
RAIRO-Oper. Res. 53 (2019) 1309–1330 RAIRO Operations Research
https://doi.org/10.1051/ro/2019012 www.rairo-ro.org

AN INNOVATIVE FOUR-LAYER HEURISTIC FOR SCHEDULING
MULTI-MODE PROJECTS UNDER MULTIPLE RESOURCE CONSTRAINS

Reza Zamani1,∗

Abstract. In this paper, an innovative four-layer heuristic is presented for scheduling multi-mode
projects under multiple resource constraints. For this purpose, a biased-random sampling technique, a
local search, a decomposition method, and an evolutionary search mechanism, each in a separate layer,
are combined, with each layer passing its output to the next layer for improvement. The procedure has
been designed based on the fact that what makes the scheduling of multi-mode projects hard to solve
is a massive search space of modes compounded with the starting times of activities. That is why the
procedure is aimed at balancing exploration versus exploitation in searching a massive search space.
On the one hand, it exploits promising areas further and, on the other hand, it searches unexplored
areas for expanding its range. Since the first layer provides an initial solution, and each of the other
three layers can either improve the result of its previous layer or keep it unchanged, solutions never
deteriorate and hence promising areas are exploited. Moreover, unexplored areas are searched effectively
because each layer explores solution space differently than its previous layer. Based on whether or not
an improvement each layer can make to the result of its previous layer, the effect of the corresponding
layer on the performance of the procedure has been measured.
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1. Introduction

The Multi-Mode Resource Constrained Project Scheduling Problem (MRCPSP) is among of the most practi-
cal and hardest-to-solve problems in scheduling. The problem is involved with scheduling a project composed of
several activities numbered from 0 to n+1. The two fictitious activities 0 and n+1, with the duration of zero and
no resource requirements, demonstrate the starting and the ending of the project, respectively. Activities should
be executed without any interruption, and require some scarce resources during their execution. These resources
are divided into three groups, namely (i) renewable, (ii) non- renewable, and (iii) doubly-constrained [37].

Whereas renewable resources are renewed from period to period, non-renewable resources are fixed at the
starting of the project and consumed by activities. An example of renewable resources is a machine or manpower,
and an example for non-renewable resources is raw material. Money and other kinds of capital resources are
doubly-constrained, in the sense that they are partly renewable and partly non-renewable. For instance, whereas
money for the entire project is fixed like a non-renewable resource, it can become available as limited cash follow
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on a period-by-period basis, making it similar to renewable resources. In effect, if a resource has both a constant
availability per period and a total limit, then it is considered as a doubly-constrained resource. That is why
each doubly-constrained resource can be represented with one renewable and one non-renewable resource.

Deciding whether or not a resource is renewable depends on the circumstances which determine if the resource
is renewed in a period-by-period basis. This means that whereas in a particular project, capital is renewable, in
another project it can be non-renewable, and still in a third project, it can be a doubly-constrained resource.

Activity i can start only when all of its predecessors, which are shown by set Pi, have been completed, and
with respect to each resource type, its required resources are available. There are Rr and Re types of renewable
and non-renewable resources, respectively, with the availability of renewable and non-renewable resources k and
l being equal to ark and ael , respectively.

Moreover, there are Mi mode for activity i and when executed in mode m, its duration will be dmi . In this
case, the activity i will require rri,m,k and rei,m,l from renewable and non-renewable resources k and l, respectively.
Pre-emption is not allowed, in the sense that once an activity has started in a particular mode, it should be
completed in the same mode without any interruption. The goal is to minimize the project duration by finding
a mode and starting time for each activity.

Initially introduced by Elmaghraby [15], the MRCPSP was not originally involved with non-renewable
resources and only renewable resources were present. More than a decade later, however, in the mathematical
formulation presented in [44], non-renewable resources were introduced, extending the problem to an advanced
version.

To distinguish between the two versions in the literature, in line with [50], whereas the original problem is
shown with MRCPSP-R, with R standing for renewable resources, the problems which include both renewable
and non-renewable resources are shown with MRCPSP. Figure 1 shows a sample multi-mode project and Figure 2
shows its optimal schedule along with the usage of renewable and non-renewable resources.

Subsuming the single mode resource-constrained project scheduling (RCPSP) problem, the MRCPSP com-
pounds all the complexity of this subsumed problem, which itself is NP-hard [5]. Two other facts further
demonstrating the hardness of the MRCPSP are as follows. First, the job shop scheduling problem, which itself
is subsumed by the RCPSP, is NP-hard [28].

Second, in the MRCPSP with more than one non-renewable resources, even replacing the requirement of
constructing an optimal solution with generating a feasible solution does not change the hardness of the problem,
in the sense that finding a feasible solution is still NP-hard [25].

It is worth noting that since obtaining a feasible solution for the MRCPSP is an NP-hard problem, searching
for modes which observe non-renewable resource constraints can be extremely time-consuming and this can
make even some heuristics for the MRCPSP impractical. This hardness of the problem, on the one hand, and
its great applicability on the other hand, has made it a vehicle for testing many combinatorial optimization
techniques. In [50], two main ingredients of a variety of metaheuristics for the MRCPSP have been considered
as (i) employing a solution representation, and (ii) using a schedule generation scheme.

With respect to schedule generation schemes, they considered serial and parallel methods, concerning mode
representation they have distinguished mode vector (MV) and mode list (ML). The difference between MV and
ML is that whereas the ith position of MV shows the mode of the activity in the ith position of the activity
list, the ith position of ML shows the mode of the ith activity. In effect, in the MRCPSP, MV should always
be accompanied by AL.

