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AN M/G/1 RETRIAL QUEUE WITH SINGLE WORKING VACATION
UNDER BERNOULLI SCHEDULE

Tao Li%*, LIYUAN ZHANG? AND SHAN GAO?

Abstract. In this paper, an M/G/1 retrial queue with general retrial times and single working
vacation is considered. We assume that the customers who find the server busy are queued in
the orbit in accordance with a first-come-first-served (FCFS) discipline and only the customer
at the head of the queue is allowed access to the server. During the normal period, if the orbit
queue is not empty at a service completion instant, the server begins a working vacation with
specified probability g (0 < ¢ < 1), and with probability 1 — g, he waits for serving the next
customer. During the working vacation period, customers can be served at a lower service rate.
We first present the necessary and sufficient condition for the system to be stable. Using the
supplementary variable method, we deal with the generating functions of the server state and
the number of customers in the orbit. Various interesting performance measures are also derived.
Finally, some numerical examples and cost optimization analysis are presented.
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1. INTRODUCTION

Retrial queueing systems are described by the feature that the arriving customers who find the server
busy join the retrial orbit to try again for their requests. Review of retrial queue literature could be
found in Falin and Templeton [7], Artalejo and Corral [11], Falin [6] and Artalejo [10]. The concept of
Bernoulli vacation schedule was first introduced by Keilson and Servi [8]. If the queue is empty after
a service completion then the server becomes inactive, i.e., a vacation period begins. If the queue is
not empty then another service begins with specified probability p or a vacation period begins with
probability 1 — p. Many researchers have paid attention to the retrial queueing models with vacation
under Bernoulli schedule. Kumar and Arivudainambi [2] studied an M/G/1 retrial queue with Bernoulli
vacation and general retrial times, Zhou [29] considered a similar model but with setup time. Kumar
et al. [3] generalized the model of [2] to an M* /G /1 queue. Some authors like Choudhury and Ke [5],
Wang [12] and Wu and Lian [13] also discussed a retrial queue with vacation under Bernoulli schedule.

On the basis of ordinary vacation, Servi and Finn [15] first introduced the concept of working vaca-
tion, where the server provides service at a lower speed during the vacation period rather than stopping
the service completely. Since queueing models with working vacation can be applied in manufacturing
systems, service systems and communication systems, working vacation has become an important aspect.
Using the matrix-analytic method, Tian et al. [20] analyzed an M/M/1 queue with single working vaca-
tion, Li and Tian [9] studied a GI/M/1 queue. Using the method of supplementary variable, Zhang and
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Hou [18] discussed an M/G/1 queue with single working vacation. Readers can also refer to Chae et al.
[14], Selvaraju and Goswami [19] and Gao and Liu [25].

Recently, the retrial queueing systems with working vacation have been investigated extensively. Do
[27] first studied an M/M/1 retrial queue with working vacations which is motivated by the performance
analysis of a Media Access Control function in wireless networks. Using the matrix-analytic method, Tao
et al. [16] considered an M/M/1 retrial queue with collisions and working vacation interruption under
N-policy, Upadhyaya [26] analyzed a discrete-time GeoX /Geo/1 retrial queue with working vacations.
Using the method of supplementary variable, Aissani et al. [1] and Jailaxmi et al. [28] both generalized
the model of [27] to an M/G/1 queue with constant retrial policy, and Arivudainambi et al. [4] analyzed
an M/G/1 queue with general retrial time policy. Gao et al. [24] discussed an M/G/1 retrial queue
with general retrial times and working vacation interruption, the discrete-time GeoX /G/1 queue was
investigated by Gao and Wang [23]. Although there have been some works about retrial queue with
working vacation, the server only begins a working vacation when the system becomes empty. To the
authors’ best knowledge, there is no research work investigating retrial queue with working vacation
under Bernoulli schedule. This motivates us to deal with such a queueing model in this paper. Obviously,
let parameters in this paper take proper values, many working vacation queues will be the special cases
of the model we consider.

This paper is organized as follows. In Section 2, we give a brief description of the model. The stability
condition is obtained by the matrix-analytic method in Section 3. In Section 4, we deal with the joint
distribution of the server state and the number of customers in the orbit. Some performance measures
of this model are discussed in Section 5. Section 6 presents numerical examples and cost optimization
analysis. Finally, Section 7 concludes the paper.

2. SYSTEM MODEL

In this paper, we consider an M/G/1 retrial queue with general retrial times, and the server takes a
working vacation under Bernoulli schedule. The detailed description of this model is given as follows:

(1) Customers arrive according to a Poisson process with rate A, and there is no waiting space in front of
the server. If the customer finds the server free when he arrives, he will begin his service immediately.
If the server is busy, the arriving customer will join the retrial orbit.

(2) We assume that only the customer at the head of the orbit queue is allowed access to the server, and
the retrial time R follows an arbitrary distribution with distribution function R(z).

(3) In a regular busy period, the normal service time S, is assumed to be generally distributed with
distribution function Gp(z) and first two moments pq, ue. During a working vacation period, the
lower service time S, follows an arbitrary distribution with distribution function G, (z) and first two
moments 71, 2.

(4) At a service completion instant in the normal period, if the orbit is not empty, the server takes a
working vacation with probability ¢ (0 < ¢ < 1), and with probability § (g = 1 — ¢), he waits for
serving the next customer. If the orbit is empty, the server always takes a working vacation. Vacation
time V follows an exponential distribution with parameter 6. At the end of each vacation, the server
starts a new busy period if there are customers in the system. Otherwise, the server stays idle and
will serve the new arrival by normal service rate.

