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Z -EQUILIBRIA IN BI-MATRIX GAMES WITH UNCERTAIN PAYOFFS

Farida Achemine1,∗, Abdelkader Merakeb2, Moussa Larbani3

and Philippe Marthon4

Abstract. The concept of Z-equilibrium has been introduced by Zhuk-ovskii (Mathematical Methods
in Operations Research. Bulgarian Academy of Sciences, Sofia (1985) 103–195) for games in normal
form. This concept is always Pareto optimal and individually rational for the players. Moreover, Pareto
optimal Nash equilibria are Z-equilibria. We consider a bi-matrix game whose payoffs are uncertain
variables. By appropriate ranking criteria of Liu uncertainty theory, we introduce some concepts of
equilibrium based on Z-equilibrium for such games. We provide sufficient conditions for the existence
of the introduced concepts. Moreover, using mathematical programming, we present a procedure for
their computation. A numerical example is provided for illustration.
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1. Introduction

The bi-matrix game is one of the fundamental models in game theory. It is a two-persons game in normal
form, which is specified by a finite set of pure strategies for each player. A player is allowed to randomize his
strategy according to a probability distribution on his pure strategy set, which defines a mixed strategy for the
player. A Nash equilibrium is a strategy profile that is immune against unilateral deviation of players. Nash [30]
showed that a bi-matrix game has at least one Nash equilibrium in mixed strategies.

However, in many games, pure strategy Nash equilibrium does not exist or is not Pareto optimal. The concept
of Z-equilibrium has been introduced by Zhukovskii [45] as an alternative solution to Nash equilibrium for such
games as it always exists in finite games and it is always Pareto optimal as well. The following property is another
difference between these two concepts: for each deviation of a player from her/his Z-equilibrium strategy, the
other player has a specific punishing strategy, whereas in Nash equilibrium, each player punishes the deviating
player just by staying in Nash equilibrium.
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Z-equilibrium in continuous and deterministic games has been studied in details by Zhukovskii [45] and
Zhukovskii and Tchickry [46]. Recently, Ferhat and Radjef [11] have generalized Z-equilibrium to the multiple
criteria games in mixed strategies i.e. games where the players have multiple payoff functions. Furthermore,
Bouchama et al. [4] established the equivalence between the concept of solution of a constraint satisfaction
problem and the Z-equilibrium of its associated game. They also proved the existence of a Z-equilibrium in pure
strategies for a finite normal game. Another direction of research related to the study of Z-equilibrium is the
investigation of this concept in games involving uncertainty. Indeed, in real-world games, players are generally
not able to evaluate precisely the payoffs results from the implementation of a strategy profile because of lack
of information about other players’ behavior or about the environment. This lack of precision (indeterminacy)
may be modeled by different ways: probabilistic tools [13], ambiguity [10], fuzzy set theory [44], D-S-theory [39],
Liu uncertainty theory [20], etc.

Harsanyi [13] studied the imprecision of probabilistic nature in games by developing Bayesian games. Just
to mention a few works on Nash equilibrium in bayesian games [14], Jackson et al. [15], [38, 40, 41]. Fuzzy sets
theory was introduced in non-cooperative game theory by Butnariu [5,6]. Nash equilibrium in games with fuzzy
payoffs received a great attention in the literature. Without being exhaustive, we mention the works of Nishizaki
and Sakawa [32], Maeda [25], Chunqiao and Qiang [7], Roy [35], Larbani [17], Das and Roy [8,9], Bandyopadhyay
et al. [3], Roy and Mula [36,37] and Mula et al. [29]. Further, Xiong et al. [43] used D-S-Theory to study a game
with ambiguous payoff and played with ambiguity. Gao [12] studied Nash equilibrium in bi-matix games using
Liu uncertainty theory. Besides the mentionned works, some other approaches for dealing with uncertainty in
normal form games are considered in the literature such as robustness by Aghassi and Bertsimas [1] and Perchet
[34], uncertainty aversion in Klibanoff [16], ambiguity in Bade [2] and ambiguous games introduced in Xiong
et al. [43]. All the mentionned works are related to Nash equilibrium and its properties.

The first work on Z-equilibrium in games involving uncertainty appeared in Larbani and Lebbah [18]. This
work investigated games with partially uncertain payoffs. The uncertainty appears in the form of a parameter
in the payoff functions, fi(x, y), i = 1, 2, . . . , n, where y is an unknown parameter and x is the strategy profile.
The introduced concept is called ZS-equilibrium. Some sufficient conditions for its existence are established.
Recently, this work was generalized to games where the players can form coalitions, the introduced concept is
called ZP-equilibrium Nessah et al. [31].

A part from the mentioned works on games with partially uncertain payoff functions, there is no work
investigating Z-equilibrium in games where the payoff functions are completely uncertain. The contribution of
this paper is to fill partially this gap. We investigate the basic class of bi-matrix games with uncertain payoffs
only. In dealing with the uncertain payoffs, we use the Liu uncertainty theory Liu [20]. This theory offers
powerful techniques and methods for handling subjective uncertainty that cannot be modeled with fuzziness.
It has been successfully used in many areas of research and application. Just to mention few related works Liu
[20, 21, 24], Li and Liu [19] and Liu [24]. It is interesting to note that Liu uncertainty theory has been used in
the investigation of Nash equilibrium in bi-matrix games by Gao [12].

Precisely, we investigate a bi-matrix game whose payoffs are uncertain variables. Using the Liu theory [20],
we introduce concepts of equilibrium for this game based on the Z-equilibrium. Then we establish sufficient
conditions for their existence and present a procedure for their computation.

The rest of the paper is organized as follows. In Section 2, we discuss the concept of Z-equilibrium in bi-
matrix game whose payoffs are characterized by real numbers and give some of its properties. In Section 3, we
recall some basic concepts and results of Liu uncertainty theory. In Section 4, we present our extensions of the
Z-equilibrium to uncertain bi-matrix games and give sufficient conditions for their existence. Next, in Section 5,
using mathematical programming tools, we present a procedure for computing the equilibria introduced in
Section 4. Finally, we provide a numerical example in Section 6. The last section concludes the paper.
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2. Z -equilibrium

2.1. Definitions and notations

– A 2-person strategic game G is given as follows

G = 〈N,X1 ×X2, (U1(x1, x2), U2(x1, x2))〉,

where N = {1, 2} is the set of players; Xi ⊂ Rni , ni > 0, Xi the set of strategies of the ith player
i = 1, 2. Ui : X1 ×X2 −→ R, is the utility function of the ith player. Assume that the aim of each player is
to maximize her/his utility function.

– A bi-criteria maximization problem (BMP) is denoted by

〈H, (F1, F2)〉,

where H ⊂ Rm and Fl : H −→ R, l = 1, 2.
– We will use the following relation in R2, for all (r1, r2) (r1, r2) ∈ R2,

(r1, r2) ≤ (r1, r2)⇐⇒ (∀k ∈ {1, 2}, rk ≤ rk and ∃l ∈ {1, 2}, rl < rl).

We recall the concept of Pareto optimal solution.

Definition 2.1. A feasible solution x∗ ∈ H is said to be Pareto optimal to the (BMP) 〈H, (F1, F2)〉 if there is
no feasible solution x ∈ H such that

(F1(x∗), F2(x∗)) ≤ (F1(x), F2(x)).

Pareto optimality means that it is impossible to improve any one objective function without sacrificing on
the other one.