This paper presents an innovative four-layer heuristic, called the Local-search Evolutionary Decomposition-
based Procedure (LEDP), for solving the MRCPSP. In the LEDP, a biased-random sampling technique, a
local search, a decomposition technique, and an evolutionary search mechanism are combined to produce high-
quality solutions. These four components work together to search the solution space effectively, each working
in a separate layer and each layer passing its output to the next layer to improve.

First, a biased-random sampling technique, in the first layer, generates initial solutions. Towards improving
the solution generated in the first layer, a local search in the second layer uses two right- and left-shift moves for
each activity. The employed local search first keeps the modes of activities untouched and alters the orders of



AN INNOVATIVE FOUR-LAYER HEURISTIC FOR SCHEDULING MULTI-MODE PROJECTS 1311

Figure 1. A Sample Multimode Project in which the duration and resource requirements of
each activity have been shown based on the mode in which the activity is executed.

activities. When no improvement through such alternations becomes possible, modes are started to alter. The
process of the right- and left-shift moves as well as mode moves continues until no improvement to the solution
is possible.

Using the solution produced by the local search, the decomposition technique, in the third layer, without
changing modes only alters the starting times of activities to improve the result further. For this purpose, it
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Figure 2. The optimal schedule of the sample project along with the usage of renewable as
well as non-renewable resources.



AN INNOVATIVE FOUR-LAYER HEURISTIC FOR SCHEDULING MULTI-MODE PROJECTS 1313

decomposes a project into smaller sub-projects and schedules the decomposed sub-projects to optimality within
a time-limit of several milliseconds, if possible.

Further decomposition for a sub-project is performed when such a time-limit does not allow the sub-project
to be scheduled to optimality. In the hope of further improvement, the evolutionary search technique, in the
fourth layer, searches the vicinity of the solution obtained by decomposition technique. For this purpose, it first
fills a pool of slightly perturbed copies of the solution obtained in the third layer, and then, towards its possible
improvement, alters both modes and orders of activities with crossover and mutation operations.

The rest of the paper is as follows. Section 2 presents the related work. The LEDP is discussed in
Sections 3 and 4 is devoted to the results of the computational experiments. Concluding remarks are presented
in Section 5, which also discusses future research direction for the LEDP.

2. Related work

As an extension of the single mode resource-constrained project scheduling (RCPSP) problem, the MRCPSP
is NP-hard [5], with an effective formulations presented by Talbot [44] as follows.

Minimize
ls(n+1)∑

τ=es(n+1)

τδn+1,1,τ (2.1)

Mi∑
m=1

ls(i)∑
τ=es(i)

δi,m,τ = 1 1 ≤ i ≤ n (2.2)

Mi∑
m=1

ls(i)∑
τ=es(i)

(τ + dmi )δi,m,τ ≤
Mj∑
m=1

ls(j)∑
es(j)

τδj,m,τ ∀ (i, j) i ∈ Pj (2.3)

n∑
i=1

Mi∑
m=1

rri,m,k

min(τ−1,ls(i))∑
τ=max(t−dm

i ,es(i))

δi,m,τ ≤ ark 1 ≤ l ≤ Rr&1 ≤ t ≤ ls(n+ 1) (2.4)

n∑
i=1

Mi∑
m=1

rei,m,l

ls(i)∑
τ=es(i))

δi,m,τ ≤ ael 1 ≤ l ≤ Re. (2.5)

In the above formulation, δi,m,τ is a binary variable which is zero except in the case where activity i has
started in mode m at time τ . Also, es(j) and ls(j) show the earliest and latest start times for activity j and
are used to tighten the model. Since the fictitious activity n + 1 has only one mode, 1, the objective function
indicates the starting time of this activity. Relation (2.2) indicates that each activity, with one particular mode,
should start only at one instance of time between its earliest start and latest finish times.

Relation (2.3) enforces precedence constraints, in the sense that no activity can start unless all of its predeces-
sors have been completed. Relations (2.4) and (2.5) enforce constraints regarding renewable and non-renewable
resources, respectively. As is seen, the formulation does not permit the requirement of in-process activities to
exceed the availability of each renewable resource at any point of time. On the other hand the formulation
guarantees that the sum of requirements of all activities from each non-renewable resource, which depends on
activities’ modes, does not exceed the total availability of the corresponding resource.

In [50], solution strategies for the MRCPSP have been classified in eight categories, namely (i) Genetic
Algorithms (GA), (ii) Simulated Annealing (SA), (iii) Scatter Search (SS), (iv) Particle Swarm Optimization
(PSO), (v) Differential Evolution Algorithms (DEA), (vi) Ant Colony Optimization, (vii) Estimation of Distri-
bution Algorithms (EDA), and (viii) Multi-agent Learning Algorithms (MLA). Also the authors have considered
Random Key (RK), and Activity List (AL) as the most widespread schedule representation methods employed.
Mode-based versus activity-based searches has been discussed in [32].
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Moreover, recently, bees algorithms [34], team-based approaches based on different agent cooperation
strategies [35], and machine learning heuristics [1] have been developed for solving the MRCPSP. In this section,
the related work is classified into 7 subsections and discussed as follows:

2.1. Exact methods including integer and mixed integer programming

In [41], a backtrack-based branch-and-bound type procedure has been presented which performs search-tree
reduction towards increasing its performance. First, without considering the resources and only by considering
precedence constraints, earliest start and latest start times for each activity is calculated. Then a branch and
bound algorithm, where each node of its search-tree represents the execution of a particular activity with a
particular mode, implicitly searches all possibilities for different values each node can take.

