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TRANSIENT AND STEADY-STATE ANALYSIS OF A QUEUING SYSTEM
HAVING CUSTOMERS’ IMPATIENCE WITH THRESHOLD

Sapana Sharma1, Rakesh Kumar1,∗ and Sherif Ibrahim Ammar2,3

Abstract. In many practical queuing situations reneging and balking can only occur if the number
of customers in the system is greater than a certain threshold value. Therefore, in this paper we study
a single server Markovian queuing model having customers’ impatience (balking and reneging) with
threshold, and retention of reneging customers. The transient analysis of the model is performed by
using probability generating function technique. The expressions for the mean and variance of the
number of customers in the system are obtained and a numerical example is also provided. Further the
steady-state solution of the model is obtained. Finally, some important queuing models are derived as
the special cases of this model.
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1. Introduction

Queuing systems possessing customers’ impatience with threshold find their applications in computer net-
works with time-out mechanisms, call centers with impatient phone call, and hospital emergency rooms handling
critical patients. A customer is said to be impatient if he tends to join the line only when a short wait is required
and has a tendency to stay in the line if the wait has been adequately small. At the point when this impatience
becomes adequately strong and customers leave before being served, the administrator of the company must
take action to reduce the congestion level for better results. The models we consider here find applications in
helping the administration to give satisfactory benefit for its customers with tolerable waiting.

The pioneer work on queuing models with customers’ impatience is studied in [4,5,7,8,19,20]. The transient
behavior of the M/M/1/N queue for a general N has been discussed in [21]. The expressions obtained there are
so complex that these cannot be used to obtain parameters of the queue length such as the mean in the explicit
form. In [17], authors obtain the closed form solution of the problem discussed in [21] by using a very simple and
elegant algebraic method. The time-dependent solution of an M/M/1 queuing model with balking is obtained
in [9] using probability generating function technique. In [6], the authors analyze M/M/1 priority queues with
two classes of customers and constant impatience time. Using truncation method in [18], the steady-state
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probabilities of M/M/s queuing system with customers’ impatience and retrials is obtained. In [10], author
derives the transient solution of a correlated input queuing system with catastrophic and restorative effects
facing customers’ impatience. The busy period of a single server Markovian queuing system is obtained in [1] by
employing probability generating function technique. In [2], the transient solution of a two-heterogenous servers
queue with impatient customers is obtained. An M/M/1 queue with working vacations, Bernoulli schedule
vacation interruption, balking and reneging is considered in [23] where the authors obtain its steady-state
probabilities. An M/M/1 queue with customers’ impatience and multiple vacations is studied in [3].

From a business point of view, it is remarked that customer impatience could lead to loss of potential
customers, which affects the business of the company. Thus, in order to retain impatient customers, more
and more companies adopt various strategies. In a pioneering paper [11] on queuing systems with customer
retention, an M/M/1/N queueing model with retention of reneging customers is studied. Later in [12], authors
extend their own work by adding balking to it. The steady-state solution of a single-server Markovian feedback
queueing model with retention of reneging customers is obtained in [22]. In [15], authors incorporate retention to
a discrete-time queuing system and derive the steady-state probabilities of Geo/Geo/1/N queuing system. The
transient solution of a two-heterogeneous servers Markovian queuing model with retention of reneging customers
is obtained in [13]. In [14], a multi-server Markovian queuing system with balking, reneging and retention of
reneging customers is considered in which its transient solution is obtained.

The applicability of this model can be seen in communication network systems. If there are numerous packets
lined up in the system, local packets are always accepted. If the remote packets are less than a threshold value
packets waiting in the node for process, then a new arrival either decides not to join the system or departs after
joining the system. Further, if the number of packets in the waiting line exceeds the threshold value packets,
these may time-out and get dropped before being transmitted. Thus, these systems can be represented as
queuing models with impatience behavior. Therefore, these queuing models have wide applications to determine
the impact of the threshold level in communication networks.

Above mentioned application motivates us to analyze the behavior of a queuing system having customers’
impatience and retention of reneging customers with threshold. Since there is no work on transient solution
of this model. Therefore, in this paper, we study a single server Markovian queuing system having customers’
impatience and retention of reneging customers with threshold and obtain its transient as well as steady-state
solution.

Rest of the paper is arranged as follows: in Section 2 queuing model is described. The transient analysis of
the model is provided in Section 3. In Section 4 steady-state solution of the model is derived. Section 5 deals
with the special cases of the model. Finally the paper is concluded in Section 6.