It is assumed that R(0) = 0, R(c0) = 1,Gy(0) = 0,Gp(c0) = 1,G,(0) = 0,G,(c0) = 1, and R(z),
Gp(z), Gy(x) are continuous at = = 0. The functions «(z), u(z) and n(z) are the conditional completion
rates for retrial time, normal service time and lower service time, respectively, i.e.,

_ _dR@) _ _dGy() - 96,()
afr)dx = 1—7}2@)’ w(z)dz = %7 n(x)de = W

Further, we assume that all the random variables defined above are independent. Throughout the
rest of the paper, for a distribution function F(x), we define F(z) = 1 — F(x) to be the tail of F(x),
F(s) = [;° e7**dF () to be the Laplace-Stieltjes transform (LST) of F(x) and F'(s) = [ e s F(z) da

to be the Laplace transform of F(z). Clearly, we can obtain that F (s) = 1771?(5)
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Let N(t) represent the number of customers in the retrial orbit at time ¢, and I(t) denote the server
state, defined as follows

the server is in a working vacation period at time ¢ and the server is free,

the server is in a working vacation period at time ¢ and the server is busy,

I(t) = . . . . .
®) the server is during a normal service period at time ¢ and the server is free,

w o= o

, the server is during a normal service period at time ¢ and the server is busy.

At time t > 0, we define the random variable £(t) as follows: if I(t) = 0 or I(t) = 2 and N(¢) > 0, £(¢t)
represents the elapsed retrial time; if I(¢) = 1, £(¢) denotes the elapsed lower service time; if 1(t) = 3, £(t)
stands for the elapsed normal service time. Therefore, the system can be described by Markov process
X(t)={I(t), N(t),&(t)} with state space

Q={0,0}u{(1,0,2),2 >0} U{(2,0)} U{(3,0,z),z >0} U{(i,n,x),i=0,1,2,3,n > 1,2 > 0}.

Let {t,; n =1,2,...} be the sequence of epochs at which a normal service or a lower service completion
occurs and Y,, = {I(t;}), N(t})}. Then the sequence of random variables {Y,,;n > 1} forms an embedded
Markov chain with state space {(0,0)} U {(i,k),i = 0,2,k > 1}.

3. STABLE CONDITION

To develop the transition probability matrix of {Y,,; n > 1}, we introduce a few definitions:
(1) Define

[e’e} k
an :/ (A2)" e dGy(z), k>0,

which represents the probability that k& customers arrive during Sy, and the probability generating func-
tion of {ax,k > 0} is given by

A(z) 2 Zakzk = / e M= 4Gy (2) = Gy (/\(1 — z)), 0<z<1.
k=0 0

We can also have

Ay =1, A1) = )\/ rdGy(z) = Ay, A'(1) = )\2/ 22 dGy(z) = N po.
0 0

[e'e] )\ k
b :/ ( kg:') e MeT 4G, (2), k>0,
0 !

which explains the probability that V' > S, and k customers arrive during S,, and the probability
generating function of {by, k > 0} is given by

B(z) 2 bt = A o (420-2)2 4@, (2) = G, (9 +A(1— z)), 0<z<1.
k=0

We can also get
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which represents the probability that V' < S, and k customers arrive during V, and the probability
generating function of {vg, k > 0} is given by

z)égvkzkzﬁGZ(H—i—)\(l—z)) = M}\Zz)[l—B(Z)}, 0<z<1

We can also obtain

(4) Define
k
Cr = Zvjak,j, k > 0,
7=0

which explains the probability that V' < S, and k customers arrive during V' plus Sy, and the probability
generating function of {cg, k > 0} is given by

We can also derive

C(1) = VAW = 1-Gu(0), C'(1) = V(AW + VA1) = M + ) (1= G.0)) - B'(),
C"(1)=V"(1)AQ) +2V'(1)A' (1) + V(1)A" (1)

2 2 ~ 1
=x( g+ i) (1= Go(8) —2A(jur + a)B/u) ~ B"(1).
Using the lexicographical sequence for the states, the transition probability matrix of {¥;,;n > 1} can
be written as the block-Jacobi matrix

Wo Wiy Wy W3 - --

By Ay Ay As ---

P= Ao Ay Ay ---
Ay Ay -

where
Wy = m(bo+00)+%_;_9a07 Wy = ()\j\_e(bk+q0k) )\-/l\—Hq ek + )\j_a ) k>1,
By — (B0 o)) (R0 +aco) ZR(N)eo
0 R(Nao r 0 aR(Nay  GR(Nag
A — RN (bx + gex) + [1 = ROV (bk—1 + qex—1) TR(N ek +3[1 — R(N)]ex—1 £>1
¥ aR(Nay, + q[1 — R(MN)]ag—1 ZR(Nay + gl — RN\ )Jaw—y | "7

We can easily check that

Wo+iWk€= 1, Bo+iz4k€= e, iAke: e,
k=1 k=1

where e = (1,1)7.
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Theorem 3.1. The embedded Markov chain {Y,;n > 1} is ergodic if and only zf)\(u1+9) (1 Gy (0 ))
E]a+a(1-G.0)].

