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AN EFFICIENT TWO-PHASE METAHEURISTIC ALGORITHM FOR THE TIME
DEPENDENT TRAVELING SALESMAN PROBLEM

Ha Bang Ban∗

Abstract. The Time Dependent Traveling Salesman Problem (TDTSP) is a class of NP-hard combi-
natorial optimization problems which has many practical applications. To the best of our knowledge,
developing metaheuristic algorithm for the problem has not been studied much before, even though
it is a natural and general extension of the Minimum Latency Problem (MLP) or Traveling Salesman
Problem (TSP). In this paper, we propose an effective two-phase metaheuristic which combines the
Insertion Heuristic (IH), Variable Neighborhood Search (VNS) and the tabu search (TS) to solve the
problem. In a construction phase, the IH is used to create an initial solution that is good enough. In
an improvement phase, the VNS is employed to generate diverse and various neighborhoods, while the
main attribute of tabu search is to prohibit our algorithm from getting trapped into cycles, and to
guide the search to escape local optima. Moreover, we introduce a novel neighborhoods’ structure in
VNS and present a O(1) operation for calculating the cost of each neighboring solution in a special
case of TDTSP where the TDTSP becomes the MLP. Extensive computational experiments on 355
benchmark instances show that our algorithm can find the optimal solutions for small instances with
up to 100 vertices in a reasonable amount of time. For larger instances, our algorithm obtains the new
best solutions in comparison with the state-of-the-art algorithm solutions.
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1. Introduction

The Time Dependent Traveling Salesman Problem (TDTSP) is a general variation of the classic Traveling
Salesman Problem (TSP) and the Minimum Latency Problem (MLP) which has many practical applications. In
the Time Dependent Traveling Salesman Problem (TDTSP), the amount of time for a salesman to travel from
one vertex to another changes drastically depending on certain time of the day because of traffic congestion. By
allowing the travel time between vertices to vary, the TDTSP is closer to several real practical situations such
as heavy traffic, road repair, and automobile accidents than the traditional TSP and MLP can be [18]. Because
it incorporates time dependent costs, the simplest generalization is the variant of the TDTSP considered in
Picard et al. [10,27], which has applications within scheduling contexts and generalizes the well-known Traveling
Salesman Problem. The improvement with respect to the traditional TSP is that the travel cost function between
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two vertices depends not only on the distance, but also on the position of the edge in the tour. Another variant
of the problem has been known as Time Dependent Vehicle Routing Problem (TDVRP) in [17, 18, 20], where
a whole fleet must be routed instead of a single vehicle. Thus, the TDTSP in this paper is a particular case of
TDVRP.

In the general case, the problem is described as NP-hard [31]. In this paper, we can formulate the TDTSP
as follows:

Consider a complete graph Kn = (V,E), with the set of vertices V = 1, 2, . . . , n and the set of edges E.
Assume that there exists an (n + 1) × (n + 1) time-dependent cost matrix C and for a given edge (i, j) ∈ E,
c(i, j, t) is the travel time from i to j at time t. The TDTSP involves finding a minimum cost tour that visits
each vertex exactly once, starting at a main depot. In the TSP, the cost is defined as c(i, j, t) = 1 × cij (the
presence of t is assumed to be negligible) while in the MLP, the cost is given by c(i, j, t) = (n− t + 1)× cij (cij

and t denote the distance from vertex i to j and the position order of the edge cij in the tour, respectively)
[32]. Also, for solving the TDTSP, some vertices are typically designated as a depot, where the salesman begins
his tour.

Many real-world variants of the TDTSP deal with scheduling time-dependent tasks. Picard et al. [10] showed
the process of scheduling manufacturing jobs on a machine with time-dependent setup costs. Fox [13] and Fox
et al. [14] considered some machine scheduling problems as variants of the TDTSP. Another variant of the
TDTSP (such as the Deliveryman Problem (DMP)) in [27], was used to route vehicles through a manufacturing
system. Moreover, other applications of the TDTSP were also introduced in [6, 22, 28]. Specifically, it routes
data through a network [22], creates timetables for university exams [6], and schedules vehicles and crews [6].
Testa et al. [28] modeled the riding of amusement park attractions where the time spent waiting in line at each
attraction varied with the time of day in TDTSP.

Because the TSP and MLP are NP-hard [7], the TDTSP is also NP-hard [20]. However, the TDTSP is a
much more difficult problem than the TSP. Exact solutions for TSP with up to a thousand of vertices have been
proposed [30], but exact algorithms can only solve TDTSP with a few dozen vertices [2]. Malandraki et al. [20]
note that several well-known TSP metauheuristics do not easily adapt to the TDTSP. When the costs between
vertices are changed in the TDTSP, the travel times of many other vertices later in the tour may be affected,
and recomputing these travel times can be a time consuming task. They also show that certain properties of
the optimal solutions to Euclidean TSP do not extend to the TDTSP. Specifically, the convex hull property
presents in the optimal Euclidean TSP solutions does not hold for the TDTSP. Similarity, Blum et al. [7] also
indicate that solving the MLP is much harder than TSP as follows: (1) In TSP, small changes in the structure
of a metric space only affect local changes in the structure of the TSP. However, this can cause high non-local
changes in the structure of the MLP problem; (2) the MLP tour may revisit points with an unbounded number
of times even when the underlying graph has a bounded degree. In terms of complexity and difficulty, the MLP
is closer to the TDTSP than TSP. Therefore, we chose the state-of-the-art metaheuristics for MLP in [25, 26]
as a baseline in our research.

For NP-hard problems, such as the TDTSP, there are three common approaches to solve the problem, namely,
(1) exact algorithms, (2) approximation algorithms, (3) heuristic (or metaheuristic) algorithms. Firstly, the exact
algorithms guarantee to find the optimal solution and take exponential time in the worst case, but they often
run much faster in practice. Exact algorithms for the TDTSP with small sizes are presented in [8,10,31], for the
special case of the MLP in [5,35]. Secondly, the approximation algorithms produce a solution within some factor
alpha of the optimal solution. To the best of our knowledge, no approximation algorithm has been proposed so
far, however for the MLP several algorithms can be found in [1,3,7,9,15]. Thirdly, heuristic (or metaheuristic)
algorithms perform well in practice and validate their empirical performance on an experimental benchmark of
interesting instances. The metaheuristic algorithm depends on this approach.

Previously, several works based on heuristic approach have not been proposed for the TDTSP [20,21,32,33].
Nevertheless, these heuristics often are problem-dependent techniques. They are designed to adapt to the specific
problem and to take full advantage of the particularities of this problem. However, the disadvantage of pure
heuristic is often too greedy, therefore, they usually get trapped in a local optimum and thus fail to obtain the
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global optimum solution. Metaheuristics, on the other hand, are problem-independent techniques. In general,
they are not greedy and may even accept a temporary deterioration of the solution, which allows them to
explore more thoroughly the solution space and thus to get a better solution. Metaheuristic algorithms for the
TDTSP have not been studied much and this work presents the first metaheuristic approach for this problem.
However, several metaheuristics have been published for solving the case of the MLP problem in [4,25,26]. The
experimental results in [4, 25, 26] also indicate that the metaheuristic approach is suitable to solve the MLP
problem. The algorithms in [25,26] are mainly based on the principles of Variable Neighborhood Search (VNS).
However, their algorithms might become trapped into cycles. That means they return to the points previously
explored in the solution space. Consequently, the algorithms can get stuck in local optima. In this paper, we
propose a metaheuristic algorithm that combines Tabu search (TS) and Variable Neighborhood Search (VNS)
for the MLP problem. In our algorithm, TS is used to avoid getting trapped in cycles and to guide VNS to
escape from local optima. In a cooperative way, the VNS is employed to generate diverse neighborhoods for
the TS. Moreover, we introduce a novel neighborhoods’ structure in VNS and present a O(1) operation for
calculating the cost of each neighboring solution in a special case of MLP. We have evaluated our algorithm on
355 benchmark instances. The experiment results show that our algorithm can find the optimal solutions for
the instances with up to 100 vertices in a fraction of seconds. For larger instances, our algorithm obtains the
new best solutions in comparison with the state-of-the-art algorithms.

The rest of this paper is organized as follows. Section 2 presents the proposed algorithm. Computational
evaluations and Discussions are reported in Sections 3 and 4, respectively and Section 5 concludes the paper.

