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TREES WITH EQUAL ROMAN {2}-DOMINATION NUMBER AND
INDEPENDENT ROMAN {2}-DOMINATION NUMBER

Pu Wu1, Zepeng Li2, Zehui Shao1,3,∗ and Seyed Mahmoud Sheikholeslami4

Abstract. A Roman {2}-dominating function (R{2}DF) on a graph G = (V,E) is a function f : V →
{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to either at least
one vertex v with f(v) = 2 or two vertices v1, v2 with f(v1) = f(v2) = 1. The weight of an R{2}DF f
is the value w(f) =

∑
u∈V f(u). The minimum weight of an R{2}DF on a graph G is called the Roman

{2}-domination number γ{R2}(G) of G. An R{2}DF f is called an independent Roman {2}-dominating
function (IR{2}DF) if the set of vertices with positive weight under f is independent. The minimum
weight of an IR{2}DF on a graph G is called the independent Roman {2}-domination number i{R2}(G)
of G. In this paper, we answer two questions posed by Rahmouni and Chellali.
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1. Introduction

In this paper, we consider only graphs without multiple edges or loops. Let G be a graph with vertex set
V (G) and edge set E(G). For a subset S ⊆ V (G) and a vertex v ∈ V (G), the open neighborhood of v in S is
the set NS(v) = {u|uv ∈ E(G) and u ∈ S}. The closed neighborhood of v in S is the set NS [v] = {v} ∪NS(v).
If S = V (G), then NS(v) and NS [v] are denoted by N(v) and N [v], respectively. Let S ⊆ V (G), we write
NG(S) = ∪x∈SNG(x). The degree of v is d(v) = |N(v)|. We will omit the subscript G, that is to say, NG(T ) is
denoted by N(T ). The distance between two vertices u and v in a connected graph G is the length of a shortest
uv-path in G. The diameter of G, denoted by diam(G), is the maximum value among minimum distances
between all pairs of vertices of G. For a vertex v in a rooted tree T , let C(v) and D(v) denote the set of
children and descendants of v, respectively and let D[v] = D(v) ∪ {v}. Also, the depth of v, depth(v), is the
largest distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by D[v], and
is denoted by Tv. We write Pn for the path of order n. A double star DSp,q is a tree containing exactly two
non-pendant vertices which one is adjacent to p leaves and the other is adjacent to q leaves.
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A function f : V (G)→ {0, 1, 2} is a Roman dominating function (RDF) on G if every vertex u ∈ V for which
f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an Roman dominating function
f is the value f(V (G)) =

∑
u∈V (G) f(u). Roman domination was introduced and studied in [7] and later it was

extensively studied in the literature [1–5,8, 14,15].
A Roman {2}-dominating function (R{2}DF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying

the condition that every vertex u for which f(u) = 0 is adjacent to either at least one vertex v for which f(v) = 2
or two neighbors v1, v2 having f(v1) = f(v2) = 1. The weight of an R{2}DF f is the value w(f) =

∑
u∈V f(u).

An R{2}DF f is called an independent Roman {2}-dominating function (IR{2}DF) if the set of vertices with
positive weight is independent. The minimum weight of an R{2}DF (resp. IR{2}DF) on a graph G is called the
Roman {2}-domination number γ{R2}(G) (resp. independent Roman {2}-domination number i{R2}(G) ) of G.
An R{2}DF (resp. IR{2}DF) f is called a γ{R2}(G)-function (an i{R2}(G)-function) if w(f) = γ{R2}(G) (resp.
w(f) = i{R2}(G)). By the definition of independent Roman {2}-domination, we have

γ{R2}(G) ≤ i{R2}(G). (1)

The concept of Roman {2}-domination was introduced in [6] and investigated in [11] and independent Ro-
man {2}-domination was studied in [13], in which bounds involving independent 2-rainbow domination and
independent Roman domination numbers are investigated, and the decision version of the independent Roman
{2}-domination problem was proved to be NP-complete. Moreover, the following open questions are posed.

Question 1.1. Characterize the graphs (or at least the trees) G for which γ{R2}(G) = i{R2}(G).

Question 1.2. Can you design a linear algorithm for computing the value of i{R2}(T ) for any tree T?

In this paper, we first settle the Question 1.1 partially and characterize all trees with equal Roman {2}-
domination number and independent Roman {2}-domination number, and then we answer to Question 1.2 and
give a linear algorithm for computing the value of i{R2}(T ) for any tree T .

2. Preliminary results

In this section, we present some basic results.

Proposition 2.1. Let H be a subgraph of a graph G. If γ{R2}(H) = i{R2}(H), i{R2}(G) ≤ i{R2}(H) + s and
γ{R2}(G) ≥ γ{R2}(H) + s for some non-negative integer s, then i{R2}(G) = γ{R2}(G).

Proof. We deduce from the assumptions and (1) that

i{R2}(G) ≥ γ{R2}(G) ≥ γ{R2}(H) + s = i{R2}(H) + s ≥ i{R2}(G)

that this leads to the desired result. �

Proposition 2.2. Let H be a subgraph of a graph G. If γ{R2}(G) = i{R2}(G), i{R2}(G) ≥ i{R2}(H) + s and
γ{R2}(G) ≤ γ{R2}(H) + s for some non-negative integer s, then γ{R2}(H) = i{R2}(H).

Proof. By (1) and the assumptions, we obtain

i{R2}(G) = γ{R2}(G) ≤ γ{R2}(H) + s ≤ i{R2}(H) + s ≤ i{R2}(G).