Proof. Tt is not difficult to see that {Y,;n > 1} is an irreducible and aperiodic Markov chain, so we
just need to prove that {Y;;n > 1} is positive recurrent if and only if )\(Ml + %) (1 - é,,(e)) <

R()\) {q + 6(1 - év(O))] We can have

. ZAk ( +qu( ) (1—q0 <1>>7
)
_ac)

and the invariant probability vector of matrix A is m = (71, 72), where

q 1)

T = ——=-,T
YTy T q+qC()

The vector ( is defined by

8= i kApe.
k=0

And S is explicitly given by

~ 1 - - T
B = (1 RO\ + A(m + 5) (1 - Gv(8)>7 1— R(\) + Am) .
It is clear from the Chapter 2 of Neuts [17], the embedded Markov chain {Y;,;n > 1} is positive recurrent
if and only if
q ~ ~ _ ~
78 < 1= A(m n 5) (1 Gy(a)) < R(\) [q + q(l Gv(e)ﬂ.
]

Since the arrival process is Poisson, using PASTA property, it can be showed from Burke’s theorem (see
[21], pp. 187-188) that the steady state probabilities of the Markov process X (¢) exist if and only if the

stable condition )\(,ul + %) (1 - CNT'U(H)) < R(\) [q + 6(1 - év(9)>] holds.
Now we define the limiting probabilities and limiting probability densities:

PO,O = tliglop(l(t) = OvN(t) = O)a

Pyo= tliglop(‘[(t) =2,N(t) =0),
Py () de = tlim P(I(t)=0,N(t) =n,x <&(t) <z+dz), n>1,
P (x)de = tlim P(I(t)=1,N(t) =n,x <{(t) <z+dz), n>0,
Py, (x)dz = tlim P(I(t)=2,N(t)=n,x <&(t) <z+dz), n>1,
P, (zr)de = lim P(I(t) =3,N(t) =n,z <{(t) <z +dz), n>0

4. STEADY STATE ANALYSIS

By the method of supplementary variable technique, we obtain the following system of equations that
govern the dynamics of the system

(0P = [ " Pro(e)n(e) ds + / " Pyoe)u(a) de, (4.1)
APy g = 0P, (4.2)
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%Pom(x) — (A 40+ a(2)Pon(x), n>1, (4.3)
@) =~ + 0+ n@)Pya@) + (1= G, 0)APLua(a). 720, (14)
%pgm(x) —O+a(@)Ponl), n>1, (4.5)
%Pgm(a?) — O+ (@) Py (@) + (1= 0 0)APsmr (), 120, (4.6)

where d,, ¢ is the Kronecker’s symbol. The boundary conditions are

o0 (o]
Py (0) = / Py (z)n(z) dx + q/ Ps (v)p(z)dz, n>1, (4.7)
0 0
Py ,(0) = 0,0 Po,0+ (1 — (5n,0))\/ Py (x)de —|—/ Py pyi(x)a(z)dz, n >0, (4.8)
0 0
P, ,(0) = 0/ Py (x)de JrQ/ P (x)p(z)dz, n>1, (4.9)
0 0
P3n()—5n0>\P20+9/ Py (z)de+ (1 n0>\/ Py (x dl’+/ Py pii(z)a(x)de, n>0,
(4.10)
and the normalization condition is
Poo+ Pro+ Y. (/ Po,n(;c)dx+/ Pan(2)dz) + (/ Py o) de +/ Pyu(z)de) = 1
n=1 0 0 n=0 0 0
(4.11)

By introducing the generating functions P;(z,2) = Y o2, P; n(2)2",i = 0,2,b = 1;i = 1,3,b = 0, from
equations (4.3)—(4.6), we can have

Py(z,2) = Py(0, 2)e” M R(z), (4.12)
Pi(z,2) = Py(0, 2)e” 0FAA=2D2@G (1), (4.13)
Py(z,2) = Py(0, 2)e " R(x), (4.14)
Ps(z,2) = P3(0, 2)e 722G, (x) (4.15)

From equations (4.1), (4.7)—(4.10), after some computations, we can obtain

(A+6)Po,0 = P1,0(0)bo + Ps,0(0)ao, (4.16)
Py(0,2) = B(2)P1(0,2) + gA(2)P5(0, z) + GP5,0(0)ag — (A + 0)Pp o, (4.17)
2P (0,2) = ( A+ 0) + AR (A + 9)z) Po(0,2) + APooz, (4.18)
Py(0,2) = OF (A + 0) Py (0, 2) + GA(2) P3(0, 2) — GP3.0(0)ao, (4.19)
2P3(0,2) = 2V(2)P1(0, 2) + (R(A) n )\R*(/\)Z>P2(O, 2) + 0Py 2. (4.20)

In the following, we consider three cases to obtain Py(0, z), P1(0, z), P»(0, z) and P5(0, 2).

4.1. Case 1: ¢ =0

If ¢ = 0, the model reduces to an M/G/1 retrial queue with general retrial times and single working
vacation. The equations (4.17) and (4.19) become

Po(o, Z) = B(Z)Pl (0, Z) + P3,0(0)CL() — ()\ + G)Po)o, (4.21)
PQ(O, Z) == QE*(A + G)Po(o, Z) + A(Z)Pg(o, Z) - P370(0)a0. (422)
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Using equations (4.21) and (4.18), we can get

. )\P()’()B(Z) + P&Q(O)ao — ()\ + H)PO’OZ é )\P(L()B(Z) + ngo(O)a() — ()\ =+ G)P(),o .