Mixed-integer linear programming approaches like branch and bound procedures aim at producing exact solu-
tions at the cost of long execution time. The authors in [27] have developed a mixed-integer linear programming
approach for solving the MRCPSP. Towards being more efficient, the approach uses Resource-Task-Network
(RTN), which is a continuous time-based network representation employed in scheduling process.

In [26] two discrete-time and two continuous-time mathematical models have been presented for the MRCPSP.
In both discrete-time models, not only a binary variable has been used to indicate whether or not an activity
starts at a particular time but another set of binary variables have been utilized to indicate whether an activity
is in process at a particular time.

These double sets of variables, at the cost of increasing the number of binary variables, have simplified
the statement of resource constraints and have provided opportunity to tighten the formulation. In the two
continuous-time models, on the other hand, both starting and finishing times have been shown with continuous
variables. A set of binary variables, xi,j , also controls whether the activity i needs to be completed before the
activity j starts.

Also the integer programming technique presented in [45] can be considered as one of the effective exact
strategies in dealing with MRCPSP. The authors have added local search to their procedure so that it can solve
larger problems as well. In effect, incorporating heuristics into exact method has been one of the strategies used
by many other researchers to make their exact methods flexible.

A highly effective exact solution strategy has been provided in [43] which has used several efficient solvers
to solve the problem. The authors have used a solver independent model to code the problem, so that they
can employ different solvers and select the best solution that the solvers produce. Through employing several
solvers, the authors have been able to close the sets of benchmark instances with 20 and less activities in the
PSPLIB.

2.1.1. Genetic algorithms

In solving optimization problems, genetic algorithms are based on survival of the fittest principle. An effective
genetic algorithm to solve the MRCPSP has been employed in [21], which uses both single- and multi-pass
improvement to enhance the quality of solutions. A forward-backward improvement technique and a local
search have been employed to contribute to the effectiveness of the procedure.

The employed local search uses the concept of multi-mode left shift and tries to left shift activities when
possible, systematically enhancing a feasible schedule. Without violating constraints, the multi-mode left shift
operation is aimed at reducing the finishing time of an activity without altering either the modes or starting
times of other activities.

The fact that the multi-mode left operation never increases the makespan causes the operation to be very
beneficial. This operation has first been introduced in [40]. Also another stochastic local search has been
employed to find feasible modes with respect to non-renewable resources.

The genetic algorithm presented in [2] employs a two-point forward-backward crossover operator which
depending on whether a forward or backward method is supposed to be used, starts to fill the child genome from
right or left, respectively. From each two parents, two offspring genomes, a son and a daughter, are generated.
The son inherits the forward/backward gene from the father, and the daughter inherits it from the mother.
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In their procedure, the mutation is applied to the order of activities as well as to the modes. Through the
mutation, not only each activity, with a small chance, is placed in one of its feasible positions in the activity
list but the modes are also affected.

One of the other effective genetic algorithms in solving the MRCPSP, is a two-level genetic algorithm presented
in [30]. Extending the parameterized schedule generation scheme and using an improvement procedure, the
algorithm makes use of two separate levels and in several generations enhances a pool of solutions. Parameterized
and polarized adaptive schedule generation schemes [55] are hybrids of serial and parallel schedule generation
schemes.

Crossover operators play a key role in the efficiency of genetic algorithms. The innovative crossover operator
presented for the MRCPSP in [3] is performed not only on two typical parents but on the best available solution
as well. First several cutting points are randomly generated and an offspring genome is partitioned based on
these points. Then 1, 2, or 3 is randomly assigned to each partition. Based on the number assigned to each
partition, the genes of the corresponding partition are selected from (1) the best available solution, (2) the first
parent, and (3) the second parent.

An effective genetic algorithm has been presented in [53] whose efficiency is due to using a powerful population
management policy. Based on this policy, several organizations constitute a population. Two splitting and
annexing operators adjust the number of such organizations. The set J30, which is the set of largest benchmark
instances in the PSPLIB [24], has been used to test the performance of the procedure.

A mirror-based genetic algorithm has been provided in [56] which is effective for large number of schedules.
Handling both the original and mirrored problems independently, it searches two different solution spaces.
Among the two independent solutions found for the original and the mirrored problem, it always selects the
best solution. The procedure uses three different crossover operators. These three operators, which are randomly
chosen by the same chance are applied on the activity lists, and help each other towards the scanning of two
solution spaces the procedure is involved with.

2.1.2. Simulated annealing and local search

Local searches, in general, and simulated annealing algorithms in particular, are based on making local
changes to complete solutions. In [6, 7], two effective heuristic procedures have been provided for MRCPSP-R.
Whereas the first procedure is a single pass technique employing the parallel schedule generation scheme, the
second procedure, which works based on the simulated annealing technique, performs local search in the vicinity
of high quality solutions and improves them iteratively.

In [25], a procedure has been used which can be identified as one of the effective techniques for tackling the
MRCPSP. The procedure starts with a feasible set of modes and maintains the feasibility of the modes in its
operations. The procedure has three phases, namely a construction, a local search, and an intensification phase.
An initial solution is generated in the construction phase, and the set of feasible modes is searched in the local
search, aimed at improving the initial solution. In the intensification phase, the assignment modes proposed in
the local search are considered to seek a better solution. The procedure has proved to be very effective.

Also a simulated annealing procedure has been presented in [8] which exploits the characteristics of the
MRCPSP. The procedure is based on time incremental process as well as on considering an alternated activity
method. In effect, towards neighbourhood exploration, two integrated search loop alternate both modes and
activities. For producing a neighbour, an activity is selected randomly and is moved to one of its feasible
positions on the activity list.