Definition 2.2. x∗ ∈ X1 × X2 is said to be a Z-equilibrium for the game G if and only if the following two
conditions hold:

(1)
{
∀x1 ∈ X1, ∃x2 ∈ X2, U1(x1, x2) ≤ U1(x∗);
∀x2 ∈ X2, ∃x1 ∈ X1, U2(x1, x2) ≤ U2(x∗);

(2) x∗ is Pareto optimal solution of the (BMP) 〈X1 ×X2, (U1, U2)〉.

As mentioned in the introduction, Nash equilibrium may not exist in pure strategies in finite games, while
Z-equilibrium always exists. To guarantee the existence of Nash equilibrium, mixed strategies have to be con-
sidered. In the continuous games case, Nash equilibrium exists if the sets of strategies are compact and convex,
and the payoff functions are continuous and quasi-concave with respect to players’ strategies. Z-equilibrium
exists under weaker conditions than of Nash’s: only compactness of strategy sets and continuity of players’
payoff functions are required Zhukovskii [45]. When one of these two conditions is not satisfied, Z-equilibrium
existence is not guaranteed. The following example shows this fact.

Example 2.3. Consider the strategic game 〈{1, 2}, X1 ×X2, (U1, U2)〉, where X1 = [0, 1], X2 = [0, 1], U1 =
x1x2 − x1 and

U2(x1, x2) =
{
x1
x2

+ 1
x2

if (x1, x2) ∈ [0, 1]×]0, 1]
1 if x2 = 0, x1 ∈ [0, 1]

.

We have sup
x2∈X2

inf
x1∈X1

U2(x1, x2) = +∞. Thus, ∀(x1, x2) ∈ X1×X2, U2(x1, x2) < sup
x2∈X2

inf
x1∈X1

U2(x1, x2). There

is no Z-equilibrium for this game.

The existence of Z-equilibrium in this game fails because of the non-continuity of the function U2.
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2.2. Z -equilibrium in bi-matrix games

To help the reader understand the Z-equilibrium, we recall and compare the concepts of Nash equilibrium
Nash [30] with Z-equilibrium Zhukovskii [45] for bi-matrix games.

A bi-matrix game can be represented by a pair of two matrices (A,B) where A and B are m × n matrices
of payoffs to the row player I and column player II, respectively, with A = (aij)(i,j)∈{1,...,m}×{1,...,n} and
B = (bij)(i,j)∈{1,...,m}×{1,...,n}.

Assume that X = {1, 2, . . . ,m} and Y = {1, 2, . . . , n} are the set of pure strategies for player I and player II,
respectively. The aim of each player in this game, which we denote

G1 = 〈{I, II}, X × Y, (A,B)〉,

is to maximize his payoff.

Definition 2.4. A pair (k∗, l∗) ∈ {1, . . . ,m} × {1, . . . , n} is a Nash equilibrium of the bi-matrix game G1, if{
∀i ∈ {1, . . . ,m}, ail∗ ≤ ak∗l∗ ;
∀j ∈ {1, . . . , n}, bk∗j ≤ bk∗l∗ .

Definition 2.5. A pair (k∗, l∗) ∈ {1, . . . ,m} × {1, . . . , n} is a Z-equilibrium of the bi-matrix game G1, if it
satisfies the following two conditions:

(1)
{
∀i ∈ {1, . . . ,m}, ∃j ∈ {1, . . . , n}, aij ≤ ak∗l∗ ;
∀j ∈ {1, . . . , n}, ∃i ∈ {1, . . . ,m}, bij ≤ bk∗l∗ ;

(2) (k∗, l∗) is a Pareto optimal solution to the (BMP)〈X × Y, (F1, F2)〉, where F1(i, j) = aij , F2(i, j) = bij , for
all (i, j) ∈ X × Y = {1, . . . ,m} × {1, . . . , n}.

Remark 2.6. Condition (1) of Definition 2.5 guarantees the stability of Z-equilibrium. Indeed, for each devia-
tion i (resp. j) of the row player (resp. column player) from his Z-equilibrium strategy, the other player has a
counter strategy j (resp. i) to punishes him, such that

∀i ∈ {1, . . . ,m}, ∃j ∈ {1, . . . , n}, aij ≤ ak∗l∗
(resp. ∀j ∈ {1, . . . , n}, ∃i ∈ {1, . . . ,m}, bij ≤ bk∗l∗).

Note that in Nash equilibrium, the response k∗ (resp. l∗) of the other player is the same against every deviation
i (resp. j) of the row (resp. column) player: ∀i ∈ {1, . . . , n}, ail ≤ ak∗l∗ (resp. ∀j ∈ {1, . . . , n}, bk∗j ≤ bk∗l∗).

Therefore, Z-equilibrium is said to be an “active” equilibrium and Nash equilibrium is said to be “passive”
Zhukovskii [45]. In Nash equilibrium a player punishes the deviating player just by staying in Nash equilibrium,
while in Z-equilibrium each player has a specific punishing or counter strategy for each deviation of the other
player.

Remark 2.7. As in Z-equilibrium for each deviation of a player from Z-equilibrium strategy there is a specific
punishment strategy by the other player, the implementation of this concept in real-world games should be in
two stages:
Stage 1. Z-equilibria are determined or computed. The players conduct a pre-play round of discussions or
negotiations to select a Z-equilibrium and identify the punishment strategies against all possible deviations by
all players.
Stage 2. The game is played, the strategies are revealed. Should any player deviate from the selected Z-
equilibrium, he is punished by the other player using the known and appropriate strategy.

From this process it appears that when Nash equilibrium does not exist or it is dominated or there are many
Nash equilibria in a game, Z-equilibrium could be a suitable solution as it is Pareto optimal and it can be
stabilized through punishments. Indeed, when there is no-self-enforcing equilibrium (Nash equilibrium), it is
wiser and advisable for players to have pre-play negotiations to avoid that some or all players end up selecting
strategies that harm them and could be avoided.
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Remark 2.8. Z-equilibrium is always Pareto optimal for the players and there are games where Z-equilibrium
is preferable to the Nash equilibrium for the two players (in the case where Nash equilibrium is not Pareto
optimal); see the following example.

Example 2.9. Consider the bi-matrix game

(A,B) =

(−2,−2) (1,−2)
(2, 1) (−2, 2)
(0, 1) (0, 1)


where X = {1, 2, 3} and Y = {1, 2} are the set of pure strategies for row player and column player, respectively.
It is easy to see that the pair of strategies (1, 2) ∈ X × Y is a Nash equilibrium and the pair of strategies
(2, 1) ∈ X × Y is a Z-equilibrium. As a21 > a12 and b12 > b21, this example shows that Z-equilibrium insures
better payoffs for the two players than their payoffs in Nash-equilibrium.

Remark 2.10. – Condition (1) of Definition 2.5 is equivalent to the following l1 = max
i∈X

min
j∈Y

aij ≤ ak∗l∗

l2 = max
j∈Y

min
i∈X

bij ≤ bk∗l∗

which means that for player I (resp. II), the strategy profile (k∗, l∗) yields a payoff that is greater than or
equal to her/his security level l1 (resp. l2 ). In other words, Z-equilibrium is individually rational for the
players.

– We have the following equivalence (k∗, l∗) is a Z-equilibrium for G1⇐⇒ (k∗, l∗) is a Pareto optimal solution
of the (BMP) 〈S, (F1, F2)〉, where F1(i, j) = aij , F2(i, j) = bij , S = {(i, j)|l1 ≤ aij , l2 ≤ bij}. We remark
that the set of Z-equilibria is equal to the core of the game.

