

TREES WITH EQUAL ROMAN {2}-DOMINATION NUMBER AND INDEPENDENT ROMAN {2}-DOMINATION NUMBER

Pu Wu¹, Zepeng Li², Zehui Shao^{1,3,*} and Seyed Mahmoud Sheikholeslami⁴

Abstract. A Roman {2}-dominating function (R{2}DF) on a graph $G = (V, E)$ is a function $f : V \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which $f(u) = 0$ is adjacent to either at least one vertex v with $f(v) = 2$ or two vertices v_1, v_2 with $f(v_1) = f(v_2) = 1$. The weight of an R{2}DF f is the value $w(f) = \sum_{u \in V} f(u)$. The minimum weight of an R{2}DF on a graph G is called the Roman {2}-domination number $\gamma_{\{2\}}(G)$ of G . An R{2}DF f is called an independent Roman {2}-dominating function (IR{2}DF) if the set of vertices with positive weight under f is independent. The minimum weight of an IR{2}DF on a graph G is called the independent Roman {2}-domination number $i_{\{2\}}(G)$ of G . In this paper, we answer two questions posed by Rahmouni and Chellali.

Mathematics Subject Classification. 05C69.

Received June 11, 2018. Accepted December 2, 2018.

1. INTRODUCTION

In this paper, we consider only graphs without multiple edges or loops. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a subset $S \subseteq V(G)$ and a vertex $v \in V(G)$, the *open neighborhood* of v in S is the set $N_S(v) = \{u | uv \in E(G) \text{ and } u \in S\}$. The *closed neighborhood* of v in S is the set $N_S[v] = \{v\} \cup N_S(v)$. If $S = V(G)$, then $N_S(v)$ and $N_S[v]$ are denoted by $N(v)$ and $N[v]$, respectively. Let $S \subseteq V(G)$, we write $N_G(S) = \bigcup_{x \in S} N_G(x)$. The degree of v is $d(v) = |N(v)|$. We will omit the subscript G , that is to say, $N_G(T)$ is denoted by $N(T)$. The *distance* between two vertices u and v in a connected graph G is the length of a shortest uv -path in G . The *diameter* of G , denoted by $\text{diam}(G)$, is the maximum value among minimum distances between all pairs of vertices of G . For a vertex v in a rooted tree T , let $C(v)$ and $D(v)$ denote the set of children and descendants of v , respectively and let $D[v] = D(v) \cup \{v\}$. Also, the depth of v , $\text{depth}(v)$, is the largest distance from v to a vertex in $D(v)$. The *maximal subtree* at v is the subtree of T induced by $D[v]$, and is denoted by T_v . We write P_n for the path of order n . A *double star* $DS_{p,q}$ is a tree containing exactly two non-pendant vertices which one is adjacent to p leaves and the other is adjacent to q leaves.

Keywords. Roman {2}-domination, independent Roman {2}-domination, tree, algorithm.

¹ Institute of Computing Science and Technology, Guangzhou University, 510006 Guangzhou, PR China.

² School of Information Science and Engineering, Lanzhou University, 730000 Lanzhou, PR China.

³ School of Information Science and Technology, Chengdu University, 610106 Chengdu, China

⁴ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran.

*Corresponding author: zshao@gzhu.edu.cn

A function $f : V(G) \rightarrow \{0, 1, 2\}$ is a *Roman dominating function* (RDF) on G if every vertex $u \in V$ for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of an Roman dominating function f is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. Roman domination was introduced and studied in [7] and later it was extensively studied in the literature [1–5, 8, 14, 15].

A *Roman {2}-dominating function* (R{2}DF) on a graph $G = (V, E)$ is a function $f : V \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which $f(u) = 0$ is adjacent to either at least one vertex v for which $f(v) = 2$ or two neighbors v_1, v_2 having $f(v_1) = f(v_2) = 1$. The *weight* of an R{2}DF f is the value $w(f) = \sum_{u \in V} f(u)$. An R{2}DF f is called an *independent Roman {2}-dominating function* (IR{2}DF) if the set of vertices with positive weight is independent. The minimum weight of an R{2}DF (resp. IR{2}DF) on a graph G is called the *Roman {2}-domination number* $\gamma_{\{R2\}}(G)$ (resp. *independent Roman {2}-domination number* $i_{\{R2\}}(G)$) of G . An R{2}DF (resp. IR{2}DF) f is called a $\gamma_{\{R2\}}(G)$ -function (an $i_{\{R2\}}(G)$ -function) if $w(f) = \gamma_{\{R2\}}(G)$ (resp. $w(f) = i_{\{R2\}}(G)$). By the definition of independent Roman {2}-domination, we have

$$\gamma_{\{R2\}}(G) \leq i_{\{R2\}}(G). \quad (1)$$

The concept of Roman {2}-domination was introduced in [6] and investigated in [11] and independent Roman {2}-domination was studied in [13], in which bounds involving independent 2-rainbow domination and independent Roman domination numbers are investigated, and the decision version of the independent Roman {2}-domination problem was proved to be NP-complete. Moreover, the following open questions are posed.

Question 1.1. Characterize the graphs (or at least the trees) G for which $\gamma_{\{R2\}}(G) = i_{\{R2\}}(G)$.

Question 1.2. Can you design a linear algorithm for computing the value of $i_{\{R2\}}(T)$ for any tree T ?

In this paper, we first settle the Question 1.1 partially and characterize all trees with equal Roman {2}-domination number and independent Roman {2}-domination number, and then we answer to Question 1.2 and give a linear algorithm for computing the value of $i_{\{R2\}}(T)$ for any tree T .

2. PRELIMINARY RESULTS

In this section, we present some basic results.

Proposition 2.1. *Let H be a subgraph of a graph G . If $\gamma_{\{R2\}}(H) = i_{\{R2\}}(H)$, $i_{\{R2\}}(G) \leq i_{\{R2\}}(H) + s$ and $\gamma_{\{R2\}}(G) \geq \gamma_{\{R2\}}(H) + s$ for some non-negative integer s , then $i_{\{R2\}}(G) = \gamma_{\{R2\}}(G)$.*

Proof. We deduce from the assumptions and (1) that

$$i_{\{R2\}}(G) \geq \gamma_{\{R2\}}(G) \geq \gamma_{\{R2\}}(H) + s = i_{\{R2\}}(H) + s \geq i_{\{R2\}}(G)$$

that this leads to the desired result. \square

Proposition 2.2. *Let H be a subgraph of a graph G . If $\gamma_{\{R2\}}(G) = i_{\{R2\}}(G)$, $i_{\{R2\}}(G) \geq i_{\{R2\}}(H) + s$ and $\gamma_{\{R2\}}(G) \leq \gamma_{\{R2\}}(H) + s$ for some non-negative integer s , then $\gamma_{\{R2\}}(H) = i_{\{R2\}}(H)$.*

Proof. By (1) and the assumptions, we obtain

$$i_{\{R2\}}(G) = \gamma_{\{R2\}}(G) \leq \gamma_{\{R2\}}(H) + s \leq i_{\{R2\}}(H) + s \leq i_{\{R2\}}(G).$$

Thus all inequalities in the above chain become equalities and so $\gamma_{\{R2\}}(H) = i_{\{R2\}}(H)$. \square

Proposition 2.3. *Let G be a graph with $\gamma_{\{R2\}}(G) = i_{\{R2\}}(G)$. If G has a support vertex v with $|L_v| \geq 3$ and $u \in L_v$, then $\gamma_{\{R2\}}(G - u) = i_{\{R2\}}(G - u)$ and there exists a $i_{\{R2\}}(G - u)$ -function f such that $f(v) = 2$.*