2. Queuing model description

We consider a single server queuing model with balking and retention of reneging customers in which the
customers arrive according to a Poisson process with mean rate λ. On arrival a customer either decides to join
the queue with probability one if the number of customers in the system is less than a threshold value k. If
there are k customers or more ahead of him, then he joins the queue with probability β and may balk with
probability 1−β. The service time distribution is negative exponential with parameter µ. The queue discipline
is first-come-first-served (FCFS). The capacity of the system is infinite. After joining the queue each customer
will wait for a certain length of time T for his service to begin. If it has not begun by then he may get renege
with probability p and may remain in the queue for his service with probability q(= 1− p) if certain customer
retention strategy is used. This time T is a random variable which follows negative exponential distribution
with parameter ξ. It is assumed that the reneging can only occur if the number of customers in the system are
greater than a certain threshold value k. Therefore, the average reneging rate is given by the following function:

ξn =
{

0, 0 < n ≤ k
(n− k)ξ, n ≥ k + 1 .
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Let {X(t), t ≥ 0} be the number of customers present in the system at time t. Let Pn(t) = P{X(t) = n}, n =
0, 1, . . . be the probability that there are n customers in the system at time t, and P (z, t) the corresponding
probability generating function. We assume that there is no customer in the system at t = 0.

The queuing model under investigation is governed by the following differential-difference equations:

dP0(t)
dt

= −λP0(t) + µP1(t), n = 0 (2.1)

dPn(t)
dt

= − (λ+ µ)Pn(t) + λPn−1(t) + µPn+1(t), n = 1, 2, . . . , k − 1 (2.2)

dPk(t)
dt

= − (βλ+ µ)Pk(t) + λPk−1(t) + (µ+ ξp)Pk+1(t), n = k (2.3)

dPn(t)
dt

= − (βλ+ µ+ (n− k)ξp)Pn(t) + βλPn−1(t)

+ (µ+ (n− k + 1)ξp)Pn+1(t), n = k + 1, . . .. (2.4)

3. Transient solution of the model

In this section, we present the transient solution of the model. The probability generating function technique
is used to obtain the time-dependent system size probabilities.

Theorem 3.1. The time-dependent probabilities of the system size of a Markovian queuing model with single
server, balking and retention of reneging customers which is governed by the differential-difference equations
(2.1)–(2.4) are given by:

Pi(t) = bi,0(t) + µ

∫ t

0

bi,k−2(u)Pk−1(t− u)du, i = 0, 1, . . . , k − 2

Pk−1(t) =
∞∑
n=0

n∑
m=0

(−1)m

Ψ

( µ
Ψ

)m(2Ψ
α

)n+1

(n+ 1)
(
n

m

)[∫ t

0

M(t− u)∫ u

0

NC(m)(u− v) exp{−(βλ+ µ− ξp)v}In+1(αv)
v

dudv

and, for n = 1, 2, . . .

Pn+k−1(t) = nγn
∫ t

0

exp{−(βλ+ µ− ξp)(t− u)}In(α(t− u))
(t− u)

Pk−1(u)du

where bi,j(t) denotes the Laplace inverse of b∗i,j(s) (defined in the proof), NC(m)(t) is m-fold convolution of
N(t) with itself with NC(0) = δ(t), the Dirac delta function, Ψ = µ− ξp, α = 2

√
βλ(µ− ξp).

Proof. Define the probability generating function P (z, t) for the transient state probabilities Pn(t) by

P (z, t) =
k−1∑
n=0

Pn(t) +
∞∑
n=0

Pn+k(t)zn+1; P (z, 0) = 1 (3.1)

with
k−1∑
n=0

Pn(t) = Rk−1(t). (3.2)
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Adding the equations (2.1) and (2.2), we get

d(Rk−1(t))
dt

= −λPk−1(t) + µPk(t). (3.3)

Now, multiplying the equation (2.3) and (2.4) by zn, summing over the respective range of n, we obtain

d
[∑∞

n=0 Pn+k(t)zn+1
]

dt
= [(µ− ξp)(z−1 − 1) + βλ(z − 1)]

∞∑
n=0

Pn+k(t)zn+1

+λzPk−1(t)− µPk(t) + ξp(1− z)∂P (z, t)
∂z

· (3.4)

Adding the equations (3.3) and (3.4), we obtain the following partial differential equation

∂P (z, t)
∂t

− ξp(1− z)∂P (z, t)
∂z

= [(µ− ξp)(z−1 − 1) + βλ(z − 1)][P (z, t)

