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TREES WITH EQUAL ROMAN {2}-DOMINATION NUMBER AND
INDEPENDENT ROMAN {2}-DOMINATION NUMBER

Pu Wu!l, ZEPENG L1%, ZEHUI SHAO'** AND SEYED MAHMOUD SHEIKHOLESLAMI?

Abstract. A Roman {2}-dominating function (R{2}DF) on a graph G = (V, E) is a function f: V —
{0,1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to either at least
one vertex v with f(v) = 2 or two vertices v1,v2 with f(v1) = f(v2) = 1. The weight of an R{2}DF f
is the value w(f) = 3, f(u). The minimum weight of an R{2}DF on a graph G is called the Roman
{2}-domination number 7{ g2} (G) of G. An R{2}DF f is called an independent Roman {2}-dominating
function (IR{2}DF) if the set of vertices with positive weight under f is independent. The minimum
weight of an IR{2}DF on a graph G is called the independent Roman {2}-domination number i g2} (G)
of G. In this paper, we answer two questions posed by Rahmouni and Chellali.
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1. INTRODUCTION

In this paper, we consider only graphs without multiple edges or loops. Let G be a graph with vertex set
V(G) and edge set E(G). For a subset S C V(G) and a vertex v € V(G), the open neighborhood of v in S is
the set Ng(v) = {uluv € E(G) and u € S}. The closed neighborhood of v in S is the set Ng[v] = {v} U Ng(v).
If S = V(G), then Ng(v) and Ng[v] are denoted by N(v) and N[v], respectively. Let S C V(G), we write
Ng(S) = UzesNg(x). The degree of v is d(v) = |N(v)]. We will omit the subscript G, that is to say, Ng(T') is
denoted by N(T'). The distance between two vertices u and v in a connected graph G is the length of a shortest
uv-path in G. The diameter of G, denoted by diam(G), is the maximum value among minimum distances
between all pairs of vertices of G. For a vertex v in a rooted tree T, let C(v) and D(v) denote the set of
children and descendants of v, respectively and let D[v] = D(v) U {v}. Also, the depth of v, depth(v), is the
largest distance from v to a vertex in D(v). The mazimal subtree at v is the subtree of T' induced by D[v], and
is denoted by T;,. We write P, for the path of order n. A double star DS, , is a tree containing exactly two
non-pendant vertices which one is adjacent to p leaves and the other is adjacent to ¢ leaves.
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A function f: V(G) — {0, 1,2} is a Roman dominating function (RDF) on G if every vertex u € V for which
f(u) = 0is adjacent to at least one vertex v for which f(v) = 2. The weight of an Roman dominating function
[ is the value f(V(G)) = >_,cv(q) f(u). Roman domination was introduced and studied in [7] and later it was
extensively studied in the literature [1-5,8, 14, 15].

A Roman {2}-dominating function (R{2}DF) on a graph G = (V, E) is a function f : V' — {0, 1,2} satisfying
the condition that every vertex u for which f(u) = 0 is adjacent to either at least one vertex v for which f(v) = 2
or two neighbors vy, v having f(vi) = f(ve) = 1. The weight of an R{2}DF f is the value w(f) = > oy f(u).
An R{2}DF f is called an independent Roman {2}-dominating function (IR{2}DF) if the set of vertices with
positive weight is independent. The minimum weight of an R{2}DF (resp. IR{2}DF) on a graph G is called the
Roman {2}-domination number v;r2)(G) (resp. independent Roman {2}-domination number ifgoy(G) ) of G.
An R{2}DF (resp. IR{2}DF) f is called a v(poy(G)-function (an ifpsy(G)-function) if w(f) = v{r2}(G) (resp.
w(f) = itr2)(G)). By the definition of independent Roman {2}-domination, we have

Yir2} (G) <ifray (G). (1)

The concept of Roman {2}-domination was introduced in [6] and investigated in [11] and independent Ro-
man {2}-domination was studied in [13], in which bounds involving independent 2-rainbow domination and
independent Roman domination numbers are investigated, and the decision version of the independent Roman
{2}-domination problem was proved to be NP-complete. Moreover, the following open questions are posed.

Question 1.1. Characterize the graphs (or at least the trees) G for which g2y (G) = i{roy (G).
Question 1.2. Can you design a linear algorithm for computing the value of iygoy (T') for any tree 77

In this paper, we first settle the Question 1.1 partially and characterize all trees with equal Roman {2}-
domination number and independent Roman {2}-domination number, and then we answer to Question 1.2 and
give a linear algorithm for computing the value of i{rey(T) for any tree T

2. PRELIMINARY RESULTS
In this section, we present some basic results.

Proposition 2.1. Let H be a subgraph of a graph G. If yigroy(H) = itr2y(H), i{roy(G) < igray(H) + s and
Yir2} (G) > Yir2y(H) + 5 for some non-negative integer s, then ifroy(G) = v{roy (G).

Proof. We deduce from the assumptions and (1) that
i{r2}(G) Z V{r2y (G) = Yir2y(H) + 5 = igroy (H) + 5 = i{p2}(G)
that this leads to the desired result. ]

Proposition 2.2. Let H be a subgraph of a graph G. If v{roy(G) = i{ray(G), igr2}(G) > igrey(H) + s and
Yr2} (G) < Yir2y(H) + 5 for some non-negative integer s, then yygoy(H) = ifroy(H).