Proof. Since v is a strong support vertex in $G - u$, there is a $\gamma_{\{R2\}}(G - u)$ -function g such that $g(v) = 2$. Clearly, g is an R{2}DF of G and so $\gamma_{\{R2\}}(G) \leq \gamma_{\{R2\}}(G - u)$. Now let f be a $i_{\{R2\}}(G)$ -function. Clearly $f(v) \neq 1$. If $f(v) = 2$, then the function f , restricted to $G - u$, is an IR{2}DF of $G - u$ yielding $i_{\{R2\}}(G) \geq i_{\{R2\}}(G - u)$. If $f(v) = 0$, then $f(x) \geq 1$ for each $x \in L_v$ and we may assume that $f(u) = 1$. Now the function f , restricted to $G - u$, is an IR{2}DF of $G - u$ yielding $i_{\{R2\}}(G) \geq i_{\{R2\}}(G - u) + 1$. Thus $i_{\{R2\}}(G) \geq i_{\{R2\}}(G - u)$. As in the proof of Observation 2.2, we obtain $\gamma_{\{R2\}}(G - u) = i_{\{R2\}}(G - u)$ and $i_{\{R2\}}(G) = i_{\{R2\}}(G - u)$ and this implies that $f|_{G - u}$ is an $i_{\{R2\}}(G - u)$ -function with $f(v) = 2$. This completes the proof. \square

Proposition 2.4. *Let G be a graph and $v \in V(G)$. If G' is the graph obtained from G by adding a $K_{1,3}$ centered at c with $V(K_{1,3}) = \{c, c_1, c_2, c_3\}$ and joining v to c_1 , then $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$.*

Proof. Clearly, any $\gamma_{\{R2\}}(G)$ -function (resp. $i_{\{R2\}}(G)$ -function) can be extended to an R{2}DF (resp. IR{2}DF) of G' by assigning a 2 to c and a 0 to c_1, c_2, c_3 and so $\gamma_{\{R2\}}(G') \leq \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') \leq i_{\{R2\}}(G) + 2$. Now let f be a $i_{\{R2\}}(G')$ -function. Obviously $f(c) \neq 1$ and $f(c) + f(c_2) + f(c_3) \geq 2$. If $f(c) = 2$, then $f(c_1) = f(c_2) = f(c_3) = 0$ and the function f , restricted to G is an IR{2}DF of G of weight $i_{\{R2\}}(G') - 2$ yielding $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2$. Let $f(c) = 0$. Then we must have $f(c_2) = f(c_3) = 1$. If $f(c_1) = 0$, then as above we have $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2$. Let $f(c_1) \geq 1$. If v has a neighbor w in G with $f(w) \geq 1$, then define $g : V(G) \rightarrow \{0, 1, 2\}$ by $g(w) = \min\{2, f(w) + 1\}$ and $g(x) = f(x)$ for $x \in V(G) - \{w\}$, and otherwise define $g : V(G) \rightarrow \{0, 1, 2\}$ by $g(v) = 1$ and $g(x) = f(x)$ for $x \in V(G) - \{v\}$. Clearly, g is an IR{2}DF of G of weight at most $i_{\{R2\}}(G') - 2$ and so $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2$. This implies that $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$. Similarly, we can see that $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$. \square

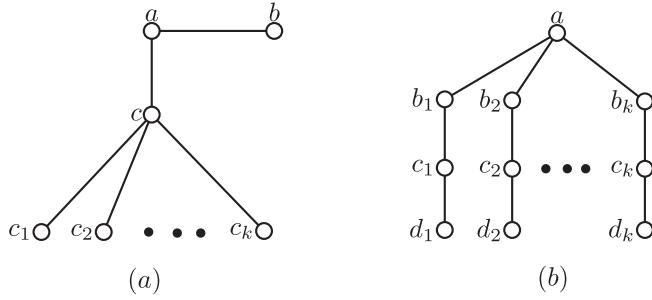
Proposition 2.5. *Let G be a graph and let $v \in V(G)$ be adjacent to two leaves x_1, x_2 . If G' is the graph obtained from G by adding a $K_{1,2}$ centered at y with $V(K_{1,2}) = \{y, y_1, y_2\}$ and joining v to y , then $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$.*

Proof. Clearly, any $\gamma_{\{R2\}}(G)$ -function (resp. $i_{\{R2\}}(G)$ -function) can be extended to an R{2}DF (resp. IR{2}DF) of G' by assigning a 0 to y and a 1 to y_1, y_2 and so $\gamma_{\{R2\}}(G') \leq \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') \leq i_{\{R2\}}(G) + 2$. On the other hand, if f is a $\gamma_{\{R2\}}(G')$ -function (resp. $i_{\{R2\}}(G')$ -function), then obviously $f(v) + f(x_1) + f(x_2) \geq 2$ and $f(y) + f(y_1) + f(y_2) \geq 2$, and the function f , restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight $\gamma_{\{R2\}}(G') - 2$ (resp. $i_{\{R2\}}(G') - 2$) implying that $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2$. This yields $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$. \square

Proposition 2.6. *Let G be a graph and let $v \in V(G)$ be adjacent to the center z of a star $K_{1,s}$ ($s = 1, 2$). If G' is the graph obtained from G by adding a $K_{1,2}$ centered at y with $V(K_{1,2}) = \{y, y_1, y_2\}$ and joining v to y , then $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$.*

Proof. As above, we can see that $\gamma_{\{R2\}}(G') \leq \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') \leq i_{\{R2\}}(G) + 2$. On the other hand, if f is a $\gamma_{\{R2\}}(G')$ -function (resp. $i_{\{R2\}}(G')$ -function), then obviously $f(y) + f(y_1) + f(y_2) \geq 2$. If $f(y) = 0$ or $f(v) \geq 1$, the function f , restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight $\gamma_{\{R2\}}(G') - 2$ (resp. $i_{\{R2\}}(G') - 2$) implying that $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2$. Assume that $f(y) \geq 1$ and $f(v) = 0$. To dominate the vertices of $K_{1,s}$, we may assume that $f(z) = 2$. Again, the function f , restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight $\gamma_{\{R2\}}(G') - 2$ (resp. $i_{\{R2\}}(G') - 2$) yielding $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2$. This implies that $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$. \square

We now define two classes of graphs H_k and D_k as follows. Let H_k be the tree obtained from $K_{1,k}$ centered at c by adding a pendant path cab (see Fig. 1(a)), and let D_k be the tree obtained from $K_{1,k}$ centered at a by subdividing each edge twice (see Fig. 1(b)). The vertex a in H_k (resp. D_k) is called the *special vertex* of H_k (resp. D_k). The graph obtained from D_k by adding t pendant vertices at a is denoted by $D_{(k,t)}$.

FIGURE 1. (a) the graph H_k ; (b) the graph D_k .

Proposition 2.7. *Let G be a graph and let $v \in V(G)$. If G' is the graph obtained from G by adding a H_2 and joining v to a , then $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 3$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 3$.*

Proof. Clearly, any $\gamma_{\{R2\}}(G)$ -function (resp. $i_{\{R2\}}(G)$ -function) can be extended to an $R\{2\}DF$ (resp. $IR\{2\}DF$) of G' by assigning a 2 to c , a 1 to b and a 0 to the remaining vertices and so $\gamma_{\{R2\}}(G') \leq \gamma_{\{R2\}}(G) + 3$ and $i_{\{R2\}}(G') \leq i_{\{R2\}}(G) + 3$. Now let f be a $i_{\{R2\}}(G')$ -function (resp. $\gamma_{\{R2\}}(G')$ -function). Obviously $f(c) + f(c_1) + f(c_2) \geq 2$ and $f(a) + f(b) \geq 1$. If $f(a) = 0$ or $f(v) \geq 1$, the function f , restricted to G is an $IR\{2\}DF$ (resp. $R\{2\}DF$) of G of weight $\gamma_{\{R2\}}(G') - 3$ (resp. $i_{\{R2\}}(G') - 3$) and so $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 3$ and $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 3$. Assume that $f(a) \geq 1$ and $f(v) = 0$. To dominate b , we may assume that $f(a) = 2$. If v has a neighbor w in G with $f(w) \geq 1$, then define $g : V(G) \rightarrow \{0, 1, 2\}$ by $g(w) = \min\{2, f(w) + 1\}$ and $g(x) = f(x)$ for $x \in V(G) - \{w\}$, and otherwise define $g : V(G) \rightarrow \{0, 1, 2\}$ by $g(v) = 1$ and $g(x) = f(x)$ for $x \in V(G) - \{v\}$. Clearly, g is an $IR\{2\}DF$ (resp. $R\{2\}DF$) of G of weight at most $\gamma_{\{R2\}}(G') - 3$ (resp. $i_{\{R2\}}(G') - 3$) and so $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 3$ and $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 3$. This implies that $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 3$ and $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 3$. \square