Activity neighbourhood and mode neighbourhood are performed in two separate stages. First, the order
of activities is fixed, and the best modes for that order are sought. Then the best order of activities for the
computed modes is searched for. Finding the modes and orders alternatively continues until a halting criterion
is researched.

The combination of local search and the forward/backward method is one of the possible approaches in
solving the MRCPSP. An algorithm has been presented in [52] which employs both a local search and the
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forward/backward method. Founded on a probability based selecting scheme, a feasible tackling procedure uses
a multi-mode left shifting rule developed in [40] to improve the completion times of activities.

2.2. Harmony search, scatter search, multi-threaded local search, and path-relinking

Harmony [17] and scatter [19] searches have the common characteristics that use several vector of solutions
to produce a new solution. Scatter search uses strategies for search diversification and intensification and its
principle is based on formulations dating back to the 1960s in integrating problem constraints and decision
rules.

On the other hand, the harmony search is a recent search method which generates random solution vectors
store them in harmony memory (HM). This memory not only is used for generating other solution vectors but
its worst member regularly is updated with better solutions produced in the search process.

For the MRCPSP, in [49] a scatter search has been developed which uses random keys to encode the solutions,
with a serial schedule generation scheme decoding random keys. The authors have extensively analysed the sum
of durations, total work content, and mean relative consumption as three different measures.

Since any scatter search needs to use a strategy for search diversification, the authors have used two criteria
towards measuring the distance of two solutions. The first criterion is the summation of absolute distances of
starting times of same activities, and the second criterion is the number of activities which have used different
modes.

In comparison with the scatter search, the harmony search can promote diversification in many different
ways. The Harmony Search (HS) presented in [12] has kept effective characteristics of existing metaheursitcs.
Similar to Tabu search, it preserves the history of past solutions, and parallel to the simulated annealing search,
it varies parameters in the search process. Also, like genetic algorithms, it manipulates a pool of genomes.

Unlike genetic algorithms, which typically select two members of the pool and combine them, the HS creates
a new solution by the cooperation of the entire pool. In effect, genetic materials stored in the pool guide the
search, and the worst solution in the pool is replaced with any newly generated solution. With a specified chance,
which can be changed during the search, a value for a gene is selected among its all possible alleles, rather than
among the alleles available in the pool. For each specific gene, all alleles in the pool have the same chance of
selection.

In [18], a multi-threaded local search has been provided which operates based on the combination of iterated
local and variable neighbourhood searches. The procedure which mainly focuses on the parallel implementation
of local searches uses an array of effective local search techniques to improve its performance. In a construction
phase, initial solutions are constructed and in an iterative improvement search phase, the initial solutions
constructed are improved. The construction phase is composed of two steps, namely the mode assignment and
scheduling stages.

An effective path-relinking algorithm has been provided in [33] which operates through connecting two solu-
tions in the search space for creating a path to scan. Through scanning such a path, new solutions are found
and the process of connecting two solutions continues. The employed local search is composed of three different
moves, namely OrderSwap, Mode1Swap, and Mode2Swap. As the names indicate all of these three moves are
based on swap operations, with two of them being related to the change of modes, the other related to altering
the order of activities.

2.3. Particle swarm and ant colony optimization

A particle swarm optimization (PSO) technique has been used in [22] to tackle the MRCPSP. With respect
to a given measure, PSO is a computational method which tries to iteratively improve a candidature solution,
termed as particles, towards optimality. In the search space, each particle moves towards its corresponding local
best position as well as the best global position, with all these positions being updated during the search process
towards possible improvement.
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Unlike PSO which iteratively improves a candidate solution, Ant Colony Optimization (ACO) [14] construct a
candidate solution from scratch based on a cooperative learning approach. This is performed based on changing
pheromone levels according to information existing in high quality solutions already constructed as well as
problem-dependent heuristics. Pheromone levels, which are updated regularly, direct the construction of new
solutions. That is why ACO is categorized in constructive methods and not in local searches. An effective ACO
has been presented for the MRCPSP in [57].

In this ACO, two problem-dependent heuristics prioritize activities with longer total slacks and shorter
execution modes. In this procedure, whereas pheromone evaporation rate contributes to the diversification,
updating pheromone levels according to high quality solutions contribute to intensification. The effectiveness of
this procedure is partly due to such a proper balance it strikes between diversification and intensification.

2.4. Shuffle Frog Leaping and estimation of distribution algorithms

The Shuffle Frog Leaping [16] and estimation of distribution [29] algorithms are among recently developed
population-based metaheursitcs. For the MRCPSP, a Shuffle Frog Leaping algorithm (SFLA) has been presented
in [51], and an Estimation of Distribution Algorithm (EDA) has been developed in [38].

The SFLA employs a two-point crossover operator to move a virtual frog towards another. In this SFLA, first,
initial agents are positioned in different locations and then partitioned into various subsets called memplexes,
each including the same number of elements. Each of these memplexes evolves independently by repeatedly
selecting a number of virtual frogs, based on the triangular distribution.

Among the selected virtual frogs, the worst one leaps towards the best virtual frog of the memplex. In the
case no improvement has been made, this worst virtual frog leaps towards the best global virtual frog and if it
still cannot be improved, it is replaced with a randomly generated virtual frog.

For maintaining diversity, the memplexes are periodically shuffled and new memplexes are formed. Moreover,
by performing a local search, the authors have rectified the lack of fine-tuning characteristic of the SFLA.
Moreover, before applying the SFLA, the authors have removed the inefficient and non-executable modes.

The EDA unlike the SFLA, constructs solutions based on distribution functions updated based on high
quality solutions. The effective method for solving the MRCPSP presented in [38] integrates an EDA with
a delete-then-insert local search. Based on the solutions created in the search process, the procedure creates
probability distributions guiding the search towards finding high quality solutions.