Remark 2.11. If Nash equilibrium is Pareto optimal then it is a Z-equilibrium.

Remark 2.12. Z-equilibrium (in pure strategies) always exists in bi-matrix games. Indeed, Bouchama et al.
[4] proved that a finite game always has a Z-equilibrium in pure strategies and they established the equivalence
between the concept of solution of a constraint satisfaction problem (CSP) and the Z-equilibrium of its associated
game. Furthermore, they proposed a backtrack search based procedure for computing Z-equilibrium of the
associated game.

In the following, we investigate Z-equilibrium in mixed strategies. Let us consider the sets of mixed strategies
of players I and II, which represent weights assigned to their pure strategies

P =

{
pT = (p1, . . . , pm),

m∑
i=1

pi = 1, pi ∈ [0, 1]

}
and

Q =

qT = (q1, . . . , qn),
n∑
j=1

qj = 1, qj ∈ [0, 1]

 ,

respectively, where T represents the transpose operator.
The mixed strategies specify probabilities that players choose their particular pure strategies. Then, a mixed

strategy game G2 is given as follows

G2 = 〈{I, II}, P ×Q, (A,B)〉.

When players I and II choose one mixed strategy from their own strategy set, say p and q, respectively, the
expected payoff of player I and player II are respectively E1(p, q) = pTAq and E2(p, q) = pTBq.
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Definition 2.13. A pair (p∗, q∗) ∈ P × Q is said to be a mixed strategy Z-equilibrium of the game G2 if it
satisfies the following two conditions:

(1)
{
∀p ∈ P, ∃q ∈ Q, pTAq ≤ p∗TAq∗;
∀q ∈ Q, ∃p ∈ P, pTBq ≤ p∗TBq∗;

(2) the pair (p∗, q∗) is a Pareto optimal solution to the (BMP) 〈P ×Q, (pTAq, pTBq)〉.

Remark 2.14. – Condition (1) of Definition 2.13 is equivalent toα1 = max
p∈P

min
q∈Q

(pTAq) ≤ p∗TAq∗

α2 = max
q∈Q

min
p∈P

(pTBq) ≤ p∗TBq∗.

– Definition 2.13 means that (p∗, q∗) is a Pareto solution to the (BMP) 〈D, (pTAq, pTBq)〉, where D = {(p, q) ∈
P ×Q, α1 ≤ pTAq and α2 ≤ pTBq}.

Proposition 2.15. Let (k∗, l∗) ∈ X×Y be a Z-equilibrium of the game G1, then the pair (p∗, q∗) ∈ P ×Q such
that p∗ = (p1, p2, . . . , pm)T , pk∗ = 1, pk = 0, ∀k 6= k∗ and q∗ = (q1, q2, . . . , qn)T , ql∗ = 1, pl = 0, ∀l 6= l∗, is
not necessary a mixed strategy Z-equilibrium for the game G2.

Proof. Indeed, let us consider the following bi-matrix game. �

Example 2.16.

(A,B) =
(

(3, 4) (6, 2)
(5, 3) (2, 5)

)
where X = {1, 2} and Y = {1, 2} are the sets of pure strategies for row player and column player, respectively.
The pair of strategies (1, 1) ∈ X × Y is a Z-equilibrium. Let p∗ = (1, 0) and q∗ = (1, 0), we have p∗TAq∗ = 3
and there exists p = ( 3

4 ,
1
4 ) ∈ P , such that ∀q = (q1, q2) ∈ Q, pTAq = q1( 14

4 ) + q2(5) > 3, which means that
the pair (p∗, q∗) doesn’t satisfy condition (1) of Definition 2.13. Consequently, (p∗, q∗) is not a mixed strategy
Z-equilibrium for the game G2.

3. Liu uncertainty theory

In the following, we present some definitions and properties of the Liu uncertainty theory that we will use in
this paper. For more details we refer the reader to Liu [20–22].

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element E in L is called an event. A set function
M from L to [0, 1] is called an uncertain measure if it satisfies the normality, duality and subadditivity axioms.
Axiom 1 (Normality). M(Γ) = 1 for the universal set Γ.
Axiom 2 (Duality). M(E) +M(Ec) = 1 for any event E.
Axiom 3 (Subadditivity). For every countable sequence of events E1, E2, . . . , we have

M

⋃
i≥1

Ei

 ≤∑
i≥1

M(Ei).

(Γ, L,M) is called an uncertainty space.
Let (Γk, Lk,Mk) be uncertainty spaces for k = 1, 2, . . . n. Let Γ = Γ1×Γ2×. . .×Γn and L = L1×L2×. . .×Ln.

Then the product uncertain measure M on the product σ-algebra L is defined by the following axiom:
Axiom 4 (Product Axiom). Let (Γk, Lk,Mk) be uncertainty spaces for k = 1, 2, . . . , n. Then the product
uncertain measure M is an uncertain measure satisfying

M

(
n∏
k=1

∆k

)
= min

1≤k≤n
Mk(∆k), ∆k ∈ Lk, k = 1, 2, . . . , n.
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Remark 3.1. A major difference between probability theory and Liu uncertainty theory is in the product
axiom. Because of this difference, Liu uncertainty theory and probability theory operational laws are different.

In the following, we enumerate the basic results used in this paper.

Definition 3.2. A function Φ : R −→ [0, 1] is an uncertainty distribution if and only if it is an increasing
function except Φ(x) ≡ 0 and Φ(x) ≡ 1 (see [33]).

Definition 3.3 ([20]). An uncertain variable is a measurable function ξ from an uncertainty space (Γ, L,M)
to the set of real numbers.

Let ξ be an uncertain variable, the concept of uncertainty distribution is defined by

Φ(x) =M(ξ ≤ x),∀x ∈ R

For example an uncertain variable ξ is called normal if it has a normal uncertainty distribution

Φ(x) =
(

1 + exp
(
π(e− x)√

3σ

))−1

, x ∈ R

denoted by N (e, σ), where e and σ are real numbers with σ > 0.

Definition 3.4 ([22]). An uncertainty distribution φ(x) is said to be regular if it is a continuous and strictly
increasing function with respect to x satisfying 0 < φ(x) < 1, and

lim
x−→−∞

φ(x) = 0, lim
x−→+∞

φ(x) = 1.

Remark 3.5. A regular uncertainty distribution φ has a unique inverse function α −→ φ−1(α), for each
α ∈]0, 1[. The inverse φ−1 is called the inverse uncertainty distribution of ξ. For example, a normal uncertainty
distribution, is regular.

The inverse uncertainty distribution of normal uncertain variable N(e, σ) is

φ−1(α) = e+
σ
√

3
π

ln
(

α

1− α

)
.

Definition 3.6 ([21]). The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M

{
n⋂
i=1

(ξi ∈ Bi)

}
= min

1≤i≤n
M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . Bn.

Definition 3.7 ([20]). Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0

M{ξ ≥ r}dr −
∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite.
If ξ is a regular variable with an uncertainty distribution Φ, then the expected value may be calculated as

follows

E[ξ] =
∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx



400 F. ACHEMINE ET AL.

Definition 3.8 ([20]). Let ξ be a regular uncertain variable, and α ∈ (0, 1). Then

ξsup(α) = sup{r|M{ξ ≥ r} ≥ α} = Φ−1(1− α)

is called the α-optimistic value of ξ.

