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ON THE PRECONDITIONED PROJECTIVE ITERATIVE METHODS FOR THE
LINEAR COMPLEMENTARITY PROBLEMS ∗

Seyyed Ahmad Edalatpanah∗∗

Abstract. This paper aims to propose the new preconditioning approaches for solving linear com-
plementarity problem (LCP). Some years ago, the preconditioned projected iterative methods were
presented for the solution of the LCP, and the convergence of these methods has been analyzed. How-
ever, most of these methods are not correct, and this is because the complementarity condition of the
preconditioned LCP is not always equivalent to that of the un-preconditioned original LCP. To over-
come this shortcoming, we present a new strategy with a new preconditioner that ensures the solution
of the same problem is correct. We also study the convergence properties of the new preconditioned
iterative method for solving LCP. Finally, the new approach is illustrated with the help of a numerical
example.
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1. Introduction

For a given real vector q ∈ Rn and a given matrix A ∈ Rn×n the linear complementarity problem abbreviated
as LCP (A, q), consists in finding vectors w, z ∈ Rn such that,

w = Az + q, zTw = 0, z ≥ 0, w ≥ 0, (1.1)

where, zT denotes the transpose of the vector z.
Many problems in various scientific computing, economics and engineering areas can lead to the solution

of the linear complementarity problem (LCP) and its generalizations. For example, quadratic programming,
Nash equilibrium point of a bimatrix game, nonlinear obstacle problems, invariant capital stock, optimal stop-
ping, contact, and structural mechanics, free boundary value problem for journal bearings, traffic equilibriums,
manufacturing systems, etc. For more details, see [1–3] and the references therein. Because of the wide appli-
cations, the research on the numerical methods for solving the LCP has attracted much attention. Generally,
there are some iterative methods for the solution of the LCP, including the projected methods [4–16] and the
modulus-type algorithms [17–23]; see [24] for a survey of the solvers for LCPs.
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Some scholars also suggested the preconditioning techniques for LCPs the so-called Preconditioned Projected
Iterative (PPI) methods [25–29]. Unfortunately, most of these models do not always work. This is because the
complementarity condition of the preconditioned LCP is not always equivalent to that of the un-preconditioned
original LCP. In other words, the complementarity condition is not transitive. i.e., if P is the preconditioner
of a PPI method, then from zTPw = 0 we cannot conclude that zTw = 0. To overcome this shortcoming, we
establish a new strategy with a new preconditioned that ensures the solution of the same problem is correct.
Numerical experiments are also given to illustrate our assertions.

The outline of this paper is as follows. In Section 2 we review some preliminaries about matrices and LCPs.
In Section 3, we study the class of projective iterative methods for solving LCPs. In Section 4, the existing
PPI approach for solving the LCPs problem is presented and we point out the error of these models with a
numerical example. In Section 5, we establish a new model of preconditioning to solve an LCP. The numerical
results about the new method are shown and discussed in Section 6. Finally, in Section 7, we end the paper by
our conclusions.

2. Prerequisite

We begin with some basic notation and preliminary results which we refer to later. First of all, the matrix
A = (aij) ∈ Rn×n (0 ≤ i, j ≤ n) is nonnegative (positive) if for any i, j; aij ≥ 0 (aij > 0). In this case we
write A ≥ 0(A > 0). Similarly, for n-dimensional vectors x, by identifying them with n × 1 matrices, we can
also define x ≥ 0(x > 0). Moreover, we denote the spectral radius of A by ρ(A).

Definition 2.1 ([30–33]).

(a) a matrix A = (aij) is called a Z-matrix if for any i 6= j, aij ≤ 0;
(b) a matrix A = (aij) is called an M -matrix, if A = αI −B; B ≥ 0 and α > ρ(B);
(c) a Z-matrix is an M -matrix, if A is nonsingular, and A−1 ≥ 0;
(d) a Z-matrix is an M -matrix, if Ax ≥ 0 implies x ≥ 0;
(e) a matrix A = (aij) is called H-matrix if and only if < A >= (mij) ∈ Rn×n is an M -matrix, where;

mi,i = |ai,i|; mi,j = −|ai,j |, i 6= j;

(f) a real square matrix A = (aij) is called monomial matrix if and only if it’s each row and column contains
only one nonzero entry and the remaining entries are zero.

