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AN EFFICIENT TWO-PHASE METAHEURISTIC ALGORITHM FOR THE TIME
DEPENDENT TRAVELING SALESMAN PROBLEM

Ha BanG BAN*

Abstract. The Time Dependent Traveling Salesman Problem (TDTSP) is a class of NP-hard combi-
natorial optimization problems which has many practical applications. To the best of our knowledge,
developing metaheuristic algorithm for the problem has not been studied much before, even though
it is a natural and general extension of the Minimum Latency Problem (MLP) or Traveling Salesman
Problem (TSP). In this paper, we propose an effective two-phase metaheuristic which combines the
Insertion Heuristic (IH), Variable Neighborhood Search (VNS) and the tabu search (TS) to solve the
problem. In a construction phase, the IH is used to create an initial solution that is good enough. In
an improvement phase, the VNS is employed to generate diverse and various neighborhoods, while the
main attribute of tabu search is to prohibit our algorithm from getting trapped into cycles, and to
guide the search to escape local optima. Moreover, we introduce a novel neighborhoods’ structure in
VNS and present a O(1) operation for calculating the cost of each neighboring solution in a special
case of TDTSP where the TDTSP becomes the MLP. Extensive computational experiments on 355
benchmark instances show that our algorithm can find the optimal solutions for small instances with
up to 100 vertices in a reasonable amount of time. For larger instances, our algorithm obtains the new
best solutions in comparison with the state-of-the-art algorithm solutions.
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1. INTRODUCTION

The Time Dependent Traveling Salesman Problem (TDTSP) is a general variation of the classic Traveling
Salesman Problem (TSP) and the Minimum Latency Problem (MLP) which has many practical applications. In
the Time Dependent Traveling Salesman Problem (TDTSP), the amount of time for a salesman to travel from
one vertex to another changes drastically depending on certain time of the day because of traffic congestion. By
allowing the travel time between vertices to vary, the TDTSP is closer to several real practical situations such
as heavy traffic, road repair, and automobile accidents than the traditional TSP and MLP can be [18]. Because
it incorporates time dependent costs, the simplest generalization is the variant of the TDTSP considered in
Picard et al. [10,27], which has applications within scheduling contexts and generalizes the well-known Traveling
Salesman Problem. The improvement with respect to the traditional TSP is that the travel cost function between
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two vertices depends not only on the distance, but also on the position of the edge in the tour. Another variant
of the problem has been known as Time Dependent Vehicle Routing Problem (TDVRP) in [17,18,20], where
a whole fleet must be routed instead of a single vehicle. Thus, the TDTSP in this paper is a particular case of
TDVRP.

In the general case, the problem is described as NP-hard [31]. In this paper, we can formulate the TDTSP
as follows:

Consider a complete graph K,, = (V, E), with the set of vertices V' = 1,2,...,n and the set of edges E.
Assume that there exists an (n + 1) x (n + 1) time-dependent cost matrix C' and for a given edge (i,j) € E,
(i, j,t) is the travel time from ¢ to j at time ¢. The TDTSP involves finding a minimum cost tour that visits
each vertex exactly once, starting at a main depot. In the TSP, the cost is defined as ¢(i, j,t) = 1 X ¢;; (the
presence of ¢ is assumed to be negligible) while in the MLP, the cost is given by ¢(7,7,t) = (n —t + 1) X ¢;; (¢4
and t denote the distance from vertex i to j and the position order of the edge ¢;; in the tour, respectively)
[32]. Also, for solving the TDTSP, some vertices are typically designated as a depot, where the salesman begins
his tour.

Many real-world variants of the TDTSP deal with scheduling time-dependent tasks. Picard et al. [10] showed
the process of scheduling manufacturing jobs on a machine with time-dependent setup costs. Fox [13] and Fox
et al. [14] considered some machine scheduling problems as variants of the TDTSP. Another variant of the
TDTSP (such as the Deliveryman Problem (DMP)) in [27], was used to route vehicles through a manufacturing
system. Moreover, other applications of the TDTSP were also introduced in [6, 22, 28]. Specifically, it routes
data through a network [22], creates timetables for university exams [6], and schedules vehicles and crews [6].
Testa et al. 28] modeled the riding of amusement park attractions where the time spent waiting in line at each
attraction varied with the time of day in TDTSP.

Because the TSP and MLP are NP-hard [7], the TDTSP is also NP-hard [20]. However, the TDTSP is a
much more difficult problem than the TSP. Exact solutions for TSP with up to a thousand of vertices have been
proposed [30], but exact algorithms can only solve TDTSP with a few dozen vertices [2]. Malandraki et al. [20]
note that several well-known TSP metauheuristics do not easily adapt to the TDTSP. When the costs between
vertices are changed in the TDTSP, the travel times of many other vertices later in the tour may be affected,
and recomputing these travel times can be a time consuming task. They also show that certain properties of
the optimal solutions to Euclidean TSP do not extend to the TDTSP. Specifically, the convex hull property
presents in the optimal Euclidean TSP solutions does not hold for the TDTSP. Similarity, Blum et al. [7] also
indicate that solving the MLP is much harder than TSP as follows: (1) In TSP, small changes in the structure
of a metric space only affect local changes in the structure of the TSP. However, this can cause high non-local
changes in the structure of the MLP problem; (2) the MLP tour may revisit points with an unbounded number
of times even when the underlying graph has a bounded degree. In terms of complexity and difficulty, the MLP
is closer to the TDTSP than TSP. Therefore, we chose the state-of-the-art metaheuristics for MLP in [25, 26]
as a baseline in our research.

For NP-hard problems, such as the TDTSP, there are three common approaches to solve the problem, namely,
(1) exact algorithms, (2) approximation algorithms, (3) heuristic (or metaheuristic) algorithms. Firstly, the exact
algorithms guarantee to find the optimal solution and take exponential time in the worst case, but they often
run much faster in practice. Exact algorithms for the TDTSP with small sizes are presented in [8,10,31], for the
special case of the MLP in [5,35]. Secondly, the approximation algorithms produce a solution within some factor
alpha of the optimal solution. To the best of our knowledge, no approximation algorithm has been proposed so
far, however for the MLP several algorithms can be found in [1,3,7,9,15]. Thirdly, heuristic (or metaheuristic)
algorithms perform well in practice and validate their empirical performance on an experimental benchmark of
interesting instances. The metaheuristic algorithm depends on this approach.

Previously, several works based on heuristic approach have not been proposed for the TDTSP [20,21,32,33].
Nevertheless, these heuristics often are problem-dependent techniques. They are designed to adapt to the specific
problem and to take full advantage of the particularities of this problem. However, the disadvantage of pure
heuristic is often too greedy, therefore, they usually get trapped in a local optimum and thus fail to obtain the
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global optimum solution. Metaheuristics, on the other hand, are problem-independent techniques. In general,
they are not greedy and may even accept a temporary deterioration of the solution, which allows them to
explore more thoroughly the solution space and thus to get a better solution. Metaheuristic algorithms for the
TDTSP have not been studied much and this work presents the first metaheuristic approach for this problem.
However, several metaheuristics have been published for solving the case of the MLP problem in [4,25,26]. The
experimental results in [4, 25, 26] also indicate that the metaheuristic approach is suitable to solve the MLP
problem. The algorithms in [25,26] are mainly based on the principles of Variable Neighborhood Search (VNS).
However, their algorithms might become trapped into cycles. That means they return to the points previously
explored in the solution space. Consequently, the algorithms can get stuck in local optima. In this paper, we
propose a metaheuristic algorithm that combines Tabu search (TS) and Variable Neighborhood Search (VNS)
for the MLP problem. In our algorithm, TS is used to avoid getting trapped in cycles and to guide VNS to
escape from local optima. In a cooperative way, the VNS is employed to generate diverse neighborhoods for
the TS. Moreover, we introduce a novel neighborhoods’ structure in VNS and present a O(1) operation for
calculating the cost of each neighboring solution in a special case of MLP. We have evaluated our algorithm on
355 benchmark instances. The experiment results show that our algorithm can find the optimal solutions for
the instances with up to 100 vertices in a fraction of seconds. For larger instances, our algorithm obtains the
new best solutions in comparison with the state-of-the-art algorithms.

