

GLOBAL DISTRIBUTION CENTER NUMBER OF SOME GRAPHS AND AN ALGORITHM

RAFET DURGUT¹, HAKAN KUTUCU¹ AND TUFAN TURACI^{2,*}

Abstract. The global center is a newly proposed graph concept. For a graph $G = (V(G), E(G))$, a set $S \subseteq V(G)$ is a *global distribution center* if every vertex $v \in V(G) \setminus S$ is adjacent to a vertex $u \in S$ with $|N[u] \cap S| \geq |N[v] \cap (V(G) \setminus S)|$, where $N(v) = \{u \in V(G) | uv \in E(G)\}$ and $N[v] = N(v) \cup \{v\}$. The global distribution center number of a graph G is the minimum cardinality of a global distribution center of G . In this paper, we investigate the global distribution center number for special families of graphs. Furthermore, we develop a polynomial time heuristic algorithm to find the set of the global distribution center for general graphs.

Mathematics Subject Classification. 05C40, 68M10, 68R10.

Received June 13, 2018. Accepted December 9, 2018.

1. INTRODUCTION

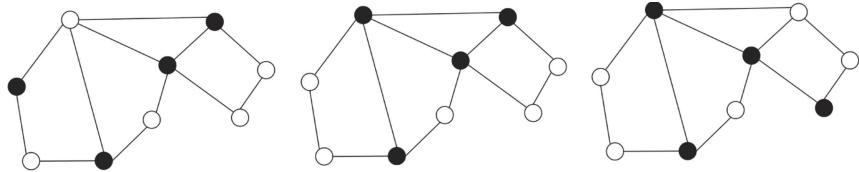
The study of networks has become an important area of multidisciplinary research involving computer science, mathematics, chemistry, social sciences, informatics and other theoretical and applied sciences [12]. Computer networks can be modeled on the grounds of graphs where hosts, servers or hubs can be considered as vertices and edges as connecting medium between them. The effectiveness and robustness of a network for link or node failures are very important concepts in the design of communication networks. In the literature, various measures have been defined to measure the robustness of networks, and a variety of graph theoretic parameters have been used to derive formulas to calculate network vulnerability. Recently, several interesting works have been studied on graph theoretic parameters in [1, 2, 4]. The vertex is actually a possible location to find fault or some damaged devices in a computer network [8]. A distribution center for a set of products is a structure or a group of units used to store goods that are to be distributed to retailers, to wholesalers, or directly to consumers. Distribution centers are usually thought of as being demand driven. Very recently, Desormeaux *et al.* have defined a new concept for distribution as namely distribution center number and global distribution center number in [7]. Next we give some basic terminology for graphs.

Keywords. Network design and communication, complex networks, distribution centers, global distribution center number, trees.

¹ Department of Computer Engineering, Faculty of Engineering, Karabuk University, 78050 Karabuk, Turkey.

² Department of Mathematics, Faculty of Science, Karabuk University, 78050 Karabuk, Turkey.

*Corresponding author: tufanturaci@karabuk.edu.tr

FIGURE 1. The alternatives gcd-sets of G .

A network is usually described by an undirected simple graph. Let $G = (V(G), E(G))$ be a simple undirected graph of order n and size m . We begin by recalling some standard definitions that we need throughout this paper. For any vertex $v \in V(G)$, the *open neighborhood* of v is $N(v) = \{u \in V(G) | uv \in E(G)\}$ and the *closed neighborhood* of v is $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V(G)$, its open neighborhood is the set $N(S) = \bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S] = N(S) \cup S$. The *boundary* of S , denoted $\partial(S)$ is $\partial(S) = N(S) \cap (V(G) \setminus S)$, that is, the boundary is the set of vertices in $V(G) \setminus S$ that are adjacent to at least one vertex in S . The *degree of vertex v* in G denoted by $\deg(v)$, that is, the size of its open neighborhood. The *distance $d(u, v)$* between two vertices u and v in G is the length of a shortest path between them. The *diameter* of G , denoted by $\text{diam}(G)$ is the largest distance between two vertices in $V(G)$. The *maximum degree* of G is $\max\{\deg(v) | v \in V(G)\}$ and is denoted by $\Delta(G)$. The *minimum degree* of G is $\min\{\deg(v) | v \in V(G)\}$ and is denoted by $\delta(G)$. A vertex v is said to be *pendant* vertex if $\deg(v) = 1$. A vertex u is called *support* if u is adjacent to a pendant vertex [11]. A set $S \subseteq V(G)$ is a *dominating set* if every vertex in $V(G) - S$ is adjacent to at least one vertex in S . The minimum cardinality taken over all dominating sets of G is called the *domination number* of G and is denoted by $\gamma(G)$ [8]. A set $S \subseteq V(G)$ is a *total dominating set* if every vertex in $V(G)$ is adjacent to at least one vertex in S . The minimum cardinality taken over all total dominating sets of G is called the *total domination number* of G and is denoted by $\gamma_t(G)$ [11].