Py(0,z2) = — , 4.23
(02 z— (R()\-i-G) +)\R*()\+0)Z)B(z) f(2) (4.23)
Pi(0,2) = (M FAR (M + 0))p0(0, 2) + APoy. (4.24)

From equations (4.22) and (4.20), we have

OR (A + 0)Py(0, z) + C(2) Py (0, z) — P30(0)ag + 0Py 0A(2) _ 2 ho(2)

P2 07 zZ) = P
02 s (R(A) + AE*(A)Z)A(Z) 90(2)

z, (4.25)

Py(0,2) = V(2) Py (0, 2) + (@ + Aﬁ*(A))PQ(o, 2) + 0Py (4.26)
In order to obtain the relationship between Py and Ps¢(0), we first give a lemma here.
Lemma 4.1. The equation f(z) = 0 has the unique root z = « in the interval (0,1).
Proof. Clearly,
F(0) = =R\ +60)B(0) = —R(A + )G, (A + 6) < 0,

A+ 0RO\ +0) ~

f(1):1_(E(A+9)+AR*(A+9))B(1):1_ g GO >0

For any 0 < z < 1, we have
F(2)=1- B (\+0)B(z) — (E(A FO)+ AR (A + 9)z) B'(2),
F'(2) = —2AR (A + 0) B/ () — (E(A 1 0)+ AR (A + 9)2) B"(2) <0,

which means f(z) is a concave function in the interval (0,1). Thus, f(0) < 0 and f(1) > 0 indicate that
f(2) = 0 has the unique root z = « in the interval (0,1). O

From Lemma 4.1, the denominator of Py(0, z) is equal to 0 if z = «, so does the numerator. Substituting
z = « into the numerator of the right-hand side of (4.23), we have

Pg’o(O)ao = ()\ + G)P()’O — )\P(L()B(Oé).

Using the above equation, from equations (4.23)—(4.26), we can see that Py(0, z), P1(0, 2), P2(0, z) and
Ps5(0, z) will be expressed in terms of Py o, and Py is given in appendix.

Lemma 4.2. If ¢ = 0, some results which will be used in the generating functions of the number of
customers are given as follows:

f1)=1- (E(A +0)+ AR (A + 9))3(1)7
F()=1- B (\+0)B1) - (E(A 1 0) + AR (A + 9))3'(1),
1"(1) = =2AR (A + 0)B'(1) — (R(\+6) + AR (A +6)) B"(1),

Py(0,1) = APy oB(1) — (A +0)Poo + P (0)ag

f(1) ’
0 - i - =P 00
_ APooB"(1) +2APooB'(1) — 2f'(1)Py(0,1) — f" (1) Py(0,1)

P(0.1) = Iy (0.9 = ) ’

Pi(0,1) = (E(A FO) AR (M + 9))P0(0, 1)+ APy.o,
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P{(0,1) = lim P{(0,2) = —R(\+6)Py(0,1) + (E(A +6)+ AR (A + 9))135(0, 1),

PY/(0,1) = lim P{'(0,2) = 2R(A + 0) Po(0,1) = 2R(A + 0) P} (0, 1) (R()\ L0 FAR O+ 0))3;'(0 1),
go(1) =0, gh(1) =1—AR'(\)—A' (1) =R(\) - A'(1), g5(1)==-2"E (M)A (1)— A"(1),
ho(l) = 9R ()\ + Q)Po(o, 1) + C(l)Pl(O, 1) — P370(0)a0 + 9P070 =0,

Ry (1) = 6R" (A + 0)PL(0,1) + C'(1)Py(0,1) + C(1)PL(0,1) + 0Py o A'(1),
(1) = R (A + 0)PJ(0,1) + C"(1)Py(0,1) + 2C"(1)PL(0,1) + C(1)P(0,1) + 6Py 0 A" (1),
_ (1) - Iim ho (D)go(1) — ho(L)gg (1) + 2h5(1)go(1)

BOD =gy PO =1 R0 = 2(05(1)? |

P3(0,1) =V(1)P1(0,1) + P»(0,1) + 0F.0,

P4(0,1) = lim P4(0,2) = V/(1)P1(0,1) + V(1)P{(0,1) — R(\) P2(0, 1) + P5(0, 1).

Proof. This lemma can be obtained by some tedious algebraic manipulations, and the proof is too long
but straightforward. For space consideration, we omit it here. [l

Remark 4.3. Since go(1)=0 and ho(1)=0, we need to apply the first L’Hospital rule to compute P5(0, 1),
and use the L’Hospital rule twice to calculate P5(0,1).

4.2. Case 2: ¢ =1
If ¢ = 1, the equations (4.17) and (4.19) become

Py(0,2) = B(2)P1(0,2) + A(2)P5(0,2) — (A + 0) Py 0, (4.27)
P5(0,2) = OR (A + 0) Py (0, 2). (4.28)

Taking (4.28) into (4.20), and then inserting (4.20) and (4.18) into (4.27), we can get

A(B(2) +C(2)) Poo + 0A() Pog = (A +0)Fog

F(z2) - (R(A FO) H AR (A + 9)2) O(z) — (E(A) + AR*(A)Z) OR (A +0)A(z)
é Ml(Z
o N]_(Z)

z

P()(O,Z) =

~—

2. (4.29)

Clearly, once Py(0, z) is derived, P;(0,z), P2(0, z) and P3(0,z) can be obtained from equations (4.18),
(4.28) and (4.20). We can also see that Py(0, z), P1(0, z), P2(0, z) and P5(0, z) will be expressed in terms
of Py, and Py is given in appendix.