Thus all inequalities in the above chain become equalities and so γ{R2}(H) = i{R2}(H). �

Proposition 2.3. Let G be a graph with γ{R2}(G) = i{R2}(G). If G has a support vertex v with |Lv| ≥ 3 and
u ∈ Lv, then γ{R2}(G− u) = i{R2}(G− u) and there exists a i{R2}(G− u)-function f such that f(v) = 2.
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Proof. Since v is a strong support vertex in G−u, there is a γ{R2}(G−u)-function g such that g(v) = 2. Clearly,
g is an R{2}DF of G and so γ{R2}(G) ≤ γ{R2}(G − u). Now let f be a i{R2}(G)-function. Clearly f(v) 6= 1. If
f(v) = 2, then the function f , restricted to G− u, is an IR{2}DF of G− u yielding i{R2}(G) ≥ i{R2}(G− u). If
f(v) = 0, then f(x) ≥ 1 for each x ∈ Lv and we may assume that f(u) = 1. Now the function f , restricted to
G− u, is an IR{2}DF of G− u yielding i{R2}(G) ≥ i{R2}(G− u) + 1. Thus i{R2}(G) ≥ i{R2}(G− u). As in the
proof of Observation 2.2, we obtain γ{R2}(G− u) = i{R2}(G− u) and i{R2}(G) = i{R2}(G− u) and this implies
that f |G−u is an i{R2}(G− u)-function with f(v) = 2. This completes the proof. �

Proposition 2.4. Let G be a graph and v ∈ V (G). If G′ is the graph obtained from G by adding a K1,3

centered at c with V (K1,3) = {c, c1, c2, c3} and joining v to c1, then γ{R2}(G′) = γ{R2}(G) + 2 and i{R2}(G′) =
i{R2}(G) + 2.

Proof. Clearly, any γ{R2}(G)-function (resp. i{R2}(G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G′ by assigning a 2 to c and a 0 to c1, c2, c3 and so γ{R2}(G′) ≤ γ{R2}(G) + 2 and i{R2}(G′) ≤ i{R2}(G) + 2.
Now let f be a i{R2}(G′)-function. Obviously f(c) 6= 1 and f(c) + f(c2) + f(c3) ≥ 2. If f(c) = 2, then
f(c1) = f(c2) = f(c3) = 0 and the function f , restricted to G is an IR{2}DF of G of weight i{R2}(G′) − 2
yielding i{R2}(G′) ≥ i{R2}(G) + 2. Let f(c) = 0. Then we must have f(c2) = f(c3) = 1. If f(c1) = 0, then as
above we have i{R2}(G′) ≥ i{R2}(G) + 2. Let f(c1) ≥ 1. If v has a neighbor w in G with f(w) ≥ 1, then define
g : V (G) → {0, 1, 2} by g(w) = min{2, f(w) + 1} and g(x) = f(x) for x ∈ V (G) − {w}, and otherwise define
g : V (G)→ {0, 1, 2} by g(v) = 1 and g(x) = f(x) for x ∈ V (G)− {v}. Clearly, g is an IR{2}DF of G of weight
at most i{R2}(G′) − 2 and so i{R2}(G′) ≥ i{R2}(G) + 2. This implies that i{R2}(G′) = i{R2}(G) + 2. Similarly,
we can see that γ{R2}(G′) = γ{R2}(G) + 2. �

Proposition 2.5. Let G be a graph and let v ∈ V (G) be adjacent to two leaves x1, x2. If G′ is the graph
obtained from G by adding a K1,2 centered at y with V (K1,2) = {y, y1, y2} and joining v to y, then γ{R2}(G′) =
γ{R2}(G) + 2 and i{R2}(G′) = i{R2}(G) + 2.

Proof. Clearly, any γ{R2}(G)-function (resp. i{R2}(G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G′ by assigning a 0 to y and a 1 to y1, y2 and so γ{R2}(G′) ≤ γ{R2}(G) + 2 and i{R2}(G′) ≤ i{R2}(G) + 2. On
the other hand, if f is a γ{R2}(G′)-function (resp. i{R2}(G′)-function), then obviously f(v) + f(x1) + f(x2) ≥ 2
and f(y) + f(y1) + f(y2) ≥ 2, and the function f , restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight
γ{R2}(G′)− 2 (resp. i{R2}(G′)− 2) implying that γ{R2}(G′) ≥ γ{R2}(G) + 2 and i{R2}(G′) ≥ i{R2}(G) + 2. This
yields γ{R2}(G′) = γ{R2}(G) + 2 and i{R2}(G′) = i{R2}(G) + 2. �

Proposition 2.6. Let G be a graph and let v ∈ V (G) be adjacent to the center z of a star K1,s (s = 1, 2). If
G′ is the graph obtained from G by adding a K1,2 centered at y with V (K1,2) = {y, y1, y2} and joining v to y,
then γ{R2}(G′) = γ{R2}(G) + 2 and i{R2}(G′) = i{R2}(G) + 2.

Proof. As above, we can se that γ{R2}(G′) ≤ γ{R2}(G) + 2 and i{R2}(G′) ≤ i{R2}(G) + 2. On the other hand,
if f is a γ{R2}(G′)-function (resp. i{R2}(G′)-function), then obviously f(y) + f(y1) + f(y2) ≥ 2. If f(y) = 0
or f(v) ≥ 1, the function f , restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight γ{R2}(G′) − 2
(resp. i{R2}(G′) − 2) implying that γ{R2}(G′) ≥ γ{R2}(G) + 2 and i{R2}(G′) ≥ i{R2}(G) + 2. Assume that
f(y) ≥ 1 and f(v) = 0. To dominate the vertices of K1,s, we may assume that f(z) = 2. Again, the function
f , restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight γ{R2}(G′) − 2 (resp. i{R2}(G′) − 2) yielding
γ{R2}(G′) ≥ γ{R2}(G) + 2 and i{R2}(G′) ≥ i{R2}(G) + 2. This implies that γ{R2}(G′) = γ{R2}(G) + 2 and
i{R2}(G′) = i{R2}(G) + 2. �

We now define two classes of graphs Hk and Dk as follows. Let Hk be the tree obtained from K1,k centered
at c by adding a pendant path cab (see Fig. 1(a)), and let Dk be the tree obtained from K1,k centered at a by
subdividing each edge twice (see Fig. 1(b)). The vertex a in Hk (resp. Dk) is called the special vertex of Hk

(resp. Dk). The graph obtained from Dk by adding t pendant vertices at a is denoted by D(k,t).
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Figure 1. (a) the graph Hk; (b) the graph Dk.

Proposition 2.7. Let G be a graph and let v ∈ V (G). If G′ is the graph obtained from G by adding a H2 and
joining v to a, then γ{R2}(G′) = γ{R2}(G) + 3 and i{R2}(G′) = i{R2}(G) + 3.