The rest of this paper is organized as follows. Section 2 presents the proposed algorithm. Computational
evaluations and Discussions are reported in Sections 3 and 4, respectively and Section 5 concludes the paper.

2. THE PROPOSED META-HEURISTIC ALGORITHM

The idea of avoiding repeated moves in Tabu Search (TS) [16] is to make tabu lists of the recent types of moves

in the space solution, and to prohibit reversing these moves. The move here is a transition from one solution to
another. Variable Neighborhood Search (VNS) [23] based on a simple principle systematically switches between
different neighborhoods. Therefore, VNS supports diverse neighborhoods for our algorithm. In this work, we
give an algorithm which brings the advantages of TS and VNS together. A pseudocode of our algorithm is given
in Algorithm 1. Our algorithm starts with an initial solution obtained from Insertion Heuristic (IH) in step 1
and then consists of four main steps (from step 2 to 5) repeated until a stop condition is met. In step 2, we
investigate a novel neighborhoods’ structure in VNS. Moreover, in order to avoid tabu move, tabu lists are used.
In step 3, a list of promising solutions is built up and serves as an input for step 4. The step aims at exploiting
the current solution space. In order to explore the entire solution space, a diversification phase is considered in
step 5. In the remaining of this section, more details about the five steps of our algorithm are given.
Step 1. We use insertion heuristic which is given in Algorithm 2 for finding an initial solution. Consider a
partial tour, and define the set V as the set of all non-visited nodes, V' C V. In order to improve the partial
tour, a node from V should be added. This process requires two decisions: which vertex to insert and where
to place it in the tour. In order to keep balance between pure greediness and overall layout of the tour, two
insertion schemes are used. The major difference between insertion schemes is the order in which the vertices
are inserted.

— Cheapest insertion: Among all vertices are not inserted so far, choose a vertex whose insertion causes the
lowest increase in the cost of the tour. The idea behind this strategy is certainly pure greediness.

— Farthest insertion: Insert the vertex whose minimal distance to a tour vertex is maximal. The idea behind
this strategy is to fix the overall layout of the tour early in the insertion process.

Step 2. In this step, eight neighborhoods such as remove-insert, swap-adjacent, move-down, move-up, swap-
adjacent, 2-opt, move-forward-k-vertices and move-backward-k-vertices [34] are used according to the principle
of VNS. For a given current solution 7', local search explores the neighborhood N;(T) of T iteratively and tries
to replace T by the best solution 77 € N;(T'). The main operation in exploring the neighborhood is calculation
of a neighboring solution’s cost. In straightforward implementation, this operation requires O(n) time in the
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Algorithm 1. Our Algorithm.

Input: v, K,, are a starting vertex, the complete graph, respectively.
Output: the best solution 7.
Step 1 (Generate an initial solution):
T «— IH-Procedure(v;,V);
T* «— T; {initiate the best solution}
LT « 0; {LT is the list of promising solutions}
while stop criteria not met do
Step 2 (VNS):
fori:1—6do
T — arg min N;(T); {local search}
if (L(T") < L(T) and T" is not tabu) or (L(T") < L(T*))) then
T—T
i — 1
update tabu lists;
if (L(T") < L(T*)) then
T «— T,;
end if
else
1+ +
end if
end for
Step 3 (Built up promising solutions list LT):
if L(T) < (1+ST) x L(T*) then
LT — LT U{T};
end if
if (JLT| < 5) then
go to step 2;
end if
step 4 (Implement Intensification):
for j:1—5do
do VNS as in step 2 without tabu list with an element of LT as start solution
end for
step 5 (Implement Diversification):
clear all tabu lists;
select a random tour 7" in LT}
swap randomly k vertices in T
go to step 2;
end while
return T7;

TDTSP and MLP. In TDTSP, when the positions of vertices in T" are changed, the travel times of other vertices
later in the tour may be affected. However, in the case of ¢(7,j,t) = (n —t + 1)¢;; (the MLP problem), by
using on the known cost of current solution, we show that this operation can be done in constant time for
some considered neighborhoods. Thus, the running time of exploring these neighborhoods can be speed up.
Now, let T = (v1,...,0g,...,v,) be a tour, we introduce a novel neighborhoods’ structure and complexity of
its exploration for the TDTSP and MLP.

Remowe-insert neighborhood moves each vertex v; in the solution at the end of it. This neighborhood of T is
defined as a set N1(T') = {T; = (v1,V2, .+, Vic1, Vi1, .-+, Un,y ¥;) 1 6= 2,3,..., n}. Obviously, the size of Ny(T)
is O(n).

Property 2.1. The time complexity of exploring Ny (T) is O(n?) for the MLP and TDTSP.
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Algorithm 2. IH-Procedure(vy, Ky,).

Input: vi, K, are a starting vertex, the complete graph, respectively.
Output: An initial solution T'.

1: T =y

2: while |T| <n do

3:  rd = random(2); {Choose an insertion scheme randomly}

4: if rd == 1 then

5: Arbitrary select a vertex v that is not yet in the partial tour and an inserted position j < |T| at time t; so that
the cost of T’ (T/ = Insert(7, j,v)) is minimal; {Cheapest Insertion}

6: else

7 Arbitrary select a vertex v that is not yet in the partial tour and an inserted position j < |T| at time t; so that

¢(vj,v,7) is minimal and the cost of T (T/ = Insert(7, j,v)) is maximal; {Farthest Insertion}
8: TT
9: end if
10: end while

Proof. For TDTSP: Calculation of each neighborhood’s cost requires O(n) time, therefore, the time complexity
of exploring N1 (T) is O(n?).

For MLP: Let us consider an initial solution T = vy, vs,...,v;—1, ¥, Vit1,--.,Uy. The neighborhood generates
a neighboring solution T; = v1,va,...,V;—1, Vi+1,. .., Un, v;. The latencies of T" and T; are calculated as follows:

L(T) = (n— L)c(vr,v2) + ...+ (n— i+ 1)c(vi—1,v;) + (n — ) (v, vig1)
+(n—i—1)ec(vip1,vig2) + ... + (Vp_1,vp). (2.1)
L(T;) = (n— De(v1,v2) + ...+ (n— i + De(im1,vixr1) + (0 — 0)c(vigt1, Vita)
+ o4 2(vn—1,0,) + (Vn, ;).

We have
n—1
L(Ty) = L(T) = Y (n—k)e(vr, veq1) + (n— i+ Dvi_1via
k=i—1
n—1
+ Y (= k4 1e(vr, vkg1) + c(vn, vi). (2.2)
k=i+1

It takes O(n) time to calculate the formulation in (2.2). Therefore, the time complexity of exploring N;(T")
is O(n?). O
Swap adjacent neighborhood attempts to swap each pair of adjacent vertices in the solution. This neighborhood

of T is defined as a set No(T) = {T; = (v1,v2, -+, Vi—2,04,Vi—1,...,Up) : ¢ = 3,4,...,n}. The size of the
neighborhood is O(n).

Property 2.2. The time complexity of exploring No(T) is O(n?) and O(n) for the TDTSP and MLP,
respectively.

Proof. For TDTSP: It takes O(n) time to calculate each neighborhood’s cost, therefore, the time complexity of
exploring No(T) is O(n?).

For MLP: The initial tour T and L(T) are the same as in (2.1). The neighborhood generates a neighboring
tour T; = v1,v2,...,Vi—2,V;, Vi—1,Vit+1,---,Un. Lhe latency of T; is calculated as follows:

L(T;) = (n—1)c(v1,v2) + ... + (n— i+ 2)e(vig, v;) + (n — i + 1)e(vi, viz1)
+ (n — Z')C(’Uifl,’l}zurl) + (n — 17— l)c(vi+1,vi+2) +...+ (’Unfl, ’Un).
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We have

L(T) =L(T)— (n—i+2)c(vi—a,vi—1) — (n —i)c(vi, vig1)
+ (TL -1+ 2)C(UZ‘_2, UZ‘) + (n - i)C(UZ‘_l, 1)2‘_1_1). (23)

It is obvious that we can calculate L(T;) by the formulation (2.3) in O(1) time. Therefore, the complexity of
exploring No(T) is O(n) in the MLP. O

Swap neighborhood attempts to swap the positions of each pair of vertices in the solution. This neighborhood of
T is defined as a set N3(T') = {T;; = (1,02, .., Vic1,Vj, Vidl, - - s Vj—1; Vi, Ujd, .-, Up) 18 =2,3,...,n—2;j =
i+2,...,n}. The size of the neighborhood is O(n?).