A non-empty set of vertices $S \subseteq V(G)$ is a *distribution center* if every vertex $v \in \partial(S)$ is adjacent to a vertex $u \in S$ with $|N[u] \cap S| \geq |N[v] \cap (V(G) \setminus S)|$. The minimum cardinality of a distribution center of a graph G is the *distribution center number* $\text{dc}(G)$, and a distribution center of G with cardinality $\text{dc}(G)$ is called a *dc-set* of G [7]. Similarly, a set $S \subseteq V(G)$ is a *global distribution center*, if every vertex $v \in V(G) \setminus S$ is adjacent to a vertex $u \in S$ with $|N[u] \cap S| \geq |N[v] \cap (V(G) \setminus S)|$. The *global distribution center number* $\text{gdc}(G)$ is the minimum cardinality of a global distribution center of G . A global distribution center with cardinality $\text{gdc}(G)$ is called a *gdc-set* of G [7]. For example, we consider the graph G of order 9 and size 12 in Figure 1, where some alternative gcd-sets of G are illustrated by the set of darkened vertices. Clearly, $\text{gdc}(G) = 4$ is obtained.

Our aim in this paper is to consider the computing the global distribution center number of some trees, grid graphs and bipartite graphs. In Section 2, well-known basic results are given for the global distribution center number. Then, the global distribution center numbers of some trees, grids and bipartite graphs are computed in Section 3. We give in Section 4, a polynomial time heuristic algorithm to find $\text{gdc}(G)$ for an arbitrary graph G and discuss the algorithm. Finally, in Section 5, we present our conclusions.

2. BASIC RESULTS

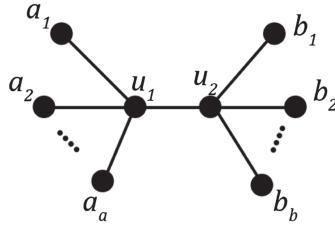
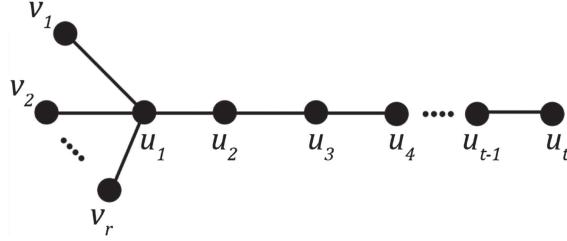
In this section, well-known basic results are given with regard to global distribution center numbers of graphs.

Theorem 2.1 ([7]). *For any graph G , $\gamma(G) \leq \text{gdc}(G)$ and $\text{dc}(G) \leq \text{gdc}(G) \leq |V(G)|$.*

Theorem 2.2 ([7]). *For the non-trivial path P_n of order n , $\text{gdc}(P_n) = \lfloor \frac{n}{2} \rfloor$.*

Theorem 2.3 ([7]). *For the cycle C_n of order n , $\text{gdc}(C_n) = \lceil \frac{n}{2} \rceil$.*

Theorem 2.4 ([7]). *For the complete graph K_n of order n , $\text{gdc}(K_n) = \lceil \frac{n}{2} \rceil$.*

FIGURE 2. The graph $S(a, b)$.FIGURE 3. The graph $C(t, r)$.

Theorem 2.5 ([7]). *For the wheel graph W_n of order $n \geq 4$, $\text{gdc}(W_n) = 3$.*

Theorem 2.6 ([7]). *For the complete bipartite graph $K_{p,q}$, where $p \leq q$, $\text{gdc}(K_{p,q}) = p$.*

Theorem 2.7 ([7]). *For any non-trivial tree T , $\text{gdc}(T) \leq \lfloor \frac{5\gamma_t(T)-2}{4} \rfloor$.*

Theorem 2.8 ([7]). *If G is a bipartite graph with no isolated vertices, then $\text{gdc}(G) \leq \lfloor \frac{n}{2} \rfloor$.*

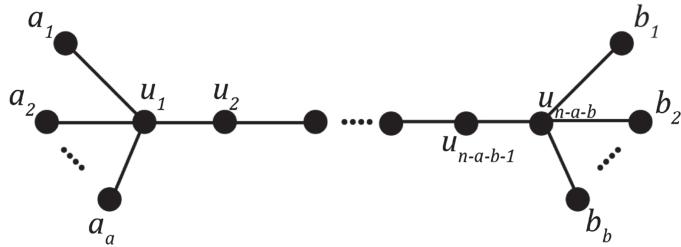
3. GLOBAL DISTRIBUTION CENTER NUMBERS OF SOME TREES, GRIDS AND BIPARTITE GRAPHS

Definition 3.1 ([9]). The double star graph $S(a, b)$, where $a, b \geq 0$, is the graph consisting of the union of two star graphs $K_{1,a}$ and $K_{1,b}$ together with an edge joining their centers. We show the graph $S(a, b)$ in Figure 2.

