues to retry until he receives his requested service,
after which, he leaves the system. Further, when the server finishes serving a customer and finds the system
empty, it leaves for a vacation and the vacation time follows an Exponential distribution with rate «. After a
vacation, the server stays idle to wait for customers arriving from outside or retrying successfully from the orbit.

Denote I(t) as the server’s state at time ¢t. The events I(t) = 0,1,2 correspond to the server is idle, busy
and on vacation, respectively. Let N(¢) be the number of customers in the orbit at time ¢, then the process
{I(t),N(t):t >0} is a two dimensional continuous-time Markov chain with state space {0, 1,2} x {0,1,2,...}
and non-zero transition rates as follows:

q00,i)(1,) = A i>0
q(0,i)(1,i-1) = 0, 12>1
41,5 (1,i+1) = A 12>0

4(1,0)(2,0) = M

q(1,)(0,i) = M 1>1

4(2,i)(0,i) = &, 12>0
4(2,i)(2,i+1) = A 1> 0.
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FIGURE 1. The transition rate diagram.
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FIGURE 2. The transition rate diagram in the almost unobservable case.

The corresponding transition rate diagram is illustrated in Figure 1.

Assume each customer receives a service reward R, which reflects the added value of being served or his
satisfaction towards service, and a waiting cost C' is incurred when customers remain in the system. Upon
arrival, each customer decides whether to join the system or not according to the different information provided
for him. We assume customers are risk neutral, aiming to maximize their expected utility. In addition, customers’
decisions are irrevocable; that is, neither the reneging of joining customers nor the retrial of balking customers
is allowed.

In the following sections, we consider two information levels. In the first one, arriving customers can access
whether the server is idle or not, which is referred to as the almost unobservable case. And in the second one,
both the server’s state and the number of customers in the orbit are provided for customers and we call it the
fully observable case.

3. EQUILIBRIUM ANALYSIS

In this section, we will analyze customers’ equilibrium joining behavior under the two information levels
defined above.

3.1. Almost unobservable case

We begin with the almost unobservable situation where customers are only informed whether the server is
idle or not. Since customers can begin their service immediately when the server is idle, customers finding an
idle server join the system with probability 1. Otherwise, if the server is unavailable, we characterize customers’
joining probability by ¢, where ¢ = 0 or 1 represents a pure strategy and ¢ € (0,1) is a mixed strategy. The
transition rate diagram in this situation is shown in Figure 2.
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Let P,,(i,7) be the steady state probability that the server is at state (i,7). Based on the transition rate
diagram given in Figure 2, we have steady state equations given by

AP, (0,0) = aPpy(2,0), (3.1)
(A4 0)P(0,n) = pPpy(1,n) + aPeyu(1,n), n=1,2,3,..., (3.2)
(>\Q+N)Pau(]—,0) Pau(07 ) +0Pau(071)a (33)
(Mg + p)Pou(1,1) = APy (0,1) + AgPy(0,m — 1) + 0P (0,n+ 1), n=1,2,3,..., (3.4)
(Mg + @) Ppu(2,0) = P, (1,0), (3.5)
(A + @) Pou(2,n) = A\qPau(2,n — 1), n=1,2,3,.... (3.6)
To solve these equations, we define the partial generating functions: Q;(z) = > - -0 Pou(i,5)27,i=0,1,2.
Multiplying equations (3.2), (3.4), (3.6) with 2™ and summing over n give that
(A+0)(Qo(2) = Pau(0,0)) = u(Q1(2) = Pau(1,0)) + a(Q2(2) — Pau(2,0)), (3.7)
(Aq + 1) (Q1(2) — Pau(1,0)) = A(Qo(2) — Pau(0,0)) + AgzQ1(z)
0
+ ;(Qo(z) — P, (0,0)) — aPpy(0,1), (3.8)
(Mg + @) (Q2(2) — Pau(2,0)) = Aq2Q2(2). (3.9)
Substituting equation (3.3) into (3.8), we have
A+8 ¢
=z S 2 . ~1
@i(2) 1+ Aqg — Mgz @o(2) w+ Ag — )\quau(O’ 0) (3.10)
Using equations (3.1) and (3.5), it follows from equation (3.6) that
Ao+ Ag)
= AMeFAD poo.0). 11
@2(2) ala+ Ag — Agz) (0,0) (3.11)
Substituting equations (3.10) and (3.11) into (3.2), we get
0+ AMatrg) O _ AatAq)
Qo(z) = —FhaAeE  Fdatliz) e p o 0,0). (3.12)

o Apz+0p
A+0 z(p+Ag—Agz)