Let ξ be an uncertain variable. Then ξsup(α) is a decreasing function of α.

Lemma 3.9 ([22]). Let ξ and η be independent uncertain variables with finite expected values. Then for any
real numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η].

Lemma 3.10 ([22]). Let ξ and η be independent regular uncertain variables, and α ∈ (0, 1). Then for any
non-negative real numbers a and b, we have

(aξ + bη)sup(α) = aξsup(α) + bηsup(α).

Ranking criteria
Let ξ and η be two independent regular uncertain variables and α and r be two given real numbers with

α ∈]0, 1]. Then we can compare the given two variables as follows.

– W (C1) (Expected value criterion): ξ ≥ η if and only if E[ξ] ≥ E[η].
– W (C2) (Optimistic value criterion): ξ ≥ η if and only if ξsup(α) ≥ ηsup(α) for some predetermined confidence

level α ∈]0, 1].
– W (C3) (Uncertain measure criterion or Chance Criterion): ξ ≥ η if and only if
M{ξ ≥ r} ≥ M{η ≥ r} for some predetermined level r.

Uncertain bi-criteria programming problem
Let us consider the uncertain bi-criteria maximization problem

〈C, (g̃1, g̃2)〉,

where the decision vectors z ∈ C are crisp, C ⊂ RN , N ∈ N∗. g̃1(z) = g1(z, ζ) and g̃2(z) = g2(z, ζ) are the
objective functions and ζ is an uncertain vector.

Based on the previous ranking criteria, we propose three extensions of the notion of Pareto optimal solution
(Def. 2.1) to the uncertain maximization problem 〈C, (g̃1, g̃2)〉.

Definition 3.11. For predetermined real numbers α and r with α ∈]0, 1], z∗ ∈ C is said Pareto efficient under
criterion W (θ) to the uncertain bi-criteria maximization problem (UBMP) 〈C, (g̃1, g̃2)〉 if there is no feasible
solution z such that

(G1,W (z∗, θ), G2,W (z∗, θ)) ≤ (G1,W (z, θ), G2,W (z, θ)),

where ∀l = 1, 2, Gl,W (z, θ) =

E[g̃l(z)], if θ = C1;
sup{r|M{g̃l(z) ≥ r} ≥ α}, if θ = C2;
M{g̃l(z) ≥ r}, if θ = C3.

4. Uncertain bi-matrix game

In many real game situations, players may not know precisely the outcomes or payoffs of their strategies and
no samples are available to estimate a probability distribution of the involved uncertainty. Therefore, the players
have to rely on their experiences and subjective judgements of experts to evaluate their belief degree that each
event will occur. Liu [23] showed that fuzzy theory and probability theory are not appropriate to model belief
degree and we have to deal with it by Liu uncertainty theory.

In this section, Liu uncertainty theory is used to represent the indeterminacy of the payoffs.
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Consider the uncertain payoffs bi-matrix games G3 and G4:

G3 = 〈{I, II}, X × Y, (Ã, B̃)〉

G4 = 〈{I, II}, P ×Q, (Ã, B̃)〉

{I, II} represents the two players. Ã = (ξij) is the payoffs matrix of player I and B̃ = (ηij) is the payoffs matrix
of player II, where ξij and ηij , i = 1, . . . ,m, j = 1, . . . , n are uncertain variables.

4.1. Solutions of the games G3 and G4

For a predetermined confidence level α (resp. β) ∈]0, 1] and predetermined level u (resp. v) of the row (resp.
the column) player, we have the following definitions.

Definition 4.1. Let θ ∈ {C1, C2, C3}. A pair (k∗, l∗) is called a Z-equilibrium (in pure strategies) under
criterion W (θ) for G3, if the following two conditions hold:

(1)
{
∀x ∈ {1, . . .m}, ∃y ∈ {1, . . . n}, f1,W (x, y, θ) ≤ f1,W (k∗, l∗, θ);
∀y ∈ {1, . . . n}, ∃x ∈ {1, . . .m}, f2,W (x, y, θ) ≤ f2,W (k∗, l∗, θ);

(2) (k∗, l∗) is Pareto efficient under criterion W (θ) to the UBMP 〈P ×Q, (f1,W (x, y, θ), f2,W (x, y, θ))〉,

where f1,W (x, y, θ) =

E[ξxy], if θ = C1;
sup{u|M{ξxy ≥ u} ≥ α}, if θ = C2;
M{ξxy ≥ u}, if θ = C3;

and

f2,W (x, y, θ) =

E[ηxy], if θ = C1;
sup{v|M{ηxy ≥ v} ≥ β}, if θ = C2;
M{ηxy ≥ v}, if θ = C3.

Remark 4.2

– In this approach, under the criterion W (θ), we assume that the aim of the row player is to maximize
f1,W (x, y, θ) and the aim of the column player is to maximize f2,W (x, y, θ), θ ∈ {C1, C2, C3}.

– For θ ∈ {C1, C2, C3}, under criterion W (θ), Condition (1) of Definition 4.1 means that for any deviation
x (resp. y ) of the row player (resp. column player), the column player (resp. row player) punishes him by
choosing a strategy y (resp. x) so that the resulting payoff f1,W (x, y, θ) (resp. f2,W (x, y, θ) is less or equal
to f1,W (k∗, l∗, θ) (resp. f2,W (k∗, l∗, θ)).

Definition 4.3. A pair (p∗, q∗) is called a mixed strategy Z-equilibrium under criterion W (θ) for G4, if the
following two conditions hold:

(1)
{
∀p ∈ P, ∃q ∈ Q, F1,W (p, q, θ) ≤ F1,W (p∗, q∗, θ);
∀q ∈ Q, ∃p ∈ P, F2,W (p, q, θ) ≤ F2,W (p∗, q∗, θ);

(2) (p∗, q∗) is Pareto efficient under criterion W (θ) to the uncertain bi-criteria maximization problem (UBMP)
〈P ×Q, (F1,W (p, q, θ), F2,W (p, q, θ))〉,

where F1,W (p, q, θ) =

E[pT Ãq], if θ = C1;
sup{u|M{pT Ãq ≥ u} ≥ α}, if θ = C2;
M{pT Ãq ≥ u}, if θ = C3;

and F2,W (p, q, θ) =

E[pT B̃q], if θ = C1;
sup{v|M{pT B̃q ≥ v} ≥ β}, if θ = C2;
M{pT B̃q ≥ v}, if θ = C3.

Remark 4.4

– Under the criterion W (θ), we assume that the aim of the row player is to maximize F1,W (p, q, θ) and the
aim of the column player is to maximize F2,W (p, q, θ), θ ∈ {C1, C2, C3}.
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– Condition (1) of Definition 4.3 means that for any deviation p (resp. q ) of the row player (resp. column
player), the column player (resp. row player) punishes him by choosing a strategy q (resp. p) so that the
resulting F1,W (p, q, θ (resp. F2,W (p, q, θ) is less or equal than F1,W (p∗, q∗, θ) (resp. F2,W (p∗, q∗, θ)), θ ∈
{C1, C2, C3}.

Remark 4.5

– The approach considered in Perchet [34] to deal with uncertainties is different from the approach that
we consider in this paper. Perchet [34] studied the notion of robust Nash equilibria which unify different
notions of Nash equilibria with uncertainties for N -player games where Ak ⊂ Rnk , the action set of player
k ∈ N = {1, . . . , N}, is a compact and convex set and his payoff function uk :

∏
k∈N

Ak −→ R is multilinear.