Definition 2.2 ([4]). For any vector x ∈ Rn , vector x+ is defined such that [xi]+ = max{0, xi}. Then, for any
x, y ∈ Rn, the following facts hold:

(i) (x+ y)+ ≤ x+ + y+.
(ii) x+ − y+ ≤ (x− y)+.
(iii) |x| = x+ − (−x)+.
(iv) x ≤ y implies x+ ≤ y+.

Lemma 2.3 ([4]). Let A ∈ Rn×n be an H-matrix with positive diagonal elements. Then the LCP(A, q) has a
unique solution Z∗ ∈ Rn.

Lemma 2.4 ([4]). LCP(A, q) can be equivalently transformed to a fixed-point system of equations;

z = (z − αE(Az + q))+,

where α is some positive constant and E is a diagonal matrix with positive diagonal elements.
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3. Projected iterative methods

Let us consider LCP (1.1). The LCP(A, q) is equivalent to the following zero-finding formulation;

min(z, (Az + q)) = 0. (3.1)

And the zero-finding formulation is equivalent to the following fixed-point formulation;

max(0, z − (Az + q)) = z. (3.2)

This fixed point model used in some iterative methods for LCPs called the projected iterative methods. We
describe shortly this class of iterative methods. For any iteration, we have the following splitting;

A = M −N.

Then from equation (3.2):
max(0, z − (Mz −Nz + q)) = z.

Let us split the matrix A into A = D−L−U in which D = diag(A), L and U are strictly lower and strictly
upper triangular matrices, respectively. Then the Generalized AOR (GAOR) algorithm [7,14–17] is as follows:

z(k+1) = (z(k) −D−1[−αΩLZ(k+1) + (ΩA− αΩL)z(k) + Ωq])+, (3.3)

where, α is a real parameter and Ω = (w1, . . . , wn) is a real diagonal relaxation matrix.
In next lemma, we have the convergence theorem, proposed in [7] for the GAOR methods.

Lemma 3.1. Let A ∈ Rn×n be an H-matrix with positive diagonal elements. Moreover, let

G = I − αΩD−1|L|, F = |I −D−1(ΩA− αL)|,

then, for any initial vector z(0) ∈ Rn, the iterative sequence z(k) generated by the GAOR method converges to
the unique solution z∗ of the LCP (A, q) and;

ρ(G−1F ) ≤ max{|1− wi|+ wiρ(|J |)} < 1,

whenever,
0 < wi < 2/(1 + ρ(|J |)), 0 ≤ α ≤ 1,

where ρ(|J |) is the spectral radius of the Jacobi iteration matrix (J = D−1(L+ U)).

4. The existing PPI models and their shortcomings

In the existing PPI models [25–29], first we choose a preconditioner P and then using Ā = PA, q̄ = Pq,
equation (1.1) is transformed into the following problem:

w̄ = Āz + q̄, zT w̄ = 0, z ≥ 0, w̄ ≥ 0. (4.1)

Then, by any iterative methods and under certain conditions, we can solve equation (4.1). For example, in
[25], a model of (I + S)− type preconditioner, presented as follows:

P (γβ) = I + S(γβ) =


1 0 · · · 0

−γ2a21 − β2 1 · · · 0
−γ3a31 − β3 0 · · · 0

...
... · · ·

...
−γnan1 − βn 0 · · · 1

 , (4.2)



344 S.A. EDALATPANAH

where, γ = [0, γ2, . . . , γi, . . . , γn] ∈ Rn×n, 0 ≤ γi ≤ 1 and (1− γi)ai1 ≤ βi ≤ −γiai1, i = 2, . . . , n.
Then, they used the following preconditioned GAOR method (PGAOR) to solve the linear complementarity

problem:
z(k+1) = (z(k) − D̂−1[−αΩL̂Z(k+1) + (ΩÂ− αΩL̂)z(k) + Ωq̂])+, (4.3)

where D̂, L̂ are diagonal and strictly lower triangular parts of Â = P (γβ)A, respectively.
Unfortunately, these models does not always work and this is because the complementarity condition of the

preconditioned LCP is not always equivalent to that of the un-preconditioned original LCP. In the following,
by a counterexample, we demonstrate the solutions of equation (4.1) is not always the solution of original LCP
(1.1).

Example 4.1. Consider LCP(A, q) with following system:

A =

 1 −1/2 −1/2
−1/3 1 −1/3
−1/2 −1/2 1

 , q =

 1
−1
1

 .