Combining equations (3.10)—(3.12) and employing the normalizing condition Qo(1) + Q1(1) + Q2(1) = 1, we
derive that

a2[0 — g\ + 0)]

Pau 070 = ;
(©.0) A2qu(Ag +a) + 0{a?[M1 — q) + p] + Apor + N2qpu}

(3.13)

and thus Qo(z), Q1(z), Q2(z) are followed.
We give the stability condition and system characteristics in Lemma 3.1 and Theorem 3.2.

Lemma 3.1. For the almost unobservable model of M /M /1 retrial queue with a single vacation, the system is
stable if and only if Op — Ag(A+6) > 0.

Proof. According to Theorem 1.6 given in Anderson [1], since all states are communicating, all probabilities
Puu(i,5) (1 =1,2,3, j > 0) are either all positive with sum 1, or all equal to zero, by the recurrent events theory.
From the expression of P,,,(0,0) given in equation (3.13), P, (0,0) is positive if and only if O — Ag(A+6) > 0.
Thus, the stability condition for the system is O — Ag(A + ) > 0 by the ergodicity theory. O
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The ergodic condition guarantees the system not being too crowded and the existence of stationary distribu-
tion of the Markov chain. In what follows, when customers are informed whether the server is idle or not, we
proceed the analysis under this ergodic condition, that is, at steady state.

Theorem 3.2. In the almost unobservable model of M/M/1 retrial queue with a single vacation, at steady
state,

(i) The probabilities that the server is idle, busy or on vacation are, respectively, given by

AAg + a) [ — A\g(A + 0)]

P, (0) = : 3.14
©0) N2qu(Ag + o) + [ pac+ XN2qu + a2 (X — Aq + p)] (3.14)
(1) = pha? + N3¢ + Aga(Au — ab) (3.15)
o AN2qu(Ng + 0) + O ua + N2qp + a2(X — A\g + )]’ .
2 2 2 2
Pun(2) AA2g(Ag + @) + 0(a” + Agb + Ag?)] (3.16)

- A2qu(Ag + 0) 4+ O pa + XN2qu + a2 (A — Ag + p)] .

(i) Customers’ expected waiting time in the orbit is

o= L (1420} (1 B . 1
Wau(q)] 9+( + 9>{a+9M—Aq(A+9) a2+au+Aqu} 47

Proof. Inserting z = 1 into equations for Qo(z), Q1(z), Q2(z), we have the probabilities that the server is under
different states. Regarding to customers’ mean waiting time in the orbit, since customers’ effective arrival rate
to the retrial orbit (denoted by A,) is Ay = Aq(Pawu (1) + P, (2)) and the expected number of customers in the
orbit (denoted by E(Ngy)) is E(Nay) = Q4(1) + Q1 (1) + Q4(1), by Little’s Law E(W,,,) = M’ customers’
mean waiting time in the orbit is then followed. ’ O

Recall that customers receive a service reward R after being served and there is a waiting cost C' per time
unit. The expected utility of a customer if he decides to join the system is then defined as

Usilg) = R~ C (E[Waumn n ;) - (3.18)

Theorem 3.3. In the almost unobservable model of M/M/1 retrial queue with a single vacation, customers’

equilibrium joining probability, defined as qi'™, is as follows:

(i) if R > C(E[Wa(1)] + i), then ¢ = 1;
(ii) if R < C(E[Wau(0)] + ), then g¢* = 0;
(ii1) if there exists q* satisfying R = C(E[Wau(¢*)] + %)), then 2% = q*.