The activity-mode list, and the multi-mode serial schedule generation scheme have been used for the encoding
and decoding purposes, respectively. For the best p solutions generated in each population, the multi-mode
double justification is performed to further enhance their quality.

2.5. Hybrids

An evolutionary procedure has been presented in [53], which is very efficient. This efficiency is mainly the result
of using an innovative population management, which generates a population composed of several organizations.
The number of such organizations is adjustable in the sense that two splitting and annexing operators adjust this
number. The procedure has been successfully tested on the set J30, which is the largest benchmark instances
in the PSPLIB [24].

An effective procedure has been presented in [46] which can be considered as a hybrid of genetic and local
searches. The procedure solves problems in two phases, with the first phase being a local search and the
second phase further exploring promising areas generated in the first phase. The second phase, which is a
genetic algorithm with a large mutation rate, utilizes the solutions generated in the first phase to construct its
initial population. In this procedure, the balance between intensification and diversification is maintained in an
innovative manner. Similar to the procedure presented in [53], this procedure has also been applied to the set
J30 successfully.
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Satisfiablity Testing (SAT) [10], non-greedy heuristics [11], and automatic algorithm selection [31] are among
effective methods applied to the MRCPSP, and MRCPSP/R. Classified as other methods, these three algorithms
are briefly discussed here.

Two non-greedy heuristics applied to MRCPSP-R [11] are based on the fact that eliminating unnecessary
vacant spaces in the Gant Chart and backward-forward method have proved to be very effective for the RCPSP.
In the employed non-greedy modes, an eligible activity which can be executed in a comparatively time-consuming
mode, can be put in a waiting status so that a faster mode to become available.

The procedure presented in [31] is based on automatic algorithm selection. This is performed based on the
characteristics of the problem instance to be solved. One of these characteristics is the number of precedence
relations. The theoretical maximum for the number of these relations is n(n − 1)/2, where n is the number of
activities. The other characteristic is resource strength, introduced in [23].

Resource strength simply shows the relationship between resource availability and resource requirement with
considering precedence relations. M5 rule and M5 tree-model, in data mining, have been used to determine
how the characteristics of a problem instance affect the selection of one of the two algorithms controlled by this
automatic algorithm selection mechanism.

In [4], a procedure has been presented which combines Mont-Carlo and hyper-heuristic methods. The authors
have tested their procedure on some benchmark instances and shown its effectiveness. Some novel neighbour-
hood moves as well as a memetic algorithm have been employed, which contributes to the effectiveness of the
procedure. The procedure has been designed to exploit multicore computing power, and a large majority of its
runtime is spent on improving initial solutions.

As another hybrid, a procedure has been provided in [39] for scheduling large-scale multimode projects. As its
main components, it uses a novel heuristic and a genetic algorithm. Whereas through dynamic selection of modes,
the employed heuristic is involved with efficient resource utilization, the genetic algorithm further improves the
quality of the solution generated by the heuristic. A backward-forward mechanism has been employed to further
improve the quality of produced solutions.

In [9], an efficient hybrid differential evolution method has been presented which works based on the serial
method. The method employs both a fuzzy c-mean clustering technique and a chaotic routine, and incorporates
them into a differential evolution procedure. Whereas the role of the fuzzy c-mean clustering technique is
to facilitate several multi-parent crossover operators, the chaotic routine is aimed at preventing premature
convergence. The termination criterion is met when the generation limit or the maximum number of function
evaluation is encountered.

As an another effective hybrid, a hybridization of genetic algorithms and fully informed particle swarm
optimization can be mentioned which has been discussed in [36]. In this procedure, a random key has been
used as the representation scheme and the serial generation scheme has been used as a decoding mechanism. A
pre-processing which reduces the search space has been used to make the search mechanism efficient. Moreover,
a fitness function, which penalizes infeasible solutions, guides the search, and a method called multi-mode
forward-backward iteration has been used to improve the search efficiency.

3. The Local-search Evolutionary Decomposition-based Procedure (LEDP)

The LEDP relies on the combination of four components, namely (i) a biased-random sampling technique,
(ii) a local search, (iii) a decomposition technique, and (iv) an evolutionary search mechanism.

It also employs the method used in [40] as a pre-processing procedure for excluding non-executable and
inefficient modes. Figure 3 shows a flow chart of the LDEP.

As is seen, four layers are involved, with each of the first three layer passing their output to their next layer for
further improvement. The first layer generates an initial schedule through biased random sampling technique.
Mode filtering and prioritizing activities are two operations performed in the first layer.

In the biased random sampling, all modes are set randomly and if this random setting causes non-renewable
resource infeasibility, modes are altered randomly towards improving feasibility. If for a particular number of
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Do Right Shifting operations, on the best solution obtained up to this point, and improve it, if possible 
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Figure 3. A simple flow chart of the LDEP.
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times a random change of modes cannot lead to feasibility, the biased random sampling is repeated to alter the
initial values of modes.

After setting modes, LFT priority rule [20] is used to create a regret-based biased random activity list. The
randomly constructed modes and activity list comprise the initial schedule. Having the initial schedule as its
input, the second layer improves its input through a local search. Left- and right-shift operations are the base
of the second layer, which produces a local optimal schedule.

As the flow chart shows, right-shifting operations start to change the order of activities and continue as far
as these operations can improve the makespan. Then left-shifting operations start and proceed. When neither
right- nor left-shifting can make any further improvement, their processes are terminated, and mode modification
takes control.