Proof. Clearly, any γ{R2}(G)-function (resp. i{R2}(G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G′ by assigning a 2 to c, a 1 to b and a 0 to the remaining vertices and so γ{R2}(G′) ≤ γ{R2}(G) + 3 and
i{R2}(G′) ≤ i{R2}(G) + 3. Now let f be a i{R2}(G′)-function (resp. γ{R2}(G′)-function). Obviously f(c) +
f(c1) + f(c2) ≥ 2 and f(a) + f(b) ≥ 1. If f(a) = 0 or f(v) ≥ 1, the function f , restricted to G is an IR{2}DF
(resp. R{2}DF) of G of weight γ{R2}(G′) − 3 (resp. i{R2}(G′) − 3) and so γ{R2}(G′) ≥ γ{R2}(G) + 3 and
i{R2}(G′) ≥ i{R2}(G) + 3. Assume that f(a) ≥ 1 and f(v) = 0. To dominate b, we may assume that f(a) = 2.
If v has a neighbor w in G with f(w) ≥ 1, then define g : V (G) → {0, 1, 2} by g(w) = min{2, f(w) + 1} and
g(x) = f(x) for x ∈ V (G) − {w}, and otherwise define g : V (G) → {0, 1, 2} by g(v) = 1 and g(x) = f(x) for
x ∈ V (G)−{v}. Clearly, g is an IR{2}DF (resp. R{2}DF) ofG of weight at most γ{R2}(G′)−3 (resp. i{R2}(G′)−3)
and so i{R2}(G′) ≥ i{R2}(G) + 3 and γ{R2}(G′) ≥ γ{R2}(G) + 3. This implies that i{R2}(G′) = i{R2}(G) + 3 and
γ{R2}(G′) = γ{R2}(G) + 3. �

Proposition 2.8. Let G be a graph and let v ∈ V (G). If G′ is the graph obtained from G by adding a D(k,t)

with special vertex a and joining v to a where k + t ≥ 2 and t ≤ 1, then γ{R2}(G′) = γ{R2}(G) + 2k + t and
i{R2}(G′) = i{R2}(G) + 2k + t.

Proof. Clearly, any γ{R2}(G)-function (resp. i{R2}(G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G by assigning a 1 to bi, di (i = 1, . . . , k) and the leaf adjacent to a, if any, and a 0 to the remaining vertices
implying that γ{R2}(G′) ≤ γ{R2}(G)+2k+t and i{R2}(G′) ≤ i{R2}(G)+2k+t. Now let f be a i{R2}(G′)-function
(resp. γ{R2}(G′)-function). Obviously f(bi) + f(ci) + f(di) ≥ 2 for each i ∈ {1, . . . , k} and f(a) + f(La) ≥ t.
If f(a) = 0 or f(v) ≥ 1, the function f , restricted to G is an IR{2}DF (resp. R{2}DF) of G of weight
i{R2}(G′)−2k−t (resp. γ{R2}(G′)−2k−t) and so γ{R2}(G′) ≥ γ{R2}(G)+2k+t and i{R2}(G′) ≥ i{R2}(G)+2k+t.
Assume that f(a) ≥ 1 and f(v) = 0. Then to dominate the leaf adjacent to a, we may assume have f(a) ≥ 1+ t.
If v has a neighbor w in G with f(w) ≥ 1, then define g : V (G) → {0, 1, 2} by g(w) = min{2, f(w) + 1} and
g(x) = f(x) for x ∈ V (G) − {w}, and otherwise define g : V (G) → {0, 1, 2} by g(v) = 1 and g(x) = f(x) for
x ∈ V (G) − {v}. Clearly, g is an IR{2}DF (resp. R{2}DF) of G of weight at most γ{R2}(G′) − 2k − t (resp.
i{R2}(G′)− 2k − t) and so i{R2}(G′) ≥ i{R2}(G) + 2k + t and γ{R2}(G′) ≥ γ{R2}(G) + 2k + t. This implies that
i{R2}(G′) = i{R2}(G) + 2k + t and γ{R2}(G′) = γ{R2}(G) + 2k + t. �

Proposition 2.9. Let G be a graph and let x ∈ V (G) be a leaf adjacent to a support vertex u of degree 3 and
Lu = {x, y}. If G′ is the graph obtained from G by adding a pendant path xa, then γ{R2}(G′) = γ{R2}(G) + 1
and i{R2}(G′) = i{R2}(G) + 1.

Proof. Let f be a i{R2}(G)-function (resp. γ{R2}(G)-function). If f(u) ≥ 1, then clearly f(u) = 2, f(x) = 0 and
f can be extended to an IR{2}DF (resp. R{2}DF) of G′ by assigning a 1 to a, and if f(u) = 0, then clearly
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f(x) = 1 and f can be extended to an IR{2}DF (resp. R{2}DF) of G′ by assigning a 0 to a and reassigning a
2 to x, yielding γ{R2}(G′) ≤ γ{R2}(G) + 1 and i{R2}(G′) ≤ i{R2}(G) + 1.

Now, let g be an i{R2}(G′)-function (resp. γ{R2}(G′)-function). If g(u) ≥ 1, then clearly g(x) = 0, g(a) = 1 and
the function g, restricted to G is an IR{2}DF (resp. R{2}DF) of G, and if g(u) = 0, then g(y) = 1 and we may
assume that g(x) = 2 and the function h : V (G)→ {0, 1, 2} defined by h(x) = 1 and h(w) = g(w) otherwise, is
an IR{2}DF (resp. R{2}DF) of G. Both cases leads to γ{R2}(G′) ≥ γ{R2}(G) + 1 and i{R2}(G′) ≥ i{R2}(G) + 1.
Thus γ{R2}(G′) = γ{R2}(G) + 1 and i{R2}(G′) = i{R2}(G) + 1 as desired. �

Proposition 2.10. Let G be a graph and let v ∈ V (G) be adjacent to two leaves x1, x2. If G′ is the graph
obtained from G by adding a path abc and joining v to a, then γ{R2}(G′) = γ{R2}(G) + 2 and i{R2}(G′) =
i{R2}(G) + 2.