2. The proposed meta-heuristic algorithm

The idea of avoiding repeated moves in Tabu Search (TS) [16] is to make tabu lists of the recent types of moves
in the space solution, and to prohibit reversing these moves. The move here is a transition from one solution to
another. Variable Neighborhood Search (VNS) [23] based on a simple principle systematically switches between
different neighborhoods. Therefore, VNS supports diverse neighborhoods for our algorithm. In this work, we
give an algorithm which brings the advantages of TS and VNS together. A pseudocode of our algorithm is given
in Algorithm 1. Our algorithm starts with an initial solution obtained from Insertion Heuristic (IH) in step 1
and then consists of four main steps (from step 2 to 5) repeated until a stop condition is met. In step 2, we
investigate a novel neighborhoods’ structure in VNS. Moreover, in order to avoid tabu move, tabu lists are used.
In step 3, a list of promising solutions is built up and serves as an input for step 4. The step aims at exploiting
the current solution space. In order to explore the entire solution space, a diversification phase is considered in
step 5. In the remaining of this section, more details about the five steps of our algorithm are given.
Step 1. We use insertion heuristic which is given in Algorithm 2 for finding an initial solution. Consider a
partial tour, and define the set V as the set of all non-visited nodes, V ⊆ V . In order to improve the partial
tour, a node from V should be added. This process requires two decisions: which vertex to insert and where
to place it in the tour. In order to keep balance between pure greediness and overall layout of the tour, two
insertion schemes are used. The major difference between insertion schemes is the order in which the vertices
are inserted.

– Cheapest insertion: Among all vertices are not inserted so far, choose a vertex whose insertion causes the
lowest increase in the cost of the tour. The idea behind this strategy is certainly pure greediness.

– Farthest insertion: Insert the vertex whose minimal distance to a tour vertex is maximal. The idea behind
this strategy is to fix the overall layout of the tour early in the insertion process.

Step 2. In this step, eight neighborhoods such as remove-insert, swap-adjacent, move-down, move-up, swap-
adjacent, 2-opt, move-forward-k-vertices and move-backward-k-vertices [34] are used according to the principle
of VNS. For a given current solution T , local search explores the neighborhood Ni(T ) of T iteratively and tries
to replace T by the best solution T ′ ∈ Ni(T ). The main operation in exploring the neighborhood is calculation
of a neighboring solution’s cost. In straightforward implementation, this operation requires O(n) time in the
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Algorithm 1. Our Algorithm.
Input: v1, Kn are a starting vertex, the complete graph, respectively.
Output: the best solution T ∗.

Step 1 (Generate an initial solution):
T ← IH-Procedure(v1, V );
T ∗ ← T ; {initiate the best solution}
LT ← ∅; {LT is the list of promising solutions}
while stop criteria not met do

Step 2 (VNS):
for i : 1→ 6 do

T
′
← arg min Ni(T ); {local search}

if ((L(T
′
) < L(T ) and T

′
is not tabu) or (L(T

′
) < L(T ∗))) then

T ← T
′

i ← 1
update tabu lists;

if (L(T
′
) < L(T ∗)) then

T ∗ ← T
′
;

end if
else

i + +
end if

end for
Step 3 (Built up promising solutions list LT ):
if L(T ) < (1 + ST)× L(T ∗) then

LT ← LT ∪ {T};
end if
if (|LT | < 5) then

go to step 2;
end if
step 4 (Implement Intensification):
for j : 1→ 5 do

do VNS as in step 2 without tabu list with an element of LT as start solution
end for
step 5 (Implement Diversification):
clear all tabu lists;
select a random tour T in LT ;
swap randomly k vertices in T ;
go to step 2;

end while
return T ∗;

TDTSP and MLP. In TDTSP, when the positions of vertices in T are changed, the travel times of other vertices
later in the tour may be affected. However, in the case of c(i, j, t) = (n − t + 1)cij (the MLP problem), by
using on the known cost of current solution, we show that this operation can be done in constant time for
some considered neighborhoods. Thus, the running time of exploring these neighborhoods can be speed up.
Now, let T = (v1, . . . , vk, . . . , vn) be a tour, we introduce a novel neighborhoods’ structure and complexity of
its exploration for the TDTSP and MLP.

Remove-insert neighborhood moves each vertex vi in the solution at the end of it. This neighborhood of T is
defined as a set N1(T ) = {Ti = (v1, v2, . . . , vi−1, vi+1, . . . , vn, vi) : i = 2, 3, . . . , n}. Obviously, the size of N1(T )
is O(n).

Property 2.1. The time complexity of exploring N1(T ) is O(n2) for the MLP and TDTSP.
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Algorithm 2. IH-Procedure(v1, Kn).
Input: v1, Kn are a starting vertex, the complete graph, respectively.
Output: An initial solution T .
1: T = v1;
2: while |T | < n do
3: rd = random(2); {Choose an insertion scheme randomly}
4: if rd == 1 then
5: Arbitrary select a vertex v that is not yet in the partial tour and an inserted position j < |T | at time tj so that

the cost of T
′

(T
′

= Insert(T, j, v)) is minimal; {Cheapest Insertion}
6: else
7: Arbitrary select a vertex v that is not yet in the partial tour and an inserted position j < |T | at time tj so that

c(vj , v, j) is minimal and the cost of T
′

(T
′

= Insert(T, j, v)) is maximal; {Farthest Insertion}
8: T ← T

′

9: end if
10: end while

Proof. For TDTSP: Calculation of each neighborhood’s cost requires O(n) time, therefore, the time complexity
of exploring N1(T ) is O(n2).
For MLP: Let us consider an initial solution T = v1, v2, . . . , vi−1, vi, vi+1, . . . , vn. The neighborhood generates
a neighboring solution Ti = v1, v2, . . . , vi−1, vi+1, . . . , vn, vi. The latencies of T and Ti are calculated as follows:

L(T ) = (n− 1)c(v1, v2) + . . . + (n− i + 1)c(vi−1, vi) + (n− i)c(vi, vi+1)
+ (n− i− 1)c(vi+1, vi+2) + . . . + (vn−1, vn). (2.1)

L(Ti) = (n− 1)c(v1, v2) + . . . + (n− i + 1)c(vi−1, vi+1) + (n− i)c(vi+1, vi+2)
+ . . . + 2(vn−1, vn) + (vn, vi).

We have

L(Ti) = L(T )−
n−1∑

k=i−1

(n− k)c(vk, vk+1) + (n− i + 1)vi−1vi+1

+
n−1∑

k=i+1

(n− k + 1)c(vk, vk+1) + c(vn, vi). (2.2)

It takes O(n) time to calculate the formulation in (2.2). Therefore, the time complexity of exploring N1(T )
is O(n2). �

Swap adjacent neighborhood attempts to swap each pair of adjacent vertices in the solution. This neighborhood
of T is defined as a set N2(T ) = {Ti = (v1, v2, . . . , vi−2, vi, vi−1, . . . , vn) : i = 3, 4, . . . , n}. The size of the
neighborhood is O(n).

Property 2.2. The time complexity of exploring N2(T ) is O(n2) and O(n) for the TDTSP and MLP,
respectively.

Proof. For TDTSP: It takes O(n) time to calculate each neighborhood’s cost, therefore, the time complexity of
exploring N2(T ) is O(n2).

For MLP: The initial tour T and L(T ) are the same as in (2.1). The neighborhood generates a neighboring
tour Ti = v1, v2, . . . , vi−2, vi, vi−1, vi+1, . . . , vn. The latency of Ti is calculated as follows:

L(Ti) = (n− 1)c(v1, v2) + . . . + (n− i + 2)c(vi−2, vi) + (n− i + 1)c(vi, vi−1)
+ (n− i)c(vi−1, vi+1) + (n− i− 1)c(vi+1, vi+2) + . . . + (vn−1, vn).
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We have

L(Ti) = L(T )− (n− i + 2)c(vi−2, vi−1)− (n− i)c(vi, vi+1)
+ (n− i + 2)c(vi−2, vi) + (n− i)c(vi−1, vi+1). (2.3)

It is obvious that we can calculate L(Ti) by the formulation (2.3) in O(1) time. Therefore, the complexity of
exploring N2(T ) is O(n) in the MLP. �

Swap neighborhood attempts to swap the positions of each pair of vertices in the solution. This neighborhood of
T is defined as a set N3(T ) = {Tij = (v1, v2, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn) : i = 2, 3, . . . , n−2; j =
i + 2, . . . , n}. The size of the neighborhood is O(n2).

Property 2.3. The complexity of exploring N3(T ) is O(n3) and O(n2) for the TDTSP and MLP, respectively.