Theorem 3.2. *Let $S(a, b)$ be a double star graph of order $a + b$, where $a, b \geq 0$. Then, $\text{gdc}(S(a, b)) = 2$.*

Proof. Let the vertices of $S(a, b)$ be $V(S(a, b)) = V(K_{1,a}) \cup V(K_{1,b})$, and let the center vertices of $K_{1,a}$ and $K_{1,b}$ be u_1 and u_2 , respectively. We have $\deg(u_1) = a+1$, $\deg(u_2) = b+1$ and $\deg(a_i) = \deg(b_i) = 1$ for every vertices a_i and b_i , where vertices a_i are the vertices of $K_{1,a}$ and vertices b_i are the vertices of $K_{1,b}$. Let S be a gcd-set of $S(a, b)$, also let $|S| = 1$. If S includes a vertex a_i , then we get $|N[a_i] \cap \{a_i\}| < |N[u_1] \cap (V(S(a, b) \setminus \{a_i\})|$. Similarly, if S includes a vertex b_i , then we get $|N[b_i] \cap \{b_i\}| < |N[u_1] \cap (V(S(a, b) \setminus \{b_i\})|$. Moreover, if S includes the vertex u_1 , then we get $|N[u_1] \cap \{u_1\}| < |N[u_2] \cap (V(S(a, b) \setminus \{u_1\})|$. Similarly, if S includes the vertex u_2 , then we get $|N[u_2] \cap \{u_2\}| < |N[u_1] \cap (V(S(a, b) \setminus \{u_2\})|$. Thus, we obtain $|S| \geq 2$, that is, $\text{gdc}(S(a, b)) \geq 2$. Clearly, $\gamma_t(S(a, b)) = 2$. So, we get $\text{gdc}(S(a, b)) \leq 2$ by the Theorem 2.7. As a result, $\text{gdc}(S(a, b)) = 2$ is obtained. \square

Definition 3.3 ([3]). The comet graph $C(t, r)$ is the graph obtained by identifying one end of the path P_t with the center of the star graph $K_{1,r}$. We show the graph of $C(t, r)$ in Figure 3.

FIGURE 4. The graph $DC(n, a, b)$.FIGURE 5. The graph $P_6^*(2, 1, 1, 3, 2, 4)$.

Theorem 3.4. *If $C(t, r)$ is a comet graph of order $t + r$, then $\text{gdc}(C(t, r)) = 1 + \left\lfloor \frac{t-1}{2} \right\rfloor$.*

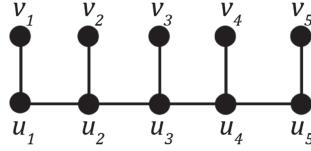
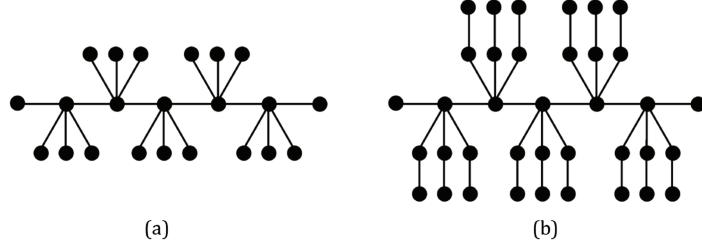
Proof. Let $V(C(t, r)) = V(P_{t-1}) \cup V(K_{1,r})$, where $V(P_{t-1}) = \{u_2, u_3, \dots, u_t\}$ and $V(K_{1,r}) = \{u_1, v_1, \dots, v_r\}$. Let S be a gcd-set of $C(t, r)$. By the definition of gcd-set, the set S must include the vertex u_1 . In the continuation of the proof, the vertices that must be added to S have to be as in the proof of Theorem 2.2. Thus, we obtain $\text{gdc}(C(t, r)) = 1 + \left\lfloor \frac{t-1}{2} \right\rfloor$. \square

Definition 3.5 ([6]). For $a, b \geq 1$ and $n \geq a + b + 2$ the double comet $DC(n, a, b)$ is a tree which is composed of a path containing $n - a - b$ vertices with a pendant vertices attached to one of ends of the path and b pendant vertices attached to the other end of the path. Thus, $DC(n, a, b)$ has n vertices and $a + b$ leaves. We show the graph $DC(n, a, b)$ in Figure 4.

Theorem 3.6. *If $DC(n, a, b)$ is a double comet graph with $a, b \geq 2$ and $n \geq a + b + 3$, then $\text{gdc}(DC(n, a, b)) = 2 + \left\lfloor \frac{n - a - b - 2}{2} \right\rfloor$.*

Proof. Let $V(DC(n, a, b)) = V(P_{n-a-b-2}) \cup V(K_{1,a}) \cup V(K_{1,b})$, where $V(P_{n-a-b-2}) = \{u_2, u_3, \dots, u_{n-a-b-1}\}$, $V(K_{1,a}) = \{u_1, a_1, a_2, \dots, a_a\}$ and $V(K_{1,b}) = \{u_{n-a-b}, b_1, b_2, \dots, b_b\}$. Let S be a gcd-set of $DC(n, a, b)$. Since the size of S must be minimum, the vertices u_1 and u_{n-a-b} must be in S . Hence, the remaining vertices form a path graph of order $(n - a - b - 2)$. Clearly, no three consecutive vertices on the path are in $V - S$. So, the set S is formed similarly as in the proof of the Theorem 2.1. Thus, we obtain $\text{gdc}(DC(n, a, b)) = 2 + \left\lfloor \frac{n - a - b - 2}{2} \right\rfloor$. \square

Definition 3.7 ([10]). Let p_1, p_2, \dots, p_n be non-negative integers and the graph G be such a graph, where $|V(G)| = n$. The *thorn graph* of the graph G with parameters p_1, p_2, \dots, p_n is obtained by attaching p_i new vertices of degree one to the vertex u_i of the graph G , where $i = \overline{1, n}$. The thorn graph of the graph G will be denoted by G^* or if the respective parameters need to be specified, by $G^*(p_1, p_2, \dots, p_n)$. We display the graph $P_6^*(2, 1, 1, 3, 2, 4)$ in Figure 5.