Property 2.3. The complexity of exploring N3(T') is O(n?®) and O(n?) for the TDTSP and MLP, respectively.

Proof. For TDTSP: Calculation of each neighborhood’s cost requires O(n) time, therefore, the time complexity
of exploring N3(T') is O(n?).

For MLP: Initially, we have an initial solution T = vy, U2, . . . , Vi1, Vi, Vi1, - - -, Uj—1, V5, Ujp1, - - -, Un (042 < §).
Swap generates a neighboring solution T = V1,V2,« ooy Vie1, Uy Vigls -« -y Vj—1, Vs, Uj41, - - -, Un. The latencies of T
and T; are calculated as follows:

L(T) = (n— Dc(vy,v2) + ...+ (n—i+ De(vi_1,v;) + (n — i)e(vi, vip1)
+. +(nﬁ7+1) c(vj-1,v5) + (n = j)e(v, vjt1)
+ .o+ (Vn—1,0n)- (2.4)
L(T;;) = (n— l)c(vl,vg) +...+(n—i+1c(vie1,v5) + (n—i)c(vy, vig1)
+...+(n—j+De(vjor,v) + (n— je(vi,vig1) + ... + (Vp—1, V).

We have

L(T;;) = L(T) — (n — i+ 1)c(vi—1,v;) — (n — 1)c(vs, vig1)
—(n—j+1ec(vj-1,v;) — (n = j)c(v;, vj41) + (0 — i+ L)e(vim1, v))
(

T (0 — d)e(og, vip1) + (1 — G + De(vy-1,05) + (0 — e(vr, vy41). (2.5)
It is obvious that we can calculate L(T;;) by the formulation (2.5) in O(1) time. Therefore, the complexity
of exploring L(T;) is O(n?) in the MLP. O
2-opt neighborhood removes each pair of edges from the solution and reconnects the vertices. This neigh-
borhood of T is defined as a set Ny(T) = {Ti; = (v1,v2, ...,V Vj,Vj—1, ..., Vit2, Vit1, Vg1, -+ -, Up) © & =
1,...,n—4;5 =i+4,...,n}. The size of the neighborhood is O(n2).

Property 2.4. The complexity of exploring N4(7T') is O(n?) for the TDTSP and MLP.

Proof. For TDTSP: It takes O(n) time to calculate each neighborhood’s cost, therefore, the time complexity of
exploring Ny (T) is O(n?).

For MLP: The initial tour and L(T) are the same as in (2.4). The neighborhood generates a neighboring tour
Tij = (v1,V2, ..., 0, V), Uj—1, ..., Vix2, Vit1, Uj+1, - - -, Up). The latencies of T' and T; are calculated as follows:

L(T;j) = (n—1)c(vi,v2) + ...+ (n—i)c(vi, v) + (n — i — 1)c(vy, viya)
+.. .+ (n—j+Dec(vj—1,vig1) + (0 — J)c(Vig1, vj41) + -+ (Vn—1,0p).
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We have
j—i—1
L(TU) = L(T) - (n - i)c(viv Ui+1) - (n - Z — h)C(’l]i_;’_h7 ’Ui-‘rh-i-l)
h=1
—(n— j)c(% Uj+1) +(n— i)c(vi,vj)
j—i—1
+ (n—i—h)e(vj—nt1,v-n) + (0= j)e(vigr, vj41). (2.6)
h=1

It is obvious that we can calculate L(T;;) by the formulation (2.6) in O(n) time. Therefore, the complexity

of exploring Ny(T) is O(n?) in the MLP. O
Move-forward-k-vertices neighborhood of T is defined as a set N5(T) = {Tijx = (v1,v2,...,0i, Vight1,
Ui+k+2a---anan+17Ui+2~--avi+kyvj+17~-~7vn) 1= 1,2,...,71 — k- 1, 1+ k< ] S Tl} with & = 2,...,[.
The size of the neighborhood is O(n?).
Move-backward-k-vertices neighborhood of T is defined as a set Ng(T) = {Tijx = (v1,V2,-.., Vi, Vitht1,
'Ui+k-+2,...,'Ui+1,v7;+2...,vi+k,vj,vj+17...,vn) 1= 1,27...,n — k- ].7 1+ k< j S TL} with k = 27...,1. The

size of the neighborhood is O(n?).
Property 2.5. The complexity of exploring N5(T) and Ng(T) is O(m?) for the MLP, respectively.

Proof. We prove Property 2.5 for move-forward-k-vertices and the same argument holds for move-backward-k-
vertices. For a tour Tjj; € N5(T), it can be shown that

j—1
L(Tyji) = L(T) = (n = i)c(vi,vigr) = Y, (n—h)e(vn, vpg1)
h=it1
— (n = 1)c(vi, vig1) + (n = @)e(vi, Vigrr1)
j—i—k—2
+ (n =i = h)c(Vitk+h, Viphtnt1) + (0= J+k+1)c(vj—1,v5)
h=1
k—1
+ (’Il*] +k)C(’Uj,Ui+1) + (Tl*j‘Fk* h)C(U¢+h7U¢+h+1)
h=1
+(n—J + De(igr, vj41) (2.7)

It is obvious that we can calculate L(T;;x) by the formulation (2.7) in O(n) time. Therefore, the complexity
of exploring N5(T) is O(n?) in the MLP. O

It is realized that calculation of a neighboring solution’s cost by using on the known cost of current solution
in (2.6) and (2.7) cannot be done in constant time. As a result, our algorithm spends O(n?) operations for a
full neighborhood search. However, Silva et al. [26] suggest a move evaluation procedure, which only requires
O(1) amortized operations since the number of edge exchanges is bounded. In this work, we use their evaluation
procedure for 2-opt and move forward(backward)-k-vertices. Therefore, the time complexity of exploring all
neighborhoods in the worst case is performed in O(n?).

In each iteration, the best neighboring solution is accepted if it is non-tabu and improving, or tabu but
globally improving. The reason of allowing a tabu move is that T'S prevents to get trapped into a cycle, however
it may lead to an overall stagnation of the searching process. The simplest and most commonly used aspiration
criterion consists in allowing a move, even if it is in the tabu list but the cost of the new solution is better
than that of the current best solution and this solution has obviously not been previously visited. Due to the



924 H.B. BAN

use of different neighborhood structures, several tabu lists are built. A move of the type remove-insert, swap-
adjacent, or swap is stored in the first tabu list while the second is for 2-opt moves. We do not use tabu list for
move-forward-k-vertices, move-backward-k-vertices.
Step 3. After finding a local optimum in step 2, step 3 builds up a set of promising solutions LT'. Since the
objective value of any local optimum lies within 5-10% of the best found solution, then it is added into LT. If
the size of LT is five, then the algorithm moves to step 4. The size of LT is chosen to be five because a small
value for the size of LT enhances more implementations to the intensification and diversification steps. The
search can be moved to another area of the solution space without the previous area explored. Otherwise, since
the value of |LT| is large, less intensification and diversification step are performed.
Step 4. If the promising solution list LT is full, the intensification step implements. Each solution of the list
is returned to step 2 without any restriction of tabu move. Since a new local optimum is found, the algorithm
goes to step 5 in which a diverse solution to re-initialize the search is created.
Step 5. Firstly, the tabu lists are cleared. Secondly, the diversification step is performed by swapping several
vertices randomly in each solution in the list LT and then we return to step 2 with these solutions.

The last aspect to discuss is the stop criterium of tabu search algorithm. A balance must be made between
computation time and efficiency. Here, the algorithm stops if no improvement is found after a given number of
iterations (NL).