Proof. For TDTSP: Calculation of each neighborhood’s cost requires O(n) time, therefore, the time complexity
of exploring N3(T ) is O(n3).

For MLP: Initially, we have an initial solution T = v1, v2, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vn(i+2 < j).
Swap generates a neighboring solution T

′
= v1, v2, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn. The latencies of T

and Ti are calculated as follows:

L(T ) = (n− 1)c(v1, v2) + . . . + (n− i + 1)c(vi−1, vi) + (n− i)c(vi, vi+1)
+ . . . + (n− j + 1)c(vj−1, vj) + (n− j)c(vj , vj+1)
+ . . . + (vn−1, vn). (2.4)

L(Tij) = (n− 1)c(v1, v2) + . . . + (n− i + 1)c(vi−1, vj) + (n− i)c(vj , vi+1)
+ . . . + (n− j + 1)c(vj−1, vi) + (n− j)c(vi, vj+1) + . . . + (vn−1, vn).

We have

L(Tij) = L(T )− (n− i + 1)c(vi−1, vi)− (n− i)c(vi, vi+1)
− (n− j + 1)c(vj−1, vj)− (n− j)c(vj , vj+1) + (n− i + 1)c(vi−1, vj)
+ (n− i)c(vj , vi+1) + (n− j + 1)c(vj−1, vi) + (n− j)c(vi, vj+1). (2.5)

It is obvious that we can calculate L(Tij) by the formulation (2.5) in O(1) time. Therefore, the complexity
of exploring L(Tij) is O(n2) in the MLP. �

2-opt neighborhood removes each pair of edges from the solution and reconnects the vertices. This neigh-
borhood of T is defined as a set N4(T ) = {Tij = (v1, v2, . . . , vi, vj , vj−1, . . . , vi+2, vi+1, vj+1, . . . , vn) : i =
1, . . . , n− 4; j = i + 4, . . . , n}. The size of the neighborhood is O(n2).

Property 2.4. The complexity of exploring N4(T ) is O(n3) for the TDTSP and MLP.

Proof. For TDTSP: It takes O(n) time to calculate each neighborhood’s cost, therefore, the time complexity of
exploring N4(T ) is O(n3).

For MLP: The initial tour and L(T ) are the same as in (2.4). The neighborhood generates a neighboring tour
Tij = (v1, v2, . . . , vi, vj , vj−1, . . . , vi+2, vi+1, vj+1, . . . , vn). The latencies of T and Ti are calculated as follows:

L(Tij) = (n− 1)c(v1, v2) + . . . + (n− i)c(vi, vj) + (n− i− 1)c(vj , vi+2)
+ . . . + (n− j + 1)c(vj−1, vi+1) + (n− j)c(vi+1, vj+1) + . . . + (vn−1, vn).
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We have

L(Tij) = L(T )− (n− i)c(vi, vi+1)−
j−i−1∑
h=1

(n− i− h)c(vi+h, vi+h+1)

− (n− j)c(vj , vj+1) + (n− i)c(vi, vj)

+
j−i−1∑
h=1

(n− i− h)c(vj−h+1, vj−h) + (n− j)c(vi+1, vj+1). (2.6)

It is obvious that we can calculate L(Tij) by the formulation (2.6) in O(n) time. Therefore, the complexity
of exploring N4(T ) is O(n3) in the MLP. �

Move-forward-k-vertices neighborhood of T is defined as a set N5(T ) = {Tijk = (v1, v2, . . . , vi, vi+k+1,
vi+k+2, . . . , vj , vi+1, vi+2 . . . , vi+k, vj+1, . . . , vn) : i = 1, 2, . . . , n − k − 1; i + k < j ≤ n} with k = 2, . . . , l.
The size of the neighborhood is O(n2).

Move-backward-k-vertices neighborhood of T is defined as a set N6(T ) = {Tijk = (v1, v2, . . . , vi, vi+k+1,
vi+k+2, . . . , vi+1, vi+2 . . . , vi+k, vj , vj+1, . . . , vn) : i = 1, 2, . . . , n − k − 1; i + k < j ≤ n} with k = 2, . . . , l. The
size of the neighborhood is O(n2).

Property 2.5. The complexity of exploring N5(T ) and N6(T ) is O(m3) for the MLP, respectively.

Proof. We prove Property 2.5 for move-forward-k-vertices and the same argument holds for move-backward-k-
vertices. For a tour Tijk ∈ N5(T ), it can be shown that

L(Tijk) = L(T )− (n− i)c(vi, vi+1)−
j−1∑

h=i+1

(n− h)c(vh, vh+1)

− (n− i)c(vi, vi+1) + (n− i)c(vi, vi+k+1)

+
j−i−k−2∑

h=1

(n− i− h)c(vi+k+h, vi+k+h+1) + (n− j + k + 1)c(vj−1, vj)

+ (n− j + k)c(vj , vi+1) +
k−1∑
h=1

(n− j + k − h)c(vi+h, vi+h+1)

+ (n− j + 1)c(vi+k, vj+1). (2.7)

It is obvious that we can calculate L(Tijk) by the formulation (2.7) in O(n) time. Therefore, the complexity
of exploring N5(T ) is O(n3) in the MLP. �

It is realized that calculation of a neighboring solution’s cost by using on the known cost of current solution
in (2.6) and (2.7) cannot be done in constant time. As a result, our algorithm spends O(n3) operations for a
full neighborhood search. However, Silva et al. [26] suggest a move evaluation procedure, which only requires
O(1) amortized operations since the number of edge exchanges is bounded. In this work, we use their evaluation
procedure for 2-opt and move forward(backward)-k-vertices. Therefore, the time complexity of exploring all
neighborhoods in the worst case is performed in O(n2).

In each iteration, the best neighboring solution is accepted if it is non-tabu and improving, or tabu but
globally improving. The reason of allowing a tabu move is that TS prevents to get trapped into a cycle, however
it may lead to an overall stagnation of the searching process. The simplest and most commonly used aspiration
criterion consists in allowing a move, even if it is in the tabu list but the cost of the new solution is better
than that of the current best solution and this solution has obviously not been previously visited. Due to the
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use of different neighborhood structures, several tabu lists are built. A move of the type remove-insert, swap-
adjacent, or swap is stored in the first tabu list while the second is for 2-opt moves. We do not use tabu list for
move-forward-k-vertices, move-backward-k-vertices.
Step 3. After finding a local optimum in step 2, step 3 builds up a set of promising solutions LT . Since the
objective value of any local optimum lies within 5–10% of the best found solution, then it is added into LT . If
the size of LT is five, then the algorithm moves to step 4. The size of LT is chosen to be five because a small
value for the size of LT enhances more implementations to the intensification and diversification steps. The
search can be moved to another area of the solution space without the previous area explored. Otherwise, since
the value of |LT | is large, less intensification and diversification step are performed.
Step 4. If the promising solution list LT is full, the intensification step implements. Each solution of the list
is returned to step 2 without any restriction of tabu move. Since a new local optimum is found, the algorithm
goes to step 5 in which a diverse solution to re-initialize the search is created.
Step 5. Firstly, the tabu lists are cleared. Secondly, the diversification step is performed by swapping several
vertices randomly in each solution in the list LT and then we return to step 2 with these solutions.

The last aspect to discuss is the stop criterium of tabu search algorithm. A balance must be made between
computation time and efficiency. Here, the algorithm stops if no improvement is found after a given number of
iterations (NL).

3. Computational evaluation

The experiments are conducted on a personal computer, which is equipped with an Intel Pentium core i7
2.93 GHz and 8 GB RAM memory.

3.1. Datasets

There have been a few published studies [20, 21, 32, 33, 37] with heuristics developed for the TDTSP. In
[21,32,33], unfortunately, we could not get the instances as well as their code and therefore, we cannot directly
compare the results of our metaheuristic with the results obtained by their heuristics. However, the experimental
results in [32] indicate that their solutions are slightly better than those obtained by the r -opt heuristic (within
3.6% on the average). The running time of their algorithm is about 5 times more than the running time of
the r -opt. In order to compare to their algorithm, we implement the r -opt in [32] for TDTSP and then run it
on benchmark. Similary, we also implement and then run the algorithm in [21] on benchmark. Based on the
experimental results, we can compare relatively the efficiency of these algorithms. Our datasets in this paper
are benchmarks in [2,20,25,36,37] that are divided into two types. The first type includes instances in TDTSP
benchmark [20, 37]. A second group regards instances for MLP instances (i.e., w(i, j, t) = (n − t + 1) × cij)
[2, 25,26].