Proof. Clearly, any γ{R2}(G)-function (resp. i{R2}(G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G′ by assigning a 0 to a, c and a 2 to b and so γ{R2}(G′) ≤ γ{R2}(G) + 2 and i{R2}(G′) ≤ i{R2}(G) + 2. On
the other hand, if f is a γ{R2}(G′)-function (resp. i{R2}(G′)-function), then obviously f(v) + f(x1) + f(x2) ≥ 2
and f(a) + f(b) + f(c) ≥ 2, and the function f , restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight
γ{R2}(G′)− 2 (resp. i{R2}(G′)− 2) implying that γ{R2}(G′) ≥ γ{R2}(G) + 2 and i{R2}(G′) ≥ i{R2}(G) + 2. Thus
γ{R2}(G′) = γ{R2}(G) + 2 and i{R2}(G′) = i{R2}(G) + 2. �

The proof of next result is similar to the proof of Proposition 2.6 and therefore omitted.

Proposition 2.11. Let G be a graph and let v ∈ V (G) be adjacent to the center z of a star K1,s (s = 1, 2). If
G′ is the graph obtained from G by adding a path abc and joining v to a, then γ{R2}(G′) = γ{R2}(G) + 2 and
i{R2}(G′) = i{R2}(G) + 2.

3. Trees T with γ{R2}(T ) = i{R2}(T )

In this section we give a constructive characterization of all trees with equal Roman {2}-domination number
and independent Roman {2}-domination number. For a tree T , let

W (T ) = {u ∈ V (T ) | there exists an i{R2}(T )− function f with f(u) ≥ 1}

and
W1(T ) = {u ∈ V (T ) | there exists an i{R2}(T )− function f with f(u) = 2}.

In order to present our constructive characterization, we define a family of trees as follows. Let T be the family
of trees T that can be obtained from a sequence T1, T2, . . ., Tk of trees for some k ≥ 1, where T1 ∈ {P1, P2, P3, P4}
and T = Tk. If k ≥ 2, Ti+1 can be obtained from Ti by one of the following operations.

Operation O1: If x ∈ V (Ti), then O1 adds a star K1,3 centered at c with V (K1,3) = {c, c1, c2, c3} and joins x
to c1 to obtain Ti+1 (see Fig. 2(a)).

Operation O2: If x ∈ V (Ti), then O2 adds a graph H2 with a special vertex a and an edge xa to obtain Ti+1

(see Fig. 2(b)).
Operation O3: If x ∈ V (Ti) is adjacent to either two leaves x1, x2 or the center x3 of a star K1,s (s = 1, 2),

then O3 adds a path bac and joins x to a to obtain Ti+1 (see Fig. 2(c)).
Operation O4: If x ∈W (Ti) and x is adjacent to two leaves d, e or there is a path xyz in T such that deg(y) = 2

and deg(z) = 1, then O4 adds a pendent path ab and joins x to a to obtain Ti+1 (see Fig. 2(d)).
Operation O5: If x ∈ V (Ti) is adjacent to either two leaves x1, x2 or the center x3 of a star K1,s (s = 1, 2),

then O5 adds a path abc and joins x to a to obtain Ti+1 (see Fig. 2(e)).
Operation O6: If x ∈ V (Ti), then O6 adds a graph D(k,t) with a special vertex a and an edge xa to obtain

Ti+1, where k + t ≥ 2, t ≤ 1 (see Fig. 2(f)).
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Figure 2. The operations Oi(i ∈ {1, 2, . . . , 9}).

Operation O7: If x ∈ V (Ti) is a leaf adjacent to a support vertex u of degree 3 and Lu = {x, y}, then O7 adds
a vertex a and joins a to x to obtain Ti+1 (see Fig. 2(g)).

Operation O8: If x ∈ W1(Ti) and there are at least two leaves adjacent to x, then O8 adds a vertex a and an
edge ax to obtain Ti+1 (see Fig. 2(h)).

Operation O9: If x ∈ V (Ti) is a leaf and there is a path x2x1x in Ti such that deg(x1) = 2, then O9 adds a
path ab and joins x to a to obtain Ti+1 (see Fig. 2(i)).

The next result follows immediately from Proposition 2.4.

Lemma 3.1. If Ti is a tree with γ{R2}(Ti) = i{R2}(Ti) and Ti+1 is a tree obtained from Ti by Operation O1,
then γ{R2}(Ti+1) = i{R2}(Ti+1).

The next result is immediate from Proposition 2.7.

Lemma 3.2. If Ti is a tree with γ{R2}(Ti) = i{R2}(Ti) and Ti+1 is a tree obtained from Ti by Operation O2,
then γ{R2}(Ti+1) = i{R2}(Ti+1).

The next result follows immediately from Propositions 2.5 ad 2.6.

Lemma 3.3. If Ti is a tree with γ{R2}(Ti) = i{R2}(Ti) and Ti+1 is a tree obtained from Ti by Operation O3,
then γ{R2}(Ti+1) = i{R2}(Ti+1).

Lemma 3.4. Let Ti be a tree and Ti+1 be a graph obtained from Ti by Operation O4. Then γ{R2}(Ti+1) =
γ{R2}(Ti) + 1. Furthermore, if γ{R2}(Ti) = i{R2}(Ti), then γ{R2}(Ti+1) = i{R2}(Ti+1).

Proof. Let f be a γ{R2}(Ti)-function. Since |Lx| ≥ 2 or there is a pendant path xyz, we may assume without
loss of generality that f(x) ≥ 1. Then, f can be extended to an R{2}DF of Ti+1 by assigning a 0 to a and
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a 1 to b. Hence, γ{R2}(Ti+1) ≤ γ{R2}(Ti) + 1. On the other hand, if h is a γ{R2}(Ti+1)-function, then clearly
h(x) ≥ 1 and hence h(a) = 0 and h(b) = 1. Then the function h restricted to Ti is an R{2}DF of Ti yielding
γ{R2}(Ti+1) ≥ γ{R2}(Ti) + 1. Consequently,

γ{R2}(Ti+1) = γ{R2}(Ti) + 1. (2)

Now let γ{R2}(Ti) = i{R2}(Ti). Since x ∈W (Ti), there exists an i{R2}(Ti)-function g of Ti such that g(x) ≥ 1.
As above, g can be extended to an IR{2}DF of Ti+1 by assigning a 0 to a and a 1 to b and this implies that
i{R2}(Ti+1) ≤ i{R2}(Ti) + 1. It follows from γ{R2}(Ti) = i{R2}(Ti) and (2) that i{R2}(Ti+1) ≤ i{R2}(Ti) + 1 =
γ{R2}(Ti) + 1 = γ{R2}(Ti+1). Now the result follows from (1). �

The next result follows immediately from Propositions 2.10 and 2.11.