Proposition 2.8. *Let G be a graph and let $v \in V(G)$. If G' is the graph obtained from G by adding a $D_{(k,t)}$ with special vertex a and joining v to a where $k + t \geq 2$ and $t \leq 1$, then $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2k + t$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2k + t$.*

Proof. Clearly, any $\gamma_{\{R2\}}(G)$ -function (resp. $i_{\{R2\}}(G)$ -function) can be extended to an $R\{2\}DF$ (resp. $IR\{2\}DF$) of G by assigning a 1 to b_i, d_i ($i = 1, \dots, k$) and the leaf adjacent to a , if any, and a 0 to the remaining vertices implying that $\gamma_{\{R2\}}(G') \leq \gamma_{\{R2\}}(G) + 2k + t$ and $i_{\{R2\}}(G') \leq i_{\{R2\}}(G) + 2k + t$. Now let f be a $i_{\{R2\}}(G')$ -function (resp. $\gamma_{\{R2\}}(G')$ -function). Obviously $f(b_i) + f(c_i) + f(d_i) \geq 2$ for each $i \in \{1, \dots, k\}$ and $f(a) + f(L_a) \geq t$. If $f(a) = 0$ or $f(v) \geq 1$, the function f , restricted to G is an $IR\{2\}DF$ (resp. $R\{2\}DF$) of G of weight $i_{\{R2\}}(G') - 2k - t$ (resp. $\gamma_{\{R2\}}(G') - 2k - t$) and so $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 2k + t$ and $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2k + t$. Assume that $f(a) \geq 1$ and $f(v) = 0$. Then to dominate the leaf adjacent to a , we may assume have $f(a) \geq 1 + t$. If v has a neighbor w in G with $f(w) \geq 1$, then define $g : V(G) \rightarrow \{0, 1, 2\}$ by $g(w) = \min\{2, f(w) + 1\}$ and $g(x) = f(x)$ for $x \in V(G) - \{w\}$, and otherwise define $g : V(G) \rightarrow \{0, 1, 2\}$ by $g(v) = 1$ and $g(x) = f(x)$ for $x \in V(G) - \{v\}$. Clearly, g is an $IR\{2\}DF$ (resp. $R\{2\}DF$) of G of weight at most $\gamma_{\{R2\}}(G') - 2k - t$ (resp. $i_{\{R2\}}(G') - 2k - t$) and so $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2k + t$ and $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 2k + t$. This implies that $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2k + t$ and $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2k + t$. \square

Proposition 2.9. *Let G be a graph and let $x \in V(G)$ be a leaf adjacent to a support vertex u of degree 3 and $L_u = \{x, y\}$. If G' is the graph obtained from G by adding a pendant path xa , then $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 1$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 1$.*

Proof. Let f be a $i_{\{R2\}}(G)$ -function (resp. $\gamma_{\{R2\}}(G)$ -function). If $f(u) \geq 1$, then clearly $f(u) = 2$, $f(x) = 0$ and f can be extended to an $IR\{2\}DF$ (resp. $R\{2\}DF$) of G' by assigning a 1 to a , and if $f(u) = 0$, then clearly

$f(x) = 1$ and f can be extended to an IR{2}DF (resp. R{2}DF) of G' by assigning a 0 to a and reassigning a 2 to x , yielding $\gamma_{\{R2\}}(G') \leq \gamma_{\{R2\}}(G) + 1$ and $i_{\{R2\}}(G') \leq i_{\{R2\}}(G) + 1$.

Now, let g be an $i_{\{R2\}}(G')$ -function (resp. $\gamma_{\{R2\}}(G')$ -function). If $g(u) \geq 1$, then clearly $g(x) = 0$, $g(a) = 1$ and the function g , restricted to G is an IR{2}DF (resp. R{2}DF) of G , and if $g(u) = 0$, then $g(y) = 1$ and we may assume that $g(x) = 2$ and the function $h : V(G) \rightarrow \{0, 1, 2\}$ defined by $h(x) = 1$ and $h(w) = g(w)$ otherwise, is an IR{2}DF (resp. R{2}DF) of G . Both cases leads to $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 1$ and $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 1$. Thus $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 1$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 1$ as desired. \square

Proposition 2.10. *Let G be a graph and let $v \in V(G)$ be adjacent to two leaves x_1, x_2 . If G' is the graph obtained from G by adding a path abc and joining v to a , then $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$.*

Proof. Clearly, any $\gamma_{\{R2\}}(G)$ -function (resp. $i_{\{R2\}}(G)$ -function) can be extended to an R{2}DF (resp. IR{2}DF) of G' by assigning a 0 to a, c and a 2 to b and so $\gamma_{\{R2\}}(G') \leq \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') \leq i_{\{R2\}}(G) + 2$. On the other hand, if f is a $\gamma_{\{R2\}}(G')$ -function (resp. $i_{\{R2\}}(G')$ -function), then obviously $f(v) + f(x_1) + f(x_2) \geq 2$ and $f(a) + f(b) + f(c) \geq 2$, and the function f , restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight $\gamma_{\{R2\}}(G') - 2$ (resp. $i_{\{R2\}}(G') - 2$) implying that $\gamma_{\{R2\}}(G') \geq \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') \geq i_{\{R2\}}(G) + 2$. Thus $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$. \square

The proof of next result is similar to the proof of Proposition 2.6 and therefore omitted.

Proposition 2.11. *Let G be a graph and let $v \in V(G)$ be adjacent to the center z of a star $K_{1,s}$ ($s = 1, 2$). If G' is the graph obtained from G by adding a path abc and joining v to a , then $\gamma_{\{R2\}}(G') = \gamma_{\{R2\}}(G) + 2$ and $i_{\{R2\}}(G') = i_{\{R2\}}(G) + 2$.*

3. TREES T WITH $\gamma_{\{R2\}}(T) = i_{\{R2\}}(T)$

In this section we give a constructive characterization of all trees with equal Roman {2}-domination number and independent Roman {2}-domination number. For a tree T , let

$$W(T) = \{u \in V(T) \mid \text{there exists an } i_{\{R2\}}(T) - \text{function } f \text{ with } f(u) \geq 1\}$$

and

$$W_1(T) = \{u \in V(T) \mid \text{there exists an } i_{\{R2\}}(T) - \text{function } f \text{ with } f(u) = 2\}.$$

In order to present our constructive characterization, we define a family of trees as follows. Let \mathcal{T} be the family of trees T that can be obtained from a sequence T_1, T_2, \dots, T_k of trees for some $k \geq 1$, where $T_1 \in \{P_1, P_2, P_3, P_4\}$ and $T = T_k$. If $k \geq 2$, T_{i+1} can be obtained from T_i by one of the following operations.

Operation \mathcal{O}_1 : If $x \in V(T_i)$, then \mathcal{O}_1 adds a star $K_{1,3}$ centered at c with $V(K_{1,3}) = \{c, c_1, c_2, c_3\}$ and joins x to c_1 to obtain T_{i+1} (see Fig. 2(a)).