3. COMPUTATIONAL EVALUATION

The experiments are conducted on a personal computer, which is equipped with an Intel Pentium core i7
2.93 GHz and 8 GB RAM memory.

3.1. Datasets

There have been a few published studies [20, 21, 32, 33, 37] with heuristics developed for the TDTSP. In
[21,32,33], unfortunately, we could not get the instances as well as their code and therefore, we cannot directly
compare the results of our metaheuristic with the results obtained by their heuristics. However, the experimental
results in [32] indicate that their solutions are slightly better than those obtained by the r-opt heuristic (within
3.6% on the average). The running time of their algorithm is about 5 times more than the running time of
the r-opt. In order to compare to their algorithm, we implement the r-opt in [32] for TDTSP and then run it
on benchmark. Similary, we also implement and then run the algorithm in [21] on benchmark. Based on the
experimental results, we can compare relatively the efficiency of these algorithms. Our datasets in this paper
are benchmarks in [2,20,25,36,37] that are divided into two types. The first type includes instances in TDTSP
benchmark [20,37]. A second group regards instances for MLP instances (i.e., w(i,j,t) = (n —t + 1) X ¢;5)
[2,25,26].

In type 1, a first benchmark [37] is built from 255 addresses randomly chosen from a list of delivery tours of
transporters from Lyon, the number of time steps (m = 130) and the duration of a time step (d = 360) seconds.
They randomly generated 100 instances for each problem size (n = 10, 20, 30, 50, and 100) by randomly selecting
n locations among the 255 positions referenced in the travel time function. The duration of each visit is randomly
selected in the interval [60, 300] seconds. Because the transition function tends to underestimate the travel time
in congested areas, they generated two additional versions of the function with a dilatation of travel times of
respectively 10% and 20% centered on the average travel time. Therefore, they end up with three travel time
functions. They also provide the best known solutions for these instances. We gather these instances into a
group named as real dataset 1. In a second benchmark [20], Li et al. have studied the TDTSP and given several
instances. They considered the Bier127 instance from TSPLIB [36] and defined a region in the city center in
which traffic jams occurred in the afternoon. Congestion occurred in the afternoon for beer gardens in the
dashed rectangle (the traffic jam region), so that the time to drive between two locations in the rectangle was
multiplied by a jam factor f > 1. Each value of jam factor generates an instance. We gather these instances
into a group named as real dataset 2.
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In type 2, our experiments are performed in MLP instances derived from benchmark instances [25,26]. The
cost of w(i,j,t) is defined as (n — ¢ + 1) x ¢(4, ), where c(i,j) is taken from the original distance matrix and
t is the position order of the edge c(i,j) in the tour. This allows direct comparisons with the state-of-the-art
metaheuristic algoritms in [25, 26].

The experimental data in type 2 includes three random datasets and two real datasets. In all instances, every
distance between vertices satisfies the triangle inequality. Each instance contains the coordinates of n vertices.
Based on the value of n, we divide the instances into two types: the small instances (n < 50) and the large
instances (n > 50).

The first two random datasets comprise non-Euclidean and Euclidean instances, and were named as random
dataset 1 and 2, respectively. In the former one, the instances were generated artificially with an arc cost drawn
from a uniform distribution. The values of the arc costs were integers between 1 and 100. In the latter one,
the Euclidean distance between two vertices was calculated. The coordinates of the vertices were randomly
generated according to a uniform distribution in a 200 x 200 square. We chose the number of vertices from 40 to
100 and generated different instances for each dataset. The last random dataset supported by Salehipour et al.
[25] was named as random dataset 3.

The real dataset 3 consists of the well-known real instances from TSPLIB, which are selected by Abeledo
et al. [2] and Salehipour et al. [25]. Their sizes are between 42 and 318 vertices. Besides that, we added more real
instances by randomly choosing partial data from the larger instances in TSPLIB. The number of vertices of
each partial instance is forty. We divided the partial instances into three groups based on the values of standard
deviation (STDV). We have analyzed the data of TSPLIB and found that instances mostly belong to one of the
following three groups. Group one with STDV < 100 where vertices are concentrated; group two, STDV > 1000
where vertices are scattered; or group three where vertices are spaced in a special way such as along a line or
evenly distributed. Specifically, group one includes the instances extracted from FEil51, St70, Eil76, and Rat195.
In group two, the instances are chosen from KroA100, KroB100, KroC100, and Berlin52. In the last group, the
instances are from Tsp225, T'ss225, Pr76, and Lin105. In group 3, two instances tss225 and 1in105 have the value
of STDV in a range of 100 and 1000. We gathered the partial instances into a group named as real dataset 4.

3.2. Metrics

In order to evaluate the efficiency of metaheuristic algorithm, its solution can be compared to (1) the optimal
solution (OPT); (2) a good upper bound (UB); (3) the best solutions in the previous algorithms.

We define the improvement of our algorithm (Best.Sol is our best solution) with respect to optimal solution
(gap1[%]), and upper bound (gap2[%]) in percent respectively as follows:

Best.Sol — OPT

gap1[%] = OPT x 100% (3.1)
B — Best.Sol
gaps[%)] = UU%SO % 100%. (3.2)

The optimal solutions can be found from [2,5]. Nevertheless, the exact algorithms only solve the problems
with small size. When the optimal solutions have been unknown for large instance sizes, our solutions can be
compared to the good upper bounds (r-opt) in [32], the known best solutions in [20,21,37] or the state-of-the-art
metaheuristic algorithms in [25,26,32].

We see that in the formula (3.1), the smaller the value of gap; is, the better and closer to the optimal solution
our solution is. Conversely, in formula (3.2), the larger the value of gaps is, the better and larger our solution’s
improvement upon UB is.

3.3. Results

Two experiments are conducted on 355 instances. The datasets in the first experiment include the small
instances of random dataset from 1 to 3 and real dataset 1, 3 while the large instances of real dataset 1,
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TABLE 1. The average results for the small instances.

Instances gapi[%) gapz[%] T cTime
INST-20-Rx 0 0 0.00 0.00
INST-30-Rx 0 5.01 1.12 2.98
Real dataset 3 0 5.04 0.22 0.59
Random dataset 1 0 5.59 0.20 0.53
Random dataset 2 0 5.48 0.21 0.56
TRP-50-Rx 0 9.82 0.62 1.65
INST-50-Rx - 7.09 5.70 15.16

2 and 3 in [20, 36, 37] and random dataset 3 in [25] are used for the second. For the small instances, their
optimal solutions allow us to evaluate exactly the efficiency of the algorithms. For the large instances, since
their optimal solutions have been not known, the efficiency of the algorithms is only evaluated relatively. In
two experiments, we choose k = 10, ST = 5% or 10%, | = 5, and NL = 150. In addition, in a pilot study, the
performance of the algorithm relatively depends on the order in which the neighborhoods are used. Generally
speaking, the neighborhoods which have smaller size will be explored first. Since our algorithm gets stuck in
local optimum, the larger neighborhoods are used, because larger sized neighborhoods may help escape from
local optimum. In this paper, the order of the neighborhoods is as follows: swap adjacent, remove-insert, swap,
2-opt, move-k-vertices-forward (-backward).

Given an algorithm, OPT, Aver.Sol and Best.Sol are the optimal, average and best solution after ten runs,
respectively. Let T" be the running time in seconds and c¢Time represent scaled run times, estimated on a Pentium
IV 2.4 GHz by means of the factors of Dongarra in [19] by seconds (note that Salehipour et al.’s experiments
were implemented on a Pentium IV 2.4 GHz). In terms of running time, comparisons with the results published
in [20,21,32] would be meaningless, due to the disparity between machines after almost two decades. Therefore,
the running time of our algorithm only compares to those of the state-of-the-art algorithms for MLP in [25,26].
The experimental results of Li et al.’s (RTR), Lucena et al.’s (AL), Salehipour et al.’s (AS), Silva et al.’s
(MS) algorithm and the known best solutions of Melgarejo et al. (PAM) are extracted from [20,21, 25,26, 37],
respectively.