Lemma 3.5. If Ti is a tree with γ{R2}(Ti) = i{R2}(Ti) and Ti+1 is a tree obtained from Ti by Operation O5,
then γ{R2}(Ti+1) = i{R2}(Ti+1).

The next result is immediate by Proposition 2.8.

Lemma 3.6. If Ti is a tree with γ{R2}(Ti) = i{R2}(Ti) and Ti+1 is a tree obtained from Ti by Operation O6,
then γ{R2}(Ti+1) = i{R2}(Ti+1).

The next result is immediate by Proposition 2.9.

Lemma 3.7. If Ti is a tree with γ{R2}(Ti) = i{R2}(Ti) and Ti+1 is a tree obtained from Ti by Operation O7,
then γ{R2}(Ti+1) = i{R2}(Ti+1).

Lemma 3.8. Let Ti be a tree and Ti+1 be a graph obtained from Ti by Operation O8, then γ{R2}(Ti+1) =
γ{R2}(Ti). Furthermore, if γ{R2}(Ti) = i{R2}(Ti), then γ{R2}(Ti+1) = i{R2}(Ti+1).

Proof. Let f be a γ{R2}(Ti)-function. Since x is adjacent to at least two leaves in Ti, w.l.o.g., we can assume
that f(x) = 2. Hence, f can be extended to an R{2}DF of Ti+1 by assigning 0 to a, which implies that
γ{R2}(Ti+1) ≤ w(f) = γ{R2}(Ti). Conversely, let h be a γ{R2}(Ti+1)-function. Then we have h(x) = 2 and h|Ti

is an R{2}DF of Ti. Consequently, we have

γ{R2}(Ti+1) = γ{R2}(Ti). (3)

Now we show that γ{R2}(Ti+1) = i{R2}(Ti+1). Since x ∈ W1(Ti), there exists an i{R2}(Ti)-function f ′ of Ti
such that f ′(x) = 2. Clearly, f ′ can be extended to an IR{2}DF of Ti+1 by assigning 0 to a, which implies that
i{R2}(Ti+1) ≤ i{R2}(Ti). Since γ{R2}(Ti) = i{R2}(Ti), by (3) we have i{R2}(Ti+1) ≤ i{R2}(Ti) = γ{R2}(Ti) =
γ{R2}(Ti+1). Hence, γ{R2}(Ti+1) = i{R2}(Ti+1). �

Lemma 3.9. Let Ti be a tree and Ti+1 be a graph obtained from Ti by Operation O9, then γ{R2}(Ti+1) =
γ{R2}(Ti) + 1. Furthermore, if γ{R2}(Ti) = i{R2}(Ti), then γ{R2}(Ti+1) = i{R2}(Ti+1).

Proof. Let f be a γ{R2}(Ti)-function. We may assume without loss of generality that f(x1) = 0, f(x2) ≥ 1 and
f(x) = 1. Then f can be extended to an R{2}DF of Ti+1 by assigning a 0 to a and a 1 to b and so γ{R2}(Ti+1) ≤
γ{R2}(Ti) + 1. Conversely, let h be a γ{R2}(Ti+1)-function. W.l.o.g., we may assume that h(a) = 0, h(x) ≥ 1
and h(b) = 1. Then, the function h, restricted to Ti is an R{2}DF of Ti yielding γ{R2}(Ti+1) ≥ γ{R2}(Ti) + 1.
Consequently, we have

γ{R2}(Ti+1) = γ{R2}(Ti) + 1. (4)

Let γ{R2}(Ti) = i{R2}(Ti). If Ti has an i{R2}(Ti)-function f ′ such that f ′(x) 6= 0, then f ′ can be extended
to an IR{2}DF of Ti+1 by assigning a 1 to b and a 0 to a yielding i{R2}(Ti+1) ≤ i{R2}(Ti) + 1. Suppose for
any i{R2}(Ti)-function f ′, we have f ′(x) = 0. Then f ′(x1) = 2 and f ′(x2) = 0. Moreover, x2 has a neighbor
x3 different from x1 such that f ′(x3) 6= 0. Define g : V (Ti+1) → {0, 1, 2} by g(a) = 2, g(b) = 0, g(x1) = 1
and g(v) = f ′(v) for v ∈ V (Ti) − {x1}. Clearly, g is an IR{2}DF of Ti+1 with weight i{R2}(Ti) + 1 and so
i{R2}(Ti+1) ≤ i{R2}(Ti) + 1. Applying γ{R2}(Ti) = i{R2}(Ti) and (4), we have i{R2}(Ti+1) ≤ i{R2}(Ti) + 1 =
γ{R2}(Ti) + 1 = γ{R2}(Ti+1) ≤ i{R2}(Ti+1). Hence, γ{R2}(Ti+1) = i{R2}(Ti+1). �
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Theorem 3.10. Let T be a tree of order n. Then γ{R2}(T ) = i{R2}(T ) if and only if T ∈ T .

Proof. We first show that if T ∈ T is a tree, then γ{R2}(T ) = i{R2}(T ). Let T ∈ T . By the definition of T ,
we know that there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1) such that T1 ∈ {P1, P2, P3, P4}, Tk = T
and if k ≥ 2, then Ti+1 can be obtained from Ti by one of the Operations Oi (i ∈ {1, 2, . . . , 9}). We proceed
by induction on k. If k = 1, then the result is trivial. Assume the result holds for each tree T ∈ T which can
be obtained from a sequence of operations of length k − 1 and let T ′ = Tk−1. By the induction hypothesis,
γ{R2}(T ′) = i{R2}(T ′). Since T = Tk is obtained by one of the Operations Oi(i ∈ {1, 2, . . . , 9}) from T ′, we
conclude from the Lemmas 3.1 to 3.9 that γ{R2}(T ) = i{R2}(T ).