Mode modification starts and as far as the change of mode of any activity, without disturbing feasibility,
can improve the makespan, the corresponding mode is changed. As the flow chart shows, even if the mode
modification process can improve the mode of a single activity, right- and left-shifting operations resume. A
local optimal solution is obtained when right-shifting, left-shifting, and mode modification can no further make
any improvement. In other words, the obtained local optimal solution is locally optimal with respect to three
neighbourhoods, namely right-shifting, left-shifting, and mode modification.

Receiving the local optimal schedule as its input, the third layer repeatedly decomposes the schedule and
tries to fine-tune its different parts. In this layer, modes are untouched and only the starting times are modified.
The exact optimization and integration are two operations involved in this layer.

Whereas the exact optimization operation is aimed at finding the optimal schedules of subprojects con-
structed, the integration operation embeds these optimized sub-schedules into the larger schedule. As the result
of these two operations, the third layer is aimed at the further improving of the local optimal schedule.

The modified schedule is used as the input of the fourth layer, which is the genetic algorithm and aims to
enhance this modified solution through filling a pool of its slightly perturbed copies. The crossover and mutation
are two operations involved in this last layer.

3.1. The pseudocode of the LDEP

Figure 4 shows the pseudocode of the LDEP. At line 5 of the pseudocode, the local search component is
called which operates based on the two neighbourhood schemes of right- and left-shift moves. Whereas in an
activity list, a right-shift move increases the order of an activity, the left shift move decreases such an order.

Since in a majority of cases, shifting an activity to right or left does not affect the resultant schedule, towards
increasing diversification, the employed local search has also been equipped with a swap mechanism. In effect, as
well as the modification which is performed as a result of applying a normal local search and causes an activity
to randomly change its position in the activity list, two activities in the activity list can also be swapped. The
selected activities for being swapped should have no precedence relation.

3.2. The local search

Figure 5 shows the pseudocode of the local search component. As is shown in lines 7, 13, and 26 of the
pseudocode, the employed local search works in the two levels of the mode and order of activities.

It first maintains the modes of activities and changes the orders of activities in lines 4–20. Upon reaching
stagnation and achieving no further improvement through such alternations, it starts to alter modes in lines
23–35. This continues as far as any improvement can occur. In this way, the modification of modes and order of
activities, one after another, is repeated, in lines 3–37, until one can help the other to make further improvement.

A Flag called Enhancement controls which loop to be executed. Initially being Set at line 2 of the pseudocode
to true, this flag is set to false at line 5 to indicate that only if the right or left shifting can make an improvement,
the loop in lines 4–20 can be repeated. This loop changes the order of activities. Hence, if this flag is false at
line 20, instated of the loop starting at line 4, the loop starting at line 23 takes control, and different modes for
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Figure 4. The pseudocode of the LEDP.

activities are tested. Line 24 sets the Enhancement flag to false to indicate that only if the change of modes can
make an improvement, the loop in lines 23–35, which change the modes, can be repeated.

Another flag, called Restart, controls whether after changing the modes of activities, another round for
changing the order of activities starts or not. As is seen in line 22, before starting to test different modes, the
Restart flag is set to false, and only if during testing the modes, an improvement is possible this flag is set to
true, line 31.

When the while-loop making changes in modes, lines 23–35, is terminated, depending of whether or not the
value of Restart flag is true, the main loop, lines 3–37, restarts or terminated, respectively. Lines 7 and 13 show
that two different modules have been called to do right- and left- shifting as well as swapping. The pseudocode
of each of these two modules has been presented in Figure 6.

As is seen in both of the pseudocode pieces, which perform reverse operations in comparison to one another,
several statements are common, including lines 2–4, 7–9, 11–15 and 17–19.

3.3. The decomposition module

Decomposition has successfully been used in the context of the RCPSP [13,42,54]. In the LEDP, the decom-
position technique used in [54] has been modified and upon the termination of the local search, takes control.
This module alters the starting times of activities and is aimed at improving the result obtained by the local
search. Figure 7 shows the pseudocode of the decomposition module, which aims at enhancing the output of the
local search by repeatedly re-scheduling its different sub-schedules to optimality and recombining the results.

For this purpose, it keeps the modes of activities as calculated in the local search, and only modifies the
starting times of activities. It decomposes the project into smaller subprojects, based on the solution provided
in the local search, and schedules the decomposed subprojects to optimality through its exact optimization part.
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Figure 5. The pseudocode of the employed local search.

The pseudocode starts with line 2, which sets interval to the makespan calculated in the local search. Initially,
a range with the size of interval is considered, and all activities in this range comprise a subproject, with this
subproject being tried to be solved to optimality. If within a short period of time (several milliseconds), this
subproject cannot be solved to optimality, the subproject is further decomposed to smaller subprojects, and this
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Figure 6. Two pieces of pseudocode for right- and left-shifting and swapping.
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Figure 7. The pseudocode of the decomposition search.

process continues until they can be solved to optimality. Upon solving a subproject to optimality, its optimal
schedule is embedded in the original schedule in the hope of decreasing the overall makespan.

The constructing of a subproject starts with line 7 which initially sets its starting time to zero. Later, this
starting time is modified in line 24. Line 11 selects the part of project between StartingPoint and EndingPoint
and calls it SubProject. In the current schedule, all activities which have been located in this range become
part of this constructed subproject. Upon constructing the subproject, line 12 tries to schedule it to optimality
within a specified time-limit, say several milliseconds, with current modes.