−Rk−1(t)] + λ(z − 1)Pk−1(t). (3.5)

Solving the equation (3.5) we get

P (z, t) = exp
{

[(µ− ξp)(z−1 − 1) + βλ(z − 1)]t
}

+
∫ t

0

[λ(z − 1)Pk−1(u)

− ((µ− ξp)(z−1 − 1) + βλ(z − 1))Rk−1(u)]× exp {[(µ− ξp)
× (z−1 − 1) + βλ(z − 1)](t− u)}du. (3.6)

If α = 2
√
βλ(µ− ξp) and γ =

√
βλ
µ−ξp , then using the modified Bessel function of first kind In(.) and the

Bessel function properties, we get

exp
{(

βλz +
µ− ξp
z

)
t

}
=

∞∑
n=−∞

(γz)nIn(αt). (3.7)

Using (3.7) in (3.6), we get

P (z, t) = exp{[−(βλ+ µ− ξp)]t}
∞∑

n=−∞
(γz)nIn(αt)

+ λ

∫ t

0

Pk−1(u) exp{[−(βλ+ µ− ξp)](t− u)}

×
∞∑

n=−∞
(γz)n[γ−1In−1(α(t− u))− In(α(t− u))]du

+
∫ t

0

Rk−1(u) exp{[−(βλ+ µ− ξp)](t− u)} (3.8)

×
∞∑

n=−∞
(γz)n[−βλγ−1In−1(α(t− u))

+ (βλ+ µ− ξp)In(α(t− u))− (µ− ξp)γIn+1(α(t− u))]du.
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Now, comparing the coefficients of zn on either side of (3.8), we obtain for n = 1, 2, . . .

Pn+k−1(t) = exp{−(βλ+ µ− ξp)t}γnIn(αt) + λ

∫ t

0

exp{−(βλ+ µ− ξp)(t− u)}

×
[
In−1(α(t− u))γn−1 − In(α(t− u))γn

]
Pk−1(u)du

−
∫ t

0

exp{−(βλ+ µ− ξp)(t− u)}Rk−1(u)[λIn−1(α(t− u))γn−1

− (βλ+ µ− ξp)In(α(t− u))γn + (µ− ξp)In+1(α(t− u)γn+1]du.
(3.9)

For n = 0, we get

Rk−1(t) = exp{−(βλ+ µ− ξp)t}I0(αt) + λ

∫ t

0

exp{−(βλ+ µ− ξp)(t− u)}

× Pk−1(u)
[
I1(α(t− u))γ−1 − I0(α(t− u))

]
du

−
∫ t

0

exp{−(βλ+ µ− ξp)(t− u)}Rk−1(u)× [αI1(α(t− u))

− (βλ+ µ− ξp)I0(α(t− u)) ]du. (3.10)

As P (z, t) does not contain terms with negative powers of z the right hand side of (3.9) with n replaced by
−n must be zero. Thus, we obtain∫ t

0

exp{−(βλ+ µ− ξp)(t− u)}Rk−1(u) [βλIn+1(α(t− u))γn−1 − (βλ+ µ− ξp)In(α(t− u))γn

+ (µ− ξp)In−1(α(t− u))γn+1]du

= exp{−(βλ+ µ− ξp)t}In(αt)γn + λ

∫ t

0

exp{−(βλ+ µ− ξp)(t− u)}Pk−1(u)

× [In+1(α(t− u))γn−1 − In(α(t− u))γn]du. (3.11)

The usage of (3.11) in (3.9) considerably simplifies the working and results in an elegant expression for Pn(t).
This yields, for n = 1, 2, . . .

Pn+k−1(t) = nγn
∫ t

0

exp{−(βλ+ µ− ξp)(t− u)}In(α(t− u))
(t− u)

Pk−1(u)du. (3.12)

The remaining probabilities Pn(t), n = 0, 1, . . . , k − 1 can be obtained by solving the equations (2.1) and
(2.2). In matrix form, the equations (2.1) and (2.2) can be written as:

dP(t)
dt

= AP(t) + µPk−1(t)ek−1 (3.13)

where the matrix A = (bi,j)k−1×k−1 is given as:

A =


−(λ) µ · · · 0
λ −(λ+ µ) · · · 0
...

...
...