Now, we prove the necessity. The proof is by induction on n. If n ≤ 3, then T ∈ {P1, P2, P3} and the result is
true. Suppose n ≥ 4 and that the statement holds for all trees of order less than n. Let T be a tree of order n
with γ{R2}(T ) = i{R2}(T ) and let f be an i{R2}-function of T . If there exists a vertex v ∈ V (T ) with |Lv| ≥ 3,
then let T ′ = T − u where u ∈ Lv. By Observation 2.3, we have γ{R2}(T ′) = i{R2}(T ′) and v ∈ W1(T ). It
follows from the induction hypothesis that T ′ ∈ T . Now, T can be obtained from T ′ by Operation O8 yielding
T ∈ T . Assume that each vertex of T has at most 2 leaf neighbors. Hence T is not a star and so diam(T ) ≥ 3.
If diam(T ) = 3, then T is a double star DSp,q for some q ≥ p ≥ 1, and since each vertex of T has at most 2
leaf neighbors, we conclude that T ∈ {P4, DS1,2, DS2,2}. Obviously T = P4 ∈ T . If T = DS1,2, the T can be
obtained from P1 by Operation O1, if T = DS2,2, then T can be obtained from P3 by Operation O3 and so
T ∈ T . Assume that diam(T ) ≥ 4.

Let P = u1u2 . . . uk be a diametrical path of T such that dT (u2) is as large as possible. Among these paths,
choose one so that dT (u3) is as large as possible. Let Lu2 = {v1, . . . , vdegT (u2)−1} where u1 = v1. Note that
2 ≤ degT (u2) ≤ 3. We consider the following cases.
Case 1. degT (u2) = 3.

If degT (u3) = 2, then it follows from Proposition 2.4 and the fact γ{R2}(T ) = i{R2}(T ) that γ{R2}(T −Tu3) =
i{R2}(T − Tu3). By the induction hypothesis, we have T − Tu3 ∈ T and T can be obtained from T − Tu3 by
Operation O1 implying that T ∈ T . Assume that degT (u3) ≥ 3. If u3 is a strong support vertex or is adjacent to
the center of a star K1,s (s = 1, 2), then we conclude from Propositions 2.5 and 2.6 and the induction hypothesis
that T − Tu2 ∈ T . Now, T can be obtained from T − Tu2 by Operation O3 and hence T ∈ T . Henceforth, we
assume u3 is adjacent to at most one leaf and that u3 has no child with depth one but u2. We deduce from
these assumption and the fact d(u3) ≥ 3 that d(u3) = 3 and u3 has a child x1 with depth 0. Let T ′ = T − Tu3 .
We conclude from Proposition 2.7 and the induction hypothesis that T ′ ∈ T . Now, T can be obtained from T ′

by Operation O2 and hence T ∈ T .
Case 2. degT (u2) = 2 and d(u3) ≥ 4.

By the choice of diametrical path, we may assume that any child of u3 with depth one has degree 2. We
consider the following subcases.

Subcase 2.1. u3 has a child y2 with depth one.
Let u3y2y1 be a path in T and let T ′ = T − Tu2 . If f(u3) = 0, then we have f(u2) + f(u1) ≥ 2 and

f(y2) + f(y1) ≥ 2, and the function g : V (T ) → {0, 1, 2} defined by g(u3) = 1, g(u2) = g(y2) = 0, g(u1) =
g(y1) = 1 and g(x) = f(x) otherwise, is an R{2}DF of T of weight less than ω(f) contradicting the assumption
γ{R2}(T ) = i{R2}(T ). Hence f(u3) ≥ 1. It follows that f(u2) = 0 and f(u1) = 1. Thus the function f , restricted
to T ′ is an IR{2}DF of T ′ of weight i{R2}(T )− 1 and so i{R2}(T ) ≥ i{R2}(T ′) + 1. On the other hand, as in the
proof of Lemma 3.4, we have γ{R2}(T ) = γ{R2}(T ′) + 1. Now the following inequality chain

γ{R2}(T ) = i{R2}(T ) ≥ i{R2}(T ′) + 1 ≥ γ{R2}(T ′) + 1 = γ{R2}(T )

leads to γ{R2}(T ′) = i{R2}(T ′) and that the function f |T ′ is an i{R2}(T ′)-function with f(u3) ≥ 1 and so
u3 ∈ W (T ′). By the induction hypothesis, we have T ′ ∈ T . Now T can be obtained from T ′ by Operation O4

and so T ∈ T .
Subcase 2.2. |Lu3 | ≥ 2.
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Let x1, x2 ∈ Lu3 and let T ′ = T−Tu2 . If f(u3) = 0, then we have f(u2)+f(u1) ≥ 2 and f(x1) = f(x2) = 1, and
the function g : V (T ) → {0, 1, 2} defined by g(u3) = 2, g(u2) = g(x1) = g(x2) = 0, g(u1) = 1 and g(x) = f(x)
otherwise, is an R{2}DF of T of weight less than ω(f) contradicting the assumption γ{R2}(T ) = i{R2}(T ). Hence
f(u3) ≥ 1. Now, as in Subcase 2.1, we can see that T ∈ T .
Case 3. degT (u2) = 2 and degT (u3) = 3.

By the choice of diametrical path, we may assume that any child of u3 with depth one has degree 2. If u3

has a child y2 different from u2, with depth one, then as in Subcase 2.1, we can see that T ∈ T . Assume that
u2 is the only child of u3 with depth one. Since degT (u3) = 3, we deuce that u3 is adjacent to a leaf, say w.
Let T ′ = T − u1. We conclude from Proposition 2.9 and the induction hypothesis that T ′ ∈ T . Now T can be
obtained from T ′ by Operation O7 and so T ∈ T .
Case 4. d(u2) = d(u3) = 2 and d(u4) ≥ 3.

By the choice of diametrical path, for any path u4y3y2y1 in T where y3 ∈ C(u4), we have deg(y3) = deg(y2) =
2. If u4 is a strong support vertex or is adjacent to the center of a star K1,s (s = 1, 2), then we conclude from
Propositions 2.10 and 2.11 and the induction hypothesis that T−Tu3 ∈ T . Now, T can be obtained from T−Tu3

by Operation O5 and hence T ∈ T . Henceforth, we assume u4 is adjacent to at most one leaf and that u4 has no
child with depth one. This implies that Tu4 = D(k,t) where t ≤ 1 and k+ t ≥ 2. Let T ′ = T − Tu4 . We conclude
from Proposition 2.8 and the induction hypothesis that T ′ ∈ T . Now, T can be obtained from T ′ by Operation
O6 and hence T ∈ T .
Case 5. d(u2) = d(u3) = d(u4) = 2.