In type 1, a first benchmark [37] is built from 255 addresses randomly chosen from a list of delivery tours of
transporters from Lyon, the number of time steps (m = 130) and the duration of a time step (d = 360) seconds.
They randomly generated 100 instances for each problem size (n = 10, 20, 30, 50, and 100) by randomly selecting
n locations among the 255 positions referenced in the travel time function. The duration of each visit is randomly
selected in the interval [60, 300] seconds. Because the transition function tends to underestimate the travel time
in congested areas, they generated two additional versions of the function with a dilatation of travel times of
respectively 10% and 20% centered on the average travel time. Therefore, they end up with three travel time
functions. They also provide the best known solutions for these instances. We gather these instances into a
group named as real dataset 1. In a second benchmark [20], Li et al. have studied the TDTSP and given several
instances. They considered the Bier127 instance from TSPLIB [36] and defined a region in the city center in
which traffic jams occurred in the afternoon. Congestion occurred in the afternoon for beer gardens in the
dashed rectangle (the traffic jam region), so that the time to drive between two locations in the rectangle was
multiplied by a jam factor f > 1. Each value of jam factor generates an instance. We gather these instances
into a group named as real dataset 2.
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In type 2, our experiments are performed in MLP instances derived from benchmark instances [25, 26]. The
cost of w(i, j, t) is defined as (n − t + 1) × c(i, j), where c(i, j) is taken from the original distance matrix and
t is the position order of the edge c(i, j) in the tour. This allows direct comparisons with the state-of-the-art
metaheuristic algoritms in [25,26].

The experimental data in type 2 includes three random datasets and two real datasets. In all instances, every
distance between vertices satisfies the triangle inequality. Each instance contains the coordinates of n vertices.
Based on the value of n, we divide the instances into two types: the small instances (n ≤ 50) and the large
instances (n > 50).

The first two random datasets comprise non-Euclidean and Euclidean instances, and were named as random
dataset 1 and 2, respectively. In the former one, the instances were generated artificially with an arc cost drawn
from a uniform distribution. The values of the arc costs were integers between 1 and 100. In the latter one,
the Euclidean distance between two vertices was calculated. The coordinates of the vertices were randomly
generated according to a uniform distribution in a 200×200 square. We chose the number of vertices from 40 to
100 and generated different instances for each dataset. The last random dataset supported by Salehipour et al.
[25] was named as random dataset 3.

The real dataset 3 consists of the well-known real instances from TSPLIB, which are selected by Abeledo
et al. [2] and Salehipour et al. [25]. Their sizes are between 42 and 318 vertices. Besides that, we added more real
instances by randomly choosing partial data from the larger instances in TSPLIB. The number of vertices of
each partial instance is forty. We divided the partial instances into three groups based on the values of standard
deviation (STDV). We have analyzed the data of TSPLIB and found that instances mostly belong to one of the
following three groups. Group one with STDV ≤ 100 where vertices are concentrated; group two, STDV ≥ 1000
where vertices are scattered; or group three where vertices are spaced in a special way such as along a line or
evenly distributed. Specifically, group one includes the instances extracted from Eil51, St70, Eil76, and Rat195.
In group two, the instances are chosen from KroA100, KroB100, KroC100, and Berlin52. In the last group, the
instances are from Tsp225, Tss225, Pr76, and Lin105. In group 3, two instances tss225 and lin105 have the value
of STDV in a range of 100 and 1000. We gathered the partial instances into a group named as real dataset 4.

3.2. Metrics

In order to evaluate the efficiency of metaheuristic algorithm, its solution can be compared to (1) the optimal
solution (OPT); (2) a good upper bound (UB); (3) the best solutions in the previous algorithms.

We define the improvement of our algorithm (Best.Sol is our best solution) with respect to optimal solution
(gap1[%]), and upper bound (gap2[%]) in percent respectively as follows:

gap1[%] =
Best.Sol −OPT

OPT
× 100% (3.1)

gap2[%] =
UB−Best.Sol

UB
× 100%. (3.2)

The optimal solutions can be found from [2, 5]. Nevertheless, the exact algorithms only solve the problems
with small size. When the optimal solutions have been unknown for large instance sizes, our solutions can be
compared to the good upper bounds (r -opt) in [32], the known best solutions in [20,21,37] or the state-of-the-art
metaheuristic algorithms in [25,26,32].

We see that in the formula (3.1), the smaller the value of gap1 is, the better and closer to the optimal solution
our solution is. Conversely, in formula (3.2), the larger the value of gap2 is, the better and larger our solution’s
improvement upon UB is.

3.3. Results

Two experiments are conducted on 355 instances. The datasets in the first experiment include the small
instances of random dataset from 1 to 3 and real dataset 1, 3 while the large instances of real dataset 1,
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Table 1. The average results for the small instances.

Instances gap1[%] gap2[%] T cT ime

INST-20-Rx 0 0 0.00 0.00
INST-30-Rx 0 5.01 1.12 2.98
Real dataset 3 0 5.04 0.22 0.59
Random dataset 1 0 5.59 0.20 0.53
Random dataset 2 0 5.48 0.21 0.56
TRP-50-Rx 0 9.82 0.62 1.65
INST-50-Rx – 7.09 5.70 15.16

2 and 3 in [20, 36, 37] and random dataset 3 in [25] are used for the second. For the small instances, their
optimal solutions allow us to evaluate exactly the efficiency of the algorithms. For the large instances, since
their optimal solutions have been not known, the efficiency of the algorithms is only evaluated relatively. In
two experiments, we choose k = 10, ST = 5% or 10%, l = 5, and NL = 150. In addition, in a pilot study, the
performance of the algorithm relatively depends on the order in which the neighborhoods are used. Generally
speaking, the neighborhoods which have smaller size will be explored first. Since our algorithm gets stuck in
local optimum, the larger neighborhoods are used, because larger sized neighborhoods may help escape from
local optimum. In this paper, the order of the neighborhoods is as follows: swap adjacent, remove-insert, swap,
2-opt, move-k -vertices-forward (-backward).

Given an algorithm, OPT, Aver.Sol and Best.Sol are the optimal, average and best solution after ten runs,
respectively. Let T be the running time in seconds and cTime represent scaled run times, estimated on a Pentium
IV 2.4 GHz by means of the factors of Dongarra in [19] by seconds (note that Salehipour et al.’s experiments
were implemented on a Pentium IV 2.4 GHz). In terms of running time, comparisons with the results published
in [20,21,32] would be meaningless, due to the disparity between machines after almost two decades. Therefore,
the running time of our algorithm only compares to those of the state-of-the-art algorithms for MLP in [25,26].
The experimental results of Li et al.’s (RTR), Lucena et al.’s (AL), Salehipour et al.’s (AS), Silva et al.’s
(MS) algorithm and the known best solutions of Melgarejo et al. (PAM) are extracted from [20, 21, 25, 26, 37],
respectively.

3.3.1. Experiment for small dataset

The experimental results are illustrated in Table 1, which are the average values calculated from Tables A.1
to A.5 in the Appendix. In Table 1, we denote gapi(i = 1, 2) and T by the average values of gapi and T for each
dataset.

The experimental results in Table 1 shows that our algorithm can find the optimal solutions in a reasonable
amount of time for all instances (with up to 50 vertices) in random dataset 1 and 2, TRP-50-x in random
dataset 4, and INST-20-x, INST-30-x in real dataset 1 (these optimal solutions are extracted from [2, 5, 37]).
For INST-50-x, our algorithm finds the new best solutions for most of instances. In comparsion with AL [21]
in Tables A.3 and A.5, our algorithm outperforms for all instances. In addition, in average, the improvement
of our algorithm upon the well-known upper bound ontained by r -opt is significant, since the average values of
gap2 are from 5.01% to 9.82%. Obviously, our algorithm outperforms the approach in [32] because their average
of gap2 [32] is in within 3.6%.

3.3.2. Experiment for large dataset

The experimental results are illustrated in Table 2, which are the average values calculated from Tables A.6
to A.10 in Appendix. In Table 2, we denote gapi(i = 1, 2) and T by the average values of gapi and T for each
dataset.
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Table 2. The average results for the large instances.