It is easy to see that A is a nonsingular M -matrix and the solution of this LCP is z = [0, 1, 0]T , wT =
[1/2, 0, 1/2]. So, we consider two preconditioners and test them:

Case one. Consider the diagonal preconditioner P1 = diag(γ1, γ2, γ3), where γi > 0. In this case the initial
LCP problem becomes:

w̄ := (P1w) = (P1A)z + P1q, zT (P1w) = 0.

And the solution is z = [0, 1, 0]T , w̄T = [γ1/2, 0, γ3/2]. So, the complementarity condition is satisfied zT w̄ = 0
and in addition, the actual w can be recovered dividing by γ1 and γ3 (or simply w = P1

−1w̄ ). So we can see
that in this case, the complementarity condition of the preconditioned LCP is equivalent to that of the original
LCP.

In the next case, we can see that the complementarity condition will not satisfied.

Case two. Consider the preconditioner (4.2) for the Example 4.1. So we have:

P (γβ) =

 1 0 0
−γ2/3− β2 1 0
−γ3/2− β3 0 1

 ,

where, 0 ≤ γi ≤ 1 and −1/3(1− γ2) ≤ β2 ≤ 1/3γ2, −1/2(1− γ3) ≤ β3 ≤ 1/2γ3. By choosing γi = 1, βi = 0 we
have:

Â =

 1 −1/2 −1/2
0 5/6 −1/2
0 −3/4 3/4

 , q =

 1
−2/3
3/2

 .

Now, if we use the model (4.3) or any projective iterative methods to solve the LCP (Â, q̂ ), we obtain:

z = [0, 4/5, 0]T .

On the other hand, if we insert the true solution z = [0, 1, 0]T for the LCP (Â, q̂ ) we get:

ŵ = Âz + q̂ =

1 −1/2 −1/2
0 5/6 −1/2
0 −3/4 3/4

 0
1
0

+

 0
−2/3
3/2

 =

 1/2
1/6
3/4

 .
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And,

zT ŵ =
(

0 1 0
) 1/2

1/6
3/4

 = 1/6 6= 0.

Therefore, since the solution of the problems (4.3) is not the solution of equation (1.1) and also do not satisfy
the complementarity condition of the original LCP, the obtained results of this case are incorrect. In sum, we
have seen that by the existing PPI models, the solution of equation (4.1) is not always the solution of the
original LCP (1.1). In the next section, we present a new preconditioned strategy to solve the LCP (1.1).

5. Proposed model

In this section, we present our preconditioned GAOR algorithm to solve equation (1.1).

Algorithm 5.1. Preconditioned GAOR method for LCP

Step 1. Choose a symmetric preconditioner P , an initial vector z(0) ∈ Rn, and the parameters α,Ω, ε.
Step 2. Set z̃(0) = P−1z(0), q̃ = Pq, Ã = PAP = D̃ − L̃ − Ũ , where D̃, L̃, and Ũ are diagonal, strictly lower

and strictly upper triangular parts of Ã , respectively.

Step 3. For k = 0, 1, 2, do

z̃(k+1) = (z̃(k) − D̃−1[−αΩL̃Z̃(k+1) + (ΩÃ− αΩL̃)z̃(k) + Ωq̃])+. (5.1)

Step 4. If ‖P (z̃(k+1) − z̃(k))‖ ≤ ε, then stop and set z = P z̃(k+1); otherwise, set k = k + 1 and go to Step 3.

It is worth mentioning that in Step 4, instead of ‖(z̃(k+1)− z̃(k))‖ ≤ ε, we use ‖P (z̃(k+1)− z̃(k))‖ ≤ ε. This is
because the vectors z̃(k+1) and z̃(k) may be very close to each other and make the Algorithm 5.1 end, while the
actual vectors z(k+1) and z(k) may be far apart. Now, if we test the complementarity condition of this algorithm,
we have:

z̃T w̃ = (P−1z)T (PAPP−1z + Pq) = zTP−TPAz + zTP−TPq.

Since P is symmetric, then P−T = P−1. Then we get:

z̃T w̃ = zTAz + zT q = zT (Az + q) = 0.