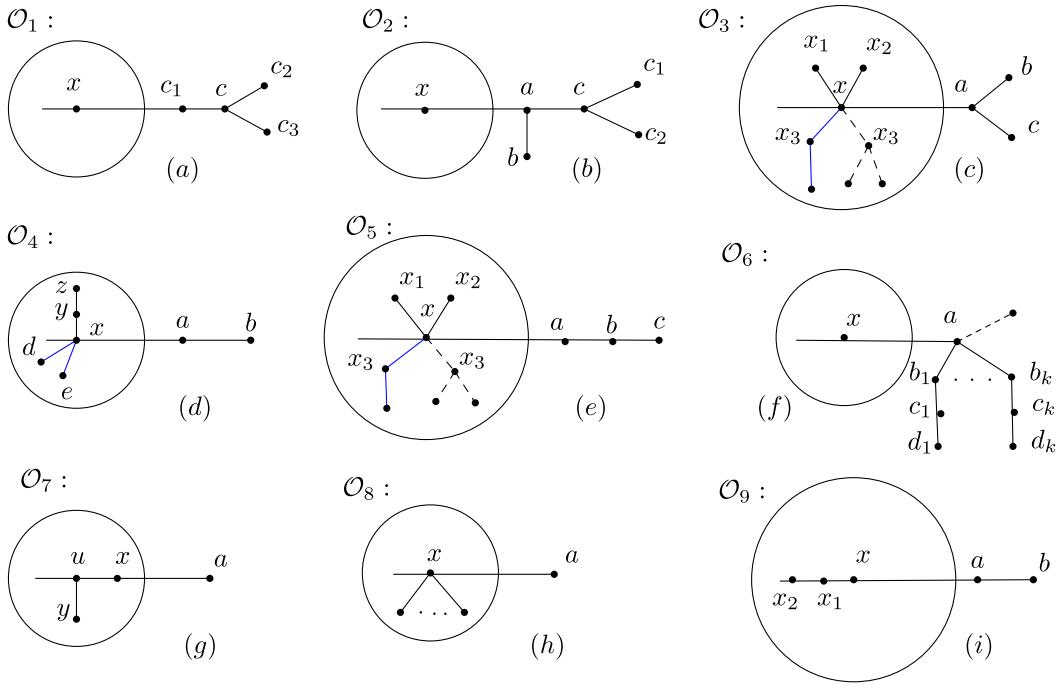
Operation \mathcal{O}_2 : If $x \in V(T_i)$, then \mathcal{O}_2 adds a graph H_2 with a special vertex a and an edge xa to obtain T_{i+1} (see Fig. 2(b)).

Operation \mathcal{O}_3 : If $x \in V(T_i)$ is adjacent to either two leaves x_1, x_2 or the center x_3 of a star $K_{1,s}$ ($s = 1, 2$), then \mathcal{O}_3 adds a path bac and joins x to a to obtain T_{i+1} (see Fig. 2(c)).

Operation \mathcal{O}_4 : If $x \in W(T_i)$ and x is adjacent to two leaves d, e or there is a path xyz in T such that $\deg(y) = 2$ and $\deg(z) = 1$, then \mathcal{O}_4 adds a pendent path ab and joins x to a to obtain T_{i+1} (see Fig. 2(d)).

Operation \mathcal{O}_5 : If $x \in V(T_i)$ is adjacent to either two leaves x_1, x_2 or the center x_3 of a star $K_{1,s}$ ($s = 1, 2$), then \mathcal{O}_5 adds a path abc and joins x to a to obtain T_{i+1} (see Fig. 2(e)).

Operation \mathcal{O}_6 : If $x \in V(T_i)$, then \mathcal{O}_6 adds a graph $D_{(k,t)}$ with a special vertex a and an edge xa to obtain T_{i+1} , where $k + t \geq 2$, $t \leq 1$ (see Fig. 2(f)).

FIGURE 2. The operations \mathcal{O}_i ($i \in \{1, 2, \dots, 9\}$).

Operation \mathcal{O}_7 : If $x \in V(T_i)$ is a leaf adjacent to a support vertex u of degree 3 and $L_u = \{x, y\}$, then \mathcal{O}_7 adds a vertex a and joins a to x to obtain T_{i+1} (see Fig. 2(g)).

Operation \mathcal{O}_8 : If $x \in W_1(T_i)$ and there are at least two leaves adjacent to x , then \mathcal{O}_8 adds a vertex a and an edge ax to obtain T_{i+1} (see Fig. 2(h)).

Operation \mathcal{O}_9 : If $x \in V(T_i)$ is a leaf and there is a path x_2x_1x in T_i such that $\deg(x_1) = 2$, then \mathcal{O}_9 adds a path ab and joins x to a to obtain T_{i+1} (see Fig. 2(i)).

The next result follows immediately from Proposition 2.4.

Lemma 3.1. *If T_i is a tree with $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_1 , then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

The next result is immediate from Proposition 2.7.

Lemma 3.2. *If T_i is a tree with $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_2 , then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

The next result follows immediately from Propositions 2.5 ad 2.6.

Lemma 3.3. *If T_i is a tree with $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_3 , then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

Lemma 3.4. *Let T_i be a tree and T_{i+1} be a graph obtained from T_i by Operation \mathcal{O}_4 . Then $\gamma_{\{R2\}}(T_{i+1}) = \gamma_{\{R2\}}(T_i) + 1$. Furthermore, if $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$, then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

Proof. Let f be a $\gamma_{\{R2\}}(T_i)$ -function. Since $|L_x| \geq 2$ or there is a pendant path xyz , we may assume without loss of generality that $f(x) \geq 1$. Then, f can be extended to an R{2}DF of T_{i+1} by assigning a 0 to a and

a 1 to b . Hence, $\gamma_{\{R2\}}(T_{i+1}) \leq \gamma_{\{R2\}}(T_i) + 1$. On the other hand, if h is a $\gamma_{\{R2\}}(T_{i+1})$ -function, then clearly $h(x) \geq 1$ and hence $h(a) = 0$ and $h(b) = 1$. Then the function h restricted to T_i is an R{2}DF of T_i yielding $\gamma_{\{R2\}}(T_{i+1}) \geq \gamma_{\{R2\}}(T_i) + 1$. Consequently,

$$\gamma_{\{R2\}}(T_{i+1}) = \gamma_{\{R2\}}(T_i) + 1. \quad (2)$$

Now let $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$. Since $x \in W(T_i)$, there exists an $i_{\{R2\}}(T_i)$ -function g of T_i such that $g(x) \geq 1$. As above, g can be extended to an IR{2}DF of T_{i+1} by assigning a 0 to a and a 1 to b and this implies that $i_{\{R2\}}(T_{i+1}) \leq i_{\{R2\}}(T_i) + 1$. It follows from $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$ and (2) that $i_{\{R2\}}(T_{i+1}) \leq i_{\{R2\}}(T_i) + 1 = \gamma_{\{R2\}}(T_i) + 1 = \gamma_{\{R2\}}(T_{i+1})$. Now the result follows from (1). \square

The next result follows immediately from Propositions 2.10 and 2.11.

Lemma 3.5. *If T_i is a tree with $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_5 , then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

The next result is immediate by Proposition 2.8.

Lemma 3.6. *If T_i is a tree with $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_6 , then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

The next result is immediate by Proposition 2.9.