In Perchet [34], no assumptions are made on the mathematical structure or theory of uncertainty that
supports his approach to uncertainty. The author proceeds under the assumption that the uncertainties are
represented, for every player k, by a given mapping Υk : A−k −→ Rnk , where A−k =

∏
t 6=k

At. Which is

different from the framework of this present work. Indeed, Liu uncertainty theory [20] models belief degrees
and the uncertainty on the payoff is given as an uncertain variable (a measurable function on the uncertainty
space). To solve the bimatrix game G3, we used three different ranking criteria of uncertain variables to
define new equilibria as it is explained in Remarks 4.2 and 4.4.

– Different from the present study, the uncertainty in the payoff functions fi(x, y), i = 1, . . . , n considered in
Larbani and Lebbah [18] and in Nessah et al [31] is due to the lack of information about the realizations of
an unknown parameter y and x is the strategy profile which is crisp. The authors suppose that the players
know the domain where these parameters can take their values but completely ignore their behavior. The
proposed solutions are based on the notion of Z-equilibrium Zhukovskii [45] and the max-min principle for
decision making theory.

4.2. Existence conditions

Our focus in this section is the existence of the equilibria introduced in section 4.1 when the functions Fi,w
and fi,w, i = 1, 2 are real valued.

For a predetermined confidence level α (resp. β) ∈]0, 1] and predetermined level u (resp. v) of the row (resp.
the column) player, we have the following results.

The existence of a Z-equilibrium for G3 (in pure strategies) under criterion W (θ) is given as follows.

Theorem 4.6. (1) If the uncertain variables ξij and ηij, i = 1, . . .m and j = 1, . . . , n have finite expected
values, there exist at least one Z-equilibrium under criterion W (C1).

(2) If the uncertain variables ξij and ηij, i = 1, . . .m and j = 1, . . . , n are regular, then there exist at least one
Z-equilibrium under criterion W (C2).

(3) The game G3 always has a Z-equilibrium under criterion W (C3).

Proof. A Z-equilibrium under criterion W (θ) is a Z-equilibrium for the bimatrix game 〈X ×
Y, (f1,W (i, j, θ), f2,W (i, j, θ)〉. The existence of this concept is guaranteed by the existence theorem in Bouchama
et al. [4]. �

Example 4.7. The condition of regular uncertain variables in Theorem 4.6 can not be dropped. For example, let
us consider the non regular uncertain variable ξ with the uncertain function φ(x) = 1

2 (1+exp(1000−x))−1, x ∈
R. Then, it is easy to verify that sup {r|M{ξ ≥ r} ≥ α} = sup {r|1−M{ξ ≤ r} ≥ α} = sup{r|φ(r) ≤ 1−α} =
sup{r|φ(r) ≤ 0.5} = +∞, for α = 0.5, which means that without regularity of ξ, the existence of the quantity
sup{r|M{ξ ≥ r} ≥ α} is not guaranteed.

Theorem 4.8. Assume that the uncertain variables ξij and ηij in the payoff matrices Ã and B̃, i = 1, . . .m
and j = 1, . . . , n, are
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(1) independent with finite expected values, then there exist at least one mixed strategy Z-equilibrium under
criterion W (C1);

(2) independent and regular, then there exist at least one mixed strategy Z-equilibrium under criterion W (C2);
(3) independent and regular with finite expected values, then there exist at least one mixed strategy Z-equilibrium

under criterion W (C3).

Proof. (1) Existence of a mixed strategy Z-equilibrium under criterion W (C1).
Let α̃1 = max

p∈P
min
q∈Q

E[pT Ãq] and α̃2 = max
q∈Q

min
p∈P

E[pT B̃q]. Due to the linearity of the expected value operator

(Lem. 3.9), we have, E[pT Ãq] = pT ÃEq and E[pT B̃q] = pT B̃Eq. Where ÃE = (E(ξij))i,j and B̃E =
(E(ηi,j)i,j).
Since the functions F1,W (p, q, C1) = E[pT Ãq] = pTE[Ã]q and F2,W (p, q, C1) = E[pT B̃q] = pTE[B̃]q are
continuous on the compact set P × Q, then α̃1 exists. We conclude the existence of at least one mixed
strategy Z-equilibrium under criterion W (C1).

(2) Existence of a mixed strategy Z-equilibrium under criterion W (C2).
For (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, we denote by Φij and Ψij the distributions of ξij and ηij respectively.
Then, using the regularity and independence of the variables (Lem. 3.10), we obtain{

F1,W (p, q, C2) = max{u|M{pT Ãq ≥ u} ≥ α} = pT Ãαsupq

F2,W (p, q, C2) = max{v|M{pT B̃q ≥ v} ≥ β} = pT B̃βsupq

where

{
Ãαsup = (Φ−1

ij (1− α))i,j ,
B̃βsup = (Ψ−1

ij (1− β))i,j .
F1,W (p, q, C2) and F2,W (p, q, C2) are continuous on the compact set P × Q, then we have the existence of
at least one mixed strategy Z-equilibrium under criterion W (C2).

(3) Existence of a mixed strategy Z-equilibrium under criterion W (C3).
First, we prove that the function F1,W (p, q, C3) =M{pT Ãq ≥ u} is continuous on P ×Q.
Let (pk, qk)k∈N, p

k = (pk1 , . . . ., p
k
m)T ∈ P and qk = (qk1 , . . . , q

k
n)T ∈ Q be a sequence which converges to

(pL, qL), pL = (pL1 , . . . ., p
L
m)T ∈ P and qL = (qL1 , . . . , q

L
n )T ∈ Q.

We shall prove that
F1,W (pk, qk, C3) −→ F1,W (pL, qL, C3), k −→∞.

For this purpose, let Φ(pk)T Ãqk be the uncertainty distribution of (pk)T Ãqk and Φ(pL)T ÃqL be the uncertainty
distribution of (pL)T ÃqL.
Due to the independence and the regularity of the variable, we have

F1,W (pk, qk, C3) =M{(pk)T Ãqk ≥ u} = 1− Φ(pk)T Ãqk(u). (4.1)

On the other hand, using the Markov inequality (see [20]), we have for any given real number ε > 0,

M{|(pk)T Ãqk − (pL)T ÃqL| ≥ ε} ≤
∑
i,j(p

k
i q
k
j − pLi qLj )E(ξi,j)

ε
·

Since the expected values of the variables ξi,j are finite, we obtain

lim
k−→∞

M{|(pk)T Ãqk − (pL)T ÃqL| ≥ ε} ≤ lim
k−→∞

∑
i,j(p

k
i q
k
j − pliqLj )E(ξi,j)

ε
= 0.

Hence
lim

k−→∞
M{|(pk)T Ãqk − (pL)T ÃqL| ≥ ε} = 0
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which means that the sequence of uncertain variables ((pk)T Ãqk) converges in distribution to the uncer-
tain variable ((pL)T ÃqL). Thus, by the definition of convergence with respect to distribution of uncertain
variables, we have

lim
k−→∞

Φ(pk)T Ãqk(u) = Φ(pL)T ÃqL(u). (4.2)

From equations (4.1) and (4.2), we obtain

lim
k−→∞

F1,W (pk, qk, C3) = F1,W (pL, qL, C3).