Instances gap2[%] T cT ime

TRP-100-Rx 13.59 7.74 20.67
TRP-200-Rx 14.38 79.14 211.30
INST-100-x 6.97 37.10 99.06
TSPLIB 8.79 4.49 11.99
Bierl27 0.34 36.55 97.59

In Table 2, for all instances, it can be observed that our algorithm is capable of improving the solution in
comparison with the upper bound from [32]. The average improvement of our algorithm with the average gap2

between 6.97% and 14.38% while the average gap2 in [32] is about 3.6%. Similary, our algorithm obtains the
better solutions than those of AL [21] in Tables A.7 and A.8. Obviously, our algorithm can obtain a significant
improvement for almost instances and required small running time. Moreover, for INST-100-x in Table A.6 and
a set of Bier127 instances with different jam factors in Table A.10, the new best solutions are obtained compared
to the state-of-the-art previous solutions in [20,37].

Tables A.7 and A.8 also indicate that, for MLP instances, our algorithm gives a much better solutions
than those of Salehipour et al.’s algorithm for all instances in random dataset 3. In comparison with Silva
et al.’s algorithm, in all cases in TPR-200-Rx, our algorithm gives the solutions as well as those of Silva et al.’s
algorithm. In addition, our algorithm obtains the better solutions for several instances (TRP-100-R2, TRP-100-
R3, TRP-100-R9, TRP-100-R15, TRP-100-R17, TRP-100-R18, TRP-100-R20) in TRP-100-Rx. In Table A.9,
our algorithm can find the optimal solutions (the optimal solutions are extracted from [2]) for the problems
which is up to 100 vertices such as KroA100, KroB100, KroC100, KroD100 in several seconds. Obviously, our
algorithm can be applicable to multiple variants of the TDTSP although it not is designed for solving them.

In all Tables, the average scaled running time of our algorithm is much better than those of Salehipour et al.’s,
and it grows quite moderately with the one of Silva et al.’s algorithm.

4. Discussions

In combinatorial optimization problem such as TDTSP, there exist many “locally optimal” solutions-not the
absolutely best, but good enough as well as global optimal solution. Often, algorithms get trapped in a local
optimum because (1) the explored part of the solution space is not large enough; (2) algorithms might become
trapped into cycles. That means they return to the points previously explored in the solution space.

Our hybrid approach is between TS and VNS, as follows. First, many good elite solutions (local minima)
created by VNS. Second, TS is perfectly attracted to global minima area. Even though the initial solution was
set far from global minima, TS still can prevent from getting trapped into cycles in order to drive the search
to global minima. In [12, 30], similar ideas have been proposed in order to hybridize different metaheuristic
frameworks.

Our algorithm performs better than the other because of several reasons as followings:

(1) In the case of the general TDTSP, heuristic approaches in [20, 21, 32] are often too greedy, therefore,
they usually get trapped in a local optimum and thus fail to obtain the global optimum solution. Our
metaheuristic approach, on the other hand, is not greedy and may even accept a temporary deterioration
of solution, which allows them to explore more thoroughly the solution space and thus to get ass better
solution. The experiments show that our solutions are much better than those of the others in [20, 21, 32].
In addition, our algorithm finds the new best solutions in real dataset 1 and 2.

(2) In the case of the MLP, our algorithm uses six neighborhoods therefore, the explored part of the solution
space is large enough. Hence, chances of finding even better solutions are high. The extension of explored
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part is not time-consuming in our algorithm because of a constant time operation for calculating the cost
of each neighboring solution. Moreover, in some cases, while the state-of-the-art algorithms in [25, 26] can
get trapped into cycles, our algorithm overcomes their drawback and obtains the better solutions.

5. Conclusions

In this paper, we propose a new meta-heuristic algorithm which combines the Tabu search (TS) and Variable
Neighborhood Search (VNS) for the TDTSP problem. The experimental results show that our algorithm is able
to find the optimal solutions for the small instances, which is up to with 100 vertices, at a reasonable amount
of time. For the larger instances, our solution’s quality is comparable with the state-of-the-art metaheuristic
algorithms, moreover, for sixty six instances it provides the new best solutions. However, the running time needs
to be improved to meet real applications and enhancing it is still a challenge. This will be our aim in future
research.

Appendix A.

Table A.1. The experimental results of our algorithm for real datatest 1 (INST-20-x).

Instances Travel time function 1 Travel time function 2 Travel time function 3

UB OPT Best. Aver. gap2 T UB OPT Best. Aver. gap2 T UB OPT Best. Aver. gap2 T
Sol Sol [%1] Sol Sol [%1] Sol Sol [%1]

INST-20-1 12 836 12 836 12 836 12 836 0 0 13 055 13 055 13 055 13 055 0 0 1305 13 233 13 233 13 233 0 0
INST-20-2 13 176 13 176 13 176 13 176 0 0 13 275 13 275 13 275 13 275 0 0 1327 13 220 13 220 13 220 0 0
INST-20-3 13 417 13 417 13 417 13 417 0 0 13 590 13 590 13 590 13 590 0 0 1359 13 714 13 714 13 714 0 0
INST-20-4 13 672 13 672 13 672 13 672 0 0 13 528 13 528 13 528 13 528 0 0 1352 13 646 13 646 13 646 0 0
INST-20-5 13 099 13 099 13 099 13 099 0 0 13 147 13 147 13 147 13 147 0 0 1314 13 242 13 242 13 242 0 0
INST-20-6 12 522 12 522 12 522 12 522 0 0 12 679 12 679 12 679 12 679 0 0 1267 12 749 12 749 12 749 0 0
INST-20-7 13 049 13 049 13 049 13 049 0 0 13 273 13 273 13 273 13 273 0 0 1327 13 323 13 323 13 323 0 0
INST-20-8 12 504 12 504 12 504 12 504 0 0 12 757 12 757 12 757 12 757 0 0 1275 12 892 12 892 12 892 0 0
INST-20-9 13 900 13 900 13 900 13 900 0 0 13 990 13 990 13 990 13 990 0 0 1399 13 852 13 852 13 852 0 0
INST-20-10 13 734 13 734 13 734 13 734 0 0 13 690 13 690 13 690 13 690 0 0 1369 13 542 13 542 13 542 0 0
INST-20-11 13 035 13 035 13 035 13 035 0 0 13 149 13 149 13 149 13 149 0 0 1314 13 155 13 155 13 155 0 0
INST-20-12 13 221 13 221 13 221 13 221 0 0 13 511 13 511 13 511 13 511 0 0 1351 13 446 13 446 13 446 0 0
INST-20-13 11 201 11 201 11 201 11 201 0 0 11 617 11 617 11 617 11 617 0 0 1161 11 814 11 814 11 814 0 0
INST-20-14 11 697 11 697 11 697 11 697 0 0 11 943 11 943 11 943 11 943 0 0 1194 12 146 12 146 12 146 0 0
INST-20-15 13 647 13 647 13 647 13 647 0 0 13 934 13 934 13 934 13 934 0 0 1393 13 899 13 899 13 899 0 0
INST-20-16 11 921 11 921 11 921 11 921 0 0 12 201 12 201 12 201 12 201 0 0 1220 12 245 12 245 12 245 0 0
INST-20-17 13 170 13 170 13 170 13 170 0 0 13 324 13 324 13 324 13 324 0 0 1332 13 500 13 500 13 500 0 0
INST-20-18 12 930 12 930 12 930 12 930 0 0 13 148 13 148 13 148 13 148 0 0 1314 13 026 13 026 13 026 0 0
INST-20-19 12 932 12 932 12 932 12 932 0 0 13 152 13 152 13 152 13 152 0 0 1315 13 220 13 220 13 220 0 0
INST-20-20 13 056 13 056 13 056 13 056 0 0 13 150 13 150 13 150 13 150 0 0 1315 13 234 13 234 13 234 0 0
Aver 0 0 0 0 0 0
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Table A.2. The experimental results of our algorithm for real datatest 1 (INST-30-x).