FIGURE 6. The graph $P_5 \odot K_1$.FIGURE 7. Panel *a*: the graph $C_{(3,0)}P_7$, and Panel *b*: the graph $C_{(3,1)}P_7$.

Theorem 3.8. *If G^* is a thorn graph of any graph G of order n , then $\text{gdc}(G^*) = n$.*

Proof. By the definition of the thorn graph, we have a lot of vertices with degree 1. Clearly, the number of these vertices is greater than n . Let p_i be a vertex with degree 1. Clearly, $|N[p_i]| = 2$ and let S be a gcd-set of G^* . If S includes all vertices of G , then S is a gcd-set of G^* . Because, we have $|N[u_i] \cap S| \geq |N[p_i] \cap (V(G^*) \setminus S)|$ for every vertex $u_i \in V(G^*)$. So, $\text{gdc}(G^*) \leq n$. If S includes vertices p_i with degree 1, then S can not include the vertices of G . But, since we have $|N[p_i]| = 2$ for every vertex p_i , $|N[u_i] \cap S| = 1$ is obtained. Furthermore, we get $|N[p_i] \cap (V(G^*) \setminus S)| = 1$ if S does not include the vertex p_i . It is easy to see that the set S must not include the vertices p_i by the definition of the gcd-set. Clearly, we have $\text{gdc}(G^*) \geq n$. Thus, $\text{gdc}(G^*) = n$ is obtained. \square

Definition 3.9 ([13]). The graph obtained by joining a pendant edge at each vertex of a path P_n is called a comb graph and is denoted by $P_n \odot K_1$. We show the graph $P_5 \odot K_1$ in Figure 6.

Corollary 3.10. *If $P_n \odot K_1$ is a comb graph of order $2n$, then $\text{gdc}(P_n \odot K_1) = n$.*

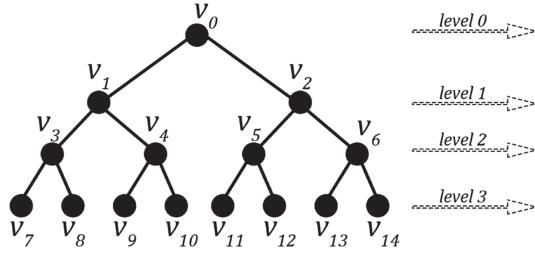
Proof. The proof is very similar to the proof of Theorem 3.8. \square

Definition 3.11 ([14]). $C_{(m,0)}P_n$ is a generalized Caterpillar obtained from the path graph P_n by attaching m vertices of degree one to each vertex of degree two of P_n . The tree $C_{(m,1)}P_n$ is a generalized Caterpillar obtained from the path graph P_n by attaching m vertices of degree two to each vertex of degree two of P_n . We show the graph $C_{(3,0)}P_7$ and $C_{(3,1)}P_7$ in Figure 7.

Corollary 3.12. *If $C_{(m,0)}P_n$ is a generalized Caterpillar graph of order $n + m(n - 2)$, where $m \geq 2$, then $\text{gdc}(C_{(m,0)}P_n) = n - 2$.*

Proof. The proof is very similar to the proof of Theorem 3.8. \square

Theorem 3.13. *If $C_{(m,1)}P_n$ is a generalized Caterpillar graph of order $n + m(n - 2)$, where $m \geq 2$, then $\text{gdc}(C_{(m,1)}P_n) = m(n - 2) + \left\lceil \frac{n - 2}{2} \right\rceil$.*

FIGURE 8. The tree H_3^2 .

Proof. The graph $C_{(m,1)}P_n$ has $n + m(n - 2)$ vertices. Let $V(C_{(m,1)}P_n) = V_1 \cup V_2 \cup V_3$, where $V_1 = \{u_i \in V(P_n) : 1 \leq i \leq n\}$, $V_2 = \{v_i \in V(C_{(m,1)}P_n) - V(P_n) : \deg(v_i) = 2 \text{ and } 1 \leq i \leq m(n - 2)\}$ and $V_3 = \{w_i \in V(C_{(m,1)}P_n) - V(P_n) : \deg(w_i) = 1 \text{ and } 1 \leq i \leq m(n - 2)\}$.