Therefore, the algorithm do not destroy the complementarity condition required for both the original problem
and the preconditioned one. The other constraint is z̃ = p−1z ≥ 0. We must choose a symmetric preconditioner
with nonnegative inverse. We suggest to use monomial matrix (Def. 2.1(f)) as a preconditioner. Monomial
matrices form a group and have a suitable properties. The product of monomial matrices is a monomial matrix.
The inverse of a monomial matrix is again a monomial matrix and is equal to the transpose matrix in which
every nonzero entry is replaced by its inverse [31–33]. So if we choose the preconditioner P with nonnegative
elements, then P−1 ≥ 0 and z̃ ≥ 0.

Next, we propose a new preconditioner as in the following algorithm:

Algorithm 5.2. A new preconditioner

Step 1. Choose γ, d ∈ R− {0} and set Pn×n as a zeros matrix.
Step 2. For r = 1, 2, . . . , n, do:

kr = min{j|arj = ajr}, j = r + 1, . . . , n.
If kr = {}; ser kr = n+ 1.

Step 3. Set kv = min{kr}.



346 S.A. EDALATPANAH

Step 4. Set pvkv
= pkvv = −γavkv

,
Step 5. For i = {1, 2, . . . , n} − {v, kv}, set pii = d.

As a matter of fact, the new preconditioner is as follows:

P = T + S, (5.2)

where,

T = (tij)i=j =
{
d, for i = j 6= (v, kv),
0, otherwise. (5.3)

S = (sij)i 6=j =

−γavkv
, for i = v, j = kv,

−γarki
, for i = kv, j = v,

0, otherwise.
(5.4)

It is easy to see that the new preconditioner P in equation (5.2) is a monomial matrix. For example, consider
the following matrix:

A =

 1 −0.02 −0.3 −0.4
−0.02 1 −0.07 −0.08
−0.03 −0.07 1 −0.1
−0.1 −0.3 −0.2 1

 .

Then by Algorithm 5.2, we have:
k1 = 2, k2 = 3, k3 = 5,K4 = 5.

And,
kv = k1 = 2, v = 1.

So, p12 = p21 = −γa12, p33 = p44 = d. Therefore, the preconditioner is as follows:

A =

 0 0.02γ 0 0
0.02γ 0 0 0

0 0 d 0
0 0 0 d

 .

Next, we prove the convergence of Algorithm 5.2.

Theorem 5.3. Let A be an M -matrix. Then Ã = PAP with the preconditioner (5.2) is also an M -matrix if
γ, d > 0.

Proof. Let P be the preconditioner (5.2). Then after some algebra, for Ã = PAP = (ãij) we have:

ãii =
{

(γavkv
)2, for i = v, kv,

d2, otherwise.

(ãij)i6=j =



γ2(avkv )3, for i = v, j = kv,
−dγakvjavkv , for i = v, j 6= kv,
−dγavjarkv , for i = kv, j 6= v,
γ2(avkv

)3, for i = kv, j = v,
−dγaikv

avkv
, for i 6= kv, j = v,

−dγaivavkv , for i 6= v, j = kv,
d2aij , otherwise.

Therefore, if γ, d > 0 we have ãii > 0 and (ãij)i 6=j < 0, i.e., Ã is a Z-matrix with positive diagonal elements.
Now, by using Definition 2.1(d), we prove that Ã is an M -matrix. Suppose that Ãx = y ≥ 0. Then x = Ã−1y.
Since A is an M -matrix, then by Definition 2.1(c), A−1 ≥ 0. Also since P−1 ≥ 0, we have P−1A−1P−1 ≥ 0. So,
x = Ã−1y ≥ 0 which completes the proof. �
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Theorem 5.4. Suppose that A is an M -matrix. Then, for any initial vector z(0) ∈ Rn, the iterative sequence
{z(k)} generated by the Algorithm 5.1, converges to the unique solution z∗ of the LCP (A, q).

Proof. From Theorem 5.3, Ã = PAP is an M -matrix. Thus from Lemma 3.1, Algorithm 5.1 converges to the
unique solution of LCP(A, q). �

In the end of this section, we solve Example 4.1 by our model.
Consider LCP (A, q) of Example 4.1. By choosing d = 1, γ = 1, the preconditioner (5.2) is as follows:

P =

 0 0 1/2
0 1 0

1/2 0 0

 .

Then by Algorithm 5.1,

Ã =

 1/4 −1/4 −1/8
−1/6 1 −1/6
−1/8 −1/4 1/4

 , q̃ =

1/2
−1
1/2

 , z̃ =

 0
1
0

 .

Therefore,
z = P z̃ = [0, 1, 0]T .