If the optimal schedule can be obtained within the time-limit, lines 14–25 take control, and otherwise line 26
makes the interval smaller, hoping that the smaller subproject is solved to optimality. As is seen in the pseu-
docode, the process of making a subproject smaller continues until the subproject can be solved to optimality.
In the case where the subproject is solved to optimality, lines 14–25 take control. Lines 14–16 check whether
the optimal schedule found is for the entire project and in this case, the module is terminated.

Any optimized sub-schedule is embedded into the original schedule at line 18. Line 19 checks whether embed-
ding the sub-schedule into the original schedule has caused any improvement. If this embedding has led to any
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improvement, line 20 sets IsRepeatNeeded to true, signifying that the decomposition has been beneficial and can
be repeated.

As is seen, the value of IsRepeatNeeded determines whether or not line 5 should start another round of
decomposition, with the new round of decomposition operating on the improved schedule, and aimed at further
enhancing of the schedule. Also whenever a subproject is solved to optimality, Interval becomes larger for the
next round, in the hope that the larger subproject can be solved to optimality. The decomposition component
is terminated whenever for a round, which includes lines 5-30, the value of IsRepeatNeeded remains false.

3.4. Searching the vicinity of the best solution obtained

Searching the vicinity of best solutions through genetic algorithms is a successful strategy [47]. That is why
when the decomposition component is terminated, the LDEP searches the vicinity of the best solution obtained.
The employed genetic algorithm used for this purpose is similar to the one presented in [56], with the two main
differences. The first difference is that it does not use mirroring operations, and the second difference is that
instead of using three crossover operators on the activity list, it uses a single crossover operator.

The employed genetic algorithm starts with slightly perturbing the copies of the solution constructed and
then using both crossover and mutation operations to improve the content of the pool in several generations.

Each genome in the pool consists of two separate partitions. Whereas the first partition includes the modes
of activities, the second partition contains the orders of activities, as an activity list. Towards fine-tuning the
best available solution, crossover and mutation operators alter both modes and orders of activities.

A two-point crossover operator is applied to the activity lists of every two parent genomes and creates the
activity list of the corresponding offspring genome. On the other hand, for creating the modes, a uniform
crossover operator is applied to the modes and creates a feasible offspring genome.

The feasibility of modes with respect to non-renewable resources is obtained through first all modes being
copied from one parent, and then the modes from the second parent being chosen randomly and with the
chance of 50 percent replacing the original mode. The same as in [56], this replacement is allowed only if the
feasibility is not violated, and both parallel and serial schedules have been used in decoding followed by double
justification [48].

4. Computational experiments

The LDEP has been coded in C++, and a PC with 2.5 GHz speed and 8 GB of RAM has been used to test
the procedure’s performance on 552 benchmark instances. These instances have been taken from the library of
project scheduling problems, PSPLIB [24]. Comprising various sets of multi-mode benchmark instances, this
library includes the best available solution in the literature for each instance as well. With respect to the latest
solutions, the library has been updated in July 2015.

Among the contents of the library, only those instances have been selected which have maximum number of
activities, 30, and have feasible solutions, as the projects in the library have between 10–30 activities and some
do not have any feasible solution.

4.1. Setting the parameters of the procedure

For setting the parameters of the LDEP, first a small representative subset of these 552 instances was selected,
and then the procedure was tested on this subset with varying parameters. Based on the tests performed,
swapping rate for the local search was set to 0.00. In effect, since swapping rate incorporates more randomness
in the ordering of activities and changes the balance towards exploration, its increase disturbed this balance.
The other parameter increasing the weight of exploration against exploitation is mutation rate. After several
trials and finding its best performance, this parameter was set to 0.03.

Moreover, with respect to the size of the pool and the number of generations, several tests were performed
and these two values were set to 500, and 750, respectively. The experiments on these representative instances
showed that for the cases where a limit is set on the number of schedules, the smaller limits require the smaller
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pool-sizes. That is why for the limits of 5000, 10 000, 20 000, and 50 000 number of schedules, the population
size was set to 30, 50, 80, and 120, respectively.

One of the other parameters that was determined in these experiments, was the time-limit allocated to
solving each decomposed problem. Experiments showed that allocating large values to this parameter increased
solution time without significantly affecting solution quality. Hence, this parameter was set to the small value
of 0.5 second. In the cases where a limit is set on the number of schedules, this small value reduces to zero.

4.2. The performance of the procedure

Based on the above setting, each of 552 employed benchmark instances were solved within the maximum of
17 seconds. The results are promising in the sense that among 552 solutions produced, 512 solutions are among
the best available solutions in the literature, comprising over 92.8% of instance, 512/552.

It is conjectured that in a parallel processing environments, if the last component of the procedure is multi-
threaded and run on different processors, without any increase in solution time, the procedure can produce even
better results. The reason is that the fourth layer can work on several processors simultaneously and fine-tune
the solution constructed in its first three layers.

A justification why for these instances, the procedure could not find improved solutions is that some of these
best solutions are optimal and cannot be improved at all. Moreover, those instances whose optimal solutions
have not yet been found have potentially a very large solutions space. It seems that multi-threaded procedures
which can be run on a large number of different cores have better chance for searching such large solution spaces.

To remove the effect of the computers on the performance of procedures, authors usually run their procedures
based on different limits set on the number of schedules generated. In other words, rather than limiting the time
allocated to their procedures, they limit the number of schedules the corresponding procedure can produce. The
reason is that when the number of schedules, rather than allocated time, limits a procedure, no more the speed
of the computer on which the procedure is run can affect its output.

In order to compare the procedure with other procedures, we have done the same by removing its third layer,
which cannot be controlled based on the number of schedules, and running the remaining procedure for the
limits of 5000, 10 000, 20 000, and 50 000 schedules.