It is clear that $\deg(u_1) = \deg(u_n) = 1$ and $\deg(u_i) = 2$, where $i \in \{2, \dots, n - 1\}$ for the vertices of V_1 . Let S be a gcd-set of $C_{(m,1)}P_n$. Since $\deg(w_i) = 1$ and $\deg(v_i) = 2$ for each vertex $w_i \in V_3$ and $v_i \in V_2$, and also to reduce the size S , the set S must include the all vertices of V_2 . Furthermore, S must include the vertices $\{u_2, u_4, \dots, u_{n-3}, u_{n-1}\}$. Therefore, $|S| = m(n - 2) + \left\lceil \frac{n - 2}{2} \right\rceil$. It is also clear that this set S for graph $C_{(m,1)}P_n$ is unique. No other set with gcd-set is found. Hence, we obtain $\text{gcd}(C_{(m,1)}P_n) = m(n - 2) + \left\lceil \frac{n - 2}{2} \right\rceil$. \square

Definition 3.14 ([5]). A complete k -ary tree H_n^k with depth n is all leaves have the same depth and all internal vertices have degree k . A complete k -ary tree has $\frac{k^{n+1} - 1}{k - 1}$ vertices and $\frac{k^{n+1} - 1}{k - 1} - 1$ edges. We show the tree H_3^2 in Figure 8.

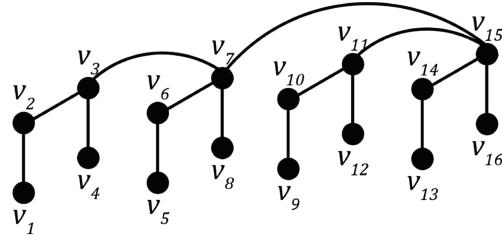
Theorem 3.15. If H_n^k is a complete k -ary tree of order $\frac{k^{n+1} - 1}{k - 1}$, where $n \geq 2$ and $k \geq 2$, then

$$\text{gcd}(H_n^k) = \begin{cases} \left(\sum_{i=0}^{(n/3)-1} k^{3i+2} \right) + 1, & n \equiv 0 \pmod{3}; \\ \left(\sum_{i=0}^{\lfloor n/3 \rfloor} k^{3i} \right), & n \equiv 1 \pmod{3}; \\ \left(\sum_{i=0}^{\lfloor n/3 \rfloor} k^{3i+1} \right), & n \equiv 2 \pmod{3}. \end{cases}$$

Proof. Let S be a gcd-set of H_n^k . It is easy to see that the set S is a minimum dominating set of H_n^k , that is, we have three cases depending on n .

Case 1: $n \equiv 0 \pmod{3}$.

The minimum gcd-set of H_n^k contains both the vertices on the levels $(n - 1 - 3i)$ for $0 \leq i \leq \lfloor n/3 \rfloor$ and the vertex on the level 0. Thus, $|S| = \text{gcd}(H_n^k) = \left(\sum_{i=0}^{(n/3)-1} k^{3i+2} \right) + 1$.

FIGURE 9. The binomial tree B_4 .

Case 2: $n \equiv 1 \pmod{3}$.

The minimum gcd-set of H_n^k contains the vertices on the levels $(n - 1 - 3i)$ for $0 \leq i \leq \lfloor n/3 \rfloor$. Thus, $|S| = \gcd(H_n^k) = \sum_{i=0}^{\lfloor n/3 \rfloor} k^{3i}$.

Case 3: $n \equiv 2 \pmod{3}$.

The minimum gcd-set of H_n^k contains the vertices on the levels $(n - 1 - 3i)$ for $0 \leq i \leq \lfloor n/3 \rfloor$. Thus, $|S| = \gcd(H_n^k) = \sum_{i=0}^{\lfloor n/3 \rfloor} k^{3i+1}$.

□

Definition 3.16 ([5]). The binomial tree of order $n \geq 0$ with root R is the tree B_n defines as follows:

- (i) If $n = 0$, then $B_n = B_0 = R$, i.e., the binomial tree of order zero consists of a single root R .
- (ii) If $n > 0$, then $B_n = R, B_0, B_1, \dots, B_{n-1}$, i.e., the binomial tree of order $n > 0$ comprises the root R and n binomial subtrees B_0, B_1, \dots, B_{n-1} . We show the binomial trees B_4 and B_5 in Figures 9 and 10, respectively.

Theorem 3.17. If B_n is a binomial tree of order 2^n , then $\gcd(B_n) = 2^{n-1}$ for $n \geq 1$.

Proof. The binomial tree B_n has 2^n vertices and B_n consists of two copies of B_{n-1} , B_{n-1} consists of two copies of B_{n-2} and so on. For $n \leq 3$, $\gcd(B_1) = 1$, $\gcd(B_2) = 2$ and $\gcd(B_3) = 4$. Let $n = 4$, and let S_1 be a gcd-set of B_4 . It is easy to see that we have $\gcd(B_4) = 8$ for the set $S_1 = \{v_1, v_3, v_5, v_7, v_{10}, v_{12}, v_{13}, v_{15}\}$ (see Fig. 9).

Let S be a gcd-set of B_5 . Since B_5 consists of two copies of B_4 , we must also take vertices which are comprises the vertices $v_1, v_3, v_5, v_7, v_{10}, v_{12}, v_{13}, v_{15}$ for the second copies of B_4 , that is, the vertices $v'_1, v'_3, v'_5, v'_7, v'_{10}, v'_{12}, v'_{13}, v'_{15}$ must be taken into S as in Figure 10. Thus, we get $S = \{v_1, v_3, v_5, v_7, v_{10}, v_{12}, v_{13}, v_{15}, v'_1, v'_3, v'_5, v'_7, v'_{10}, v'_{12}, v'_{13}, v'_{15}\}$. Clearly, we obtain $\gcd(B_5) = 2 \cdot \gcd(B_4) = 16$.