6. Numerical results

In this section, we give an example to illustrate the results obtained in previous sections. These examples
computed with “MATLAB R 2014 a” on a personal computer. Here, for GAOR method we set α = 1,Ω = I.
In addition, for preconditioner (5.2), we take γ = 0.5, d = 0.2. The initial approximation of z is z(0) =
(1, 1, . . . , 1)T ∈ Rn, n = m2. The stopping criterion imposed in all the runs is as follows:

‖(z(k+1))− z(k))‖∞ ≤ 10−16,

‖P (z̃(k+1))− z̃(k))‖∞ ≤ 10−16.

Example 6.1 ([14]). Consider the sparse LCP (A, q), where:

A = Ā+ 4In ∈ Rn×n, Ā = tridiag(−Im, S,−Im) ∈ Rn×n,

S = tridiag(−1, 4,−1) ∈ Rm×m,

z∗ = [1, 2, 1, 2, . . .]T ∈ Rn, q = −Az∗.

Evidently, A is an M -matrix. So, the LCP (A, q) has a unique solution. Then, we solved n × n the M -
matrix yielded by the GAOR iterative methods, and the preconditioned GAOR (Algorithm 5.1). In Table 1,
for different problem sizes of n, we list the iteration steps and the CPU times with respect to the GAOR and
PGAOR methods. We also report the spectral radius of iteration matrices of GAOR and PGAOR by ρ and ρ̃,
respectively.

From the table, we observe that, all tested methods can quickly compute a satisfactory approximation to the
solution of the LCP(A, q). Moreover, we can see that the spectral radius of the preconditioned iterative method
is superior to the basic iterative method. Also, the PGAOR method require less iteration steps than the GAOR
method. Furthermore, the PGAOR method costs less computing times than the GAOR method. Therefore, in
terms of computing efficiency, the PGAOR method outperform the classic GAOR method.
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Table 1. Result of Example 6.1.

Method GAOR PGAOR

n Iter CPU ρ Iter CPU ρ̃

25 24 0.001524 0.18750 13 0.000720 0.00728
100 30 0.015129 0.23015 15 0.009381 0.00919
400 33 0.167703 0.24444 15 0.076553 0.00977
900 33 1.077159 0.24744 15 0.515363 0.00989
1600 33 4.530280 0.24853 15 2.016781 0.00994
2500 34 9.778764 0.24905 15 4.312249 0.00996

7. Conclusions

It is shown that the existing preconditioned projective iterative methods proposed do not always provide
the solution original for linear complementarity problem and hence the obtained results are not always correct.
Therefore, in this paper, we have proposed a new strategy of the preconditioned GAOR method for linear
complementarity problem. We have also studied how the iterative method for LCP is affected if the system is
preconditioned by the new model.

Acknowledgements. The author is most grateful to the two anonymous referees for the very constructive criticism on a
previous version of this work which significantly improved the quality of the present paper.

References

[1] K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin (1988).

[2] M.S. Bazaraa, H.D. Sheral and C.M. Shetty, Nonlinear Programming, Theory and Algorithms, 3th edition. Wiley-Interscience,
Hoboken, NJ (2006).

[3] R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press, London (1992).

[4] Z.Z. Bai and D.J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math.
63 (1997) 309–326.

[5] D. Yuan and Y.Z. Song, Modified AOR methods for linear complementarity problem. Appl. Math. Comput. 140 (2003) 53–67.

[6] L. Cvetkovi and S. Rapaji, How to improve MAOR method convergence area for linear complementarity problems. Appl. Math.
Comput. 162 (2005) 577–584.

[7] Y. Li and P. Dai, Generalized AOR methods for linear complementarity problem. Appl. Math. Comput. 188 (2007) 7–18.

[8] M.H. Xu and G.F. Luan, A rapid algorithm for a class of linear complementarity problems. Appl. Math. Comput. 188 (2007)
1647–1655.

[9] M. Dehghan and M. Hajarian, Convergence of SSOR methods for linear complementarity problems. Oper. Res. Lett. 37 (2009)
219–223.

[10] H. Saberi, S. Najafi and A. Edalatpanah, On the two SAOR iterative formats for solving linear complementarity problems.
I.J. Inf. Technol. Comput. Sci. 3 (2011) 19–24.

[11] H. Saberi, S. Najafi and A. Edalatpanah, A kind of symmetrical iterative methods to solve special class of LCP (M, q). Int. J.
Appl. Math. App. 4 (2012) 183–189.