3.3.1. Experiment for small dataset

The experimental results are illustrated in Table 1, which are the average values calculated from Tables A.1
to A.5 in the Appendix. In Table 1, we denote gap;(i = 1,2) and T by the average values of gap; and T for each
dataset.

The experimental results in Table 1 shows that our algorithm can find the optimal solutions in a reasonable
amount of time for all instances (with up to 50 vertices) in random dataset 1 and 2, TRP-50-x in random
dataset 4, and INST-20-x, INST-30-x in real dataset 1 (these optimal solutions are extracted from [2, 5, 37]).
For INST-50-x, our algorithm finds the new best solutions for most of instances. In comparsion with AL [21]
in Tables A.3 and A.5, our algorithm outperforms for all instances. In addition, in average, the improvement
of our algorithm upon the well-known upper bound ontained by r-opt is significant, since the average values of
gaps are from 5.01% to 9.82%. Obviously, our algorithm outperforms the approach in [32] because their average
of gaps [32] is in within 3.6%.

3.3.2. Experiment for large dataset

The experimental results are illustrated in Table 2, which are the average values calculated from Tables A.6
to A.10 in Appendix. In Table 2, we denote gap;(i = 1,2) and T by the average values of gap; and T for each
dataset.
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TABLE 2. The average results for the large instances.

Instances gapz|%] T cTime

TRP-100-Rx  13.59 7.74 20.67
TRP-200-Rx  14.38 79.14 211.30

INST-100-x 6.97 37.10  99.06
TSPLIB 8.79 4.49 11.99
Bierl27 0.34 36.55  97.59

In Table 2, for all instances, it can be observed that our algorithm is capable of improving the solution in
comparison with the upper bound from [32]. The average improvement of our algorithm with the average gap,
between 6.97% and 14.38% while the average gaps in [32] is about 3.6%. Similary, our algorithm obtains the
better solutions than those of AL [21] in Tables A.7 and A.8. Obviously, our algorithm can obtain a significant
improvement for almost instances and required small running time. Moreover, for INST-100-x in Table A.6 and
a set of Bier127 instances with different jam factors in Table A.10, the new best solutions are obtained compared
to the state-of-the-art previous solutions in [20, 37].

Tables A.7 and A.8 also indicate that, for MLP instances, our algorithm gives a much better solutions
than those of Salehipour et al.’s algorithm for all instances in random dataset 3. In comparison with Silva
et al.’s algorithm, in all cases in TPR-200-Rx, our algorithm gives the solutions as well as those of Silva et al.’s
algorithm. In addition, our algorithm obtains the better solutions for several instances (TRP-100-R2, TRP-100-
R3, TRP-100-R9, TRP-100-R15, TRP-100-R17, TRP-100-R18, TRP-100-R20) in TRP-100-Rx. In Table A.9,
our algorithm can find the optimal solutions (the optimal solutions are extracted from [2]) for the problems
which is up to 100 vertices such as KroA100, KroB100, KroC100, KroD100 in several seconds. Obviously, our
algorithm can be applicable to multiple variants of the TDTSP although it not is designed for solving them.

In all Tables, the average scaled running time of our algorithm is much better than those of Salehipour et al.’s,
and it grows quite moderately with the one of Silva et al.’s algorithm.

4. DISCUSSIONS

In combinatorial optimization problem such as TDTSP, there exist many “locally optimal” solutions-not the
absolutely best, but good enough as well as global optimal solution. Often, algorithms get trapped in a local
optimum because (1) the explored part of the solution space is not large enough; (2) algorithms might become
trapped into cycles. That means they return to the points previously explored in the solution space.

Our hybrid approach is between T'S and VNS, as follows. First, many good elite solutions (local minima)
created by VNS. Second, TS is perfectly attracted to global minima area. Even though the initial solution was
set far from global minima, TS still can prevent from getting trapped into cycles in order to drive the search
to global minima. In [12, 30], similar ideas have been proposed in order to hybridize different metaheuristic
frameworks.

Our algorithm performs better than the other because of several reasons as followings:

(1) In the case of the general TDTSP, heuristic approaches in [20, 21, 32] are often too greedy, therefore,
they usually get trapped in a local optimum and thus fail to obtain the global optimum solution. Our
metaheuristic approach, on the other hand, is not greedy and may even accept a temporary deterioration
of solution, which allows them to explore more thoroughly the solution space and thus to get ass better
solution. The experiments show that our solutions are much better than those of the others in [20,21,32].
In addition, our algorithm finds the new best solutions in real dataset 1 and 2.

(2) In the case of the MLP, our algorithm uses six neighborhoods therefore, the explored part of the solution
space is large enough. Hence, chances of finding even better solutions are high. The extension of explored
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part is not time-consuming in our algorithm because of a constant time operation for calculating the cost
of each neighboring solution. Moreover, in some cases, while the state-of-the-art algorithms in [25,26] can
get trapped into cycles, our algorithm overcomes their drawback and obtains the better solutions.

5. CONCLUSIONS

In this paper, we propose a new meta-heuristic algorithm which combines the Tabu search (TS) and Variable
Neighborhood Search (VNS) for the TDTSP problem. The experimental results show that our algorithm is able
to find the optimal solutions for the small instances, which is up to with 100 vertices, at a reasonable amount
of time. For the larger instances, our solution’s quality is comparable with the state-of-the-art metaheuristic
algorithms, moreover, for sixty six instances it provides the new best solutions. However, the running time needs
to be improved to meet real applications and enhancing it is still a challenge. This will be our aim in future

research.
APPENDIX A.

TABLE A.1l. The experimental results of our algorithm for real datatest 1 (INST-20-x).
Instances Travel time function 1 Travel time function 2 Travel time function 3

UB  OPT Best. Aver. gap, T UB  OPT Best. Aver. gap, T UB OPT Best. Aver. gap, T

Sol  Sol  [%1] Sol  Sol  [%1] Sol  Sol  [%1]

INST-20-1 12836 12836 12836 12836 0 0 13055 13055 13055 13055 0 0 1305 13233 13233 13233 0 0
INST-20-2 13176 13176 13176 13176 0 0 13275 13275 13275 13275 0 0 1327 13220 13220 13220 0 0
INST-20-3 13417 13417 13417 13417 0 0 13590 13590 13590 13590 0 0 1359 13714 13714 13714 0 0
INST-20-4 13672 13672 13672 13672 0 0 13528 13528 13528 13528 0 0 1352 13646 13646 13646 0 0
INST-20-5 13099 13099 13099 13099 0 0 13147 13147 13147 13147 0 0 1314 13242 13242 13242 0 0
INST-20-6 12522 12522 12522 12522 0 0 12679 12679 12679 12679 0 0 1267 12749 12749 12749 0 0
INST-20-7 13049 13049 13049 13049 0 0 13273 13273 13273 13273 0 0 1327 13323 13323 13323 0 0
INST-20-8 12504 12504 12504 12504 0 0 12757 12757 12757 12757 0 0 1275 12892 12892 12892 0 0
INST-20-9 13900 13900 13900 13900 0 0 13990 13990 13990 13990 0 0 1399 13852 13852 13852 0 0
INST-20-10 13734 13734 13734 13734 0 0 13690 13690 13690 13690 0 0 1369 13542 13542 13542 0 0
INST-20-11 13035 13035 13035 13035 0 0 13149 13149 13149 13149 0 0 1314 13155 13155 13155 0 0
INST-20-12 13221 13221 13221 13221 0 0 13511 13511 13511 13511 0 0 1351 13446 13446 13446 0 0
INST-20-13 11201 11201 11201 11201 0 0 11617 11617 11617 11617 0 0 1161 11814 11814 11814 0 0
INST-20-14 11697 11697 11697 11697 0 0 11943 11943 11943 11943 0 0 1194 12146 12146 12146 0 0
INST-20-15 13647 13647 13647 13647 0 0 13934 13934 13934 13934 0 0 1393 13899 13899 13899 0 0
INST-20-16 11921 11921 11921 11921 0 0 12201 12201 12201 12201 0 0 1220 12245 12245 12245 0 0
INST-20-17 13170 13170 13170 13170 0 0 13324 13324 13324 13324 0 0 1332 13500 13500 13500 0 0
INST-20-18 12930 12930 12930 12930 0 0 13148 13148 13148 13148 0 0 1314 13026 13026 13026 0 0
INST-20-19 12932 12932 12932 12932 0 0 13152 13152 13152 13152 0 0 1315 13220 13220 13220 0 0
INST-20-20 13056 13056 13056 13056 0 0 13150 13150 13150 13150 0 0 1315 13234 13234 13234 0 0
Aver 0 0 0 0 0 0
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Instances Travel time function 1