Lemma 4.4. If ¢ = 1, some results which will be used in the generating functions of the number of
customers are given as follows:

Mi(1) =0, Mj(1) = A(B'(1) + C'(1) ) Pog + 04'(1) Poy,
MI(1) = )\(B”(l) + C”(1))P0,o +0A"(1) Py,
Ni(1) = f(1) — (E(A +0)+ AR (M + 9))0(1) —OR (A +0) =0,
Ni(1) = /(1) = AR" A+ 0)C(1) = (R(A+0) + AR (A +9))C'(1)
— AR (NOR (A +0) —0R (A +0)A'(1),
N/(1) = £(1) — 2AR (A + 0)C"(1) — (ﬁ(A 10)+ AR (A + 9))0/’(1)

—2AR (AR (A +0)A (1) — R (A + 6) A" (1),
Mi(1) My (1)N{(1) — Mi(1)Ny'(1) +2M;(1)Ni(1)

Po(0,1) = Ty 2(N{(1))2 ’

P;(0,1) = lim F§(0,2) =
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Pi(0,1) = (R(O\+6) + XR"(A+0) ) Fo(0, 1) + APy,

P{(0,1) = lim P{(0,2) = —R(\+6) Po(0,1) + (E(A 1 0) AR (M + 0))P6(0, 1),
Py(0,1) = 0R" (A + 0)Po(0,1),  P5(0,1) = lim P5(0,2) = OR (A + 0)P}(0,1),
P3(0,1) = V(1)Py(0,1) + P5(0,1) + 0Py 0,

Pi(0,1) = 1m P;(0,2) =V'(1)P1(0,1) + V(1) P{(0,1) — R(\)P»(0,1) + P5(0,1).

Proof. This lemma can be obtained by some tedious algebraic manipulations, and the proof is too long
but straightforward. For space consideration, we omit it here. O

Remark 4.5. Since M;(1)=0 and N;(1)=0, we need to apply the first L’Hospital rule to compute
Py(0,1), and use the L’Hospital rule twice to calculate P}(0,1).

4.3. Case 3: 0 < g<1
Using equations (4.19) and (4.20), we can get

OR' (A +0)Po(0,2) + TC()PL(0, 2) — aPso(0)a0 + BAR) Poo _ & h()

P2 O,Z =
(0:2) 2= (RO + AR (V)2) A(2) 9(2)

2. (4.30)

Taking (4.30) into (4.20), and then inserting (4.20) and (4.18) into (4.17), after some manipulations, we
can get

(/\B(Z) . 9)g(z)P0’0 + ()\C(z) + 9A(z)>qu0,0 + (g(z) — qz) P50(0)ag
g(2) f(z) — q(E(A FO) F AR (O + 0)2) C2)z — q(E(A) + )\E*(A)z) OR (A + 0)A(2)z

éM(Z)z
~ N(2)

Po(o, Z)

z

(4.31)

Clearly, once Py(0, z) is derived, P;(0,2), P2(0,z) and P3(0,z) can be obtained from equations (4.18),
(4.30) and (4.20). Next, we will give the relationship between Py o and P (0), and a lemma is first given
here.

Lemma 4.6. If0 < g < 1, the equation g(z) = 0 has the unique root z = [3 in the interval (0,1).
Proof. Clearly,
9(0) = —gR(A\)A(0) = —gR(N)G,(A) <0
g(1)=1-g=¢>0.
For any 0 < z < 1, we have
J(2)=1-PR VA(2) a(fz(x) + AE*(A)Z) A(2),
§"(2) = 2R (V) A'(2) — q(ﬁz(x) + AR*(A)Z) A'(2) <0,
which means ¢(z) is a concave function in the interval (0,1). Thus, g(0) < 0 and ¢(1) > 0 indicate that
g(z) = 0 has the unique root z = f in the interval (0,1). O

Furthermore, we can easily get N(0) > 0 and N(8) < 0, so N(z) = 0 has a root z = + in the interval
(0,8), which means that the numerator of Py(0, z) is equal to zero when z = ~, i.e., M(v) = 0, and we
can have

(2B =2 =0)gt) + (AC() +040) )

A
Poo = L(v)Po0-
qy —9(v)

Ps0(0)ag =

Using the above equation, we can see that Py(0, z), P1(0,z), P»(0,z) and P3(0,z) will be expressed in
terms of Py, and Py is given in appendix.
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Lemma 4.7. If0 < g < 1, some results which will be used in the generating functions of the number of
customers are given as follows:

g1)=q. g(1)=1-7AF (1) —qA'(L ) ( ) = —20AR (MA'(1) —gA"(1), M(1) =0,

M(1) = AB'(1)gPoo + (AB(1) = A = 0)¢/(1) Pog + (AC'(1) + 04'(1) ) aPoo
+ (A1) +0)aPoo + (9/(1) - q)Pg,O(O)am

M"(1) = XB"(1)gPo0 + 2\B'(1)g' (1) Poo + (AB(1) = X = 0) g" (1) Po
+ (AC"(1) + 04" (1)) aPoo + 2(AC"(1) + 64'(1) ) aPog + g" (1) P o(0)ao,

N(1) = af(1) = a( RO+ 0) + A" (A +0)) C(1) = 0R (A +0) =0,

N'(1) = ¢/ (1)F(1) + af (1) = AR A+ 0)C(1) = g (RO +0) + XR (A +0) ) (€'(1) + C(1))
— QAR (WOR (A +0) — ¢fR (A +0) (A’(l) + 1),