Lemma 3.7. *If T_i is a tree with $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_7 , then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

Lemma 3.8. *Let T_i be a tree and T_{i+1} be a graph obtained from T_i by Operation \mathcal{O}_8 , then $\gamma_{\{R2\}}(T_{i+1}) = \gamma_{\{R2\}}(T_i)$. Furthermore, if $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$, then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

Proof. Let f be a $\gamma_{\{R2\}}(T_i)$ -function. Since x is adjacent to at least two leaves in T_i , w.l.o.g., we can assume that $f(x) = 2$. Hence, f can be extended to an R{2}DF of T_{i+1} by assigning 0 to a , which implies that $\gamma_{\{R2\}}(T_{i+1}) \leq w(f) = \gamma_{\{R2\}}(T_i)$. Conversely, let h be a $\gamma_{\{R2\}}(T_{i+1})$ -function. Then we have $h(x) = 2$ and $h|_{T_i}$ is an R{2}DF of T_i . Consequently, we have

$$\gamma_{\{R2\}}(T_{i+1}) = \gamma_{\{R2\}}(T_i). \quad (3)$$

Now we show that $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$. Since $x \in W_1(T_i)$, there exists an $i_{\{R2\}}(T_i)$ -function f' of T_i such that $f'(x) = 2$. Clearly, f' can be extended to an IR{2}DF of T_{i+1} by assigning 0 to a , which implies that $i_{\{R2\}}(T_{i+1}) \leq i_{\{R2\}}(T_i)$. Since $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$, by (3) we have $i_{\{R2\}}(T_{i+1}) \leq i_{\{R2\}}(T_i) = \gamma_{\{R2\}}(T_i) = \gamma_{\{R2\}}(T_{i+1})$. Hence, $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$. \square

Lemma 3.9. *Let T_i be a tree and T_{i+1} be a graph obtained from T_i by Operation \mathcal{O}_9 , then $\gamma_{\{R2\}}(T_{i+1}) = \gamma_{\{R2\}}(T_i) + 1$. Furthermore, if $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$, then $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$.*

Proof. Let f be a $\gamma_{\{R2\}}(T_i)$ -function. We may assume without loss of generality that $f(x_1) = 0$, $f(x_2) \geq 1$ and $f(x) = 1$. Then f can be extended to an R{2}DF of T_{i+1} by assigning a 0 to a and a 1 to b and so $\gamma_{\{R2\}}(T_{i+1}) \leq \gamma_{\{R2\}}(T_i) + 1$. Conversely, let h be a $\gamma_{\{R2\}}(T_{i+1})$ -function. W.l.o.g., we may assume that $h(a) = 0$, $h(x) \geq 1$ and $h(b) = 1$. Then, the function h , restricted to T_i is an R{2}DF of T_i yielding $\gamma_{\{R2\}}(T_{i+1}) \geq \gamma_{\{R2\}}(T_i) + 1$. Consequently, we have

$$\gamma_{\{R2\}}(T_{i+1}) = \gamma_{\{R2\}}(T_i) + 1. \quad (4)$$

Let $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$. If T_i has an $i_{\{R2\}}(T_i)$ -function f' such that $f'(x) \neq 0$, then f' can be extended to an IR{2}DF of T_{i+1} by assigning a 1 to b and a 0 to a yielding $i_{\{R2\}}(T_{i+1}) \leq i_{\{R2\}}(T_i) + 1$. Suppose for any $i_{\{R2\}}(T_i)$ -function f' , we have $f'(x) = 0$. Then $f'(x_1) = 2$ and $f'(x_2) = 0$. Moreover, x_2 has a neighbor x_3 different from x_1 such that $f'(x_3) \neq 0$. Define $g : V(T_{i+1}) \rightarrow \{0, 1, 2\}$ by $g(a) = 2$, $g(b) = 0$, $g(x_1) = 1$ and $g(v) = f'(v)$ for $v \in V(T_i) - \{x_1\}$. Clearly, g is an IR{2}DF of T_{i+1} with weight $i_{\{R2\}}(T_i) + 1$ and so $i_{\{R2\}}(T_{i+1}) \leq i_{\{R2\}}(T_i) + 1$. Applying $\gamma_{\{R2\}}(T_i) = i_{\{R2\}}(T_i)$ and (4), we have $i_{\{R2\}}(T_{i+1}) \leq i_{\{R2\}}(T_i) + 1 = \gamma_{\{R2\}}(T_i) + 1 = \gamma_{\{R2\}}(T_{i+1}) \leq i_{\{R2\}}(T_{i+1})$. Hence, $\gamma_{\{R2\}}(T_{i+1}) = i_{\{R2\}}(T_{i+1})$. \square

Theorem 3.10. *Let T be a tree of order n . Then $\gamma_{\{R2\}}(T) = i_{\{R2\}}(T)$ if and only if $T \in \mathcal{T}$.*

Proof. We first show that if $T \in \mathcal{T}$ is a tree, then $\gamma_{\{R2\}}(T) = i_{\{R2\}}(T)$. Let $T \in \mathcal{T}$. By the definition of \mathcal{T} , we know that there exists a sequence of trees T_1, T_2, \dots, T_k ($k \geq 1$) such that $T_1 \in \{P_1, P_2, P_3, P_4\}$, $T_k = T$ and if $k \geq 2$, then T_{i+1} can be obtained from T_i by one of the Operations \mathcal{O}_i ($i \in \{1, 2, \dots, 9\}$). We proceed by induction on k . If $k = 1$, then the result is trivial. Assume the result holds for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length $k - 1$ and let $T' = T_{k-1}$. By the induction hypothesis, $\gamma_{\{R2\}}(T') = i_{\{R2\}}(T')$. Since $T = T_k$ is obtained by one of the Operations \mathcal{O}_i ($i \in \{1, 2, \dots, 9\}$) from T' , we conclude from the Lemmas 3.1 to 3.9 that $\gamma_{\{R2\}}(T) = i_{\{R2\}}(T)$.

Now, we prove the necessity. The proof is by induction on n . If $n \leq 3$, then $T \in \{P_1, P_2, P_3\}$ and the result is true. Suppose $n \geq 4$ and that the statement holds for all trees of order less than n . Let T be a tree of order n with $\gamma_{\{R2\}}(T) = i_{\{R2\}}(T)$ and let f be an $i_{\{R2\}}$ -function of T . If there exists a vertex $v \in V(T)$ with $|L_v| \geq 3$, then let $T' = T - u$ where $u \in L_v$. By Observation 2.3, we have $\gamma_{\{R2\}}(T') = i_{\{R2\}}(T')$ and $v \in W_1(T)$. It follows from the induction hypothesis that $T' \in \mathcal{T}$. Now, T can be obtained from T' by Operation \mathcal{O}_8 yielding $T \in \mathcal{T}$. Assume that each vertex of T has at most 2 leaf neighbors. Hence T is not a star and so $\text{diam}(T) \geq 3$. If $\text{diam}(T) = 3$, then T is a double star $DS_{p,q}$ for some $q \geq p \geq 1$, and since each vertex of T has at most 2 leaf neighbors, we conclude that $T \in \{P_4, DS_{1,2}, DS_{2,2}\}$. Obviously $T = P_4 \in \mathcal{T}$. If $T = DS_{1,2}$, the T can be obtained from P_1 by Operation \mathcal{O}_1 , if $T = DS_{2,2}$, then T can be obtained from P_3 by Operation \mathcal{O}_3 and so $T \in \mathcal{T}$. Assume that $\text{diam}(T) \geq 4$.

Let $P = u_1u_2\dots u_k$ be a diametrical path of T such that $d_T(u_2)$ is as large as possible. Among these paths, choose one so that $d_T(u_3)$ is as large as possible. Let $L_{u_2} = \{v_1, \dots, v_{\deg_T(u_2)-1}\}$ where $u_1 = v_1$. Note that $2 \leq \deg_T(u_2) \leq 3$. We consider the following cases.

Case 1. $\deg_T(u_2) = 3$.

If $\deg_T(u_3) = 2$, then it follows from Proposition 2.4 and the fact $\gamma_{\{R2\}}(T) = i_{\{R2\}}(T)$ that $\gamma_{\{R2\}}(T - T_{u_3}) = i_{\{R2\}}(T - T_{u_3})$. By the induction hypothesis, we have $T - T_{u_3} \in \mathcal{T}$ and T can be obtained from $T - T_{u_3}$ by Operation \mathcal{O}_1 implying that $T \in \mathcal{T}$. Assume that $\deg_T(u_3) \geq 3$. If u_3 is a strong support vertex or is adjacent to the center of a star $K_{1,s}$ ($s = 1, 2$), then we conclude from Propositions 2.5 and 2.6 and the induction hypothesis that $T - T_{u_2} \in \mathcal{T}$. Now, T can be obtained from $T - T_{u_2}$ by Operation \mathcal{O}_3 and hence $T \in \mathcal{T}$. Henceforth, we assume u_3 is adjacent to at most one leaf and that u_3 has no child with depth one but u_2 . We deduce from these assumption and the fact $d(u_3) \geq 3$ that $d(u_3) = 3$ and u_3 has a child x_1 with depth 0. Let $T' = T - T_{u_3}$. We conclude from Proposition 2.7 and the induction hypothesis that $T' \in \mathcal{T}$. Now, T can be obtained from T' by Operation \mathcal{O}_2 and hence $T \in \mathcal{T}$.