Travel time function 2

Travel time function 3

UB OPT Best. Aver. gap, T

Sol  Sol  [%]]

UB OPT Best. Aver. gap, T

Sol  Sol  [%]]

UB OPT Best. Aver. gap, T

Sol  Sol  [%]]

INST-30-1
INST-30-2
INST-30-3
INST-30-4
INST-30-5
INST-30-6
INST-30-7

1846017167 17167 17167 7.00
16437 15853 15853 15853 3.55
18060 1720217202 172024.75
1732415688 15688 15688 9.44
15033 15022 15022 15022 0.07
1834217192 1719217192 6.27
16 768 16 056 16 056 16 056 4.25
INST-30-8 186491743117431174316.53
INST-30-9 16692 15963 15963 15963 4.37
INST-30-10 17328 16 525 16 525 16 525 4.63
INST-30-1117994 17434 1743417434 3.11
INST-30-12 1741017404 17404 17404 0.03
INST-30-13 1887017576 17576 17576 6.86
INST-30-14 19878 18 595 18 595 18 595 6.45
INST-30-1518236173131731317313 5.06
INST-30-16 1518514927 14927 14927 1.70
INST-30-17 1887017188 17188 17188 8.91
INST-30-18 17879 17605 17605 17 605 1.53
INST-30-19 18680 18 397 18 397 18 397 1.51
INST-30-20 17849 16 960 16 960 16 960 4.98
Aver

1.2
1.1
1.3
1.0
1.2
1.2
1.2
1.1
1.2
1.1
1.0
1.1
1.3
1.0
1.1
1.0
1.1
1.0
1.3
1.1

4.55 1.13

1825317067 17067 17067 6.50
164101567215672 15672 4.50
1733816953 16 953 16 953 2.22

1.0
1.1
1.1

17396 15636 15636 15636 10.12 1.0

15462 15086 15086 15086 2.43
1801016949 16 949 16 949 5.89
1684016 51816518 16518 1.91
17856 1705117051 17051 4.51
1651215442 15442 15442 6.48
17281 1705217052170521.33
18056917342 1734217342 3.97
17566 16 508 16 508 16 508 6.02
183621733617 336 17 336 5.59
19336 18 250 18 250 18 250 5.62
18386 1743817438 17438 5.16
14893 14 893 14 893 14 893 0.00
1795817124 1712417124 4.64
17809 17296 17296 17296 2.88
1943417963 17963 17963 7.57
1783117007 17007 17007 4.62
4.6

1.2
1.1
1.1
1.0
1.1
1.0
1.1
1.2
1.2
1.0
1.0
1.2
1.2
1.1
1.0
1.2
1.10

17790 17206 17206 17 206 3.28
1731915946 15946 15946 7.93
17683 16697 16 697 16 697 5.58
16680 15801 15801 15801 5.27
16244 1517015170151706.61
17853 16925 16 925 16 925 5.20
170101624316 243 16 243 4.51
1835716790 16 790 16 790 8.54
16673 1573915739 15739 5.60
177741642316 423 16 423 7.60
18479 17096 17096 17096 7.48
1772516 356 16 356 16 356 7.72
182051714317143171435.83
18984 17907 17907 17907 5.67
175031674916 749 16 749 4.31
1550114947 14947 14 947 3.57
18486 16 73216 73216 732 9.49
1742516616 16616 16 616 4.64
1912417684 17684 17684 7.53
17601 173801738017 380 1.26

5.88

1.1
1.1
1.2
1.0
1.0
1.2
1.2
1.1
1.2
1.2
1.2
1.1
1.2
1.1
1.1
1.0
1.2
1.1
1.2
1.2
1.12
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TABLE A.3. The experimental results for the small instances in real dataset 4, random dataset
1, and random dataset 2.

Dataset Instances UB OPT AL Our algorithm
Best.Sol T  Best.Sol Awver.Sol gap, [%] gap, (%] T
eilb1 6233 5934 6294 0.2 5934 5934 0 4.80 0.19
€il76 6551 6239 6872 0.2 6239 6239 0 4.76 0.20
st70 8156 7754 9348 0.3 7754 7754 0 4.93 0.20
ratl95 18871 17971 22453 0.2 17971 17971 0 4.77 0.27
kroA100 274015 260792 305869 0.3 260792 260792 0 4.83 0.19
kroB100 258 042 245649 325733 0.2 245649 245649 0 4.80 0.26
Real dataset 4 kroC100 293452 272638 325733 0.2 272638 272638 0 7.09 0.20
berlin52 98218 93 490 136970 0.2 93490 93 490 0 4.81 0.25
pr76 1263695 1203069 1522361 0.3 1203069 1203069 O 4.80 0.18
tsp225 30544 28951 141632 0.2 28951 28951 0 5.22 0.26
tss225 1273908 1212096 1352430 0.3 1212096 1212096 0 4.85 0.19
lin105 146 588 139 600 141632 0.3 139600 139600 0O 4.77 0.19
Aver 0.2 0 5.04 0.22
test 1 8514 7767 8781 0.2 7767 7767 0 8.77 0.24
test 2 9416 8958 10230 0.1 8958 8958 0 4.86 0.21
test 3 8711 8279 8861 0.2 8279 8279 0 4.96 0.16
test 4 9081 8648 10084 0.2 8648 8648 0 4.77 0.18
test 5 8263 7862 8462 0.3 7862 7862 0 4.85 0.26
Random dataset 1 test 6 9545 9082 11296 0.2 9082 9082 0 4.85 0.25
test 7 8701 8216 8991 0.1 8216 8216 0 5.57 0.16
test 8 8435 7995 8736 0.2 7995 7995 0 5.22 0.17
test 9 9085 8644 10751 0.2 8644 8644 0 4.85 0.16
test 10 10096 9369 10754 0.3 9369 9369 0 7.20 0.16
Aver 0.2 0 5.59 0.20
test 1 9156 8706 11137 0.2 8706 8706 0 4.91 0.17
test 2 8219 7763 8136 0.3 7763 7763 0 5.55 0.16
test 3 8729 8292 10433 0.2 8292 8292 0 5.01 0.26
test 4 8871 8423 9792 0.2 8423 8423 0 5.05 0.20
test 5 9781 9311 9964 0.3 9311 9311 0 4.81 0.27
Random dataset 2 test 6 9015 8466 10219 0.3 8466 8466 0 6.09 0.20
test 7 9081 8642 10611 0.2 8642 8642 0 4.83 0.18
test 8 9088 8443 9893 0.2 8443 8443 0 7.10 0.17
test 9 9834 9183 9957 0.3 9183 9183 0 6.62 0.23
test 10 9337 8888 10494 0.3 8888 8888 0 4.81 0.28
Aver 0.3 0 5.48 0.21
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TABLE A.4. The experimental results of our algorithm for real datatest 1 (INST-50-x).