Instances Travel time function 1 Travel time function 2 Travel time function 3

UB OPT Best. Aver. gap2 T UB OPT Best. Aver. gap2 T UB OPT Best. Aver. gap2 T
Sol Sol [%1] Sol Sol [%1] Sol Sol [%1]

INST-30-1 18 460 17 167 17 167 17 167 7.00 1.2 18 253 17 067 17 067 17 067 6.50 1.0 17 790 17 206 17 206 17 206 3.28 1.1
INST-30-2 16 437 15 853 15 853 15 853 3.55 1.1 16 410 15 672 15 672 15 672 4.50 1.1 17 319 15 946 15 946 15 946 7.93 1.1
INST-30-3 18 060 17 202 17 202 17 202 4.75 1.3 17 338 16 953 16 953 16 953 2.22 1.1 17 683 16 697 16 697 16 697 5.58 1.2
INST-30-4 17 324 15 688 15 688 15 688 9.44 1.0 17 396 15 636 15 636 15 636 10.12 1.0 16 680 15 801 15 801 15 801 5.27 1.0
INST-30-5 15 033 15 022 15 022 15 022 0.07 1.2 15 462 15 086 15 086 15 086 2.43 1.2 16 244 15 170 15 170 15 170 6.61 1.0
INST-30-6 18 342 17 192 17 192 17 192 6.27 1.2 18 010 16 949 16 949 16 949 5.89 1.1 17 853 16 925 16 925 16 925 5.20 1.2
INST-30-7 16 768 16 056 16 056 16 056 4.25 1.2 16 840 16 518 16 518 16 518 1.91 1.1 17 010 16 243 16 243 16 243 4.51 1.2
INST-30-8 18 649 17 431 17 431 17 431 6.53 1.1 17 856 17 051 17 051 17 051 4.51 1.0 18 357 16 790 16 790 16 790 8.54 1.1
INST-30-9 16 692 15 963 15 963 15 963 4.37 1.2 16 512 15 442 15 442 15 442 6.48 1.1 16 673 15 739 15 739 15 739 5.60 1.2
INST-30-10 17 328 16 525 16 525 16 525 4.63 1.1 17 281 17 052 17 052 17 052 1.33 1.0 17 774 16 423 16 423 16 423 7.60 1.2
INST-30-11 17 994 17 434 17 434 17 434 3.11 1.0 18 059 17 342 17 342 17 342 3.97 1.1 18 479 17 096 17 096 17 096 7.48 1.2
INST-30-12 17 410 17 404 17 404 17 404 0.03 1.1 17 566 16 508 16 508 16 508 6.02 1.2 17 725 16 356 16 356 16 356 7.72 1.1
INST-30-13 18 870 17 576 17 576 17 576 6.86 1.3 18 362 17 336 17 336 17 336 5.59 1.2 18 205 17 143 17 143 17 143 5.83 1.2
INST-30-14 19 878 18 595 18 595 18 595 6.45 1.0 19 336 18 250 18 250 18 250 5.62 1.0 18 984 17 907 17 907 17 907 5.67 1.1
INST-30-15 18 236 17 313 17 313 17 313 5.06 1.1 18 386 17 438 17 438 17 438 5.16 1.0 17 503 16 749 16 749 16 749 4.31 1.1
INST-30-16 15 185 14 927 14 927 14 927 1.70 1.0 14 893 14 893 14 893 14 893 0.00 1.2 15 501 14 947 14 947 14 947 3.57 1.0
INST-30-17 18 870 17 188 17 188 17 188 8.91 1.1 17 958 17 124 17 124 17 124 4.64 1.2 18 486 16 732 16 732 16 732 9.49 1.2
INST-30-18 17 879 17 605 17 605 17 605 1.53 1.0 17 809 17 296 17 296 17 296 2.88 1.1 17 425 16 616 16 616 16 616 4.64 1.1
INST-30-19 18 680 18 397 18 397 18 397 1.51 1.3 19 434 17 963 17 963 17 963 7.57 1.0 19 124 17 684 17 684 17 684 7.53 1.2
INST-30-20 17 849 16 960 16 960 16 960 4.98 1.1 17 831 17 007 17 007 17 007 4.62 1.2 17 601 17 380 17 380 17 380 1.26 1.2
Aver 4.55 1.13 4.6 1.10 5.88 1.12
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Table A.3. The experimental results for the small instances in real dataset 4, random dataset
1, and random dataset 2.

Dataset Instances UB OPT AL Our algorithm

Best.Sol T Best.Sol Aver.Sol gap1 [%] gap2 [%] T

Real dataset 4

eil51 6233 5934 6294 0.2 5934 5934 0 4.80 0.19
eil76 6551 6239 6872 0.2 6239 6239 0 4.76 0.20
st70 8156 7754 9348 0.3 7754 7754 0 4.93 0.20
ratl95 18 871 17 971 22 453 0.2 17 971 17 971 0 4.77 0.27
kroA100 274 015 260 792 305 869 0.3 260 792 260 792 0 4.83 0.19
kroB100 258 042 245 649 325 733 0.2 245 649 245 649 0 4.80 0.26
kroC100 293 452 272 638 325 733 0.2 272 638 272 638 0 7.09 0.20
berlin52 98 218 93 490 136 970 0.2 93 490 93 490 0 4.81 0.25
pr76 1 263 695 1 203 069 1 522 361 0.3 1 203 069 1 203 069 0 4.80 0.18
tsp225 30 544 28 951 141 632 0.2 28 951 28 951 0 5.22 0.26
tss225 1 273 908 1 212 096 1 352 430 0.3 1 212 096 1 212 096 0 4.85 0.19
lin105 146 588 139 600 141 632 0.3 139 600 139 600 0 4.77 0.19
Aver 0.2 0 5.04 0.22

Random dataset 1

test 1 8514 7767 8781 0.2 7767 7767 0 8.77 0.24
test 2 9416 8958 10 230 0.1 8958 8958 0 4.86 0.21
test 3 8711 8279 8861 0.2 8279 8279 0 4.96 0.16
test 4 9081 8648 10 084 0.2 8648 8648 0 4.77 0.18
test 5 8263 7862 8462 0.3 7862 7862 0 4.85 0.26
test 6 9545 9082 11 296 0.2 9082 9082 0 4.85 0.25
test 7 8701 8216 8991 0.1 8216 8216 0 5.57 0.16
test 8 8435 7995 8736 0.2 7995 7995 0 5.22 0.17
test 9 9085 8644 10 751 0.2 8644 8644 0 4.85 0.16
test 10 10 096 9369 10 754 0.3 9369 9369 0 7.20 0.16
Aver 0.2 0 5.59 0.20

Random dataset 2

test 1 9156 8706 11 137 0.2 8706 8706 0 4.91 0.17
test 2 8219 7763 8136 0.3 7763 7763 0 5.55 0.16
test 3 8729 8292 10 433 0.2 8292 8292 0 5.01 0.26
test 4 8871 8423 9792 0.2 8423 8423 0 5.05 0.20
test 5 9781 9311 9964 0.3 9311 9311 0 4.81 0.27
test 6 9015 8466 10 219 0.3 8466 8466 0 6.09 0.20
test 7 9081 8642 10 611 0.2 8642 8642 0 4.83 0.18
test 8 9088 8443 9893 0.2 8443 8443 0 7.10 0.17
test 9 9834 9183 9957 0.3 9183 9183 0 6.62 0.23
test 10 9337 8888 10 494 0.3 8888 8888 0 4.81 0.28
Aver 0.3 0 5.48 0.21
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Table A.4. The experimental results of our algorithm for real datatest 1 (INST-50-x).

Instances Travel time function 1 Travel time function 2 Travel time function 3

UB PAM Best. Aver. gap2 T UB PAM Best. Aver. gap2 T UB PAM Best. Aver. gap2 T
Sol Sol [%1] Sol Sol [%1] Sol Sol [%1]

INST-50-1 24 213 22 846 22 795 22795.0 5.86 5.6 23 659 22 108 22 108 22259.0 6.56 5.5 23 786 21 678 21 678 21678.0 8.86 6.1

INST-50-2 25 115 23 713 23 421 23421.0 6.74 5.4 24 703 23 233 22 661 22661.0 8.27 6.0 24 077 22 676 21 678 21678.0 9.96 5.7

INST-50-3 24 753 22 684 22 684 22684.0 8.36 6.1 23 451 21 777 21 777 22097.0 7.14 5.7 25 152 21 382 21 217 21362.2 15.64 6.2
INST-50-4 27 004 24 833 24 396 24421.5 9.66 6.4 25 427 23 610 23 579 23579.0 7.27 6.2 22 177 22 949 22 949 22949.0 3.48 6.1

INST-50-5 23 885 20 960 20 960 20960.0 12.25 6.0 22 654 20 877 20 877 20886.1 7.84 6.1 22 751 20 553 20 553 20553.0 9.66 6.2

INST-50-6 23 601 22 396 22 074 22074.0 6.47 5.7 23 078 21 795 21 380 21380.0 7.36 5.2 24 165 21 276 21 219 21219.0 12.19 6.7
INST-50-7 25 045 23 241 23 241 23242.8 7.20 5.8 25 490 22 645 22 645 22867.0 11.16 6.4 24 785 22 308 22 308 22308.0 9.99 5.3