Case 2. $\deg_T(u_2) = 2$ and $d(u_3) \geq 4$.

By the choice of diametrical path, we may assume that any child of u_3 with depth one has degree 2. We consider the following subcases.

Subcase 2.1. u_3 has a child y_2 with depth one.

Let $u_3y_2y_1$ be a path in T and let $T' = T - T_{u_2}$. If $f(u_3) = 0$, then we have $f(u_2) + f(u_1) \geq 2$ and $f(y_2) + f(y_1) \geq 2$, and the function $g : V(T) \rightarrow \{0, 1, 2\}$ defined by $g(u_3) = 1$, $g(u_2) = g(y_2) = 0$, $g(u_1) = g(y_1) = 1$ and $g(x) = f(x)$ otherwise, is an $R\{2\}DF$ of T of weight less than $\omega(f)$ contradicting the assumption $\gamma_{\{R2\}}(T) = i_{\{R2\}}(T)$. Hence $f(u_3) \geq 1$. It follows that $f(u_2) = 0$ and $f(u_1) = 1$. Thus the function f , restricted to T' is an $IR\{2\}DF$ of T' of weight $i_{\{R2\}}(T) - 1$ and so $i_{\{R2\}}(T) \geq i_{\{R2\}}(T') + 1$. On the other hand, as in the proof of Lemma 3.4, we have $\gamma_{\{R2\}}(T) = \gamma_{\{R2\}}(T') + 1$. Now the following inequality chain

$$\gamma_{\{R2\}}(T) = i_{\{R2\}}(T) \geq i_{\{R2\}}(T') + 1 \geq \gamma_{\{R2\}}(T') + 1 = \gamma_{\{R2\}}(T)$$

leads to $\gamma_{\{R2\}}(T') = i_{\{R2\}}(T')$ and that the function $f|_{T'}$ is an $i_{\{R2\}}(T')$ -function with $f(u_3) \geq 1$ and so $u_3 \in W(T')$. By the induction hypothesis, we have $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{O}_4 and so $T \in \mathcal{T}$.

Subcase 2.2. $|L_{u_3}| \geq 2$.

Let $x_1, x_2 \in L_{u_3}$ and let $T' = T - T_{u_2}$. If $f(u_3) = 0$, then we have $f(u_2) + f(u_1) \geq 2$ and $f(x_1) = f(x_2) = 1$, and the function $g : V(T) \rightarrow \{0, 1, 2\}$ defined by $g(u_3) = 2$, $g(u_2) = g(x_1) = g(x_2) = 0$, $g(u_1) = 1$ and $g(x) = f(x)$ otherwise, is an $R\{2\}$ DF of T of weight less than $\omega(f)$ contradicting the assumption $\gamma_{\{R2\}}(T) = i_{\{R2\}}(T)$. Hence $f(u_3) \geq 1$. Now, as in Subcase 2.1, we can see that $T \in \mathcal{T}$.

Case 3. $\deg_T(u_2) = 2$ and $\deg_T(u_3) = 3$.

By the choice of diametrical path, we may assume that any child of u_3 with depth one has degree 2. If u_3 has a child y_2 different from u_2 , with depth one, then as in Subcase 2.1, we can see that $T \in \mathcal{T}$. Assume that u_2 is the only child of u_3 with depth one. Since $\deg_T(u_3) = 3$, we deuce that u_3 is adjacent to a leaf, say w . Let $T' = T - u_1$. We conclude from Proposition 2.9 and the induction hypothesis that $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{O}_7 and so $T \in \mathcal{T}$.

Case 4. $d(u_2) = d(u_3) = 2$ and $d(u_4) \geq 3$.

By the choice of diametrical path, for any path $u_4y_3y_2y_1$ in T where $y_3 \in C(u_4)$, we have $\deg(y_3) = \deg(y_2) = 2$. If u_4 is a strong support vertex or is adjacent to the center of a star $K_{1,s}$ ($s = 1, 2$), then we conclude from Propositions 2.10 and 2.11 and the induction hypothesis that $T - T_{u_3} \in \mathcal{T}$. Now, T can be obtained from $T - T_{u_3}$ by Operation \mathcal{O}_5 and hence $T \in \mathcal{T}$. Henceforth, we assume u_4 is adjacent to at most one leaf and that u_4 has no child with depth one. This implies that $T_{u_4} = D_{(k,t)}$ where $t \leq 1$ and $k + t \geq 2$. Let $T' = T - T_{u_4}$. We conclude from Proposition 2.8 and the induction hypothesis that $T' \in \mathcal{T}$. Now, T can be obtained from T' by Operation \mathcal{O}_6 and hence $T \in \mathcal{T}$.

Case 5. $d(u_2) = d(u_3) = d(u_4) = 2$.

Let $T' = T - \{u_1, u_2\}$. By Lemma 3.9, we have $\gamma_{\{R2\}}(T) = \gamma_{\{R2\}}(T') + 1$. We show that $i_{\{R2\}}(T') \leq i_{\{R2\}}(T) - 1$. If $f(u_3) \geq 1$, then $f(u_2) = 0$, $f(u_1) = 1$ and the function $f|_{T'}$ is an $IR\{2\}$ DF of T' yielding $i_{\{R2\}}(T') \leq i_{\{R2\}}(T) - 1$. Suppose $f(u_3) = 0$. Then $f(u_1) + f(u_2) = 2$ and we may assume that $f(u_1) = 0$ and $f(u_2) = 2$. If $f(u_4) = 2$, then $f(u_5) = 0$ and the function $g : V(T) \rightarrow \{0, 1, 2\}$ defined by $g(u_1) = g(u_3) = g(u_5) = 1$, $g(u_2) = g(u_4) = 0$ and $g(v) = f(v)$ for $v \in V(T) - \{u_1, u_2, u_3, u_4, u_5\}$, is an $R\{2\}$ DF of T with weight $i_{\{R2\}}(T) - 1 = \gamma_{\{R2\}}(T) - 1$ which is a contradiction. Hence, $f(u_4) \leq 1$. If $f(u_4) = 0$, then define $h : V(T') \rightarrow \{0, 1, 2\}$ by $h(u_3) = 1$ and $h(v) = f(v)$ for $v \in V(T') - \{u_3\}$, and if $h(u_4) = 1$, then define $h : V(T') \rightarrow \{0, 1, 2\}$ by $h(u_4) = 2$ and $h(v) = f(v)$ for $v \in V(T') - \{u_4\}$. Clearly, h is an $IR\{2\}$ DF of T' of weight $i_{\{R2\}}(T) - 1$, implying that $i_{\{R2\}}(T') \leq i_{\{R2\}}(T) - 1$. We deduce from

$$i_{\{R2\}}(T') \leq i_{\{R2\}}(T) - 1 = \gamma_{\{R2\}}(T) - 1 = \gamma_{\{R2\}}(T') \leq i_{\{R2\}}(T')$$

that $\gamma_{\{R2\}}(T') = i_{\{R2\}}(T')$. It follows from the induction hypothesis on T' that $T' \in \mathcal{T}$. Now, T can be obtained from T' by Operation \mathcal{O}_9 and hence $T \in \mathcal{T}$. This completes the proof. \square

4. A LINEAR ALGORITHM FOR COMPUTING $i_{\{R2\}}(T)$ FOR ANY TREE T

To present a linear algorithm, we will use the following notations. For a graph G and a vertex $v \in V(G)$, we denote $G + uw$ the graph obtained from G by adding pendant edge uw . Now, we define

$$\begin{aligned} i_{\{R2\}}^0(G, u) &= \min\{w(f) : f \text{ is an } IR\{2\}\text{DF of } G \text{ with } f(u) = 0\}, \\ i_{\{R2\}}^1(G, u) &= \min\{w(f) : f \text{ is an } IR\{2\}\text{DF of } G \text{ with } f(u) = 1\}, \\ i_{\{R2\}}^2(G, u) &= \min\{w(f) : f \text{ is an } IR\{2\}\text{DF of } G \text{ with } f(u) = 2\}, \\ i_{\{R2\}}^{00}(G, u) &= \min\{w(f) : f \text{ is an } IR\{2\}\text{DF of } G - u\}, \\ i_{\{R2\}}^{01}(G, u) &= \min\{w(f) - 1 : f \text{ is an } IR\{2\}\text{DF of } G + uw \text{ with } f(u) = 0 \text{ and } f(w) = 1\}, \\ i_{\{R2\}}^{02}(G, u) &= \min\{w(f) - 2 : f \text{ is an } IR\{2\}\text{DF of } G + uw \text{ with } f(u) = 0 \text{ and } f(w) = 2\}. \end{aligned}$$

The following results are trivial.