By the similar way, $\gcd(B_6) = 2 \cdot \gcd(B_5) = 32$ and $\gcd(B_7) = 2 \cdot \gcd(B_6) = 64$ are obtained. For $n \geq 5$, we get the following recurrence formula:

$$\gcd(B_n) = 2 \cdot \gcd(B_{n-1}) \text{ for } n \geq 5. \quad (3.1)$$

By the formula (3.1), we have

$$\begin{aligned}
 \text{gdc}(B_n) &= 2 \cdot \text{gdc}(B_{n-1}) \\
 &= 2(2 \cdot \text{gdc}(B_{n-2})) = 2^2 \cdot \text{gdc}(B_{n-2}) \\
 &\vdots \\
 &= 2^{n-4} \cdot \text{gdc}(B_4).
 \end{aligned}$$

Furthermore, we obtain

$$\text{gdc}(B_n) = 2^i \cdot \text{gdc}(B_{n-i}), \text{ where } 1 \leq i \leq n-1. \quad (3.2)$$

The formula (3.2) can be proved by mathematical induction. When $i = 1$, we have $\text{gdc}(B_n) = 2^1 \cdot \text{gdc}(B_{n-1})$ and it is true by the formula (3.1). We assume that the result is true for $i = k$ and we will prove that (3.2) is true for $i = k + 1$. By induction hypothesis and (3.1), we get:

$$\begin{aligned}
 \text{gdc}(B_n) &= 2^k \cdot \text{gdc}(B_{n-k}) \\
 &= 2^k(2 \cdot \text{gdc}(B_{n-k-1})) \\
 &= 2^{k+1} \cdot \text{gdc}(B_{n-k-1}).
 \end{aligned}$$

This implies that the statement is true for $i = k + 1$. So, we obtain

$$\text{gdc}(B_n) = 2^i \cdot \text{gdc}(B_{n-i}), \text{ where } 1 \leq i \leq n-4.$$

Since the initial condition is $n = 4$, which is achieved for $i = n-4$, we have the following formula for solution (3.2):

$$\begin{aligned}
 \text{gdc}(B_n) &= 2^{n-4} \cdot \text{gdc}(B_{n-(n-4)}) \\
 &= 2^{n-4} \cdot \text{gdc}(B_4) \\
 &= 8(2^{n-4}) \\
 &= 2^{n-1}.
 \end{aligned}$$

□

Theorem 3.18. For an $m \times n$ grid graph $P_{m,n}$, $\text{gdc}(P_{m,n}) = m \left\lfloor \frac{n}{2} \right\rfloor$, if $m \geq 2$ and $n \geq 3$.

Proof. A two-dimensional grid graph is an $m \times n$ lattice graph $P_{m,n}$ that can be represented as a Cartesian product $P_m \times P_n$ of path graphs on m and n vertices. By the Theorem 2.2, we have $\text{gdc}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor$ for a nontrivial path P_n of order n . This implies $\text{gdc}(P_{m,n}) = m \left\lfloor \frac{n}{2} \right\rfloor$. □

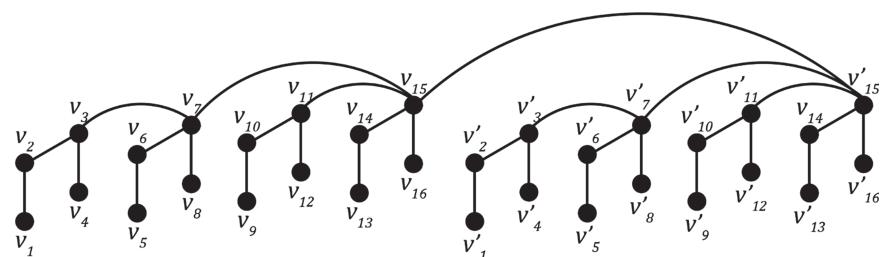


FIGURE 10. The binomial tree B_5 .

Theorem 3.19. Let G be a connected bipartite graph with bipartition V_1 and V_2 , where $|V_i| = n_j$, $\delta_j = \min\{\deg(v) : v \in V_j\}$ and $\Delta_j = \max\{\deg(v) : v \in V_j\}$, for $j = 1, 2$. Let s_j and b_j be the numbers of the minimum and maximum degree's of V_j , for $j = 1, 2$.

- (i) Let $\Delta_1 = n_2$, $\Delta_2 = n_1$ and $\delta_j = 1$, for $j = 1, 2$. If $b_j = 1$ and $s_j = n_j - 1$, for $j = 1, 2$, then $\text{gdc}(G) = 2$.
- (ii) Let $\Delta_1 = n_2$, $\Delta_2 = n_1$. If $b_j = 1$ for $j = 1, 2$ and minimum degree is less than two and the degree's of the remaining vertices are not maximum, then $\text{gdc}(G) = 2$.
- (iii) Let $\Delta_1 = n_2$, and $\Delta_2 = n_1$. If k is the number of vertices whose degree are greater than three, then $\text{gdc}(G) \leq \min \left\{ 2 + k, \left\lfloor \frac{n_1 + n_2}{2} \right\rfloor \right\}$.