Proof. By (1) and the assumptions, we obtain
itr2y(G) = Y(r2y (G) < Yr2y(H) + 8 <ifroy(H) + 5 < igpay(G).
Thus all inequalities in the above chain become equalities and so v{poy (H) = i{goy (H). |

Proposition 2.3. Let G be a graph with vigoy1(G) = ir2)(G). If G has a support vertex v with |L,| > 3 and
u € Ly, then v{poy (G — u) = igpoy (G — u) and there exists a ifpoy (G — w)-function f such that f(v) = 2.
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Proof. Since v is a strong support vertex in G —u, there is a vy ro} (G —u)-function g such that g(v) = 2. Clearly,
g is an R{2}DF of G' and 50 y{r2}(G) < Y{ro} (G —u). Now let f be a ifpey(G)-function. Clearly f(v) # 1. If
f(v) =2, then the function f, restricted to G — u, is an IR{2}DF of G — u yielding i{r2y(G) > ifr2) (G — u). If
f(v) =0, then f(x) > 1 for each z € L, and we may assume that f(u) = 1. Now the function f, restricted to
G — u, is an IR{2}DF of G — u yielding i{rey(G) > ir2) (G — u) 4 1. Thus igroy(G) > ifrey(G —u). As in the
proof of Observation 2.2, we obtain v{poy (G —u) = ifrey (G —u) and i oy (G) = i{gey (G — u) and this implies
that f|g_. is an ifps) (G — u)-function with f(v) = 2. This completes the proof. O

Proposition 2.4. Let G be a graph and v € V(G). If G’ is the graph obtained from G by adding a Ki 3
centered at c with V(K1 3) = {c,c1,c2,c3} and joining v to ci, then v{roy(G') = Y{r2}(G) +2 and ifroy (G') =
itr2y(G) +2.

Proof. Clearly, any v goy (G)-function (resp. i{ oy (G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G’ by assigning a 2 to ¢ and a 0 to c1, ¢z, c3 and 50 Yo} (G') < Yir2} (G) + 2 and ifroy(G') < igpoy(G) + 2.
Now let f be a ifpoy(G’)-function. Obviously f(c) # 1 and f(c) + f(c2) + f(c3) > 2. If f(c) = 2, then
f(e1) = f(ca) = f(ez) = 0 and the function f, restricted to G is an IR{2}DF of G of weight ifp2)(G’) — 2
yielding i{goy(G”) > ifgo2y(G) + 2. Let f(c) = 0. Then we must have f(cz) = f(cz) = 1. If f(c1) = 0, then as
above we have iy} (G’) > igpoy (G) + 2. Let f(c1) > 1. If v has a neighbor w in G with f(w) > 1, then define
g9:V(G) — {0,1,2} by g(w) = min{2, f(w) + 1} and g(z) = f(z) for z € V(G) — {w}, and otherwise define
g:V(G) —{0,1,2} by g(v) =1 and g(z) = f(z) for z € V(G) — {v}. Clearly, g is an IR{2}DF of G of weight
at most i{pro}(G') — 2 and 80 ip2} (G') > i{Rroy(G) + 2. This implies that ifpoy (G') = igrey(G) + 2. Similarly,
we can see that v{roy(G”) = Y{r2y(G) + 2. O

Proposition 2.5. Let G be a graph and let v € V(G) be adjacent to two leaves x1,xo. If G' is the graph
obtained from G by adding a Ky o centered at y with V(K1 2) = {y,y1,y2} and joining v to y, then yip2y(G') =
’Y{RQ}(G> + 2 and i{RQ}(G/) = ’i{RQ}(G> + 2.

Proof. Clearly, any vy goy (G)-function (resp. ifroy (G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G’ by assigning a 0 to y and a 1 to y1,y2 and 50 (g} (G”) < Yir2}(G) +2 and igpoy (G') < ifroy(G) +2. On
the other hand, if f is a v{ g} (G’)-function (resp. i{groy(G’)-function), then obviously f(v) 4 f(x1) + f(22) > 2
and f(y)+ f(y1) + f(y2) > 2, and the function f, restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight
V{r2}(G') = 2 (resp. i{ro}(G') — 2) implying that v{r2}(G') = Y(r2}(G) +2 and i{r2}(G') = i{ra}(G) + 2. This
yields v{ro} (G') = V{r2)(G) + 2 and i{goy (G') = (o} (G) + 2. 0

Proposition 2.6. Let G be a graph and let v € V(G) be adjacent to the center z of a star K1 5 (s = 1,2). If
G’ is the graph obtained from G by adding a K1 o centered at y with V(K12) = {y,y1,y2} and joining v to y,
then ’y{RQ} (G/) = ’}/{RQ}(G) + 2 and Z{RQ}(G/) = Z{RQ}(G) + 2.

Proof. As above, we can se that v{go}(G") < Y(r2}(G) + 2 and g2y (G’) < ifrey(G) + 2. On the other hand,
if fis a y{rey(G’)-function (resp. ifpoy(G”)-function), then obviously f(y) + f(y1) + f(y2) > 2. If f(y) =0
or f(v) > 1, the function f, restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight v{r2}(G’) — 2
(resp. i{proy(G') — 2) implying that v{p2y(G) > Yir2}(G) + 2 and iggoy(G') > igr2}(G) + 2. Assume that
f(y) > 1 and f(v) = 0. To dominate the vertices of K s, we may assume that f(z) = 2. Again, the function
f, restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight g2} (G’) — 2 (resp. ifr2}(G’) — 2) yielding
’}/{RQ}(G/) > V{RQ}(G) + 2 and Z{RQ}(G/) > Z{RQ}(G) + 2. This implies that ’Y{RQ}(G/) = ’Y{RQ}(G) + 2 and
i{r2}(G') = i{r2} (G) + 2. 0

We now define two classes of graphs Hy and Dy, as follows. Let Hy be the tree obtained from K ;, centered
at ¢ by adding a pendant path cab (see Fig. 1(a)), and let Dy, be the tree obtained from K; j centered at a by
subdividing each edge twice (see Fig. 1(b)). The vertex a in Hy (resp. Dy) is called the special vertex of Hy,
(resp. Dy). The graph obtained from Dy by adding ¢ pendant vertices at a is denoted by Dy ).
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(0)

FIGURE 1. (a) the graph Hy; (b) the graph Dj.