We deduce that the function (p, q) −→ F1,W (p, q, C1) is continuous on P ×Q. By a similar process, we can
prove that F2,W (p, q, C3) =M{pTB̃q ≥ v} is continuous on P ×Q. Consequently, we have the existence of
at least one mixed strategy Z-equilibrium under criterion W (C3).

�

Remark 4.9. A crisp number c is a special uncertain variable. It is the constant function ξ(γ) ≡ c on the
uncertainty space (Γ, L,M). Therefore, a bi-matrix game without uncertainties can be considered as an uncertain
bi-matrix game on the form G3 where the uncertain variables ξij and ηij in the payoff matrices Ã and B̃,
i = 1, . . . ,m and j = 1, . . . , n, are constants. Consequently, an uncertain bi-matrix game is a generalization of
the bi-matrix game without uncertainties. Since the expected values of constants variables are finite, we obtain
the existence of a Z-equilibrium for deterministic bi-matrix game.

– If we assume that in game G4, uncertain variables ξij , ηij , i = 1, . . .m; j = 1, . . . ., n are constant, Definition
4.3 coincides with Definition 2.13. This means that a mixed strategy Z-equilibrium is a Z-equilibrium under
criterion W (C1).

Corollary 4.10. G2 has at least one mixed strategy Z-equilibrium.

Proof. In game G2, the real numbers aij and bij , i = 1, . . . ,m; j = 1, . . . , n are regular and independent
uncertain variables, then conditions of Theorem 4.8 are satisfied by the matrices A and B. We conclude that
G2 has a mixed strategy Z-equilibrium. �

Remark 4.11. This corollary is also a particular case of the existence theorem in Ferhat and Radjef [11]. The
authors proved an existence result of the Z-equilibria for a mixed strategic multicriteria game.

The condition of regular uncertain variables can not be dropped in Theorem 4.8. See the following examples.

Example 4.12. Assume that in game G3 in the matrix Ã, ξ̃11 is the non regular uncertain variables with
the uncertain distribution φ11(x) = 1

2 (1 + exp(1000 − x))−1, x ∈ R. Then, for the vectors p = (1, 0, . . . , 0)T

and q = (1, 0, . . . , 0)T we have pT Ãq = ã11. By the same way as in Example 4.7, we prove that the quantity
sup{r|M{pT Ãq ≥ r} ≥ α} is not real valued. Which means that without regularity of ξ1,1 the existence of the
quantity sup{r|M{pT Ãq ≥ r} ≥ α} is not guaranteed.

Example 4.13. Take an uncertainty space (Γ, L,M) to be {γ1, γ2} with power set andM{γ1} =M{γ2} = 0.5.
we consider in game G4, Ã = (ξi,j) with ξ1,2 ≡ 1; ξi,j ≡ 0 for (i, j) 6= (1, 1), (i, j) 6= (1, 2) and ξ1,1(γ) ={

1 γ = γ1;
−1 γ = γ2.

with the uncertainty distribution

φ1,1(x) =

0 x < −1;
0.5 −1 ≤ x < 1;
1 x ≥ 1.

ξ1,1 is not regular.
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Let us compute the function (p, q) 7−→ F1,w(p, q, C3) =M{ptÃq ≥ u} where u is a predetermined level which
we take equal to 1

2 .
For all (p, q) ∈ P ×Q,M{ptÃq ≥ u} =M{p1q1ξ1,1 ≥ 1

2 − p1q2}

=
{
M{ξ1,1 ≥ 1

p1q1
( 1
2 − p1q2)} p1q1 6= 0;

M{0 ≥ 1
2 − p1q2} p1q1 = 0.

=


0 p1q1 6= 0 and p1(q1 + q2) < 1

2 ;
0.5 p1q1 6= 0; 1

2 ≤ p1(q1 + q2) and p1(q2 − q1) < 1
2 ;

1 1
2 ≤ p1(q2 − q1);

0 1
2p1q1 = 0 and 1

2 − p1q2 > 0;
1 p1q1 = 0 and 1

2 − p1q2 ≤ 0.

Let (p, q) ∈ P ×Q, such that p = (1, 0, . . . , 0)t and q = ( 1
4 ,

1
4 ,

1
2 , 0, . . . , 0)t. We have F1,w(p, q, C3) = 0.5 and

lim
p1−→1+;q1−→ 1

2
+;q2−→ 1

2
+
F1,w(p, q, C3) = 0.

F1,w is not continuous on the compact P ×Q. Which is an assumption to prove the existence of the mixed
strategy Z-equilibrium under criterion W (C3).

4.3. Relation with the concepts of equilibria introduced in Gao [12]

In this section, we recall the concepts introduced in Gao [12] which are based on Nash equilibrium. Then, we
compare our results with those of Gao.

Definition 4.14 ([12]). A pair (p∗, q∗) is called an expected Nash equilibrium, if it satisfies{
∀p ∈ P, E[pT Ãq∗] ≤ E[p∗T Ãq∗];
∀q ∈ Q, E[p∗T B̃q] ≤ E[p∗T B̃q∗].

Definition 4.15 ([12]). A pair (p∗, q∗) is called an (α, β)-optimistic Nash-equilibrium if it satisfies{
∀p ∈ P, max{u|M{p∗T Ãq∗ ≥ u} ≥ α} ≥ max{u|M{pT Ãq∗ ≥ u} ≥ α};
∀q ∈ Q, max{v|M{p∗T B̃q∗ ≥ v} ≥ β} ≥ max{v|M{p∗T B̃q ≥ v} ≥ β}.

Definition 4.16 ([12]). A pair (p∗, q∗) is called an (u, v)-most uncertainty Nash equilibrium if it satisfies{
∀p ∈ P, M{p∗T Ãq∗ ≥ u} ≥ M{pT Ãq∗ ≥ u};
∀q ∈ Q, M{p∗T B̃q∗ ≥ v} ≥ M{p∗T B̃q ≥ v}.

Remark 4.17. We have the following relations.

– If the expected Nash equilibrium is Pareto efficient under criterion W (C1) to the (UBMP) 〈P ×
Q, (pT Ãq, pT B̃q)〉, then it is a mixed strategy Z-equilibrium under criterion W (C1).

– If an (α, β)-optimistic Nash equilibrium is Pareto efficient under criterion W (C2) to the (UBMP) 〈P ×
Q, (pT Ãq, pT B̃q)〉, then it is a mixed strategy Z-equilibrium under criterion W (C2).

– If an (u, v)-most uncertain Nash equilibrium is Pareto efficient under criterion W (C3) to the (UBMP)
〈P ×Q, (pT Ãq, pT B̃q)〉, then it is a mixed strategy Z-equilibrium under criterion W (C3).