INST-50-8 24 559 23 274 23 274 23274.0 5.23 5.1 23 271 22 558 22 558 22584.0 3.06 5.4 22 412 22 182 22 182 22188.5 1.03 5.7
INST-50-9 24 146 22 549 22 549 22549.0 6.61 5.5 23 207 22 015 22 015 22417.0 5.14 5.8 22 429 21 669 21 669 21669.0 3.39 5.4

INST-50-10 22 821 22 831 22 556 22557.3 1.16 5.5 22 648 22 249 21 778 21852.2 3.84 6.1 23 962 21 928 21 639 21639.0 9.69 5.0

INST-50-11 25 069 23 893 23 775 23775.0 5.16 6.0 24 347 23 063 23 015 23015.0 5.47 5.6 24 500 22 230 22 230 22230.0 9.27 5.8
INST-50-12 25 070 24 610 24 487 24487.0 2.33 5.4 25 006 23 969 23 792 23792.0 4.85 5.7 23 601 23 568 23 495 23495.0 0.45 5.5

INST-50-13 24 459 23 432 23 432 23432.0 4.20 6.2 23 918 22 585 22 585 22730.0 5.57 6.1 23 521 22 190 22 190 22191.2 5.66 5.5

INST-50-14 24 358 23 678 23 356 23357.3 4.11 5.8 23 661 22 737 22 677 22715.3 4.16 6.2 22 932 22 103 22 103 22103.0 3.62 5.4
INST-50-15 23 682 22 473 22 473 22473.0 5.11 5.6 22 972 21 838 21 838 22247.0 4.94 5.6 24 058 22 057 21 919 21919.0 8.89 5.1

INST-50-16 25 445 23 538 23 538 23538.0 7.49 6.4 25 019 23 035 23 032 23032.0 7.94 5.9 24 023 22 463 22 463 22463.0 6.49 5.4

INST-50-17 24 721 24 100 24 028 24028.0 2.80 6.2 24 397 23 311 23 273 23273.0 4.61 6.1 21 726 23 207 22 858 22861.2 5.21 5.7
INST-50-18 21 998 21 539 21 181 21181.0 3.71 6.3 21 658 20 785 20 785 20924.0 4.03 5.6 24 821 20 681 20 494 20494.0 17.43 5.8

INST-50-19 25 919 24 477 24 477 24477.0 5.56 6.3 25 392 23 899 23 899 23974.0 5.88 6.0 23 208 23 332 23 332 23332.0 0.53 5.3

INST-50-20 23 906 23 170 22 528 22528.0 5.76 6.2 23 657 22 499 22 180 22180.0 6.24 5.2 41 383 21 984 21 983 21983.0 46.88 5.8
Aver 5.79 6.07 9.42 5.7

Table A.5. The experimental results of our algorithm for random datatest 3 (TPR-50-Rx).

Instances UB OPT AL Our algorithm

Best.Sol T Best.Sol Aver.Sol gap1 [%] gap2[%] T

TRP-50-R1 13 479 12 198 14 775 0.8 12 198 12 198 0 9.50 0.56
TRP-50-R2 12 821 11 621 13 742 0.7 11 621 11 621 0 9.36 0.67

TRP-50-R3 13 723 12 139 13 765 0.7 12 139 12 139 0 11.54 0.67
TRP-50-R4 14 482 13 071 15 160 0.3 13 071 13 071 0 9.74 0.68

TRP-50-R5 13 381 12 126 13 414 0.7 12 126 12 126 0 9.38 0.65

TRP-50-R6 14 169 12 684 14 542 0.7 12 684 12 684 0 10.48 0.61
TRP-50-R7 12 791 11 176 12 690 0.6 11 176 11 176 0 12.63 0.61

TRP-50-R8 14 233 12 910 14 060 0.5 12 910 12 910 0 9.30 0.62

TRP-50-R9 13 903 13 149 14 535 0.6 13 149 13 149 0 5.42 0.63
TRP-50-R10 14 729 12 892 15 327 0.7 12 892 12 892 0 12.47 0.63
TRP-50-R11 13 567 12 103 13 931 0.7 12 103 12 103 0 10.79 0.64

TRP-50-R12 11 812 10 633 12 823 0.6 10 633 10 633 0 9.98 0.62
TRP-50-R13 13 339 12 115 14 874 0.7 12 115 12 115 0 9.18 0.50

TRP-50-R14 14 678 13 117 13 817 0.6 13 117 13 117 0 10.63 0.65

TRP-50-R15 12 948 11 986 13 719 0.3 11 986 11 986 0 7.43 0.67
TRP-50-R16 13 577 12 138 15 126 0.8 12 138 12 138 0 10.60 0.65
TRP-50-R17 13 576 12 176 13 907 0.6 12 176 12 176 0 10.31 0.51
TRP-50-R18 14 723 13 357 14 532 0.6 13 357 13 357 0 9.28 0.57
TRP-50-R19 12 505 11 430 13 298 0.7 11 430 11 430 0 8.60 0.63

TRP-50-R20 13 214 11 935 13 371 0.7 11 935 11 935 0 9.68 0.63
Aver 0.63 0 9.82 0.62
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Table A.6. The experimental results of our algorithm for real datatest 1 (INST-100-x).

Instances Travel time function 1 Travel time function 2 Travel time function 3

UB PAM Best. Aver. gap2 T UB PAM Best. Aver. gap2 T UB PAM Best. Aver. gap2 T

Sol Sol [%1] Sol Sol [%1] Sol Sol [%1]

INST-100-1 41 831 39 249 39 532 39 532 5.50 38.3 39 139 39 336 38 245 38 245 2.28 41.8 41 363 36 884 36 884 36 884 10.83 38.6

INST-100-2 38 954 36 015 36 015 36 015 7.54 41.7 36 382 35 065 35 143 35 143 3.41 45.8 38 391 34 793 33 987 33 987 11.47 46.3

INST-100-3 38 010 36 807 36 807 36 807 3.16 38.3 40 597 37 240 35 729 35 729 11.99 43.0 41 085 37 000 34 477 34 477 16.08 39.2

INST-100-4 42 257 39 631 39 631 39 631 6.21 32.8 38 582 38 954 38 240 38 240 0.89 32.0 42 419 39 558 37 765 37 765 10.97 35.0

INST-100-5 39 215 37 377 38 396 38 396 2.09 33.9 39 712 35 852 35 852 35 852 9.72 36.8 41 824 34 580 34 580 35854.6 17.32 37.2

INST-100-6 39 769 38 312 37 957 37 957 4.56 40.6 40 963 36 508 36 508 36 508 10.88 45.1 40 090 34 950 34 950 34 950 12.82 43.5

INST-100-7 41 818 40 371 40 324 41462.7 3.57 26.0 41 273 37 971 39 081 39 081 5.31 43.5 41 107 36 395 36 395 36 395 11.46 34.5

INST-100-8 43 023 39 302 39 302 39 302 8.65 29.6 40 214 39 325 39 257 39 257 2.38 36.7 43 260 37 250 37 250 37 250 13.89 41.5

INST-100-9 40 434 38 189 38 189 38 189 5.55 40.5 41 349 36 813 36 813 36926.3 10.97 36.5 44 793 35 808 35 808 35 808 20.06 26.6

INST-100-10 41 875 40 021 40 021 40 021 4.43 31.7 45 449 37 958 37 958 37 958 16.48 32.7 40 021 37 185 37 185 37 185 7.09 38.9

INST-100-11 44 023 40 486 42 661 42 661 3.09 42.3 42 431 40 937 40 268 40504.6 5.10 42.4 40 935 39 210 39 195 40201.7 4.25 33.9

INST-100-12 41 672 41 122 41 026 41 026 1.55 34.8 40 093 38 727 38 727 38 727 3.41 33.9 41 730 37 730 37 730 37 730 9.59 41.5

INST-100-13 40 742 39 439 39 439 39441.3 3.20 32.3 39 463 38 188 38 188 38 188 3.23 38.3 38 441 37 023 37 023 37 023 3.69 28.9

INST-100-14 39 123 38 089 38 089 38 089 2.64 34.3 41 751 36 358 36 358 36358.6 12.92 33.8 42 503 35 553 35 553 35 553 16.35 33.0

INST-100-15 42 645 39 826 39 815 39 815 6.64 40.8 40 307 39 706 38 599 38 599 4.24 40.6 42 702 38 680 38 680 38 680 9.42 34.5

INST-100-16 41 135 39 128 39 128 39 128 4.88 39.0 41 119 38 964 37 923 37 923 7.77 33.4 40 639 37 010 37 239 37 239 8.37 39.7

INST-100-17 42 788 41 595 41 595 41 595 2.79 44.1 42 424 40 181 39 928 39 928 5.88 44.2 39 755 39 438 39 438 39931.7 0.80 35.5

INST-100-18 41 870 39 582 39 582 39612.0 5.46 42.0 40 527 39 486 39 302 39 302 3.02 34.6 41 363 37 977 37 977 37 977 8.19 36.4

INST-100-19 41 401 40 032 40 032 40 032 3.31 45.5 41 770 38 459 38 459 38 459 7.93 42.3 38 391 38 071 37 949 37 949 1.15 38.3

INST-100-20 41 587 40 163 40 723 40 723 2.08 37.7 37 371 38 212 38 212 38 212 2.25 33.5 41 085 36 619 36 619 36 619 10.87 39.1

Aver 4.35 37.3 6.50 38.6 10.23 37.1

Table A.7. The experimental results of our algorithm for random datatest 3 (TPR-100-Rx).