Proposition 2.7. Let G be a graph and let v € V(G). If G’ is the graph obtained from G by adding a Hy and
joining v to a, then y{groy(G') = Y(r2}(G) + 3 and ifr2y(G') = ifray(G) + 3.

Proof. Clearly, any vy goy (G)-function (resp. ifroy (G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G’ by assigning a 2 to ¢, a 1 to b and a 0 to the remaining vertices and so Y{r2}(G’) < Y{r2}(G) + 3 and
itr2}(G') < igroy(G) + 3. Now let f be a ifps)(G')-function (resp. v{grey(G’)-function). Obviously f(c) +
fler) + f(e2) > 2 and f(a) + f(b) > 1. If f(a) =0 or f(v) > 1, the function f, restricted to G is an IR{2}DF
(resp. R{2}DF) of G of weight v{r2}(G’) — 3 (resp. ifpo1(G’) — 3) and so Y{r2}(G') > (g2} (G) + 3 and
i{r2}(G") > ir2y(G) + 3. Assume that f(a) > 1 and f(v) = 0. To dominate b, we may assume that f(a) = 2.
If v has a neighbor w in G with f(w) > 1, then define g : V(G) — {0,1,2} by g(w) = min{2, f(w) + 1} and
g(x) = f(x) for x € V(G) — {w}, and otherwise define g : V(G) — {0,1,2} by g(v) = 1 and g(z) = f(z) for
z € V(G)—{v}. Clearly, g is an IR{2}DF (resp. R{2}DF) of G of weight at most v{ro} (G")—3 (resp. i{p2} (G')—3)
and 50 ip2} (G') > ir2y(G) +3 and Y{r2} (G') > g2y (G) + 3. This implies that ifp2y (G') = ifr2}(G) + 3 and
V(r2}(G') = V{r2} (G) + 3. O

Proposition 2.8. Let G be a graph and let v € V(G). If G' is the graph obtained from G by adding a D 4
with special vertex a and joining v to a where k+t > 2 and t < 1, then v{p2y(G') = Yr2}(G) + 2k +t and
i{RQ}(G/) = i{RQ}(G) + 2k + t.

Proof. Clearly, any vy goy (G)-function (resp. ifroy (G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G by assigning a 1 to b;,d; (i =1,...,k) and the leaf adjacent to a, if any, and a 0 to the remaining vertices
implying that v{re}(G") < Yir2} (G)+2k+t and ifpay (G') < igrey(G)+2k+t. Now let f be a igpoy (G')-function
(resp. V{rey(G")-function). Obviously f(b;) + f(c;i) + f(di) > 2 for each i € {1,...,k} and f(a) + f(La) > t.
If f(a) = 0 or f(v) > 1, the function f, restricted to G is an IR{2}DF (resp. R{2}DF) of G of weight
i{RQ}(G/)—Qk—t (resp. ’Y{RQ}(G/)—Zk'—t) and so ’V{RQ}(G/) > 7{32}(G)+2k+t and Z{RQ}(G/) > 7:{32} (G)+2k’+t
Assume that f(a) > 1 and f(v) = 0. Then to dominate the leaf adjacent to a, we may assume have f(a) > 1+t¢.
If v has a neighbor w in G with f(w) > 1, then define g : V(G) — {0,1,2} by g(w) = min{2, f(w) + 1} and
g(x) = f(x) for x € V(G) — {w}, and otherwise define g : V(G) — {0,1,2} by g(v) = 1 and g(z) = f(z) for
z € V(G) — {v}. Clearly, g is an IR{2}DF (resp. R{2}DF) of G of weight at most v{ro}(G’) — 2k —t (resp.
i{RQ}(G/) -2k — t) and so Z{RQ}(G/) > Z{RQ}(G) + 2k 4+t and Y{R2} (G/) > ’}/{RQ}(G) + 2k +t. This implies that

i{RQ} (G/) = i{RQ} (G) + 2]€ +t and ’Y{RQ} (G/) = ’Y{RQ} (G) + 2I€ + t. D

Proposition 2.9. Let G be a graph and let © € V(G) be a leaf adjacent to a support vertex u of degree 3 and
Ly = {z,y}. If G' is the graph obtained from G by adding a pendant path xa, then vir2y(G') = Y{roy(G) + 1
and i{Rg}(G/) = Z{Rg}(G) + 1.

Proof. Let f be a ifpoy(G)-function (resp. v;roy (G)-function). If f(u) > 1, then clearly f(u) =2, f(x) = 0 and
f can be extended to an IR{2}DF (resp. R{2}DF) of G’ by assigning a 1 to a, and if f(u) = 0, then clearly
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f(z) =1 and f can be extended to an IR{2}DF (resp. R{2}DF) of G’ by assigning a 0 to a and reassigning a
2 to x, yielding vy} (G”) < Y(r2}(G) + 1 and ifoy(G') < igpoy(G) + 1.

Now, let g be an ifpay (G')-function (resp. vy goy (G”)-function). If g(u) > 1, then clearly g(z) = 0, g(a) = 1 and
the function g, restricted to G is an IR{2}DF (resp. R{2}DF) of G, and if g(u) = 0, then g(y) = 1 and we may
assume that g(z) = 2 and the function h : V(G) — {0,1,2} defined by h(z) = 1 and h(w) = g(w) otherwise, is
an IR{2}DF (resp. R{2}DF) of G. Both cases leads to v{ro}(G”) > Y{r2}(G) + 1 and ifpoy (G') > i1p2y (G) + 1.
Thus v{r21 (G') = Y(r2}(G) + 1 and igpoy (G') = i{p2y (G) 4 1 as desired. O

Proposition 2.10. Let G be a graph and let v € V(G) be adjacent to two leaves x1,x2. If G' is the graph
obtained from G by adding a path abc and joining v to a, then v{roy(G') = Yr2}(G) + 2 and ifpyy(G') =
i{RQ}(G) + 2.