Proof. Let $v_x \in V_1$, $v_y \in V_2$, $\deg(v_x) = n_2$, $\deg(v_y) = n_1$ and let S be a gcd-set of G . Since the size of S must be minimum, the vertices v_x and v_y must be in S .

- (i) Clearly, each vertex of $V(G) - \{v_x, v_y\}$ is adjacent to the vertices v_x and v_y . Since $\delta_j = 1$ and $s_j = n_j - 1$ for $j = 1, 2$, we obtain $|N[v_w] \cap (V(G) - S)| = 1$ for each vertex $v_w \in V(G) - \{v_x, v_y\}$. So, $|N[v_x] \cap S| = |N[v_y] \cap S| = 2$. Thus, we get $\text{gdc}(G) = 2$.
- (ii) The proof is very similar to the previous case (i). In this case, $|N[v_w] \cap (V(G) - S)| \leq 2$ is obtained for each vertex $v_w \in V(G) - \{v_x, v_y\}$. Furthermore, we know $|N[v_x] \cap S| = |N[v_y] \cap S| = 2$. Thus, we get $\text{gdc}(G) = 2$.
- (iii) Let v_t be a vertex whose degree is greater than three in $V(G) - \{v_x, v_y\}$. If $v_t \in V_1$, then the vertex is adjacent to $\deg(v_t)$ -vertices in V_2 . Similarly, if $v_t \in V_2$, then the vertex is adjacent to $\deg(v_t)$ -vertices in V_1 . Thus, the vertex v_t must be added to gcd-set of G . Because, we get $|N[v_t] \cap (V(G) - S)| \geq 3$. Furthermore, the vertices with degree three can be added to gcd-set of G . Since the number of these vertices is k , we get $\text{gdc}(G) \leq \lfloor \frac{n}{2} \rfloor$. Furthermore, we have by the Theorem 2.8 for any connected bipartite graph G of order n .

As a result, we get $\text{gdc}(G) \leq \min \left\{ 2 + k, \left\lfloor \frac{n_1 + n_2}{2} \right\rfloor \right\}$.

□

4. A HEURISTIC ALGORITHM FOR COMPUTING GLOBAL DISTRIBUTION CENTER NUMBER

Desormeaux *et al.* who proposed distribution centers on graphs ask the following question in [7]: What is the complexity of determining the value of $\text{gdc}(G)$ for an arbitrary graph G ? In particular, can these two values be determined in polynomial time for any tree T ? In this section, we develop a polynomial time heuristic algorithm given as a pseudocode in Algorithm 1 to find $\text{gdc}(G)$ for an arbitrary graph G .

In line 3 of Algorithm 1, the matrix M is obtained using the Floyd–Warshall algorithm. It is clear that a global distribution center does not contain any vertex with degree one. So, Possible_S contains possible vertices which may be in the global distribution center. We sort the vertices in Possible_S as S in decreasing order by the $\text{rowSum}(M)$. The first vertex in S is the farthest vertex from the center of the graph, that is, it is the most likely to be deleted in S . The for loop of lines 6–8 computes separately the number of neighbors in S and in $V - S$ of each vertex in V . Within the for loop of lines 9–34, we determine whether a vertex in S is deleted. This loop invariant works as follows:

If any vertex $i \in S$ has no neighbor in S , then it is not deleted in S and the loop continues with the next vertex in S to be examined. Otherwise (lines 17–20), we check the constraint in the definition of global distribution center (GDC) is satisfied for the neighbors of i in S after i is deleted. In line 22, if any neighbors of i in $V - S$ has no a neighbor in S other than i , then i is not deleted. In lines 25–28, we check the constraint in the definition of GDC is satisfied for the neighbors of i in $V - S$ after i is deleted. If a vertex i is deleted in S , then the number of neighbors in S and in $V - S$ of vertex i is updated as in lines 31–33. In the worst case of Algorithm 1, the for loop in line 9 runs at most $|V|$ times. The union of neighbor_S and neighbor_V is the list of adjacents of a vertex in the graph. The inner loops in line 16 and 24 run totally as the degree of a vertex in the graph. By the Handshaking Lemma, the GDC algorithm runs in $O|V|$ time.