Proof. If R > C(E[Wa,(1)] + ﬁ), that means that when all the other customers choose to join, the expected
utility of a tagged customer who also chooses to join is positive. So all joining is an equilibrium. Similarly, if
R < C(E[Wau(0)] + ﬁ), that means that when all the other customers choose to balk, the expected utility of a
tagged customer who chooses to join is negative. So the best response for this tagged customer is balking and
thus, no customer entering is an equilibrium. If all the other customers choose to join the system with probability
¢* which is a solution to equation R = C'(E[Wq.(¢*)] + i), there is no difference for a tagged customer between
joining and balking. Because in this case, the expected utility of the tagged customer when choosing joining or
balking is equal to zero. So ¢¢* = ¢*. (]

Intuitively, Nash equilibrium is the one under which a tagged customer has no incentive to change his decision
once other customers follow it. That means that when all the other customers adopt this strategy, the tagged
customer receives no incremental benefit if he deviates from the Nash equilibrium strategy. Define the social
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welfare of the system as the sum of the utilities of customers joining the system. Let SW,, be the social
welfare per time unit when all customers finding the server unavailable follow the equilibrium strategy given in
Theorem 3.3. Then it can be expressed as

5Worla) = 3Pu0) (R = S ) 0 Pas) + Puat2) - (R=C (W] + 1)) @ao)
3.2. Fully observable case

In this subsection, we turn our attention to the situation where both the number of customers in the orbit
and the server’s state are revealed to customers. Let T'(¢, j) denote a tagged customer’s expected sojourn time
in the system when he is at the jth position in the orbit and the server’s state is i. Based on the reward-cost
structure, the expected utility for the tagged customer is

Uso(i,j) = R— CT(i, ). (3.20)

By a first step argument, we have T'(4, j) satisfies the following equations

1

7(1,0) = m (3.21)
T(1,j) = ﬁlﬂ n ﬁT(l,]’) + Af‘r—MT(o,j), i=1,2,..., (3.22)
7(0,§) = m—i—%ﬁT(l,j)—k%T(l,]’—l), i=1,2,..., (3.23)
T(2,j) = H% T2+ A%}T(o,j), j=12,..., (3.24)

where T'(1,0) represents the expected sojourn time of a tagged customer being served. Solving equation (3.22),
we get

1

7(0,5) =T(1,5) - m (3.25)
Plugging equation (3.25) into (3.23) gives that
T(l,j)z%—i—T(l,j—l) j=1,2,.... (3.26)
By iterating equation (3.26), we have T(1,5) = %j + i for 5 > 0 and so T(0,j5) = %]’, j > 1
Substituting the expression of T'(0, j) into equation (3.24), it follows that T'(2,5) = W‘j + L for j > 1.

Theorem 3.4. In the fully observable M /M /1 retrial queue with a single vacation, there exists a pair of thresh-
old (ne(1),n.(2)), such that a customer who observes the state (1(t), N(t)) joins the orbit if N(t) < n.(I(t))—1
and balks otherwise, where (ne(1),n.(2)) = (|z1], |x=2]) and z; (i = 1,2) are the solutions to equations:

Uso(i,j) = R— CT(i,§), i=1,2. (3.27)

Proof. 1t is obvious that T'(1,7) and T'(2,j) are increasing in j and consequently, Us,(1, ) and Uy,(2, ) are
decreasing. A customer enters the system if Uy,(4,5) > 0; otherwise, he chooses balking. Thus, there exist
thresholds such that customers’ expected utility of joining is negative when the queue length is greater than
the corresponding threshold, and the thresholds can be obtained by Uy,(7,7) =0, ¢ = 1,2. O

Corollary 3.5. When Ra — C > 0, n.(1) and n.(2) are nonincreasing in A, but nondecreasing in p and 6.
Furthermore, ne(2) is nondecreasing with respect to a.



576 YU ZHANG
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FIGURE 3. The transition rate diagram with n.(1) > n.(2).

Proof. By Uyo(i,j) = R—CT(3,j), i = 1,2, we have z; = % and zp = % It is obvious that z

and x, are decreasing in A. By the first-order derivatives of z; and x5 with respect to pu, 6, «, it follows that

dxy  ROA+0)+C

o OO +p+0)? (3.28)
- W’ (3.29)
%%2 N G(CIZCEA +C;1(i ;)f 3 (3.30)
% - “gii{f;(i;é‘)» (3.31)
aaf Cse (3.32)

Recall that (ne(1),ne(2)) = (|lz1], |#2]). Thus, when Ra — C > 0, we come to the conclusions in the
lemma. u

This lemma gives the sensitivity analysis of customers’ equilibrium threshold policy, which can be explained
as follows. When customers’ arrival rate X increases, the system becomes crowded and consequently, customers
have less incentive to join. In contrast, when the service rate p, retrial rate 6 and the completion rate of vacation
« increase, customers’ mean waiting time in the system decreases, attracting more customers to join. Recall that
T(2,5) = ’\+“+0] + 3 L for j > 1. Only when Ra — C > 0, it is possible that n.(2) > 0 and thus the assumption
Ra—C > 0 is natural