Proof. Clearly, any 7y goy (G)-function (resp. ifroy (G)-function) can be extended to an R{2}DF (resp. IR{2}DF)
of G’ by assigning a 0 to a,c and a 2 to b and 50 Y2} (G”) < Vg2 (G) + 2 and igpoy(G') < igrey(G) + 2. On
the other hand, if f is a y{go} (G”)-function (resp. ifroy(G”)-function), then obviously f(v) + f(z1) + f(z2) > 2
and f(a) + f(b) + f(c) > 2, and the function f, restricted to G is an R{2}DF (resp. IR{2}DF) of G of weight
Yr2}(G") — 2 (resp. igroy(G') — 2) implying that v oy (G') > Y{r2}(G) +2 and i{pay (G’) > i{goy (G) + 2. Thus
Y(r2}(G") = Y(r2} (G) + 2 and iroy(G') = i{p2y(G) + 2. O

The proof of next result is similar to the proof of Proposition 2.6 and therefore omitted.

Proposition 2.11. Let G be a graph and let v € V(G) be adjacent to the center z of a star K15 (s =1,2). If
G' is the graph obtained from G by adding a path abc and joining v to a, then Y{r2y(G') = Y{r2}(G) + 2 and
itr2y(G") = igray (G) + 2.

3. TREES T WITH gy (T) = itray(T)

In this section we give a constructive characterization of all trees with equal Roman {2}-domination number
and independent Roman {2}-domination number. For a tree T, let

W(T) = {u € V(T) | there exists an i{roy(T") — function f with f(u) > 1}

and
Wi(T) = {u € V(T) | there exists an i{goy (T) — function f with f(u) = 2}.

In order to present our constructive characterization, we define a family of trees as follows. Let 7 be the family
of trees T' that can be obtained from a sequence T4, T, .. ., T} of trees for some k > 1, where Ty € {Py, P», P3, Py}
and T = Ty. If k > 2, T; 1 can be obtained from T; by one of the following operations.

Operation Op: If x € V(T;), then Oy adds a star K; 3 centered at ¢ with V(K5 3) = {¢, c1,c2,c3} and joins x
to ¢1 to obtain T;4q (see Fig. 2(a)).

Operation Oy: If x € V(T;), then Oy adds a graph Hy with a special vertex a and an edge xa to obtain T; 4
(see Fig. 2(b)).

Operation Oz: If z € V(T;) is adjacent to either two leaves x1,x2 or the center x3 of a star Ky 5 (s = 1,2),
then O3 adds a path bac and joins = to a to obtain T;41 (see Fig. 2(c)).

Operation O4: If & € W(T;) and z is adjacent to two leaves d, e or there is a path zyz in T such that deg(y) = 2
and deg(z) = 1, then O4 adds a pendent path ab and joins x to a to obtain T;4; (see Fig. 2(d)).

Operation Os: If x € V(T;) is adjacent to either two leaves x1,x2 or the center x3 of a star K s (s = 1,2),
then O3 adds a path abc and joins = to a to obtain T;41 (see Fig. 2(e)).

Operation Og: If © € V(T;), then Og adds a graph D, with a special vertex a and an edge xa to obtain
Ti1, where k+¢ > 2, ¢t <1 (see Fig. 2(f)).
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FIGURE 2. The operations O;(i € {1,2,...,9}).

Operation O7: If x € V(T;) is a leaf adjacent to a support vertex u of degree 3 and L,, = {z,y}, then O, adds
a vertex a and joins a to x to obtain T;41 (see Fig. 2(g)).

Operation Og: If x € W1(T;) and there are at least two leaves adjacent to x, then Og adds a vertex a and an
edge az to obtain T;; (see Fig. 2(h)).

Operation Og: If x € V(T;) is a leaf and there is a path zoz12 in T; such that deg(z1) = 2, then Oy adds a
path ab and joins x to a to obtain T;1; (see Fig. 2(i)).

The next result follows immediately from Proposition 2.4.

Lemma 3.1. If T; is a tree with Y{r2y(T3) = iqroy(Ti) and Ti1y is a tree obtained from T; by Operation Oy,
then vipoy (Tiv1) = i{r2y (Tit1)-

The next result is immediate from Proposition 2.7.

Lemma 3.2. If T; is a tree with v{roy(T;) = iqroy(Ti) and Tiy1 is a tree obtained from T; by Operation O,
then Y(r2y (Tiv1) = igray (Tis1)-

The next result follows immediately from Propositions 2.5 ad 2.6.

Lemma 3.3. If T; is a tree with y{roy(Ti) = i{roy(Ti) and Tiy1 is a tree obtained from T; by Operation Os,
then Yir2y (Tiv1) = igray (Tig1)-

Lemma 3.4. Let T; be a tree and Tiy1 be a graph obtained from T; by Operation Oy. Then yipoy(Tiv1) =
Y(roy (1) + 1. Furthermore, if y(r2y(Ti) = i{roy (T3), then vroy(Tiv1) = igroy(Tit1)-

Proof. Let f be a 7{pray (T;)-function. Since |L,| > 2 or there is a pendant path zyz, we may assume without
loss of generality that f(z) > 1. Then, f can be extended to an R{2}DF of T;,; by assigning a 0 to a and
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a 1 to b. Hence, v{poy(Tiv1) < gy (Ti) + 1. On the other hand, if h is a y{ro)(Ti41)-function, then clearly

h(z) > 1 and hence h(a) = 0 and h(b) = 1. Then the function h restricted to T; is an R{2}DF of T; yielding
Yir2} (Tit1) > v(r2y(Ti) + 1. Consequently,

Yir2y (Tiy1) = Y{roy(Ti) + 1. (2)

Now let v goy (T;) = i{roy(Ti). Since x € W (T;), there exists an iy oy (T;)-function g of T; such that g(x) > 1.