Let T ′ = T − {u1, u2}. By Lemma 3.9, we have γ{R2}(T ) = γ{R2}(T ′) + 1. We show that i{R2}(T ′) ≤
i{R2}(T ) − 1. If f(u3) ≥ 1, then f(u2) = 0, f(u1) = 1 and the function f |T ′ is an IR{2}DF of T ′ yielding
i{R2}(T ′) ≤ i{R2}(T ) − 1. Suppose f(u3) = 0. Then f(u1) + f(u2) = 2 and we may assume that f(u1) = 0
and f(u2) = 2. If f(u4) = 2, then f(u5) = 0 and the function g : V (T ) → {0, 1, 2} defined by g(u1) =
g(u3) = g(u5) = 1, g(u2) = g(u4) = 0 and g(v) = f(v) for v ∈ V (T ) − {u1, u2, u3, u4, u5}, is an R{2}DF of
T with weight i{R2}(T ) − 1 = γ{R2}(T ) − 1 which is a contradiction. Hence, f(u4) ≤ 1. If f(u4) = 0, then
define h : V (T ′) → {0, 1, 2} by h(u3) = 1 and h(v) = f(v) for v V (T ′) − {u3}, and if h(u4) = 1, then define
h : V (T ′)→ {0, 1, 2} by h(u4) = 2 and h(v) = f(v) for v V (T ′)−{u4}. Clearly, h is an IR{2}DF of T ′ of weight
i{R2}(T )− 1, implying that i{R2}(T ′) ≤ i{R2}(T )− 1. We deduce from

i{R2}(T ′) ≤ i{R2}(T )− 1 = γ{R2}(T )− 1 = γ{R2}(T ′) ≤ i{R2}(T ′)

that γ{R2}(T ′) = i{R2}(T ′). It follows from the induction hypothesis on T ′ that T ′ ∈ T . Now, T can be obtained
from T ′ by Operation O9 and hence T ∈ T . This completes the proof. �

4. A linear algorithm for computing i{R2}(T ) for any tree T

To present a linear algorithm, we will use the following notations. For a graph G and a vertex v ∈ V (G), we
denote G+ uw the graph obtained from G by adding pendant edge uw. Now, we define

i0{R2}(G, u) = min{w(f) : f is an IR{2}DF of G with f(u) = 0},

i1{R2}(G, u) = min{w(f) : f is an IR{2}DF of G with f(u) = 1},

i2{R2}(G, u) = min{w(f) : f is an IR{2}DF of G with f(u) = 2},

i00{R2}(G, u) = min{w(f) : f is an IR{2}DF of G− u},

i01{R2}(G, u) = min{w(f)− 1 : f is an IR{2}DF of G+ uw with f(u) = 0 and f(w) = 1},

i02{R2}(G, u) = min{w(f)− 2 : f is an IR{2}DF of G+ uw with f(u) = 0 and f(w) = 2}.

The following results are trivial.
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Observation 4.1. For any graph G with a specific vertex u, we have

i{R2}(G) = min{i0{R2}(G, u), i1{R2}(G, u), i2{R2}(G, u)}.

Observation 4.2. i00{R2}(G, u) ≤ i01{R2}(G, u).

Observation 4.3. i00{R2}(G, u) = i02{R2}(G, u).

Proof. Let f be an IR{2}DF of G + uw for which f(u) = 0 and f(w) = 2 with minimum weight. Then f |G−u
is an IR{2}DF of G− u and so i02{R2}(G, u) ≥ i00{R2}(G, u).

On the other hand, any iR2(G− u) can be extended to an IR{2}DF of G+ uw by assigning a 2 to w and a
0 to u and hence i00{R2}(G, u) ≥ i02{R2}(G, u). Therefore, we have i00{R2}(G, u) = i02{R2}(G, u). �

Theorem 4.4. Suppose G and H are two disjoint graphs with specific vertices u and v, respectively. Let I be
the graph obtained by adding the edge uv to G ∪H. Consider u as the specific vertex of I. Then the following
statements hold.

(i) i0{R2}(I, u) = min{i0{R2}(G, u) + i0{R2}(H, v), i01{R2}(G, u) + i1{R2}(H, v), i00{R2}(G, u) + i2{R2}(H, v)};
(ii) i1{R2}(I, u) = i1{R2}(G, u) + i01{R2}(H, v);

(iii) i2{R2}(I, u) = i2{R2}(G, u) + i00{R2}(H, v);
(iv) i00{R2}(I, u) = i00{R2}(G, u) + i{R2}(H) = i00{R2}(G, u) + min{i0{R2}(H, v), i1{R2}(H, v), i2{R2}(H, v)};
(v) i01{R2}(I, u) = min{i01{R2}(G, u) + i0{R2}(H, v), i00{R2}(G, u) + i1{R2}(H, v), i00{R2}(G, u) + i2{R2}(H, v)}.

Proof. (i) Let f be an I{R2}DF of I such that f(u) = 0 and w(f) = i0{R2}(I, u). If f(v) = 0, then f |G
is an I{R2}DF of G with f |G(u) = 0 and f |H is an I{R2}DF of H with f |H(v) = 0. Hence, we have
i0{R2}(I, u) ≥ i0{R2}(G, u) + i0{R2}(H, v). If f(v) = 1, then f |G+uv is an I{R2}DF of G+ uv with f |G+uv(u) = 0
and f |G+uv(v) = 1, and f |H is an I{R2}DF of H with f |H(v) = 1. Hence, we have i0{R2}(I, u) = w(f |G+uv)−
1 +w(f |H) ≥ i01{R2}(G, u) + i1{R2}(H, v). If f(v) = 2, then f |G+uv is an I{R2}DF of G+ uv with f |G+uv(u) = 0
and f |G+uv(v) = 2, and f |H is an I{R2}DF of H with f |H(v) = 2. Hence, we have i0{R2}(I, u) = w(f |G+uv)−
2 + w(f |H) ≥ i02{R2}(G, u) + i2{R2}(H, v). By Observation 4.3, i0{R2}(I, u) ≥ i00{R2}(G, u) + i2{R2}(H, v). Thus

i0{R2}(I, u) ≥ min{i0{R2}(G, u) + i0{R2}(H, v), i01{R2}(G, u) + i1{R2}(H, v), i00{R2}(G, u) + i2{R2}(H, v)}. (5)