When all customers follow the threshold policy given in Theorem 3.4, we have a Markov chain similar in
Figure 1, but the state space is restricted to Sy, = {(0,n) | 0 < n < max{n(1),n.(2)}} U{(1,n) |0 <n <
max{n.(1),n.(2)}} U{(2,n) | 0 < n < n.(2)}, which is shown in Figures 3—4. For the stationary analysis, the
stationary distribution denoted by Py,(i,7) ((¢,7) € Syo) can be obtained by balance equations of the system.

When p > «a (i.e., ne(1) > n.(2) ), we have the following balance equations

AP;o(0,0) = aPpo(2,0), (3.33)
(A+6)Pro(0,3) = pP 0(1,2) +aPro(2,1), 1=1,2,...,n(2), (3.34)
A+ 0)Pro(0,9) = uPro(1,4), i=mn(2)+1,...,n.(1), (3.35)
(A + 1) Pro(1,0) = APy0(0,0) + 0Pf,(0, 1), (3.36)
(A + 1) Pro(1,3) = APpo(1,3 — 1) + APf0(0,4) + 0Pro(0,i 4+ 1), i=1,2,...,n.(1) —1, (3.37)

HPro (1 (1)) = AP1o(0, me(1)) + APyo(1,ne(1) — 1), (339)
(A + @) Pro(2,0) = uPyo(1,0), (3.39)
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FIGURE 4. The transition rate diagram with n.(1) < n.(2).

(A4 @) Ppo(2,0) = APfo(2,i — 1), i=1,2,...,n0(2) — 1,
Pro(2,n0(2)) = APpo(2,m0(2) — 1).

By iterating equation (3.40), using (3.33) and (3.41), we have

AN .
Pyo(2,i) = (H) Pyo(0,0), i=0,1,...,m(2) — 1,
1\ 2 N\ @1
Pro(2,n.(2)) = | = P;0(0,0).
pen@) = (3) (535) P00
Substituting equations (3.42)—(3.43) into (3.34) gives that

Pro(0,i) =~ Pro(1,d) + — LiP (0,0), i=1,2 2) -1
fo )\ 0 fo A+0 M+« folY, V), =L,4,...,N¢ )

o 2 ne(2)
P02 = TPt + 555 (2) (525) P

and it follows from (3.35) that

Pro(0,1) = Pfo(l i), 1=ne(2)+1,...,n.(1).

A+ 6
Plugging equations (3.44)—(3.46) into (3.37), we have

uo
A+0

A ! A2 220 .
__<)\+a) </\+9+()\+0)()\+a))PfO(O’O)’ i=1,2,...,n.(2) — 2,

uo L P (1,n0(2) + (A“ . u) Pro(1,ne(2) = 1) + APso(1,ne(2) — 2)

A

P poi+1 A
Follyi + )+<>\+0

- u) Pro(1,i) + APyo(1,i — 1)

A+0 A+0
ne(2)— 2
- A A af A,
- ()\+a) [M+M(a)]Pf°(O’O)’
uo My -
Pl @+ 1)+ (£ = A= ) Prallne(2) + APpol1,me(2) ~ 1)

o77

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)



578 YU ZHANG

A (ON\Z/ oA =@
- N o\ Po i ) A4
A+0 <a> <)\+a) 70(0,0) (349)

1o A . .
TG PrelLi+ 1)+ (Af& —A- ,u,) Pro(1,4) + APpo(1,i — 1) = 0,
1=mne(2)+1,...,n.(1) — 1. (3.50)
For equation (3.47), Pr,(1,4) (1 =0,1,...,n(2) — 1) are the solutions to the nonhomogeneous linear difference

equation with constant coefficients

uo Al
)\+9I+1+()\+9 u)x it

= — (Aioj <A19+ (A+9A)(i+a)>Pfo(o,0), i=1,2,...,n.(2) — 2. (3.51)

To solve this equation, we consider the corresponding characteristic equation - +9x + (

St~ A—pr+A=0,
which has two roots, i.e., 1 and ’\(,’\Je). For the homogeneous version of equation (3.51), the general solution
to it is o™ = Ay + By ( (’\+9)) If we define 2P as a special solution to equation (3.51), ;" has the form of
Cl(A+ )® based on the nonhomogeneous part. Substituting 237 = Cl(A+a) into equation (3.51), we obtain