As above, g can be extended to an IR{2}DF of T;,; by assigning a 0 to @ and a 1 to b and this implies that

'L.{Rz}(ﬂ+1) < i{Rg}(Ti) + 1. It follows from "/{RQ}(TZ') = i{RQ} (T;) and (2) that i{RQ}(ﬂ+1) < i{RQ}(Ti) +1=
Yir2y (Ti) + 1 = v¢r2} (Tiy1). Now the result follows from (1). O

The next result follows immediately from Propositions 2.10 and 2.11.
Lemma 3.5. If T; is a tree with Y{r2y(T3) = iqroy(Ti) and Ti1y is a tree obtained from T; by Operation Os,
then vir2y (Tiv1) = igr2y (Tiv1)-

The next result is immediate by Proposition 2.8.
Lemma 3.6. If T; is a tree with v{roy(T;) = iqproy(Ti) and Tiy1 is a tree obtained from T; by Operation Og,
then yroy(Tiv1) = igray (Tit1)-

The next result is immediate by Proposition 2.9.
Lemma 3.7. If T; is a tree with Y{r2y(T3) = iqroy(Ti) and Ti11 is a tree obtained from T; by Operation Oz,
then yroy(Tiv1) = igr2y (Tit1)-
Lemma 3.8. Let T; be a tree and Tiy1 be a graph obtained from T; by Operation Os, then vyigoy(Tit1) =
Yir2y(Ti). Furthermore, if vroy(Ti) = igray(T3), then v{roy(Tiv1) = itr2y (Tit1)-
Proof. Let f be a 7y{poy(T;)-function. Since x is adjacent to at least two leaves in Tj, w.l.o.g., we can assume
that f(x) = 2. Hence, f can be extended to an R{2}DF of T;;; by assigning 0 to a, which implies that

Yir2y (Tiv1) < w(f) = vqr2y(T3). Conversely, let h be a y;goy(Ti41)-function. Then we have h(x) = 2 and h|r,
is an R{2}DF of T;. Consequently, we have

Y(r2} (Ti+1) = v(ray(T3). (3)
Now we show that v{groy(Tit1) = iggey(Ti41). Since x € Wi (T;), there exists an igroy (T3)-function f’ of T;
such that f’(z) = 2. Clearly, f’ can be extended to an IR{2}DF of T;; by assigning 0 to a, which implies that
itr2) (Tiv1) < igroy(Ti). Since v(roy(T;) = igroy(T3), by (3) we have ifroy(Tit1) < igroy(Ti) = vir2y(Ti) =
Y(ra}(Tit1)- Hence, vyray(Tit1) = itr2y (Tit1)-
Lemma 3.9. Let T; be a tree and Tiy1 be a graph obtained from T; by Operation Oy, then vyigoy(Tit1) =
Yir2y(T3) + 1. Furthermore, if y{roy(Ti) = i{r2) (T3), then yiroy(Tiv1) = itroy(Tit1)-
Proof. Let f be a vyygoy(T;)-function. We may assume without loss of generality that f(z1) =0, f(v2) > 1 and
f(x) = 1. Then f can be extended to an R{2}DF of T}, by assigning a 0 to a and a 1 to b and so y{goy (Ti11) <
Yir2y (T;) + 1. Conversely, let h be a vyygoy(Ti11)-function. W.lo.g., we may assume that h(a) = 0, h(z) > 1
and h(b) = 1. Then, the function h, restricted to T; is an R{2}DF of T} yielding v{ro} (Tit1) > Y{r2y(T3) + 1.
Consequently, we have
Yir2y (Tit1) = vr2y (T;) + 1. (4)
Let vyroy(T3) = igroy(T3). If T; has an iggoy (T;)-function f" such that f'(x) # 0, then f’ can be extended
to an IR{2}DF of T;;1 by assigning a 1 to b and a 0 to a yielding ifpo}(Tiy1) < igr2y(T3) + 1. Suppose for
any igpoy(T;)-function f’, we have f’(z) = 0. Then f'(z1) = 2 and f’(x2) = 0. Moreover, x> has a neighbor
x3 different from x7 such that f’(z3) # 0. Define g : V(T;41) — {0,1,2} by g(a) = 2, g(b) = 0, g(x1) =1
and g(v) = f'(v) for v € V(T;) — {z1}. Clearly, g is an IR{2}DF of Ti;1 with weight iygoy(7;) + 1 and so
igroy(Tit1) < igray(T;) + 1. Applying viroy(T;) = igrey(Ti) and (4), we have iggroy(Tiz1) < iqpoy(T7) +1 =
Yr2y (Ti) + 1 = v(r2y (Tit1) < igroy(Tiv1). Hence, y(roy (Tit1) = igroy (Tit1)- O
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Theorem 3.10. Let T be a tree of order n. Then yigoy(T) = igr2y(T) if and only if T € T.

Proof. We first show that if T € 7 is a tree, then g2y (T) = igr2y(T). Let T € 7. By the definition of 7,
we know that there exists a sequence of trees Ty, Ty, ..., Ty (k > 1) such that Ty € {Py, Po, P3, Py}, Ty =T
and if £ > 2, then T;;1 can be obtained from T; by one of the Operations O; (i € {1,2,...,9}). We proceed
by induction on k. If k = 1, then the result is trivial. Assume the result holds for each tree T' € 7 which can
be obtained from a sequence of operations of length k¥ — 1 and let 7" = Ty _;. By the induction hypothesis,
Yir2y(T") = igray(T"). Since T' = Ty, is obtained by one of the Operations O;(i € {1,2,...,9}) from T", we
conclude from the Lemmas 3.1 to 3.9 that vygoy(T) = igr2y (T).