...
0 0 · · · −(λ+ µ)


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P(t) = (P0(t) P1(t) . . . Pk−2(t))T , ek−1 = (0 0 . . . 1)T is column vector of order k − 1.
Let P∗(s) = (P ∗0 (s) P ∗1 (s) . . . P ∗k−2(s))T denotes the Laplace transform of P(t). Taking the Laplace

transform of equation (3.13) and solving for P∗(s), we get

P∗(s) = (sI −A)−1{µP ∗k−1(s)ek−1 + P(0)} (3.14)

with P(0) = (1 0 . . . 0)T . Thus, only P ∗k−1(s) remains to be found. We observe that if e = (1 1 . . . 1)Tk−1×1,
then

eTP∗(s) + P ∗k−1(s) = R∗k−1(s). (3.15)

Define
f(s) =

[
(s+ βλ+ (µ− ξp))−

√
(s+ βλ+ (µ− ξp))2 − α2

]
.

Taking Laplace transform of (3.10) and solving for q∗k−1(s), we obtain

sR∗k−1(s) = 1 + P ∗k−1(s)
[

1
2
{f(s)} − λ

]
. (3.16)

Using equation (3.16) in (3.15) and simplifying, we get

P ∗k−1 =
1− seT(sI −A)−1P(0)

{(s+ βλ)− 1
2 [f(s)] + µseT(sI −A)−1ek−1}

· (3.17)

In equations (3.14) and (3.17), (sI −A)−1 has to be found. Let us assume that

(sI −A)−1 = (b∗ij(s))k−1×k−1.

We note that (sI −A)−1 is almost lower triangular. Following [16], we obtain, for i = 0, 1, . . . , k − 2

b∗ij(s) =


1
µ
uk,j+1(s)ui,0(s)−ui,j+1(s)uk,0(s)

uk,0(s)
, j = 0, 1, . . . , k − 3

ui,0(s)
uk,0(s)

, j = k − 2
. (3.18)

where ui,j(s) are recursively given as

ui,i(s) = 1, i = 0, 1, . . . , k − 2

ui+1,i(s) = s+λ+µ
µ , i = 0, 1, . . . , k − 3

ui+1,i−j(s) = (s+λ+µ)ui,i−j−λui−1,i−j
µ , j ≤ i, i = 1, 2, 3, . . . , k − 3

uk−1,j(s) =

 [s+ λ+ µ]uk−1,j − λuk−2,j , j = 0, 1, . . . , k − 3

s+ λ+ µ, j = k − 2
(3.19)

and
ui,j(s) = 0, for other i and j. Using these in equation (3.17), we get

P ∗k−1(s) =
{1− s

∑k−2
i=0 b

∗
i,0(s)}

{(s+ βλ)− 1
2 [f(s)] + µs

∑k−2
i=0 b

∗
i,k−2(s)}

(3.20)

and for i = 0, 1, . . . , k − 2 from equation (3.14), we get

P ∗i (s) = b∗i,0(s) + µb∗i,k−2(s)P ∗k−1(s). (3.21)
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We observe that b∗i,j(s) are all rational algebraic functions in s. The cofactor of the (i, j)th element of (sI−A)
is a polynomial of degree k−2− | i−j |. Since the characteristic roots of A are all distinct, the inverse transform
bi,j(t) of b∗i,j(s) can be obtained by partial fraction decomposition. Let si, i = 0, 1, . . . , k − 2, be the characteristic
roots of the matrix A. Then after partial fraction decomposition and simplification, P ∗k−1(s) equals to

M∗(s)

1
2 [f(s)]

[
1− 2(µ−ξp)(1− µ

µ−ξpN
∗(s))

(s+βλ+µ−ξp)−
√

(s+βλ+µ−ξp)2−α2

] (3.22)

where

M∗(s) =
k−2∑
m=0

Mm

s− sm
(3.23)

N∗(s) =
k−2∑
m=0

Nm
s− sm

(3.24)

with constants Mm and Nm given by

Mm = lim
s→sm

(s− sm)

[
1−

k−2∑
l=0

sb∗l,0(s)

]
(3.25)

Nm = lim
s→sm

(s− sm)

[
k−2∑
l=0

sb∗l,k−2(s)

]
. (3.26)

Hence, (3.22) simplifies into

P ∗k−1(s) =
∞∑
n=0

n∑
m=0

(−1)m

Ψ

(
2Ψ
α

)n+1

(n+ 1)
(
n

m

)( µ
Ψ

)m [
M∗(s)(N∗(s))m

[(s+ βλ+ µ− ξp)−
√

(s+ βλ+ µ− ξp)2 − α2]n+1

(n+ 1)αn+1

]
(3.27)

where Ψ = (µ− ξp).
Taking Laplace inverse of (3.27), we obtain

Pk−1(t) =
∞∑
n=0

n∑
m=0

(−1)m

Ψ

(
2Ψ
α

)n+1 ( µ
Ψ

)m
(n+ 1)