5. Computation of the solutions

The computation of the equilibria introduced in Section 4.1 is considered in this here. We show how the
problem of computation of the introduced concepts is transformed into mathematical programming problems.
An algorithm is developed for computing the Z-equilibria.
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Theorem 5.1. Let ξij and ηij in payoff matrices Ã and B̃ respectively be independent regular uncertain variables
with finite expected values, for i = 1, . . . ,m and j = 1, . . . , n. Then

(1) Let θ ∈ {C1, C2}, a sufficient condition that the strategy profile (p∗, q∗) be a Z-equilibrium under criterion
W (θ) of the game G3 is that there exists a pair (β1, β2), βi > 0, i = 1, 2, such that (p∗, q∗) is a solution
of the following mathematical programming problem

(P̃θ)



max (β1F1,W (p, q, θ) + β2F2,W (p, q, θ))
subject to
F1,W (p, q, θ) ≥ α̃θ1
F2,W (p, q, θ) ≥ α̃θ2
n∑
j=1

qj − 1 = 0

m∑
i=1

pi − 1 = 0

0 ≤ qj , j = 1, . . . , n
0 ≤ pi, i = 1, . . . ,m

where



α̃θ1 = maxV
subject to

V ≤
m∑
i=1

ãθijpi, j = 1, . . . , n

m∑
i=1

pi − 1 = 0

0 ≤ pi, i = 1, . . . ,m

and



α̃θ2 = maxW
subject to

W ≤
n∑
j=1

b̃θijqj , i = 1, . . . ,m

n∑
j=1

qj − 1 = 0

0 ≤ qj , j = 1, . . . , n

where ãθij =
{
E(ξij) ifθ = C1

Φ−1
ij (1− α) ifθ = C2

and b̃θij =
{
E(ηij) ifθ = C1

Ψ−1
ij (1− β) ifθ = C2

α and β are given in Section 4.1.
(2) a sufficient condition for the strategy profile (p∗, q∗) to be a Z-equilibrium under criterion W (C3) of the

game G3 is that there exists a pair (β1, β2), βi > 0, i = 1, 2, such that (p∗, q∗) is a solution of the following
mathematical programming problem

(P̃C3)



max
(
β1M{pT Ãq ≥ u}+ β2M{pT B̃q ≥ v}

)
subject to
−
∑
i,j

piqjφ
−1
ij (1− λ̃1) ≤ u

−
∑
i,j

piqjφ
−1
ij (1− λ̃2) ≤ v

n∑
j=1

qj − 1 = 0

m∑
i=1

pi − 1 = 0

0 ≤ qj , j = 1, . . . , n
0 ≤ pi, i = 1, . . . ,m

where λ̃1 = α̃C3
1 = max

p∈P
min
q∈Q
M{pT Ãq ≥ u} and λ̃2 = α̃C3

2 = max
q∈Q

min
p∈P
M{pT B̃q ≥ v}.
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Proof. (1) The set of the Z-equilibria under criterion W (C1) is given by all the Pareto solution of the bi-criteria
maximization problem: 〈

S̃(α̃C1
1 , α̃C1

2 ), (F1,W (p, q, C1), F2,W (p, q, C1))
〉

(5.1)

where α̃C1
1 = max

p∈P
min
q∈Q

E[pT Ãq], α̃C1
2 = max

q∈Q
min
p∈P

E[pT B̃q]

F1,W (p, q, C1) = pT ÃEq , F2,W (p, q, C1) = pT B̃Eq and

S̃(α̃1, α̃2) =
{

(p, q) such that pT ÃEq ≥ α̃C1
1 , pT B̃Eq ≥ α̃C1

2

}
.

Solutions of problem (5.1) can be found by solving the following one [42]

max
(p,q)∈S̃(α̃

C1
1 ,α̃

C1
2 )

(pT (β1ÃE + β2B̃E)q),

where β1, β2 ≥ 0 and β1 + β2 = 1.
On the other hand it is well known that the problem α̃C1

1 = max
p∈P

min
q∈Q

(pT ÃEq) is equivalent to



α̃C1
1 = maxV

subject to

V ≤
m∑
i=1

ãC1
ij pi, j = 1, . . . , n

m∑
i=1

pi − 1 = 0

0 ≤ pi, i = 1, . . . ,m

which concludes the proof. The proof is similar under criterion W (C2).
In part 2, we proceed in the same way as in 1) and we take into account the equivalences from Liu [20]:

M{pT Ãq ≥ u} ≥ λ̃1 ⇐⇒

−∑
i,j

piqjφ
−1
ij (1− λ̃1) ≤ u

 and

M{pT B̃q ≥ v} ≥ λ̃2 ⇐⇒

−∑
i,j

piqjψ
−1
ij (1− λ̃2) ≤ v


�

In Corollary 5.2, we present a way for computing mixed strategy Z-equilibria of the bi-matrix game G2
(Def. 2.13).

Corollary 5.2. A sufficient condition that the strategy profile (p∗, q∗) be a mixed Z-equilibrium of the bi-matrix
game G2 is that there exists a pair (β1, β2), βi > 0, i = 1, 2, such that (p∗, q∗) is a solution of the following
mathematical programming problem (P4).
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(P4)



max
(
pT (β1A+ β2B)q

)
subject to
pTAq ≥ α1

pTBq ≥ α2
n∑
j=1

qj − 1 = 0

m∑
i=1

pi − 1 = 0

0 ≤ qj , j = 1, . . . , n
0 ≤ pi, i = 1, . . . ,m

where



α1 = maxV
subject to

V ≤
m∑
i=1

aijpi, j = 1, . . . n

m∑
i=1

pi − 1 = 0

0 ≤ pi, i = 1, . . . ,m

and



α2 = maxW
subject to

W ≤
n∑
j=1

bijqj , i = 1 . . .m

n∑
j=1

qj − 1 = 0

0 ≤ qj , j = 1, . . . , n

.

Proof. According to Remark 4.9, in order to obtain the result of corollary 5.2 it is sufficient to set ÃE = A, in
problem (P̃C1). �

5.1. Algorithm

The following algorithm can be used to compute Z-equilibrium under criterionW (Ck), k = 1, 2, 3 are described
as follows.

1: Initialization: Let Ã, B̃, β1 ≥ 0, β2 ≥ 0 (β1 + β2 = 1) be given.
2: Compute ÃE , B̃E , Ãsup, B̃sup.
3: if k = 1 or 2, use simplex code for computing αCk

1 and αCk
2 ;

if k = 3, use the maillage of the sets [0, 1]m−1 and [0, 1]n−1 for computing αCk
1 and αCk

2 of maxmin problem.
4: Use IBBA code for solving the problem (P̃Ck

).
In state 3 of the algorithm, if k = 3, the sets of constraints P and Q are reduced to [0, 1]m−1 and [0, 1]n−1

respectively by substituting the constraints
∑m
i=1 pi = 1 and

∑m
j=1 qj = 1 in the objective function.

This algorithm is based on the IBBA code. It is useful to note that the problems (P̃C1), (P̃C2) and (P̃C3) are
non-concave because of matrices ÃE , B̃E , Ãsup and B̃sup being non definte.

To obtain the global optimal solutions of (P̃C1), (P̃C2) and (P̃C3), we use the IBBA solver thanks to Frédéric
Messine from LAPLACE-N7; IBBA is a deterministic global optimization code based on interval analysis and
affine relaxations [26–28].

6. Numerical example

Let f1 and f2 be 2 firms in competition for a given market. Assume that the two firms want to market
the same product and they lack of observed data on the consumer’s demands of their products to estimate a
probability distribution of the involved uncertainty. For example, in the case of a new product as considered
in Gao [12]. Then, the two firms have to invite some domain experts to evaluate their belief degree that each
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event will occur. Using Liu uncertainty theory the demands of the product can be understood as uncertain
variables and the outcomes resulting of the actions of the two firms are uncertain variables. Assume that, the
payoff matrix of the first firm (player I) is

Ã =
(
N (110, 14) N (60, 9)
N (70, 10) N (30, 6)

)
and the payoff matrix of the second firm (player II) is

B̃ =
(
N (40, 4) N (55, 8)
N (45, 6) N (70, 11)

)
.