Algorithm 1: Global Distribution Center Algorithm

Data: An undirected graph $G = (V, E)$
Result: A non-empty set $S \subseteq V$ which is a general distribution center

```

1 begin
2    $n = |V|;$ 
3    $M =$  A matrix of dimension  $n \times n$  with all-pairs shortest path lengths in  $G$ ;
4    $Possible\_S =$  The set of vertices whose degrees are greater than one;
5    $S =$  sort the vertices in  $Possible\_S$  in decreasing order by the  $rowSum(M)$ ;
6   for  $i = 1$  to  $n$  do
7      $neighbor\_S\_number[i] =$  the number of neighbors in  $S$  of vertex  $i \in V$  ;
8      $neighbor\_V\_number[i] =$  the number of neighbors in  $V - S$  of vertex  $i \in V$  ;
9   for each vertex  $i \in S$  do
10     $v\_erasable =$  True;
11     $u\_erasable =$  True;
12     $neighbor\_S =$  a list of neighbor vertices of  $i$  in  $S$ ;
13     $neighbor\_V =$  a list of neighbor vertices of  $i$  in  $V - S$ ;
14    if  $neighbor\_S$  is empty then
15       $\quad$  continue; //next iteration of  $i$ 
16    else
17      for each vertex  $u \in neighbor\_S$  do
18        if  $neighbor\_S\_number[u] \leq neighbor\_V\_number[i]$  then
19           $\quad$   $u\_erasable =$  False;
20           $\quad$  break; //terminates the current loop
21      for each vertex  $v \in neighbor\_V$  do
22        if  $neighbor\_S\_number[v] \leq 1$  then
23           $\quad$   $v\_erasable =$  False;
24           $\quad$  break //terminates the current loop
25        for each vertex  $w \in Adj[v]$  in  $S$  do
26          if  $neighbor\_S\_number[w] \leq neighbor\_V\_number[v]$  then
27             $\quad$   $v\_erasable =$  False;
28             $\quad$  break //terminates the current loop
29    if  $v\_erasable =$  True and  $u\_erasable =$  True then
30      Delete vertex  $i$  in  $S$ ;
31      for each vertex  $u \in Adj[i]$  do
32         $\quad$   $neighbor\_S\_number[u] --$ 
33         $\quad$   $neighbor\_V\_number[u] ++$ ;
34  Return  $S$ ;
35 end

```

We tested our algorithm on several different classes of graphs such as complete graph, complete bipartite graph, cycle and path graphs. We obtained the same global distribution center number as given in the theorems in Section 2. The results of the tests satisfied the upper bound in Theorem 2.8 for bipartite graphs with no isolated vertices. Furthermore, we tested the proposed algorithm on double star graph, comet graph, thorn graph, Caterpillar graph, complete k-ary tree, binomial tree and grid graph which are presented in Section 3. We found the same global distribution center number as given in the theorems in this section. Besides, we also tested the algorithm on any graph and verified the results manually.

5. CONCLUSION

In this paper, we considered global distribution centers in graphs that are usually thought of as being demand driven. We investigate the global distribution center number for selected families of graphs. Finally, we proposed a polynomial time heuristic algorithm to find the set of the global distribution center for arbitrary graphs. Proving the complexity class of finding a global distribution center set is the subject of future work.

Acknowledgements. The authors are grateful to the anonymous referees for their constructive comments and valuable suggestions which have helped us very much to improve the quality of the paper.

REFERENCES

- [1] A. Aytac and Z.N. Odabas Berberler, Robustness of regular caterpillars. *Int. J. Found. Comput. Sci.* **28** (2017) 835–841.
- [2] V. Aytac and Z.N. Berberler, Binding number and wheel related graphs. *Int. J. Found. Comput. Sci.* **28** (2017) 29–38.
- [3] K.S. Bagga, L.W. Beineke, W.D. Goddard, M.J. Lipman and R.E. Pippert, A survey of integrity. *Disc. Appl. Math.* **37–38** (1992) 13–28.
- [4] M.E. Berberler and Z.N. Berberler, Measuring the vulnerability in networks: a heuristic approach. *Ars Comb.* **135** (2017) 3–15.
- [5] T. Cormen, C.E. Leiserson and R.L. Rivest, *Introduction to Algorithms*, 4th edition. The MIT Press, Cambridge (1990).
- [6] M. Cygan, M. Pilipczuk and R. Skrekovski, Relation between randic index and average distance of trees. *MATCH Commun. Math. Comput. Chem.* **66** (2011) 605–612.
- [7] W.J. Desormeaux, T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Distribution centers in graphs. *Disc. Appl. Math.* **243** (2018) 186–193.
- [8] H. Frank and I.T. Frisch, Analysis and design of survivable networks. *IEEE Trans. Commun. Technol.* **18** (1970) 501–519.
- [9] J.W. Grossman, F. Harary and M. Klawe, Generalized ramsey theory for graphs, x: double star graphs. *Disc. Math.* **28** (1979) 247–254.
- [10] I. Gutman, Distance of thorny graphs. *Publ. L'institut Math. Nouv. Ser.* **63** (1998) 31–36.
- [11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs. Advanced Topic. Marcel Dekker, Inc, New York, NY (1998).
- [12] I. Mishkovski, M. Biey and L. Kocarev, Vulnerability of complex Networks. *Commun. Nonlinear Sci. Numer. Simulat.* **16** (2011) 341–349.
- [13] M.V. Modha and K.K. Kanani, On k -cordial labeling of some graphs. *Br. J. Math. Comput. Sci.* **13** (2016) 1–7.
- [14] S. Nazeer, S.K. Khan, I. Kousar and W. Nazeer, Radio labeling and radio number for generalized caterpillar graphs. *J. Appl. Math. Inf.* **34** (2016) 451–465.