Observation 4.1. For any graph G with a specific vertex u , we have

$$i_{\{R2\}}(G) = \min\{i_{\{R2\}}^0(G, u), i_{\{R2\}}^1(G, u), i_{\{R2\}}^2(G, u)\}.$$

Observation 4.2. $i_{\{R2\}}^{00}(G, u) \leq i_{\{R2\}}^{01}(G, u)$.

Observation 4.3. $i_{\{R2\}}^{00}(G, u) = i_{\{R2\}}^{02}(G, u)$.

Proof. Let f be an IR{2}DF of $G + uw$ for which $f(u) = 0$ and $f(w) = 2$ with minimum weight. Then $f|_{G-u}$ is an IR{2}DF of $G - u$ and so $i_{\{R2\}}^{02}(G, u) \geq i_{\{R2\}}^{00}(G, u)$.

On the other hand, any $i_{R2}(G - u)$ can be extended to an IR{2}DF of $G + uw$ by assigning a 2 to w and a 0 to u and hence $i_{\{R2\}}^{00}(G, u) \geq i_{\{R2\}}^{02}(G, u)$. Therefore, we have $i_{\{R2\}}^{00}(G, u) = i_{\{R2\}}^{02}(G, u)$. \square

Theorem 4.4. Suppose G and H are two disjoint graphs with specific vertices u and v , respectively. Let I be the graph obtained by adding the edge uv to $G \cup H$. Consider u as the specific vertex of I . Then the following statements hold.

- (i) $i_{\{R2\}}^0(I, u) = \min\{i_{\{R2\}}^0(G, u) + i_{\{R2\}}^0(H, v), i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^1(H, v), i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v)\}$;
- (ii) $i_{\{R2\}}^1(I, u) = i_{\{R2\}}^1(G, u) + i_{\{R2\}}^{01}(H, v)$;
- (iii) $i_{\{R2\}}^2(I, u) = i_{\{R2\}}^2(G, u) + i_{\{R2\}}^{00}(H, v)$;
- (iv) $i_{\{R2\}}^{00}(I, u) = i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^0(H) = i_{\{R2\}}^{00}(G, u) + \min\{i_{\{R2\}}^0(H, v), i_{\{R2\}}^{01}(H, v), i_{\{R2\}}^1(H, v)\}$;
- (v) $i_{\{R2\}}^{01}(I, u) = \min\{i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^0(H, v), i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^1(H, v), i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v)\}$.

Proof. (i) Let f be an $I\{R2\}DF$ of I such that $f(u) = 0$ and $w(f) = i_{\{R2\}}^0(I, u)$. If $f(v) = 0$, then $f|_G$ is an $I\{R2\}DF$ of G with $f|_G(u) = 0$ and $f|_H$ is an $I\{R2\}DF$ of H with $f|_H(v) = 0$. Hence, we have $i_{\{R2\}}^0(I, u) \geq i_{\{R2\}}^0(G, u) + i_{\{R2\}}^0(H, v)$. If $f(v) = 1$, then $f|_{G+uv}$ is an $I\{R2\}DF$ of $G + uv$ with $f|_{G+uv}(u) = 0$ and $f|_{G+uv}(v) = 1$, and $f|_H$ is an $I\{R2\}DF$ of H with $f|_H(v) = 1$. Hence, we have $i_{\{R2\}}^0(I, u) = w(f|_{G+uv}) - 1 + w(f|_H) \geq i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^1(H, v)$. If $f(v) = 2$, then $f|_{G+uv}$ is an $I\{R2\}DF$ of $G + uv$ with $f|_{G+uv}(u) = 0$ and $f|_{G+uv}(v) = 2$, and $f|_H$ is an $I\{R2\}DF$ of H with $f|_H(v) = 2$. Hence, we have $i_{\{R2\}}^0(I, u) = w(f|_{G+uv}) - 2 + w(f|_H) \geq i_{\{R2\}}^{02}(G, u) + i_{\{R2\}}^2(H, v)$. By Observation 4.3, $i_{\{R2\}}^0(I, u) \geq i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v)$. Thus

$$i_{\{R2\}}^0(I, u) \geq \min\{i_{\{R2\}}^0(G, u) + i_{\{R2\}}^0(H, v), i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^1(H, v), i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v)\}. \quad (5)$$

Now we prove the inverse inequality. Since any $I\{R2\}DF$ g of G with $g(u) = 0$ and any $I\{R2\}DF$ h of H with $h(v) = 0$ can form an $I\{R2\}DF$ f' of I with $f'(u) = 0$, we have $i_{\{R2\}}^0(G, u) + i_{\{R2\}}^0(H, v) \geq i_{\{R2\}}^0(I, u)$. Also, any $I\{R2\}DF$ g of $G + uv$ with $g(u) = 0$ and $g(v) = 1$ and any $I\{R2\}DF$ h of H with $h(v) = 1$ can form an $I\{R2\}DF$ f' of I such that $f'(u) = 0$ yielding $i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^1(H, v) \geq i_{\{R2\}}^0(I, u)$. Similarly, we can see that $i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v) = i_{\{R2\}}^{02}(G, u) + i_{\{R2\}}^2(H, v) \geq i_{\{R2\}}^0(I, u)$. Therefore

$$\begin{aligned} i_{\{R2\}}^0(I, u) &\leq \min\{i_{\{R2\}}^0(G, u) + i_{\{R2\}}^0(H, v), i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^1(H, v), \\ &\quad i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v)\}. \end{aligned} \quad (6)$$

Now

- (i) follows from (5) and (6).
- (ii) It follows from the fact that f is an $IR\{2\}DF$ of I with $f(u) = 1$ if and only if $f = g \cup h$, where g is an $IR\{2\}DF$ of G with $g(u) = 1$ and h is an $IR\{2\}DF$ of $H + vu$ with $h(v) = 0$ and $h(u) = 1$.
- (iii) Note that f is an $IR\{2\}DF$ of I with $f(u) = 2$ if and only if $f = g \cup h$, where g is an $IR\{2\}DF$ of G with $g(u) = 2$ and h is an $IR\{2\}DF$ of $H + vu$ with $h(v) = 0$ and $h(u) = 2$. Using this and Observation 4.3, the result follows.

(iv) It follows from the fact that f is an $IR\{2\}$ DF of $I - u$ if and only if $f = g \cup h$, where g is an $IR\{2\}$ DF of $G - u$ and h is an $IR\{2\}$ DF of H .