Instances

Travel time function 1

Travel time function 2

Travel time function 3

UB

PAM

Best. Awver. gapq
Sol  Sol [%1]

T UB PAM

Best. Aver. gapq
Sol  Sol [%1]

T UB

PAM Best.
Sol

Aver. gap, T
Sol [%1]

INST-50-1
INST-50-2
INST-50-3
INST-50-4
INST-50-5
INST-50-6
INST-50-7
INST-50-8
INST-50-9
INST-50-10
INST-50-11
INST-50-12 25070
INST-50-13 24459
INST-50-14 24 358
INST-50-15 23 682
INST-50-16 25445
INST-50-17 24721
INST-50-18 21998
INST-50-19 25919
INST-50-20 23906
Aver

24213
25115
24753
27004
23 885
23601
25045
24559
24146
22821
25069

22 846
23713
22684
24833
20960
22396
23241
23274
22549
22831
23893
24610
23432
23678
22473
23538
24100
21539
24477
23170

22795 22795.0 5.86
23421 23421.0 6.74
22684 22684.0 8.36
24 396 24421.5 9.66
20960 20960.0 12.25
22074 22074.0 6.47
23241 23242.8 7.20
23274 23274.0 5.23
22549 22549.0 6.61
22556 22557.3 1.16
23775 23775.0 5.16
24 487 24487.0 2.33
23432 23432.0 4.20
23356 23357.3 4.11
22473 22473.0 5.11
23538 23538.0 7.49
24028 24028.0 2.80
21181 21181.0 3.71
24477 24477.0 5.56
22528 22528.0 5.76
5.79

5.6 23659
5.4 24703
6.1 23451
6.4 25427
6.0 22654
5.7 23078
5.8 25490
5.1 23271
5.5 23207
5.5 22648
6.0 24347
5.4 25006
6.2 23918
5.8 23661
5.6 22972
6.4 25019
6.2 24397
6.3 21658 20785
6.3 25392 23899
6.2 23657 22499

22108
23233
21777
23610
20877
21795
22645
22558
22015
22249
23063
23969
22585
22737
21838
23035
23311

22108 22259.0 6.56
22661 22661.0 8.27
21777 22097.0 7.14
23579 23579.0 7.27
20877 20886.1 7.84
21380 21380.0 7.36
22645 22867.0 11.16
22558 22584.0 3.06
22015 22417.0 5.14
21778 21852.2 3.84
23015 23015.0 5.47
23792 23792.0 4.85
22585 22730.0 5.57
22677 22715.3 4.16
21838 22247.0 4.94
23032 23032.0 7.94
23273 23273.0 4.61
20785 20924.0 4.03
23899 23974.0 5.88
22180 22180.0 6.24
6.07

5.5 23786 21678 21678
6.0 24077 22676 21678
5.7 25152 21382 21217
6.2 22177 22949 22949
20553 20553
21276 21219
22308 22308
22182 22182
21669 21669
21928 21639
22230 22230
23568 23495
22190 22190
22103 22103
22057 21919
22463 22463
23207 22858
20681 20494 20494.0
23332 23332 23332.0
21984 21983 21983.0

6.1 22751
5.2 24165
6.4 24785
5.4 22412
5.8 22429
6.1 23962
5.6 24500
5.7 23601
6.1 23521
6.2 22932
5.6 24058
5.9 24023
6.1 21726
5.6 24821
6.0 23208
5.2 41383

21678.0 8.86 6.1
21678.0 9.96 5.7
21362.2 15.64 6.2
22949.0 3.48 6.1
20553.0 9.66 6.2
21219.0 12.19 6.7
22308.0 9.99 5.3
22188.5 1.03 5.7
21669.0 3.39 5.4
21639.0 9.69 5.0
22230.0 9.27 5.8
23495.0 0.45 5.5
22191.2 5.66 5.5
22103.0 3.62 5.4
21919.0 8.89 5.1
22463.0 6.49 5.4
22861.2 5.21 5.7
17.43 5.8
0.53 5.3
46.88 5.8
9.42 5.7

TABLE A.5. The experimental results of our algorithm for random datatest 3 (TPR-50-Rx).

Instances

UB

OPT

AL

Our algorithm

Best.Sol T

Best.Sol

Aver.Sol

gapi [%]

gap2 [%] T

TRP-50-R1
TRP-50-R2
TRP-50-R3
TRP-50-R4
TRP-50-R5
TRP-50-R6
TRP-50-R7
TRP-50-R8
TRP-50-R9
TRP-50-R10
TRP-50-R11
TRP-50-R12
TRP-50-R13
TRP-50-R14
TRP-50-R15
TRP-50-R16
TRP-50-R17
TRP-50-R18
TRP-50-R19
TRP-50-R20
Aver

13479
12821
13723
14482
13381
14169
12791
14233
13903
14729
13567
11812
13339
14678
12948
13577
13576
14723
12505
13214

12198
11621
12139
13071
12126
12684
11176
12910
13149
12892
12103
10633
12115
13117
11986
12138
12176
13357
11430
11935

14775
13742
13765
15160
13414
14 542
12690
14 060
14535
15327
13931
12823
14874
13817
13719
15126
13907
14532
13298
13371

0.8
0.7
0.7
0.3
0.7
0.7
0.6
0.5
0.6
0.7
0.7
0.6
0.7
0.6
0.3
0.8
0.6
0.6
0.7
0.7
0.63

12198
11621
12139
13071
12126
12684
11176
12910
13149
12892
12103
10633
12115
13117
11986
12138
12176
13357
11430
11935

12198
11621
12139
13071
12126
12684
11176
12910
13149
12892
12103
10633
12115
13117
11986
12138
12176
13357
11430
11935

[eNeleleololoNoloNolololoNoNeoBoloBoNoReoN e N el

9.50 0.56
9.36 0.67
11.54 0.67
9.74 0.68
9.38 0.65
10.48 0.61
12.63 0.61
9.30 0.62
5.42 0.63
12.47 0.63
10.79 0.64
9.98 0.62
9.18 0.50
10.63 0.65
7.43 0.67
10.60 0.65
10.31 0.51
9.28 0.57
8.60 0.63
9.68 0.63
9.82 0.62
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TABLE A.6. The experimental results of our algorithm for real datatest 1 (INST-100-x).

Instances

Travel time function 1

Travel time function 2

Travel time function 3

UB PAM Best.

Sol

Aver.
Sol

gapo
[%1]

T UB PAM Best.

Sol

Aver.
Sol

PAM Best.
Sol

Aver.
Sol

gap, T UB
(%1]

gapy T
[%1]

INST-100-1
INST-100-2
INST-100-3
INST-100-4
INST-100-5
INST-100-6
INST-100-7
INST-100-8
INST-100-9
INST-100-10
INST-100-11
INST-100-12
INST-100-13
INST-100-14
INST-100-15
INST-100-16
INST-100-17
INST-100-18
INST-100-19
INST-100-20
Aver

41831 39249 39532 39532
38954 36015 36 015 36 015
38010 36807 36 807 36807
42257 39631 39631 39631
39215 37377 38396 38396 2.09
39769 38312 37957 37957 4.56
41818 40371 40324 41462.7 3.57
43023 39302 39302 39302 8.65
40434 38189 38189 38189 5.55
41875 40021 40021 40021 4.43
44023 40486 42661 42661 3.09
41672 41122 41026 41026 1.55
40742 39439 39439 39441.3 3.20
39123 38089 38089 38089 2.64
42645 39826 39815 39815 6.64
41135 39128 39128 39128 4.88
42788 41595 41595 41595 2.79
41870 39582 39582 39612.0 5.46
41401 40032 40032 40032 3.31
41587 40163 40723 40723 2.08

4.35

5.50
7.54
3.16
6.21

38.3 39139 39336 38245 38245
41.7 36 382 35065 35143 35143
38.3 40597 37240 35729 35729
32.8 38582 38954 38 240 38 240
33.9 39712 35852 35852 35852
40.6 40963 36 508 36 508 36 508
26.0 41273 37971 39081 39081
29.6 40214 39325 39257 39 257

2.28 41.8 41363 36 884 36 884 36 884
3.41 45.8 38391 34793 33987 33987
11.99 43.0 41085 37000 34477 34477
0.89 32.0 42419 39558 37765 37765
9.72 36.8 41 824 34580 34 580 35854.6
10.88 45.1 40 090 34950 34 950 34 950
5.31 43.5 41107 36 395 36 395 36 395
2.38 36.7 43260 37250 37250 37250

40.5 41 349 36813 36 813 36926.3 10.97 36.5 44 793 35808 35808 35 808

31.7 45449 37958 37958 37958

16.48 32.7 40021 37185 37185 37185

10.83 38.6
11.47 46.3
16.08 39.2
10.97 35.0
17.32 37.2
12.82 43.5
11.46 34.5
13.89 41.5
20.06 26.6
7.09 38.9