Now, we prove the necessity. The proof is by induction on n. If n < 3, then T' € { Py, P, P3} and the result is
true. Suppose n > 4 and that the statement holds for all trees of order less than n. Let T be a tree of order n
with g2y (T) = igr2y(T) and let f be an igroy-function of T'. If there exists a vertex v € V/(T) with [L,| > 3,
then let 7" = T — u where u € L,. By Observation 2.3, we have (g} (T") = igpo} (1) and v € Wi(T). It
follows from the induction hypothesis that 7/ € 7. Now, T can be obtained from T” by Operation Og yielding
T € 7. Assume that each vertex of T' has at most 2 leaf neighbors. Hence T is not a star and so diam(7") > 3.
If diam(T") = 3, then T is a double star DS, , for some ¢ > p > 1, and since each vertex of T' has at most 2
leaf neighbors, we conclude that T' € {Py, DS1 2, DS52}. Obviously T = Py € 7. If T = DS 2, the T can be
obtained from P; by Operation Oy, if 7' = DSy 2, then T can be obtained from P3; by Operation Oz and so
T € 7. Assume that diam(T") > 4.

Let P = wjus...ux be a diametrical path of T such that dr(uz) is as large as possible. Among these paths,
choose one so that dr(us) is as large as possible. Let Ly, = {v1,...,Vdeg,.(us)—1} Where u; = v;. Note that
2 < degp(uz) < 3. We consider the following cases.

Case 1. degp(uz) = 3.

If degy(u3) = 2, then it follows from Proposition 2.4 and the fact v{r2) (1) = i{roy(T) that vroy (T —Tu,) =
i{r2}(T" — Ty,). By the induction hypothesis, we have T'— T, € 7 and T can be obtained from T — T, by
Operation O; implying that T' € 7. Assume that degp(uz) > 3. If us is a strong support vertex or is adjacent to
the center of a star K3 5 (s = 1,2), then we conclude from Propositions 2.5 and 2.6 and the induction hypothesis
that T'— T, € 7. Now, T can be obtained from T — T,,, by Operation O3 and hence T' € 7. Henceforth, we
assume ug is adjacent to at most one leaf and that uz has no child with depth one but us. We deduce from
these assumption and the fact d(us) > 3 that d(us) = 3 and us has a child z; with depth 0. Let 77 =T — Ty,
We conclude from Proposition 2.7 and the induction hypothesis that 77 € 7. Now, T can be obtained from T”
by Operation Oy and hence T' € 7.

Case 2. degp(uz) = 2 and d(us) > 4.

By the choice of diametrical path, we may assume that any child of uz with depth one has degree 2. We
consider the following subcases.

Subcase 2.1. ug has a child yo with depth one.

Let ugyoy: be a path in T and let 77 = T — T,,. If f(uz) = 0, then we have f(u2) + f(u1) > 2 and
f(y2) + f(y1) > 2, and the function g : V(T) — {0,1,2} defined by g(us) = 1, g(uz) = g(y2) = 0, g(u1) =
g(y1) = 1 and g(z) = f(z) otherwise, is an R{2}DF of T of weight less than w(f) contradicting the assumption
Yir2y(T) = igroy(T). Hence f(us) > 1. It follows that f(ug) = 0 and f(u1) = 1. Thus the function f, restricted
to T" is an IR{2}DF of T’ of weight ip2y(T) — 1 and 50 i{ray(T) > igroy(T”) + 1. On the other hand, as in the
proof of Lemma 3.4, we have v{r2}(T') = vr2}(T") + 1. Now the following inequality chain

Yir2y(T) = igroy(T) > igrey(T) + 1 > v{roy(T") + 1 = y{r2y(T)

leads to V{ro}(T') = igrey(T’) and that the function f|7/ is an iggey(7”)-function with f(uz) > 1 and so
uz € W(T"). By the induction hypothesis, we have 77 € 7. Now T can be obtained from 7" by Operation O,
andsoT € 7.

Subcase 2.2. |L,,| > 2.
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Let 21,29 € Ly, and let T/ = T—T,,. If f(us) = 0, then we have f(ua)+f(u1) > 2and f(z1) = f(x2) = 1, and
the function g : V(T) — {0,1, 2} defined by g(us) = 2, g(uz) = g(z1) = g(x2) =0, g(u1) =1 and g(z) = f(z)
otherwise, is an R{2}DF of T" of weight less than w(f) contradicting the assumption v o} (T) = ir2y (7). Hence
f(ug) > 1. Now, as in Subcase 2.1, we can see that T € 7.

Case 3. degy(uz) = 2 and degy(uz) = 3.

By the choice of diametrical path, we may assume that any child of u3 with depth one has degree 2. If ug
has a child yo different from us, with depth one, then as in Subcase 2.1, we can see that T' € 7. Assume that
ug is the only child of us with depth one. Since degp(us) = 3, we deuce that usz is adjacent to a leaf, say w.
Let 7' = T — u;. We conclude from Proposition 2.9 and the induction hypothesis that 7/ € 7. Now T can be
obtained from T’ by Operation O7 and so T' € 7.

Case 4. d(uz) = d(ug) = 2 and d(uyg) > 3.