[A+9 + W} /\ia

g
ﬁ'(ﬁ)z+(x+a A=) xgs + A

Py0(0,0). (3.52)

So the general solution to equation (3.51) is

AN+ 0)Y A\
M =A+ B | ——— =0,1,...,n.(2)—1 .
1+ 1< ,Ue > +Cl<)\+a)a ? O, ) ,TL() ’ (353)
where C is given in equation (3.52). That means
‘ AN+ 0)\ A\
Pro(1,i) = A, + B, (2217 ) i=01,. . (2) — 1. 54
f( i) 1+ 1( 10 ) +Cl<)\—|—0z> 1=0 ne(2) (3.54)

Similarly, we have the solution to equation (3.50), that is,

Pro(1,i) = Ay + By (W) L i=ne(2), .. ne(1). (3.55)

Thus, by now, we have expressed all stationary probabilities in terms of Ay, By, Az, Ba, Pyo(0,0), in relations
see equations (3.42)—(3.46) and (3.54)—(3.55). The remaining variables A;, Bi, Aa, By and Pf,(0,0) can be
found from (3.36), (3.38), (3.48)—(3.49) and the normalization equation

ne(1) ne(2)

> (Pro(0,4) + Pyo(1,1) Z Pjo(2,1) (3.56)
1=0
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Similarly, if 4 < a, we have the transition rate diagram illustrated in Figure 4 and the balance equations are
followed

APr0(0,0) = aPyo(2,0), (3.57)
(A + 0)Pro(0,8) = uPso(1,0) + aPso(2,7), i=1,2,...,n0(2), (3.58)
(A + 1) Pyo(1,0) = AP;,(0,0) + 60P;,(0, 1), (3.59)
A+ 1) Pro(1,8) = APpo(1,i — 1) 4+ APso(0,8) + 0P (0,0 +1), i=1,2,...,n(1), (3.60)
WPro(1,1) = AP¢o(0,7) + 0Pso(0,5 + 1), i=mn(1)+1,...,n.(2) — 1, (3.61)
1Pro(1,me(2)) = APf0(0,1.(2)), (3.62)
()"’_Q)Pfo(?vo) = /J'Pfo(lao)v (3.63)
A+ @) Pro(2,0) = APpo(2,i — 1), i=1,2,... na(2) -1, (3.64)
aPfo(2,16(2)) = APpo(2,n.(2) — 1) (3.65)
Adopting the same method as in the case with p > «, we derive that
P (Oi)—LP (li)+L A iP (0,0), i=1,2 ne(2) (3.66)
folY, —>\+0 fold, N+0\ ) +a fo\Y,U), — L&y lle ) .
_ AN+ 0)Y A\
Pro(1,i) = Az + By [ 227 A} i=01,. (1) £ 1, .
f( i) 3+ 3< 0 >+Cl<)\+a> 1=0 ne(l) + (3.67)
A\ A2
Pso(1,7) = Pro(1,0—1) — | ——— — 4+ —— | P ) = 1 2,... 2
jol1) = Proli =0 = (132 ) |3 ripag] P00 =m0+ 20 ne(2)
(3.68)
Pro(2,i) = 2 (2 ‘p (0,0), i=0,1,...,n0(2) —1 (3.69)
fol4, _O[ A+ a folY, V), — ULy Tle ) .
A\ 2 N\ @1
Pro(2 2)=|— P . .
)= (2) (335) Pel00) (3.10)
ne(2)
Combining equations (3.59), (3.62) and the normalization equation > (Pfo(0,%) + Pro(1,4) + Pro(2,1)) = 1,
i=0

the variables Az, Bs and Py,(0,0) can then be determined.

In line with the definition for the social welfare in the almost unobservable case, we still define it as the
total benefit of customers joining the system and denote the social welfare per time unit by SWy,. When all
customers follow the equilibrium threshold policy (n¢(1),n.(2)), we have

SWio = AR(1 = Pro(1,1¢(1)) = Pro(2,m6(2)))

max{ne(1)ne(2)} max{n(1),ne(2)} ne(2)
—C( > iPpo(0,7) + > iPpo(1,4) + Y | iPfo(2,4)). (3.71)
=1 =1 1=1

4. NUMERICAL EXAMPLES

In this section, we first investigate the effects of some system parameters on customers’ equilibrium behavior
in the almost unobservable and fully observable cases. Then when all customers adopt the equilibrium strategies,
we compare the two information levels in terms of the social welfare, to indicate whether the social planner
should reveal some information to customers to gain more profit of the system.