[12] H. Saberi, S. Najafi and A. Edalatpanah, On the convergence regions of generalized accelerated overrelaxation method for
linear complementarity problems. J. Optim. Theory Appl. 156 (2013) 859–866.

[13] L.T. Zhang, X.Y. Zuo, T.X. Gu and X.P. Liu, Improved convergence theorems of multisplitting methods for the linear com-
plementarity problem. Appl. Math. Comput. 243 (2014) 982–987.

[14] A. Hadjidimos and M. Tzoumas, On the solution of the linear complementarity problem by the generalized accelerated over-
relaxation iterative method. J. Optim. Theory Appl. 165 (2015) 545–562.

[15] A. Hadjidimos and M. Tzoumas, The solution of the linear complementarity problem by the matrix analogue of the accelerated
overrelaxation iterative method. Numer. Algor. 73 (2016) 665–684.

[16] A. Hadjidimos and L.L. Zhang, Comparison of three classes of algorithms for the solution of the linear complementarity problem
with an H+-matrix. J. Comput. Appl. Math. 336 (2018) 175–191.

[17] W.M.G. van Bokhoven, A Class of Linear Complementarity Problems is Solvable in Polynomial Time. Department of Electrical
Engineering, University of Technology, Eindhoven, Netherlands (1980).



ON THE PRECONDITIONED PROJECTIVE ITERATIVE METHODS 349

[18] J.-L. Dong and M.-Q. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems.
Numer. Linear Algebra Appl. 16 (2009) 129–143.

[19] Z.-Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra
Appl. 17 (2010) 917–933.

[20] L.-L. Zhang and Z.-R. Ren, Improved convergence theorems of modulus-based matrix splitting iteration methods for linear
complementarity problems. Appl. Math. Lett. 26 (2013) 638–642.

[21] L.-L. Zhang, Y.-P. Zhang and Z.-R. Ren, New convergence proofs of modulus-based synchronous multisplitting iteration
methods for linear complementarity problems. Linear Algebra Appl. 481 (2015) 83–93.

[22] S. Liu, H. Zheng and W. Li, A general accelerated modulus-based matrix splitting iteration method for solving linear comple-
mentarity problems. Calcolo 53 (2016) 189–199.

[23] H. Zheng, W. Li and S. Vong, A relaxation modulus-based matrix splitting iteration method for solving linear complementarity
problems. Numer. Algorithms 74 (2017) 137–152.

[24] H. Saberi Najafi and S.A. Edalatpanah, Verification of iterative methods for the linear complementarity problem: verification
of iterative methods for LCPs, edited by P. Vasant, G. Weber and V. Dieu. In: Handbook of Research on Modern Optimization
Algorithms and Applications in Engineering and Economics. IGI Global, Hershey, PA (2016) 545–580.

[25] C.Y. Liu and C.L. Li, A new preconditioned Generalized AOR methods for the Linear complementarity problem based on a
generalized Hadjidimos preconditioner. East Asian J. Appl. Math. 2 (2012) 94–107.

[26] B.X. Duan, W.Y. Zeng and X.P. Zhu, A preconditioned Gauss–Seidel iterative method for linear complementarity problem in
intelligent materials system. Adv. Mater. Res. 340 (2012) 3–8.

[27] Y. Liu, R. Zhang, Y. Wang and X. Huang, Comparison analysis on preconditioned GAOR method for linear complementarity
problem. J. Inf. Comput. Sci. 9 (2012) 4493–4500.

[28] H. Saberi Najafi and S.A. Edalatpanah, Iterative methods with analytical preconditioning technique to linear complementarity
problems: application to obstacle problems. RAIRO-Oper. Res. 47 (2013) 59–71.

[29] C. Liu and C.L. Li, A preconditioned multisplitting and Schwarz method for linear complementarity problem. J. Appl. Math.
519017 (2014) 6.

[30] R.S. Varga, Matrix Iterative Analysis, 2nd edition. Springer, Berlin (2000).

[31] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, NY (1979).

[32] M. Hazewinkel, Monomial Representation. Encyclopedia of Mathematics, Springer (2001).

[33] O. Ore, Theory of monomial groups. Trans. Am. Math. Soc. 51 (1942) 15–64.


	Introduction
	Prerequisite
	Projected iterative methods
	The existing PPI models and their shortcomings
	Proposed model
	Numerical results
	Conclusions
	References