By the choice of diametrical path, for any path usysyay; in T where y3 € C(uy), we have deg(ys) = deg(yz) =
2. If uy is a strong support vertex or is adjacent to the center of a star K; s (s = 1,2), then we conclude from
Propositions 2.10 and 2.11 and the induction hypothesis that T'—T,, € 7. Now, T can be obtained from T'— T,
by Operation Os and hence T' € 7. Henceforth, we assume uy is adjacent to at most one leaf and that u4 has no
child with depth one. This implies that T,, = D¢+ where t <1 and k+t > 2. Let 7" = T'— T,,,. We conclude
from Proposition 2.8 and the induction hypothesis that 7" € 7. Now, T' can be obtained from 7" by Operation
Og and hence T' € 7.

Case 5. d(uz) = d(ug) = d(ug) = 2.

Let 7" = T — {u1,uz}. By Lemma 3.9, we have v(go}(T) = 7qr2}(T") + 1. We show that ifpoy(77) <
igroy(T) — 1. If f(us) > 1, then f(uz) = 0, f(u1) = 1 and the function f|7s is an IR{2}DF of T" yielding
igro}(T") < igpay(T) — 1. Suppose f(us) = 0. Then f(u1) + f(uz2) = 2 and we may assume that f(u;) = 0
and f(uz) = 2. If f(ug) = 2, then f(us) = 0 and the function g : V(T) — {0,1,2} defined by g(u;) =
g(us) = g(us) = 1, g(uz) = g(us) = 0 and g(v) = f(v) for v € V(T) — {uy,us, us, us, us }, is an R{2}DF of
T with weight ifp2y(T) — 1 = v{r2}(T) — 1 which is a contradiction. Hence, f(us) < 1. If f(us) = 0, then
define h : V(T") — {0,1,2} by h(us) = 1 and h(v) = f(v) for v V(T") — {us}, and if h(us) = 1, then define
h:V(T") — {0,1,2} by h(us) = 2 and h(v) = f(v) for v V(T") — {us}. Clearly, h is an IR{2}DF of T" of weight
itrey(T) — 1, implying that i goy (1) < iggey(T) — 1. We deduce from

itr2y(T") < igpoy(T) — 1 =yroy(T) = 1 = yroy (T") < igpoy(T")
that v{roy(T") = igr2y(T"). It follows from the induction hypothesis on 7" that 7" € 7. Now, T' can be obtained
from T’ by Operation Og and hence T' € 7. This completes the proof. |
4. A LINEAR ALGORITHM FOR COMPUTING fi{po}(1') FOR ANY TREE T

To present a linear algorithm, we will use the following notations. For a graph G and a vertex v € V(G), we
denote G 4 uww the graph obtained from G by adding pendant edge uw. Now, we define

i({)RQ}(G,u) = min{w(f) : f is an IR{2}DF of G with f(u) = 0},

i%RQ}(G,u) = min{w(f) : f is an IR{2}DF of G with f(u) = 1},

i{ oy (G, u) = min{w(f) : fis an IR{2}DF of G with f(u) = 2},

i?(})m}(G,u) = min{w(f) : f is an IR{2}DF of G — u},

i?}m}(G,u) = min{w(f) —1: f is an IR{2}DF of G + uw with f(u) =0 and f(w) = 1},
i?%Q}(G,u) = min{w(f) — 2 : f is an IR{2}DF of G + uw with f(u) =0 and f(w) = 2}.

The following results are trivial.
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Observation 4.1. For any graph G with a specific vertex u, we have

itroy (G) = min{i{ sy (G, u), ] poy (G ), 1 oy (G w) -
Observation 4.2. i??m}(G, u) < i({)}m}(G,u).
Observation 4.3. i?%Q}(G, u) = i?%%Q}(C{u).

Proof. Let f be an IR{2}DF of G 4 uw for which f(u) =0 and f(w) = 2 with minimum weight. Then f|g_,
is an IR{2}DF of G — u and so i({)fm}(G, u) > i?%Q}(G,u).

On the other hand, any ir2(G — u) can be extended to an IR{2}DF of G + uw by assigning a 2 to w and a
0 to u and hence ig%z}(G, u) > if{%z}(G, u). Therefore, we have i?%Q}(G, u) = z'?%z}(G, w). O

Theorem 4.4. Suppose G and H are two disjoint graphs with specific vertices u and v, respectively. Let I be
the graph obtained by adding the edge uv to G U H. Consider u as the specific vertex of I. Then the following
statements hold.

(1) oy (1, 1) = min{if ooy (G u) + 1§ oy (H,0), i oy (G w) + 1] oy (H, 0), 1350y (G, 1) + i oy (H,0)}
(11) 7%RQ} (Iv U) = i‘l{RQ}(Ga u) + Z?}%Q}(Ha U);
(1ll> Z%RQ} (Iv u) = i%RQ} (Ga u) + Z?(]){Q} (H7 1)),’

iv) i??m} (I,u) = i?(l)m}(G, u) +igproy(H) = i({J%Q}(G, u) + min{i({)m} (H,v), i%m}(H, v), i%R2} (H,v)};
(V) Z?}{Q} (I, U) = mln{l?}{Q} (Ga u) + i?RQ} (Hv U), Z?(})«‘ig} (Gv U) + 'L%Rz} (H» ’U), Z({)ORQ} (Gv u) + i%RQ} (Hv U)}

Proof. (i) Let f be an I{R2}DF of I such that f(u) = 0 and w(f) = if{)m}(l,u). If f(v) = 0, then flg
is an I{R2}DF of G with flg(u) = 0 and f|g is an I{R2}DF of H with f|g(v) = 0. Hence, we have
i?RQ}(I, u) > i?RQ}(G,u) —l—i?RQ}(H, v). If f(v) =1, then f|giuw is an I{R2}DF of G + uv with f|giryw(u) =0
and f|giur(v) =1, and f|g is an I{R2}DF of H with f|g(v) = 1. Hence, we have i?RQ}(I, uw) = w(f|etuw) —
14+ w(flg) > i({)}%Q}(G, u) +i%R2}(H, v). If f(v) =2, then f|giuw is an I{R2}DF of G + uv with f|giruw(u) =0
and f|giur(v) =2, and f|g is an I{R2}DF of H with f|g(v) = 2. Hence, we have i?Rz}(Lu) = w(fletuv) —
2+ w(flr) 2 i{5ay (G, u) + ifgey (H, v). By Observation 4.3, i{ oy (I, u) > i3y (G, u) + 7 oy (H,v). Thus