N(1) = g"(1)f (1) +29' () F (1) + af"(1) = 20AR (A +0) (C'(1) + C(1)) = a(BO+0) + AR (A +6))

X (C”(1)+20’(1))—QqAE*(A)HE*(A+0 (A’ (1) +1) @R >\+0)<A’/(1)+2A’(1)),

M'(1) M"()N'(1) = M'()N"(1) +2M"(1)N'(1)
N1 2(N'(1))? ’

Pi(0,1) = (R(A 1O AR (A + 0)>P0(0, 1)+ APy,

Py(0,1) = PG(0,1) = lim P§(0, 2) =

P{(0,1) = lim P{(0,2) = —R(\+ ) Po(0,1) + (B(\+0) + AR (A + 0) | P (0,1),
h(1) = OF (A + 6)Po(0,1) +GC(1)PL(0, 1) — gPs 0(0)ao + 70 Po.o,
h'(1) = 0R (A + 0)P§(0,1) +gC' (1) P1(0,1) +qC(1)P{(0,1) + o A'(1) Py o,
(h(1) + h(1))g = h(1)g'(1)

2 b

h(1
P5(0,1) = (—), P}(0,1) = lim P5(0,z) =
q -1 q
P5(0,1) = V(1)Py(0,1) + Py(0,1) + 6Py o,

P4(0,1) = lim P}(0,2) = V/(1)P(0,1) + V(1)P{(0, 1) = R(\) P2(0, 1) + P5(0,1).
Proof. This lemma can be obtained by some tedious algebraic manipulations, and the proof is too long
but straightforward. For space consideration, we omit it here. O

Remark 4.8. Since M (1)=0 and N(1)=0, we need to apply the first L’Hospital rule to compute Py(0, 1),
and use the L’Hospital rule twice to calculate P§(0,1).

5. PERFORMANCE MEASURE

In the above section, we have obtained P;(0, z), P;(0,1) and P/(0,1),i = 0, 1,2, 3. Using these expres-
Sions we can get some interesting performance measures. Define the marginal generating functions
fo (z,z)dx,i=0,1,2,3, we can have the following theorem.

Theorem 5.1. If /\<,u1 + 5) (1 - év(ﬁ)) < R(\) {q + 6(1 - é1)(6)):| , the generating functions of the
number of customers in the orbit in different states can be written as follows:

Bo(2) = Po(0,2)R (A +6),

?1(z) = P1(0,2) Véz)7
By(z) = Po(0,2)R (M),
1— A(2)

P3(2) = P3(Ovz)m7
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where Py o 1s determined by the normalization condition
Poo+ Pog+ Po(1) + D1 (1) + Po(1) + P3(1) = 1.

Proof. Using equations (4.12)—(4.15), we can obtain
Po(2) = / Py(0,2)e" X" R(z) dw = Py(0,2)R (A +0),
0
By (2) = / Py(0, 2)e" A= G () dx = Py (0,2)G (9 FA1 - z)) = P1(0,2)

Dy(z) = /000 Py(0,2)e *R(z)dz = P5(0,2)R"(\),

0o _ . 1-A(z
By(z) = / Py(0, 2)e 21=2)2G (2) dz = P5(0, 2)G) (A(l - z)) _ py0,2)1 240

0 AL —2)
Clearly, the normalization condition is

P()’o + PQ’O + @0(1) + @1(1) + @2(1) + @3(1) =1.

The probability generating function of the number of customers in the orbit is given by
D(z) = Poo+ Poo+ Po(2) + P1(2) + P2(2) + P3(2).
The probability generating function of the number of customers in the system is given by
®(z) = Py + Pog+ Do(2) + 281(2) + P2(2) + 2P3(%).

The probability that the server is busy is

Py =&1(1) + @3(1) = P1(0, 1)@ + P3(0,1)

A'(1)
A

The probability that the server is free is

—* —%

Pf = P070 +P2,o +Epo(1) —|—432(1) = PO,O + P2,0 ‘|‘130(07 1)R (/\ + 9) —|—P2(O, 1)R ()\) =1-—PF,.

The probability that the server is in a working vacation period is given by

— V(1
P, =PFyo+ Do(1) +D1(1) = Po,o + Py(0,1)R (A+60) + P1(0, 1)%
The probability that the server is in a normal period is given by
—x A'(1)
P, = PQ,O + @2(1) + @3(1) = P27() + PQ(O, I)R (/\) + Pg(O, I)T =1-P,.

Viz)
0 0
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Let E[L;] denote the average number of customers in the orbit when the server’s state is 4,7 = 0,1, 2, 3.

From Theorem 5.1, after some calculations we can get

E[Lo] = lim &) (=) = Fy(0, )R (A + ),

B[] = i #4() = P0. ) 4 o Y,
E[Ls] = lim #)(2) = P;(0, )R (M),
B[Ls] = lim #4(:) = P(0.1) 2 4 py0,) LY.
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Therefore, the mean orbit length (E[L]) is given by

E[L] = lim &(z) = E[Lo] + E[L1] + B[Ls] + E|[Ls].