Now we prove the inverse inequality. Since any I{R2}DF g of G with g(u) = 0 and any I{R2}DF h of H
with h(v) = 0 can form an I{R2}DF f ′ of I with f ′(u) = 0, we have i0{R2}(G, u) + i0{R2}(H, v) ≥ i0{R2}(I, u).
Also, any I{R2}DF g of G+ uv with g(u) = 0 and g(v) = 1 and any I{R2}DF h of H with h(v) = 1 can form
an I{R2}DF f ′ of I such that f ′(u) = 0 yielding i01{R2}(G, u) + i1{R2}(H, v) ≥ i0{R2}(I, u). Similarly, we can see
that i00{R2}(G, u) + i2{R2}(H, v) = i02{R2}(G, u) + i2{R2}(H, v) ≥ i0{R2}(I, u). Therefore

i0{R2}(I, u) ≤ min {i0{R2}(G, u) + i0{R2}(H, v), i01{R2}(G, u) + i1{R2}(H, v),

i00{R2}(G, u) + i2{R2}(H, v)}. (6)

Now

(i) follows from (5) and (6).
(ii) It follows from the fact that f is an IR{2}DF of I with f(u) = 1 if and only if f = g ∪ h, where g is an

IR{2}DF of G with g(u) = 1 and h is an IR{2}DF of H + vu with h(v) = 0 and h(u) = 1.
(iii) Note that f is an IR{2}DF of I with f(u) = 2 if and only if f = g ∪ h, where g is an IR{2}DF of G with

g(u) = 2 and h is an IR{2}DF of H + vu with h(v) = 0 and h(u) = 2. Using this and Observation 4.3, the
result follows.
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(iv) It follows from the fact that f is an IR{2}DF of I − u if and only if f = g ∪ h, where g is an IR{2}DF of
G− u and h is an IR{2}DF of H.

(v) Let f be an I{R2}DF of I + uw such that f(u) = 0, f(w) = 1 and w(f) = i01{R2}(I, u), where uw is the
pendant edge added at u. If f(v) = 0, then f |G+uw is an I{R2}DF of G+ uw with f |G+uw(u) = 0 and
f |G+uw(w) = 1, and f |H is an I{R2}DF of H with f |H(v) = 0. Hence, we have i01{R2}(I, u) = w(f) − 1 =
w(f |G+uw)− 1 +w(f |H) ≥ i01{R2}(G, u) + i0{R2}(H, v). If f(v) = 1, then f |G−u is an I{R2}DF of G− u and
f |H is an I{R2}DF of H with f |H(v) = 1. Hence, we have i01{R2}(I, u) = w(f)− 1 = w(f |G−u) + w(f |H) ≥
i00{R2}(G, u) + i1{R2}(H, v). If f(v) = 2, then f |G−u is an I{R2}DF of G − u and f |H is an I{R2}DF of H
with f |H(v) = 2. Hence, we have i0{R2}(I, u) = w(f)− 1 = w(f |G−u) + w(f |H) ≥ i00{R2}(G, u) + i2{R2}(H, v).
Hence

i01{R2}(I, u) ≥ min {i01{R2}(G, u) + i0{R2}(H, v), i00{R2}(G, u) + i1{R2}(H, v),

i00{R2}(G, u) + i2{R2}(H, v)}. (7)

Now we prove the inverse inequality. Since combining any I{R2}DF g of G + uw with g(u) = 0 and
g(w) = 1 and any I{R2}DF h of H with h(v) = 0 can form an I{R2}DF f ′ of I + uw with f ′(u) = 0 and
f ′(w) = 1, we have i01{R2}(G, u) + i0{R2}(H, v) ≥ i01{R2}(I, u). Also, any I{R2}DF g of G−u and any I{R2}DF
h of H with h(v) = 1 can be extended to an I{R2}DF f ′ of I + uw by setting f ′(u) = 0 and f ′(w) = 1,
and so i00{R2}(G, u) + i1{R2}(H, v) ≥ i01{R2}(I, u) Finally, any I{R2}DF g of G − u and any I{R2}DF h of
H with h(v) = 2 can be extended to an I{R2}DF f ′ of I by setting f ′(u) = 0 and f ′(w) = 1, and hence
i00{R2}(G, u) + i2{R2}(H, v) ≥ i01{R2}(I, u). Consequently,

i01{R2}(I, u) ≤ min {i01{R2}(G, u) + i0{R2}(H, v),

i00{R2}(G, u) + i1{R2}(H, v),

i00{R2}(G, u) + i2{R2}(H, v)}, (8)

and (v) follows from (7) and (8).

�

If the vertices of a tree T have an ordering [v1, v2, . . . , vn] such that vi is a leaf of Ti=T [{vi, vi+1, . . . , vn}] for
1 ≤ i ≤ n − 1, then [v1, v2, . . . , vn] is called a tree ordering of T , where the only neighbor vj of vi with j > i
is called the parent of vi. Lemma 4.1 and Theorem 4.4 give the following dynamic programming algorithm for
computing i{R2}(T ) for any tree T .

Algorithm i{R2} Domination
Input: A tree T with a tree ordering [v1, v2, . . . , vn] .
Output: the independent Roman {2}-domination number i{R2}(T ) of T .
begin

for i = 1 to n do
i00{R2}(vi)← 0;
i0{R2}(vi)←∞;
i01{R2}(vi)←∞;
i1{R2}(vi)← 1;
i2{R2}(vi)← 2;

end for
for i = 1 to n− 1 do

let vj be the parent of vi;
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i{R2}(vi) = min{i0{R2}(vi), i
1
{R2}(vi), i

2
{R2}(vi)}

i0{R2}(vj) = min{i0{R2}(vj) + i0{R2}(vi), i
01
{R2}(vj) + i1{R2}(vi), i

00
{R2}(vj) + i2{R2}(vi)}}.

i1{R2}(vj) = i1{R2}(vj) + i01{R2}(vi)
i2{R2}(vj) = i2{R2}(vj) + i00{R2}(vi)
i01{R2}(vj) = min{i01{R2}(vj) + i0{R2}(vi), i

00
{R2}(vj) + i1{R2}(vi), i

00
{R2}(vj) + i2{R2}(vi)}

i00{R2}(vi) = i00{R2}(vj) + min{i0{R2}(vi), i
1
{R2}(vi), i

2
{R2}(vi)}

end for
return i{R2}(vn);

end.
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