In Figures 5-6, we observe customers’ equilibrium joining probability in the almost unobservable case (i.e.,
¢®*) and threshold policy in the fully observable case (i.e., n.(1) and n.(2)) are nonincreasing with respect
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FIGURE 5. Equilibrium joining probability in the almost unobservable case for § = 1, o = 2
(panel a); A =1, u =4 (panel b); assuming R = 10, C = 1.
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FI1GURE 6. Threshold policy in the fully observable case for p = 2, 8 = 1, «
A=2,0=1,a=2(panel b); \=2, u =2, « =2 (panel ¢); A\ =2, u=2,0 =
assuming R =10, C' = 1.

to A, but nondecreasing in u, 6 and «. That is because the system becomes more crowded as A increases, so
that customers enter reluctantly. When p and 6 increase, the server can serve more customers per time unit
and customers in the orbit can try to access the server more frequently. In this situation, it is intuitive that an
arriving customer prefers to enter. If the completion rate of vacation, i.e., «, increases, the server converts to
the normal working state more quickly so as to decrease customers’ delay. So more customers choose to join.
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F1GURE 7. Comparison between the equilibrium social welfare in the almost unobservable and
fully observable cases for p=1.1,0 =1, « =2 (panel a); A =2,0 =1, a =2 (panel b); A = 2,
w=4, a=2 (panel ¢); A =2, p=1.1, 6 =1 (panel d); assuming R =10, C = 1.

With regard to the monotonicity of the social welfare, recall that the social welfare is the sum of entering
customers’ utilities. Assume customers follow the equilibrium strategy. When customers’ potential arrival rate A
increases, the number of customers entering the system per time unit grows (positive effect), but it also pushes
the system towards higher states (with more customers in the system). Since customers at the higher states need
to wait longer, their expected utility at such states is lower (negative effect). So the monotonicity of the social
welfare per time unit with respect to A is determined by which effect dominates. Similar explanations work for
the situation with respect to u, 6 and . When p and € increase, the probability that the system is at higher
states decreases (negative effect), while customers’ waiting time at these states declines and thus their expected
utility grows (positive effect). In addition, under this circumstance, customers have more incentive to enter due
to the decreasing waiting time, which benefits the social planner. As « increases, more customers choose to join
(positive effect). The probability that the server is on vacation decreases (negative effect), whereas the system
is more possible at the states with an idle server (positive effect). Furthermore, customers have higher expected
utilities at the states with a server on vacation (positive effect), and their utilities at the states with an idle
server stay constant as « increases. Therefore, as A\, u, # and « increase, which effect works significantly plays
a decisive role for the monotonicity of the social welfare.

When comparing the social welfare of the system under different information levels, from Figure 7, we observe
there exist thresholds such that the social welfare is higher in the almost unobservable case when u, 6, « (or
A) are less (higher) than the corresponding threshold, while the fully observable situation benefits the social
planner more when pu, 6, o (or A) are higher (lower) than the corresponding threshold.
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5. CONCLUSIONS

In this paper, we analyzed customer strategic behavior in constant retrial queues with a single vacation
policy where arriving customers decide whether to join the system or not according to the different information
provided for them and a linear reward-cost function. Specifically, we considered two information levels. In the
almost unobservable case, only the information whether the server is idle or not is provided for customers, and
we obtained customers’ equilibrium joining strategy which can be either a pure strategy or a mixed strategy. In
the fully observable case, arriving customers are informed of the server’s state and the number of customers in
the orbit, and the optimal threshold policy was derived under different server’s states. When arriving customers
adopt equilibrium strategies, we gave the social welfare which is the sum of the utilities of entering customers.
Through numerical examples, the two information levels were compared in terms of the social welfare. We found
there exist thresholds such that the social welfare is higher in the almost unobservable case when the service rate
1, retrial rate 6, completion rate of the vacation « (or the arrival rate A) are less (higher) than the corresponding
threshold, while the fully observable situation benefits the social planner more when p, 6, o (or ) are higher
(lower) than the corresponding threshold.
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