And the mean system length (E[L]) is derived as

E[L] = lim #'(2) = E[L] + &1 (1) + ®5(1) = E[L] + P,.
Let E[W] (E[W]) be the expected waiting (sojourn) time of a customer in the orbit (system), using
Little’s formula, we can obtain

E[L)] —  E[L]

EWl == BWI==

Theorem 5.2. If)\(m + %) (1 — év(g)) < E(A) [q—i—q(l — év(H)ﬂ, the probability generating function
of the steady state distribution of the number of customers in the system at a departure epoch is given

by
Pi(0,2)B(2z) + P5(0,2)A(z)

P1(0,1)B(1) + P5(0,1)

TI(z) = (5.1)

Proof. Following the argument of PASTA [22], we state that a departing customer will see n customers
in the orbit just after a departure if and only if there are n+1 customers in the system (or n customers in
the orbit) just before the departure. We denote {m,;n > 0} as the probability that there are n customers
in the orbit at a departure epoch, then for n > 0, we can get

—K/ Py (z dx—I—K/ Ps  (z)p(x) de,

where K is the normalizing constant. Define probability generating function II(z) = ZZO:O T2, We can
obtain

K/ Py(z,z)n )dx—l—K/ Ps(x,z)p(z)de = KP1(0,2)B(z) + KP3(0,2)A(2). (5.2)

Using the normalization condition II(1)=1, we have

1
K= o 0)BO) T B0.1) (5:3)

Hence (5.1) follows by inserting (5.3) into (5.2). O

6. NUMERICAL RESULTS

In this section, we present some numerical examples to illustrate the effect of the varying parameters on
the mean orbit length E[L]. We consider two different retrial time distributions, exponential distribution
with LST R(s) = 5+ and Erlang distribution of order 2 with LST R(s) = (5%5)°. Moreover, a cost
minimization problem is also considered. For the simplicity purpose, it is assumed that the normal service
time (the lower service time) is governed by an exponential distribution with parameter p (). Under
the stable condition, all the computations are done by developing program in Matlab software and the
values of parameters are arbitrarily chosen as A = 1.5, p=1/pu; =5, n=1/m1 =1, a =8, § = 2 and
g = 0.5, unless they are considered as variables in the respective figures.

6.1. Sensitivity analysis

From Figures 1 and 2, it is obvious that E[L] decreases evidently as the values of n increase. When
n < u, as expected, increasing 6 decreases the value of E[L]. The effect of n on E[L] is more obvious
when 6 is smaller, this is due to the fact that the expected vacation time is 1/6. An especial case is
n — W, i.e., the lower service rate equals to the normal service rate, it can be observed that 6 has no
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FIGURE 1. The effect of n on E[L] for different values of 6.

4.5 T T
—o— 6=2
4 Erlang retrial —%— =3 H
—b—e=4

FIGURE 2. The effect of n on E[L] for different values of 6.

effect on E[L]. Another extreme case is n=0, i.e., the server cannot provide service in a vacation period,
and 0 has a noticeable effect on E[L] which cannot be ignored.

In our model, if the orbit is not empty at a service completion instant in the normal period, the server
can take a working vacation with probability ¢. Thus, as shown in Figures 3 and 4, when n < p, E[L]
increases with increasing values of ¢, but the effect of ¢ on E[L] is not obvious for a larger value of 7.
An especial case is 7 = p, and our model reduces to an M/G/1 queue without vacation, we can find that
probability ¢ has no effect on E[L].

Figures 5 and 6 illustrate that E[L] decreases as « increases, this is because that with the increment
of «, the mean retrial time decreases. And the smaller the mean retrial time is, the bigger the probability
that the server is busy is, which decreases the value of E[L]. Since n < pu, the effect of & on E[L] is more
obvious when ¢ is larger. Moreover, it can also be observed that E[L] decreases with decreasing values
of q.

Furthermore, with the same value of parameter «, the mean retrial time with exponential distribution
is shorter than that with Erlang distribution. Thus, under the same condition, from Figures 1 to 6, we
can see that the value of F[L] with exponential retrial time is smaller than that with Erlang retrial time.

6.2. Cost analysis

In practice, queueing managers are always interested in minimizing operating cost of unit time. In
this subsection, we establish a cost function to search for the optimal probability ¢, so as to minimize
the expected operating cost function per unit time.
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FIGURE 4. The effect of ¢ on E[L] for different values of 7.
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FIGURE 5. The effect of o on E[L] for different values of g.
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Erlang retrial —%#—q=0.5

FIGURE 6. The effect of o on E[L] for different values of ¢.

Define the following cost elements:

C',=cost per unit time for each customer present in the orbit;

C,,=fixed cost per unit time when the server is in a normal period;

Cy=fixed cost per unit time when the server is in a working vacation period;

C,=cost per customer served by the normal service rate p;

Cy=cost per customer served by the lower service rate 7.

Based on the definitions of each cost element listed above, the expected operating cost function per
unit time is given by

mqin : fl¢) = CLE[L] + C,, P, + CyPy + Cpu + Cyym.