Z.({)RQ} (Iv u) > min{i?]&} (Gv u) + i({)RZ} (H» ’U), i?}%z} (Gv u) + i%RQ} (Hv U)v i({)(IJ%Q} (Ga u) + i%RQ} (Ha v)} (5)

Now we prove the inverse inequality. Since any I{R2}DF ¢ of G with g(u) = 0 and any I{R2}DF h of H
with 7(v) = 0 can form an I{R2}DF f' of I with f'(u) = 0, we have i{ oy (G, u) + i oy (H,v) > {0y (I, u).
Also, any I{R2}DF g of G + uv with g(u) = 0 and g(v) =1 and any I{R2}DF h of H with h(v) =1 can form
an [{R2}DF f’ of I such that f/(u) = 0 yielding i({)}m}(G,u) + i}RQ}(H,U) > i?RQ}(I,u). Similarly, we can see
that i?%2}(G, u) + i%Rz}(H, v) = z'??m}(G, u) + i%RQ} (H,v) > i?m}(I, u). Therefore

i?R?} (17 u) < min {i?R2}(Ga u) + i?RQ}(H’ U)) i?}%2}<G7 u) + 'L%R2} <H7 U)’
iRy (G ) + i oy (H, )} (6)
Now

(i) follows from (5) and (6).
(ii) It follows from the fact that f is an IR{2}DF of I with f(u) = 1 if and only if f = g U h, where g is an
IR{2}DF of G with g(u) =1 and h is an IR{2}DF of H + vu with h(v) =0 and h(u) = 1.
(iii) Note that f is an TR{2}DF of I with f(u) = 2 if and only if f = g U h, where g is an IR{2}DF of G with
g(u) =2 and h is an TR{2}DF of H + vu with h(v) = 0 and h(u) = 2. Using this and Observation 4.3, the
result follows.
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(v)
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It follows from the fact that f is an TR{2}DF of I — u if and only if f = g U h, where g is an TR{2}DF of
G —w and h is an IR{2}DF of H.

Let f be an I{R2}DF of I + uw such that f(u) = 0, f(w) =1 and w(f) = i({)}m} (I,u), where uw is the
pendant edge added at u. If f(v) = 0, then flgyuw is an I{R2}DF of G 4+ uw with f|giuw(u) = 0 and
fletuw(w) =1, and f|g is an I{R2}DF of H with f|g(v) = 0. Hence, we have i?}w}([,u) =w(f)—1=
W(flatuw) =1+ w(flr) = i{koy (Gou) + i oy (H,v). If f(v) =1, then flg_, is an I{R2}DF of G —u and
flm is an I{R2}DF of H with f|y(v) = 1. Hence, we have i?}%}(Lu) =w(f)—1=w(flg-u) + w(flg) >
i?%Q}(G,u) + i%m}(H,v). If f(v) =2, then flg_, is an I{R2}DF of G —u and f|g is an I{R2}DF of H
v}\;ith f|m(v) = 2. Hence, we have i?RQ}(I,u) =w(f)—1=w(fleg—w) +w(flg) > i?%Q}(G,u) + i?m}(Hw).

ence

i?}%z} (/,u) > min {i?}%z}(G» u) + i({)R2}(H7 v), i({J?%z}(Gv u) + Z%RQ}(Hv v),
i?[l)%Q} (Gvu) + Z%}%2} (H,U)}. (7)

Now we prove the inverse inequality. Since combining any I{R2}DF g of G + uw with g(u) = 0 and
g(w) =1 and any I{R2}DF h of H with h(v) = 0 can form an I{R2}DF [’ of I + vw with f’(u) =0 and
f'(w) =1, we have i?}n}(G, u)+ i?RQ}(H, v) > i?}n}(l, u). Also, any I{R2}DF g of G — u and any I{R2}DF
h of H with h(v) = 1 can be extended to an I{R2}DF f’ of I 4+ uw by setting f'(u) = 0 and f'(w) = 1,
and 50 #50y (G, u) + if poy (H, ) = {30y (I, u) Finally, any I{R2}DF g of G — u and any I{R2}DF h of
H with h(v) = 2 can be extended to an I{R2}DF [’ of I by setting f'(u) = 0 and f'(w) = 1, and hence
i({J%Q}(G7 u) + i%RQ}(H, v) > i?}m}(L u). Consequently,

hoy (I, w) < min {i{py) (G, u) + i oy (H, ),
i?(}m}(Ga u) + Z%RQ}(Hv v),

i?(z)m}(Ga u) + i%m}(Hv v)}, (8)
and (v) follows from (7) and (8).
(]
If the vertices of a tree T have an ordering [v1, v, . ..,v,] such that v; is a leaf of T;=T[{v;, vi41,...,v,}] for
1 <i<n-—1, then [v1,vs,...,vy] is called a tree ordering of T', where the only neighbor v; of v; with j > i

is
co

called the parent of v;. Lemma 4.1 and Theorem 4.4 give the following dynamic programming algorithm for
mputing ifgoy (7') for any tree T'.

Algorithm i{ry; Domination

Input: A tree T with a tree ordering [v1,ve, ..., vy,] .

Output: the independent Roman {2}-domination number ifpsy (T') of T'.
begin

for i =1 ton do

fort:=1ton—1do
let v; be the parent of v;;
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end for

return igpoy (v,);
end.
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