For the comparison purposes, only procedures have been considered which have been tested on the set J30,
which includes the largest set of benchmark instances in the PSPLIB for the MRCSP.

Table 1 shows the results, indicating that for the limits of 10 000 and 20 000, the procedure has obtained
better results than those reported for the other procedures. As is seen in the table, the average percentage
division from the CPM-lower bounds criterion has been used to measure the performance of the procedures,
with smaller deviations signifying better results. The reason for using this criterion is that the optimal solutions

Table 1. The performance of the procedure in comparison with those of other procedures
based on the limits of 5000, 10 000, 20 000, and 50 000 schedules with the criterion of the
average deviation from CPM lower-bounds.

Number of Schedules Generated

Reference 5000 10 000 20 000 50 000
This Paper 15.325 13.963 13.171 12.803
Zamani [56] 19.553 14.516 13.312 12.906
Mutritiba et al. [33] 12.850 – – 12.550
Asta et al. [4] – – – 13.68
Wang and Liu [53] 17.159 16.029 15.165 14.423
Van Peteghem and Vanhoucke [49] 13.66 – – 12.720
Tseng and Chen [46] 18.332 16.786 16.193 15.683
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for a large majority of these 552 benchmark instances are unknown, and all of the authors have used this
alternative criterion to measure the performance of their procedures.

We also calculated the average percentage division from the best available solutions based on the latest
solutions in the PSPLIB library, updated in July 2015. It is worth noting that the average percentage division
from the best available solutions criterion is not usually used by the authors, as the best solutions change over
time. However, when used along with the other criterion, it seems to be an informing piece of information. For
instance, when this average percentage is 2, it can be expected that if the best available solution is 100, the
solution obtained by the LDEP is expected to be 102.

For the limits of 5000, 10 000, 20 000, and 50 000 schedules, we calculated these percentages and obtained
2.489, 1.327, 0.712, and 0.412, respectively. As is seen, the same as the percentage deviation from the CPM
lower-bounds, these percentages becomes smaller as the limit on the number of schedules increases.

Since the value of 33.375 shows the average of the best available solutions reported in the PSPLIB, the
performance of the LDEP for the limit of 50 000 schedules can also be stated as follows. For 5 out of 6 cases,
the LDEP is expected to find the best available solution and for the remaining case to miss the best available
solution only by one unit as 1/(6*33.375) > 0.412%. In other words, the value of 0.412, obtained for 50 000
schedules, indicates that for every one unit miss in value, five cases are expected to match with the best available
solutions.

4.3. The effect of each layer on the performance of the procedure

With the first layer generating an initial solution, each of the other three layers potentially contributes towards
increasing the quality of its previous layer. Solutions never degrade because, in the worst case scenario, each
of these layers keeps the solution of its previous layer unchanged. In finding the effect of each of the last three
layers on the performance of the procedure, we have used a criterion called the number of improvements.

This criterion is defined as the number of cases in which the corresponding layer can improve the solution of
its previous layer. In measuring this criterion, the parameters have been set to the same values discussed in the
parameter setting subsection. The results are as follows.

Whereas in 525, out of 552, cases the second layer improves the performance of the first layer, the third layer
can improve the performance of the second layer only in 73 out of 552 cases. With this criterion, the fourth
layer performs nearly the same as the second layer as it improves the performance of the third layer in 537
cases. The result of these computational experiments justifies the very short computational time that in the
parameter setting was allocated to the third layer. In effect, as discussed, in comparing the performance of the
procedure with other procedures, this short time was reduced to 0.

In order to further justify the shortness of the time we allocated to the third layer, we increased it 20-fold,
from 500 to 10000 milliseconds, and ran the procedure on all 552 instances. The result is that the third layer in
this case could only insignificantly improve its performance from 73 to 74.

5. Conclusion

The computational results demonstrate the efficiency of the procedure, and the analysis related to the impact
of the four layers of the procedure indicates that two key factors contribute to this efficiency.

First, the simultaneous use two right- and left-shift moves, along with mode moves, makes the employed
local search effective, as the solution obtained is local optimal with respect to three different neighbourhoods of
right-shift, left-shift and mode moves. That is why in computational experiments, the local search was able to
improve the initial solution in 525 out of 552 cases.

Second, the evolutionary search technique, which performs fine-tuning on the best solution obtained by the
cooperation of the first three components, adds to the effectiveness of the procedure. In effect, computational
experiments revealed that the evolutionary search technique was able to enhance the solution obtained by the
local search in 537 out of 552 cases. Hence, filling the initial pool with slightly perturbed copies of the best
available solution, and concentrating the effort on the fine-tuning of such a high quality solution was fruitful.
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With respect to the shortcomings revealed in computational experiments, the LDEP can be improved in two
different directions. First, the decomposition technique, which keeps the modes and alters the starting times of
activities, needs to change from an exact method to a heuristic. The reason is that computational experiments
revealed that it could improve the solution of its previous stage in only 73 out of 552 cases. By trading-off
optimality with flexibility and using a heuristic instead of an exact method, this component can concentrate on
improving both the mode and starting time of activities within a reasonable time.

Second, since the computational experiments showed that the local search could consistently improve the
initial solution, a better method for the generating an initial solution can be helpful. After all, the local search
is a relatively time-consuming task, and it is better to minimize its use through generating better initial solutions.

The computational experiments with respect to the effect of each component clearly showed that the procedure
is a multifaceted artefact and its performance not only depends on how each of its different components works
but on how much time is allocated to each component. Devising an automatic feedback-based mechanism that
depending on the characteristics of the problem at hand allocates a proper time to each component is expected
to affect the efficiency of the LDEP, and is of paramount importance.
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