Because the expected operating cost function per unit time is highly non-linear and complex, it is not
easy to get the derivative of it. Hence in the following two examples are provided with assumption that
Cr =3, C, =50, Cy, =23, C, =150, C;, = 80, and we use the parabolic method to find the optimum
value of ¢, say ¢*. The essence of the parabolic method is to generate a quadratic function through the
evaluated points in each iteration, and the objective function f(x) is approximated by the quadratic
function in generating an estimate of the optimum value. According to the polynomial approximation
theory, the unique optimum of the quadratic function agreeing with f(x) at 3-point pattern {xg, 1,22}

occurs at
1 f(wo) (2} — a3) + f(z1)(23 — 23) + f(22)(af — 2F)
2 fzo)(z1 — w2) + f(21)(z2 — x0) + f(x2) (20 — 21)
The steps of the parabolic method are given as follows:
Step 1: Choose a starting 3-point pattern {zg, 1,22} along with a stopping tolerance e, and initialize
the iteration counter ¢ = 0.
Step 2: Compute & according to (6.1). If |z — 1| < ¢, stop and report approximate optimum solution
T

xr =

(6.1)

Step 3: If £ < x1, go to Step 4. If £ > x1, go to Step 5.
Step 4: If f(x1) is less than f(Z), update & — xg. Otherwise, replace 1 — x9,% — x1. Either way,
advance ¢ = i + 1, and return to Step 2.

Step 5: If f(x1) is less than f(Z), update & — x5. Otherwise, replace 1 — xg,T — x1. Either way,
advance ¢ = i 4+ 1, and return to Step 2.

Figures 7 and 8 plot the curve of the cost function with the change of ¢ for an M/M/1 retrial queue,
where the retrial time follows an exponential distribution with parameter o = 4 and an Erlang distri-
bution of order 2 with parameter oo = 8, respectively. Clearly, there is an optimal probability ¢ to make
the cost minimize. Using the parabolic method and the error is controlled by e = 10~%. After five itera-
tions, Table 1 shows that the minimum expected operating cost per unit time converges to the solution
q* = 0.55446 with a value f(¢*) = 872.26091. From Table 2, after three iterations, we have the solution
q* = 0.46970 with f(q*) = 872.83711.
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TABLE 1. The parabolic method in searching the optimum solution of an M/M/1 queue
(exponential retrial).

Iterations g 1 T2 f(zo) f(z1) fx2) z f(@) Tolerance
0 0.40000  0.50000 0.70000  872.38888  872.27864 872.41774 0.54197 872.26192  0.04197
1 0.50000 0.54197 0.70000 872.27864  872.26192  872.41774 0.54976  872.26106 0.00779
2 0.54197 0.54976 0.70000 872.26192  872.26106  872.41774 0.55336  872.26092  0.00359
3 0.54976  0.55336 0.70000 872.26106  872.26092  872.41774  0.55424  872.26091  0.00088
4 0.55336  0.55424 0.70000 872.26092  872.26091  872.41774  0.55452  872.26091  0.00028
5 0.55424  0.55452  0.70000  872.26091  872.26091  872.41774 0.55446  872.26091  0.00006

This paper investigates an M/G/1 retrial queue with general retrial times, and working vacation
is controlled by Bernoulli schedule. The server may begin a working vacation at a service completion
instant even if the system is not empty. Using the embedded Markov chain, we obtain the condition
of stability. By applying the supplementary variable technique, we discuss the generating functions for
different values of probability ¢. Various important performance measures are also obtained. Finally, we
present some numerical examples and consider a cost minimization problem. For future research, using

7. CONCLUSION

the same method, one can deal with a similar model but with batch arrival.
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TABLE 2. The parabolic method in searching the optimum solution of an M/M/1 queue
(Erlang retrial).

Iterations xo 1 T2 f(xo0) fz1) fx2) z f(@) Tolerance
0 0.40000 0.50000 0.60000 872.86627  872.84328 872.96668 0.46571  872.83722 0.03429
1 0.40000 0.46571 0.50000 872.86627  872.83722  872.84328 0.46857  872.83712 0.00287
2 0.46571  0.46857 0.50000 872.83722 872.83712 872.84328 0.46963 872.83711 0.00106
3 0.46857  0.46963 0.50000 872.83712 872.83711 872.84328 0.46970 872.83711 0.00007

APPENDIX A
Here we give the expression of F o for three different cases, and the proof is omitted.

Case1l: q =0

Define
_ AB(1) — AB(a)
Ko(0) = .
o = AB'(1) — f'(1)Ko(0) + f(1)Ko(0)

f(1) ’
Ko(1) = (E(A +0) + AR (A + 9))K0(0) 4

p1 = = RO+ 0)Ko(0) + (RO +6) + AB' (A + ) ) o,

Ko(2) = PR O+ Oro + CWA Ol +040)

Ko(3) = V(1)Ko (1) + Ko(2) + 0.

Fy,o is given by

Poo=[1+ 9 + KR 0+0) + 601" 1 Ko (1) + Ko () 2]
Case 2: g =1
Define
A(B’(l) + C'(l)) +0A'(1)
K1(0) =

Ni(1) ’
Ki(1) = (RO+0) + B (A + 9))[(1(0) Y

Ki(2) = R (A + 0)K1(0),
K1(3) = V(1) K1 (1) + K1(2) + 6.

Py is given by

P0,0 = {1 + g + Kl(O)R*(A + 9) + K1(1)$ + K1(2)§*()\) + K1(3)

Case 3: 0 < g<1
Define
AB'(1)g + (AB(1) = A= 0)g'(1) + (AC"(1) + 04'(1) Ja + (AC(1) +0)q + (9'(1) — a) L(~)

Kq(o) = Nl(l) )
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K,(1) = (E(A 10)+ AR (M + 9)>Kq(0) A

Kq(2)

_ R (A +0)K,(0) +qC(1) Ky (1) —qL(y) + 7
q )

K,(3) = V(K (1) + K,(2) + 6.

Py o is given by

Poo= |1+ § + K (0)R (A +0) + Kq(l)@ + K 2)R (M) + Kq(3)$} o
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