42.3 42431 40937 40268 40504.6 5.10 42.4 40935 39210 39195 40201.7 4.25 33.9

34.8 40093 38727 38727 38 727
32.3 39463 38188 38188 38188

3.41 33.9 41730 37730 37730 37730
3.23 38.3 38441 37023 37023 37023

34.3 41751 36 358 36 358 36358.6 12.92 33.8 42503 35553 35553 35553

40.8 40307 39706 38 599 38 599
39.0 41 119 38964 37923 37923
44.1 42424 40181 39928 39928
42.0 40527 39486 39302 39 302
45.5 41770 38459 38 459 38 459
37.7 37371 38212 38212 38212
37.3

4.24
.77
5.88
3.02
7.93
2.25
6.50

40.6 42702 38680 38 680 38 680
33.4 40639 37010 37239 37239
44.2 39755 39438 39438 39931.7
34.6 41363 37977 37977 37977
42.3 38391 38071 37949 37949
33.5 41085 36619 36619 36619
38.6

9.59 41.5
3.69 28.9
16.35 33.0
9.42 34.5
8.37 39.7
0.80 35.5
8.19 36.4
1.15 38.3
10.87 39.1
10.23 37.1

TABLE A.7. The experimental results of our algorithm for

random datatest 3 (TPR-100-Rx).

Instances

UB AS

MS

AL

Our algorithm

Best.Sol  gaps|%)]

Best.Sol  gaps[%)]

Best.Sol T

Best.Sol  Awer.Sol

gapy[%] T

TRP-100-R1
TRP-100-R2
TRP-100-R3
TRP-100-R4
TRP-100-R5
TRP-100-R6
TRP-100-R7
TRP-100-R8
TRP-100-R9
TRP-100-R10
TRP-100-R11
TRP-100-R12
TRP-100-R13
TRP-100-R14
TRP-100-R15
TRP-100-R16
TRP-100-R17
TRP-100-R18
TRP-100-R19
TRP-100-R20
Aver

35334 - -
38442 - -
37642 - -
37508 — -
37215 - -
40422 - -
37367 - -
38086  — -
36000 — -

32779
33435
32390
34733
32598
34159
33375
31780
34167

7.23
13.02
13.95
7.40
12.41
15.49
10.68
16.56
5.09

36943
42134
36 696
38744
37666
42652
39479
39595
40033

82
86
78
89
86
67
89
82
87

32779
32778
31654
35208
32906
34159
33375
31981
33687

32779.0
32778.0
31654.0
35212.2
32906.0
34159.0
33375.0
31981.0
33687.0

7.23
14.73
15.91
6.13
11.58
15.49
10.68
16.03
6.43

37761
37220
34785
37863
36 362
39381
39823
41824
39091
39941
39888

31605
34188
32146
32604
32433
32574
33566
34198
31929
33463
33632

16.30
8.15

7.59

13.89
10.81
17.28
15.71
18.23
18.32
16.22
15.68
13.00

36 669
40722
42507
37888
37364
43038
42031
43136
40 349
40679
41627

84
89
85
67
86
82
86
86
89
86
86

31605
34285
32146
32604
32433
32223
33094
33813
31898
33463
31035

31605.0
34285.0
32146.0
32604.0
32435.2
32223.0
33094.0
33813.0
31898.0
33463.0
31035.0

16.38
7.89
7.59
13.89
10.81
18.18
16.9
19.15
18.4
16.22
22.19
13.59

8.43
8.71
8.56
8.46
8.28
8.67
8.28
8.18
8.73
8.61
8.01
7.98
8.75
7.71
7.90
8.93
7.08
8.95
8.38
8.33
8.30
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TABLE A.8. The experimental results of our algorithm for random datatest 3 (TPR-200-Rx).

Instances UB AS MS AL Our algorithm
Best.Sol gap,[%] Best.Sol gap,[%] Best.Sol T  Best.Sol Aver.Sol gap,(%] T

TRP-200-R1 105044 - - 88787 15.48 112847 126 88787 90132.0 15.48 78.46
TRP-200-R2 104073 - - 91977 11.62 108519 128 91977 92334.0 11.62 80.81
TRP-200-R3 111644 - - 92 568 17.09 114068 130 92568 93053.0  17.09 77.68
TRP-200-R4 104956 - - 93174 11.23 109425 123 93174 93174.0 11.23 89.97
TRP-200-R5 101912 - - 88737 12.93 108657 126 88737 88737.0 12.93 75.79
TRP-200-R6 103751 - - 91589 11.72 106015 113 91589 92183.0 11.72 80.82
TRP-200-R7 109810 - - 92754 15.53 108226 126 92754 93212.3 15.53 76.75
TRP-200-R8 103830 — - 89048 14.24 101162 127 89048 89048.0  14.24 76.16
TRP-200-R9 100946 - - 86 326 14.48 105503 125 86326 86326.0  14.48 78.30
TRP-200-R10 108061 — - 91 552 15.28 109227 125 91552 91976.0  15.28 81.41
TRP-200-R11 103297 - - 92655 10.3 110472 127 92655 93102.0 10.3 83.14
TRP-200-R12 107715 — - 91457 15.09 107401 122 91457 91457.0  15.09 73.51
TRP-200-R13 100505 — - 86 155 14.28 114189 126 86155 87002.0  14.28 77.83
TRP-200-R14 107543 - - 91 882 14.56 123716 127 91882 91882.0  14.56 85.33
TRP-200-R15 100196 — - 88912 11.26 108419 128 88912 88914.5 11.26 72.93
TRP-200-R16 104462 - - 89311 14.5 103674 125 89311 90145.0 14.5 77.49
TRP-200-R17 107216 — - 89089 16.91 112553 128 89089 89089.0 16.91 77.70
TRP-200-R18 108148 - - 93619 13.43 119927 128 93619 93619.5 13.43 79.65
TRP-200-R19 105716 — - 93 369 11.68 117641 129 93369 93369.0 11.68 78.96
TRP-200-R20 116676 — - 86292 26.04 112547 122 86292 86292.0  26.04 80.02
Aver 11.33 14.38 14.38 79.14

TABLE A.9. The experimental results for the instances in real dataset 3 (TSPLIB).

Instances OPT UB Our algorithm
Best.Sol Awver.Sol gap1[%1] gap2[%1] T

dantzig42 12528 12650 12528 12528 0 0.96 0.57
attd8 209 320 25315 209 320 209 320 0 17.31 1.45
eil51 10178 10593 10178 10178 0 3.92 1.60
berlin52 143721 15209 143721 143721 0 5.01 1.56
st70 20557 25809 20557 20557 0 20.35 2.43
KroA100 983128 10912 983128 983128 0 9.91 8.23
KroB100 983128 10212 983128 983128 0 3.73 8.10
KroC100 961 324 11013 961 324 961 324 0 12.71 8.28
KroD100 976 965 10253 976 965 976 965 0 4.72 8.19
Aver 0 8.79 4.49
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TABLE A.10. The experimental results of our algorithm for real dataset 2.

Jam factor RTR Our algorithm
Best.Sol T Best.Sol Awver.Sol gap, [ %) T

1.00 118293.524 130 118293.524 118293.524 0.00 32.02
1.03 118796.154 259 118749.356 118749.356 0.06 37.59
1.04 119971.191 164 118901.300 118901.300 1.39 32.66
1.05 119503.279 197 119053.244 119053.244 0.70 36.79
1.10 119957.387 173 119957.387 119957.387 0.00 39.30
1.20 120637.093 217 119714.065 119714.065 0.77 43.13
1.30 120637.093 190 120637.093 120637.093 0.00 39.63
1.50 120617.178 253 120617.178 120617.178 0.00 41.61
1.60 121108.329 273 120679.186 120679.186 0.35 30.51
1.80 121195.816 182 120894.074 120894.074 0.25 32.77
1.90 121148.519 209 121001.518 121001.518 0.12 36.25
3.00 122222.204 260 121125.195 121125.195 0.90 32.65
10.00 121167.051 220 121125.195 121125.195 0.03 34.74
2000.00 121417.575 230 121125.195 121125.195 0.24 37.08
Aver 211 0.34 36.19
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