Instances UB AS MS AL Our algorithm

Best.Sol gap2[%] Best.Sol gap2[%] Best.Sol T Best.Sol Aver.Sol gap2[%] T

TRP-100-R1 35 334 – – 32 779 7.23 36 943 82 32 779 32779.0 7.23 8.43

TRP-100-R2 38 442 – – 33 435 13.02 42 134 86 32 778 32778.0 14.73 8.71

TRP-100-R3 37 642 – – 32 390 13.95 36 696 78 31 654 31654.0 15.91 8.56

TRP-100-R4 37 508 – – 34 733 7.40 38 744 89 35 208 35212.2 6.13 8.46

TRP-100-R5 37 215 – – 32 598 12.41 37 666 86 32 906 32906.0 11.58 8.28

TRP-100-R6 40 422 – – 34 159 15.49 42 652 67 34 159 34159.0 15.49 8.67

TRP-100-R7 37 367 – – 33 375 10.68 39 479 89 33 375 33375.0 10.68 8.28

TRP-100-R8 38 086 – – 31 780 16.56 39 595 82 31 981 31981.0 16.03 8.18

TRP-100-R9 36 000 – – 34 167 5.09 40 033 87 33 687 33687.0 6.43 8.73

TRP-100-R10 37 761 – – 31 605 16.30 36 669 84 31 605 31605.0 16.38 8.61

TRP-100-R11 37 220 – – 34 188 8.15 40 722 89 34 285 34285.0 7.89 8.01

TRP-100-R12 34 785 – – 32 146 7.59 42 507 85 32 146 32146.0 7.59 7.98

TRP-100-R13 37 863 – – 32 604 13.89 37 888 67 32 604 32604.0 13.89 8.75

TRP-100-R14 36 362 – – 32 433 10.81 37 364 86 32 433 32435.2 10.81 7.71

TRP-100-R15 39 381 – – 32 574 17.28 43 038 82 32 223 32223.0 18.18 7.90

TRP-100-R16 39 823 – – 33 566 15.71 42 031 86 33 094 33094.0 16.9 8.93

TRP-100-R17 41 824 – – 34 198 18.23 43 136 86 33 813 33813.0 19.15 7.08

TRP-100-R18 39 091 – – 31 929 18.32 40 349 89 31 898 31898.0 18.4 8.95

TRP-100-R19 39 941 – – 33 463 16.22 40 679 86 33 463 33463.0 16.22 8.38

TRP-100-R20 39 888 – – 33 632 15.68 41 627 86 31 035 31035.0 22.19 8.33

Aver 11.56 13.00 13.59 8.30
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Table A.8. The experimental results of our algorithm for random datatest 3 (TPR-200-Rx).

Instances UB AS MS AL Our algorithm

Best.Sol gap2[%] Best.Sol gap2[%] Best.Sol T Best.Sol Aver.Sol gap2[%] T

TRP-200-R1 105 044 – – 88 787 15.48 112 847 126 88 787 90132.0 15.48 78.46
TRP-200-R2 104 073 – – 91 977 11.62 108 519 128 91 977 92334.0 11.62 80.81
TRP-200-R3 111 644 – – 92 568 17.09 114 068 130 92 568 93053.0 17.09 77.68
TRP-200-R4 104 956 – – 93 174 11.23 109 425 123 93 174 93174.0 11.23 89.97
TRP-200-R5 101 912 – – 88 737 12.93 108 657 126 88 737 88737.0 12.93 75.79
TRP-200-R6 103 751 – – 91 589 11.72 106 015 113 91 589 92183.0 11.72 80.82
TRP-200-R7 109 810 – – 92 754 15.53 108 226 126 92 754 93212.3 15.53 76.75
TRP-200-R8 103 830 – – 89 048 14.24 101 162 127 89 048 89048.0 14.24 76.16
TRP-200-R9 100 946 – – 86 326 14.48 105 503 125 86 326 86326.0 14.48 78.30
TRP-200-R10 108 061 – – 91 552 15.28 109 227 125 91 552 91976.0 15.28 81.41
TRP-200-R11 103 297 – – 92 655 10.3 110 472 127 92 655 93102.0 10.3 83.14
TRP-200-R12 107 715 – – 91 457 15.09 107 401 122 91 457 91457.0 15.09 73.51
TRP-200-R13 100 505 – – 86 155 14.28 114 189 126 86 155 87002.0 14.28 77.83
TRP-200-R14 107 543 – – 91 882 14.56 123 716 127 918 82 91882.0 14.56 85.33
TRP-200-R15 100 196 – – 88 912 11.26 108 419 128 88 912 88914.5 11.26 72.93
TRP-200-R16 104 462 – – 89 311 14.5 103 674 125 89 311 90145.0 14.5 77.49
TRP-200-R17 107 216 – – 89 089 16.91 112 553 128 89 089 89089.0 16.91 77.70
TRP-200-R18 108 148 – – 93 619 13.43 119 927 128 93 619 93619.5 13.43 79.65
TRP-200-R19 105 716 – – 93 369 11.68 117 641 129 93 369 93369.0 11.68 78.96
TRP-200-R20 116 676 – – 86 292 26.04 112 547 122 86 292 86292.0 26.04 80.02
Aver 11.33 14.38 14.38 79.14

Table A.9. The experimental results for the instances in real dataset 3 (TSPLIB).

Instances OPT UB Our algorithm

Best.Sol Aver.Sol gap1[%1] gap2[%1] T

dantzig42 12 528 12 650 12 528 12 528 0 0.96 0.57
att48 209 320 25 315 209 320 209 320 0 17.31 1.45
eil51 10 178 10 593 10 178 10 178 0 3.92 1.60
berlin52 143 721 15 209 143 721 143 721 0 5.51 1.56
st70 20 557 25 809 20 557 20 557 0 20.35 2.43
KroA100 983 128 10 912 983 128 983 128 0 9.91 8.23
KroB100 983 128 10 212 983 128 983 128 0 3.73 8.10
KroC100 961 324 11 013 961 324 961 324 0 12.71 8.28
KroD100 976 965 10 253 976 965 976 965 0 4.72 8.19
Aver 0 8.79 4.49
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Table A.10. The experimental results of our algorithm for real dataset 2.

Jam factor RTR Our algorithm

Best.Sol T Best.Sol Aver.Sol gap2[%] T

1.00 118293.524 130 118293.524 118293.524 0.00 32.02
1.03 118796.154 259 118749.356 118749.356 0.06 37.59
1.04 119971.191 164 118901.300 118901.300 1.39 32.66
1.05 119503.279 197 119053.244 119053.244 0.70 36.79
1.10 119957.387 173 119957.387 119957.387 0.00 39.30
1.20 120637.093 217 119714.065 119714.065 0.77 43.13
1.30 120637.093 190 120637.093 120637.093 0.00 39.63
1.50 120617.178 253 120617.178 120617.178 0.00 41.61
1.60 121108.329 273 120679.186 120679.186 0.35 30.51
1.80 121195.816 182 120894.074 120894.074 0.25 32.77
1.90 121148.519 209 121001.518 121001.518 0.12 36.25
3.00 122222.204 260 121125.195 121125.195 0.90 32.65
10.00 121167.051 220 121125.195 121125.195 0.03 34.74
2000.00 121417.575 230 121125.195 121125.195 0.24 37.08
Aver 211 0.34 36.19
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