In this section, the IBBA algorithm is used for solving the Mathematical programming problems.

In the following, we consider the notations p =
(
p1

p2

)
=
(

p1

1− p1

)
and q =

(
q1
q2

)
=
(

q1
1− q1

)
.

(1) The firms adopt the expected value criterion. We have

ÃE =
(

110 60
70 30

)
and B̃E =

(
40 55
45 70

)
and the problem (P̃1), with β1 = β2 = 1

2 is

max((p1, 1− p1)
(

75 115
2

115
2 50

)(
q1

1− q1

)
)

subject to

(p1, 1− p1)
(

110 60
70 30

)(
q1

1− q1

)
≥ α̃1(C1)

(p1, 1− p1)
(

40 55
45 70

)(
q1

1− q1

)
≥ α̃2(C1)

0 ≤ q1 ≤ 1
0 ≤ p1 ≤ 1

where


α̃1 = maxV
subject to
V ≤ 40p1 + 70,
V ≤ 30p1 + 30
0 ≤ p1 ≤ 1

and


α̃2 = maxW
subject to
W ≤ −15q1 + 55
W ≤ −25q1 + 70
0 ≤ q ≤ 1

.

Solving these three mathematical programming problems, we obtain the vector
((0.6972, 0.3028), (0.2519, 0.7481)) which is an EZE. The equilibrium strategy of the player I is
p∗ = (0.6972, 0.3028) and the equilibrium strategy of player II is q∗ = (0.2519, 0.7481), with the
expected payoff p∗TAEq

∗ = 62.7482 and p∗TBEq
∗ = 55.0007 of the two firms, respectively.

(2) The firms adopt the Optimistic value criterion.
When α = 0, 85 and β = 0, 90, we obtain

Ãαsup = (φ−1
ij (1− α))ij =

(
96.6113 51.3930
59.4803 24.2620

)
B̃βsup = (ψ−1

ij (1− β))ij =
(

36.3658 45.3089
37.7316 56.6747

)
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The problem (P̃C2), with β1 = β2 = 1
2 becomes:



max((p1, 1− p1)
(

66.4886 48.3509
48.6060 40.4683

)(
q1

1− q1

)
)

subject to

(p1, 1− p1)
(

96.6113 51.3930
59.4803 24.2620

)(
q1

1− q1

)
≥ α̃C2

1

(p1, 1− p1)
(

36.3658 45.3089
37.7316 56.6747

)(
q1

1− q1

)
≥ α̃C2

2

0 ≤ q1 ≤ 1
0 ≤ p1 ≤ 1

where


α̃C2

1 = maxV
subject to
V ≤ 37.1310p1 + 59.4803
V ≤ 27.1310p1 + 24.2620
0 ≤ p1 ≤ 1

and


α̃C2

2 = maxW
subject to
W ≤ −8.9430q1 + 45.3089
W ≤ −18.943q1 + 56.6747
0 ≤ q ≤ 1

Solving the previous three mathematical programming problems, we obtain an (0.85, 0.90)-optimistic equi-
librium strategies p∗ = (0.6984, 0.3016) for the first player and q∗ = (0.2866, 0.7134) for the second player.
The value of the uncertain bi-matrix game is F1,W (p∗, q∗, C2) = p∗TAαsupq

∗ = 55.3055 for the first player
and F2,W (p∗, q∗, C2) = p∗TBβsupq

∗ = 45.3093 for the second player.
((0.6984, 0.3016), (0.2866, 0.7134)) is an (0.85, 0.9)-OZE.

(3) Suppose that the payoff levels of the players I and II are u = 50 and v = 40, respectively. In the problem
(P̃C3), pT Ãq = N(e1, σ1) and pT B̃q = N(e2, σ2) are normal uncertain variables. Consequently,

– M{pT Ãq ≤ u} =
[
1 + exp

(
π(e1−u)√

3σ1

)]−1

=
[
1 + exp

(
π(30p1+40q1+30+10p1q1−u)√

3(3p1+4q1+p1q1+6)

)]−1

, with

e1 = pT
(

110 60
70 30

)
q = 30p1 + 40q1 + 10p1q1 + 30

σ1 = pT
(

14 9
10 6

)
q = 3p1 + 4q1 + 6 + p1q1.

– M{pT B̃q ≤ v} =
[
1 + exp

(
π(e2−v)√

3σ2

)]−1

=
[
1 + exp

(
π(−15p1−25q1+70+10p1q1−v)√

3(−3p1−5q1+11+p1q1)

)]−1

, with

e2 = pT
(

40 55
45 70

)
q = −15p1 − 25q1 + 70 + 10p1q1.

σ2 = pT
(

4 8
6 11

)
q = −3p1 − 5q1 + 11 + p1q1.

Problem (P̃C3) becomes






max

(
1−

1

2

[
1 + exp

(
π(30p1 + 40q1 + 30 + 10p1q1 − u)
√

3(3p1 + 4q1 + 6 + p1q1)

)]−1

−
1

2

[
1 + exp

(
π(−15p1 − 25q1 + 70 + 10p1q1 − v)
√

3 (−3p1 − 5q1 + 11 + p1q1)

)]−1
)

subject to

−
(

30p1 + 40q1 + 30 + 10p1q1 +
(3p1+4q1+6+p1q1)

√
3

π
ln
(

1−λ̃1
λ̃1

))
≤ u

−
(
−15p1 − 25q1 + 70 + 10p1q1 +

(−3p1−5q1+11+p1q1)
√

3
π

ln
(

1−λ̃2
λ̃2

))
≤ v

0 ≤ q1 ≤ 1
0 ≤ p1 ≤ 1
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where

λ̃1 = max
p1∈[0,1]

min
q1∈[0,1]

(
1−

[
1 + exp

(
π(30p1 + 40q1 + 30 + 10p1q1 − u)√

3(3p1 + 4q1 + 6 + p1q1)

)]−1
)

and

λ̃2 = max
q1∈[0,1]

min
p1∈[0,1]

(
1−

[
1 + exp

(
π(−15p1 − 25q1 + 70 + 10p1q1 − v)√

3(−3p1 − 5q1 + 11 + p1q1)

)]−1
)
.

The solution is given by p1 = 0.8186, q1 = 0.3724.
– The equilibrium strategies of player I: (0.8186, 0.1814) and the payoff for player I is F1,W (p∗, q∗, C3) =

0.9817.
– The equilibrium strategies of player II: (0.3724, 0.6276) with the payoff for player II is F2,W (p∗, q∗, C3) =

0.9514.
((0.8186, 0.1814), (0.3724, 0.6276)) is a (50, 40)-MUZE. At this equilibrium point, the first firm chooses the
mixed strategy (0.8186, 0.1814) yielding a payoff level of 50 with uncertain measure 98% and the second firm
chooses the mixed strategy q = (0.3724, 0.6276) yielding a payoff level of 40 with uncertain measure 95%.

7. Conclusion

In this paper, we introduced definitions of Z-equilibria in bi-matrix game with uncertain payoffs according to
different ranking criteria of Liu uncertainty theory. Moreover, an existence theorem for each proposed concept
is provided. Using mathematical programming, a method for computing each proposed equilibrium is presented
and illustrated with a numerical example. In the near future, we intend to extend the results of this paper to
continuous games and multiple criteria games.

Acknowledgements. The authors would like to thank the referees and the editor who helped to substantially improve
this article.
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