(v) Let f be an $I\{R2\}$ DF of $I + uw$ such that $f(u) = 0$, $f(w) = 1$ and $w(f) = i_{\{R2\}}^{01}(I, u)$, where uw is the pendant edge added at u . If $f(v) = 0$, then $f|_{G+uw}$ is an $I\{R2\}$ DF of $G + uw$ with $f|_{G+uw}(u) = 0$ and $f|_{G+uw}(w) = 1$, and $f|_H$ is an $I\{R2\}$ DF of H with $f|_H(v) = 0$. Hence, we have $i_{\{R2\}}^{01}(I, u) = w(f) - 1 = w(f|_{G+uw}) - 1 + w(f|_H) \geq i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^0(H, v)$. If $f(v) = 1$, then $f|_{G-u}$ is an $I\{R2\}$ DF of $G - u$ and $f|_H$ is an $I\{R2\}$ DF of H with $f|_H(v) = 1$. Hence, we have $i_{\{R2\}}^{01}(I, u) = w(f) - 1 = w(f|_{G-u}) + w(f|_H) \geq i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^1(H, v)$. If $f(v) = 2$, then $f|_{G-u}$ is an $I\{R2\}$ DF of $G - u$ and $f|_H$ is an $I\{R2\}$ DF of H with $f|_H(v) = 2$. Hence, we have $i_{\{R2\}}^0(I, u) = w(f) - 1 = w(f|_{G-u}) + w(f|_H) \geq i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v)$. Hence

$$\begin{aligned} i_{\{R2\}}^{01}(I, u) &\geq \min \{i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^0(H, v), i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^1(H, v), \\ &\quad i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v)\}. \end{aligned} \quad (7)$$

Now we prove the inverse inequality. Since combining any $I\{R2\}$ DF g of $G + uw$ with $g(u) = 0$ and $g(w) = 1$ and any $I\{R2\}$ DF h of H with $h(v) = 0$ can form an $I\{R2\}$ DF f' of $I + uw$ with $f'(u) = 0$ and $f'(w) = 1$, we have $i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^0(H, v) \geq i_{\{R2\}}^{01}(I, u)$. Also, any $I\{R2\}$ DF g of $G - u$ and any $I\{R2\}$ DF h of H with $h(v) = 1$ can be extended to an $I\{R2\}$ DF f' of $I + uw$ by setting $f'(u) = 0$ and $f'(w) = 1$, and so $i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^1(H, v) \geq i_{\{R2\}}^{01}(I, u)$. Finally, any $I\{R2\}$ DF g of $G - u$ and any $I\{R2\}$ DF h of H with $h(v) = 2$ can be extended to an $I\{R2\}$ DF f' of I by setting $f'(u) = 0$ and $f'(w) = 1$, and hence $i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v) \geq i_{\{R2\}}^{01}(I, u)$. Consequently,

$$\begin{aligned} i_{\{R2\}}^{01}(I, u) &\leq \min \{i_{\{R2\}}^{01}(G, u) + i_{\{R2\}}^0(H, v), \\ &\quad i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^1(H, v), \\ &\quad i_{\{R2\}}^{00}(G, u) + i_{\{R2\}}^2(H, v)\}, \end{aligned} \quad (8)$$

and (v) follows from (7) and (8). □

If the vertices of a tree T have an ordering $[v_1, v_2, \dots, v_n]$ such that v_i is a leaf of $T_i = T[\{v_i, v_{i+1}, \dots, v_n\}]$ for $1 \leq i \leq n - 1$, then $[v_1, v_2, \dots, v_n]$ is called a tree ordering of T , where the only neighbor v_j of v_i with $j > i$ is called the parent of v_i . Lemma 4.1 and Theorem 4.4 give the following dynamic programming algorithm for computing $i_{\{R2\}}(T)$ for any tree T .

Algorithm $i_{\{R2\}}$ Domination

Input: A tree T with a tree ordering $[v_1, v_2, \dots, v_n]$.

Output: the independent Roman $\{2\}$ -domination number $i_{\{R2\}}(T)$ of T .

begin

for $i = 1$ to n **do**

$i_{\{R2\}}^{00}(v_i) \leftarrow 0$;

$i_{\{R2\}}^0(v_i) \leftarrow \infty$;

$i_{\{R2\}}^{01}(v_i) \leftarrow \infty$;

$i_{\{R2\}}^1(v_i) \leftarrow 1$;

$i_{\{R2\}}^2(v_i) \leftarrow 2$;

end for

for $i = 1$ to $n - 1$ **do**

 let v_j be the parent of v_i ;

```

 $i_{\{R2\}}(v_i) = \min\{i_{\{R2\}}^0(v_i), i_{\{R2\}}^1(v_i), i_{\{R2\}}^2(v_i)\}$ 
 $i_{\{R2\}}^0(v_j) = \min\{i_{\{R2\}}^0(v_j) + i_{\{R2\}}^0(v_i), i_{\{R2\}}^{01}(v_j) + i_{\{R2\}}^1(v_i), i_{\{R2\}}^{00}(v_j) + i_{\{R2\}}^2(v_i)\}.$ 
 $i_{\{R2\}}^1(v_j) = i_{\{R2\}}^1(v_j) + i_{\{R2\}}^0(v_i)$ 
 $i_{\{R2\}}^2(v_j) = i_{\{R2\}}^2(v_j) + i_{\{R2\}}^{00}(v_i)$ 
 $i_{\{R2\}}^{01}(v_j) = \min\{i_{\{R2\}}^{01}(v_j) + i_{\{R2\}}^0(v_i), i_{\{R2\}}^{00}(v_j) + i_{\{R2\}}^1(v_i), i_{\{R2\}}^0(v_j) + i_{\{R2\}}^2(v_i)\}$ 
 $i_{\{R2\}}^{00}(v_i) = i_{\{R2\}}^{00}(v_j) + \min\{i_{\{R2\}}^0(v_i), i_{\{R2\}}^1(v_i), i_{\{R2\}}^2(v_i)\}$ 
end for
return  $i_{\{R2\}}(v_n);$ 
end.

```

Acknowledgements. We are very grateful to the anonymous referees and Prof. Ismael G. Yero for his valuable suggestions and comments. This work is supported by the National Key Research and Development Program under grants 2017YFB0802300, Natural Science Foundation of Guangdong Province under grant 2018A0303130115, the National Natural Science Foundation of China under the grant 11361008, the Applied Basic Research (Key Project) of Sichuan Province under grant 2017JY0095.

REFERENCES

- [1] J.D. Alvarado, S. Dantas and D. Rautenbach, Strong equality of Roman and weak Roman domination in trees. *Dis. Appl. Math.* **208** (2016) 19–26.
- [2] M.P. Álvarez-Ruiz, I. González Yero, T. Mediavilla-Gradolph, S.M. Sheikholeslami and J.C. Valenzuela, On the strong Roman domination number of graphs. *Dis. Appl. Math.* **231** (2017) 44–59.
- [3] M. Atapour, S.M. Sheikholeslami and L. Volkmann, Global Roman domination in trees. *Graphs Comb.* **31** (2015) 813–825.
- [4] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination. *SIAM J. Dis. Math.* **23** (2009) 1575–1586.
- [5] M. Chellali, T.W. Haynes and S.T. Hedetniemi, Lower bounds on the Roman and independent Roman domination numbers. *Appl. Anal. Disc. Math.* **10** (2016) 65–72.
- [6] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. MacRae, Roman {2}-domination. *Dis. Appl. Math.* **204** (2016) 22–28.
- [7] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs. *Dis. Math.* **278** (2004) 11–22.
- [8] O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, On the Roman domination number of a graph. *Dis. Math.* **309** (2009) 3447–3451.
- [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York, NY (1998).
- [10] M.A. Henning and S.T. Hedetniemi, Defending the Roman empire – a new strategy. *Dis. Math.* **266** (2003) 239–251.
- [11] M.A. Henning and W.F. Klostermeyer, Italian domination in trees. *Dis. Appl. Math.* **217** (2017) 557–564.
- [12] O. Ore, Theory of Graphs. American Mathematical Society, Providence, RI (1967).
- [13] A. Rahmouni and M. Chellali, Independent Roman {2}-domination in graphs. *Dis. Appl. Math.* **236** (2018) 408–414.
- [14] Z. Shao, S. Klavžar, Z. Li, P. Wu and J. Xu, On the signed Roman k -domination: complexity and thin torus graphs. *Dis. Appl. Math.* **233** (2017) 175–186.
- [15] Z. Shao, S.M. Sheikholeslami, M. Soroudi, L. Volkmann and X. Liu, On the co-Roman domination in graphs. *Discuss. Math. Graph Theory* **39** (2018) 455–472.