(
n

m

)[∫ t

0

M(t− u)∫ u

0

NC(m)(u− v) exp{−(βλ+ µ− ξp)v}In+1(αv)
v

dudv
]
· (3.28)

where NC(m)(t) is m − fold convolution of N(t) with itself with NC(0) = δ(t). Now, the Laplace inverse of
equation (3.21) yields,

Pi(t) = bi,0(t) + µ

∫ t

0

bi,k−2(u)Pk−1(t− u)du, i = 0, 1, . . . , k − 2 (3.29)

where bi,j(t) denotes the Laplace inverse of b∗i,j(s) and b∗i,j(s) are the elements of matrix (sI −A)−1, Pk−1(u) is
given by (3.28). Therefore all the state probabilities are obtained explicitly in (3.12), (3.28) and (3.29).

�
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3.1. Mean and variance

This section deals with the derivation of mean and variance of the system.

Mean (Expected System Size), M(t)
The mean number of customers in the system at time t is given by

M(t) = E(X(t)) = m(t) + r(t)

=
k−1∑
n=1

nPn(t) +
∞∑
n=k

nPn(t) (3.30)

and

M ′(t) =
k−1∑
n=1

nP ′n(t) +
∞∑
n=k

nP ′n(t). (3.31)

From equations (2.2)–(2.4) after considerable mathematical simplification, the above equation will lead to
the following differential equation

M ′(t) = −µM(t) + λ

k−1∑
n=0

Pn(t) + βλ

∞∑
n=k

Pn(t) + λkPk−1(t) + µ

∞∑
n=1

nPn+1(t)

+ ξp

[ ∞∑
n=k+1

n(n− k)(Pn+1(t)− Pn(t)) +
∞∑
n=k

nPn+1(t)

]
(3.32)

M(t) = λ

k−1∑
n=0

∫ t

0

Pn(u) exp(µ(t− u))du+ βλ

∞∑
n=k

∫ t

0

Pn(u) exp(µ(t− u))du

+ λk

∫ t

0

Pk−1(u) exp(µ(t− u))du+ µ

∞∑
n=1

∫ t

0

nPn+1(u) exp(µ(t− u))du

+ ξp

∞∑
n=k+1

n(n− k)
∫ t

0

(Pn+1(u)− Pn(u)) exp(µ(t− u))du

+ ξp

∞∑
n=k

n

∫ t

0

Pn+1(u) exp(µ(t− u))du (3.33)

where Pn(t) for n=0,1,. . . ,k−2;Pk−1(t) and Pn+k−1(t) for n=1,2,. . . are given in equations (3.12), (3.28) and
(3.29), respectively.

Variance, V(X(t))
The variance of number of customers in the system at time t is given by:

V (X(t)) = E(X2(t))− [E(X(t))]2

= K(t)− [M(t)]2

=
∞∑
n=1

n2Pn(t)−

[ ∞∑
n=1

nPn(t)

]2

. (3.34)
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From equations (2.2)–(2.4) after considerable mathematical simplification the above equation will lead to the
following differential equation

K ′(t) = −µK(t) + λ

[
k−1∑
n=0

Pn(t) + 2m(t) + k2Pk−1(t)

]

+ βλ

[ ∞∑
n=k

Pn(t) + 2r(t)

]
+ µ

∞∑
n=1

n2Pn+1(t)

+ ξp

[ ∞∑
n=k+1

n2(n− k)(Pn+1(t)− Pn(t)) +
∞∑
n=k

n2Pn+1(t)

]
. (3.35)

Therefore,

K(t) = λ

∫ t

0

[
k−1∑
n=0

Pn(u) + 2m(u) + k2Pk−1(u)

]

× exp(µ(t− u))du+ βλ

∫ t

0

[ ∞∑
n=k

Pn(u) + 2r(u)

]

× exp(µ(t− u))du+ µ

∞∑
n=1

n2

∫ t

0

Pn+1(u) exp(µ(t− u))du

+ ξp

∞∑
n=k+1

n2(n− k)
∫ t

0

(Pn+1(u)− Pn(u)) exp(µ(t− u))du

+ ξp

∞∑
n=k

n2

∫ t

0

Pn+1(u) exp(µ(t− u))du. (3.36)

Substituting the above equation in (3.34), we get

V (X(t)) = λ

∫ t

0

[
k−1∑
n=0

Pn(u) + 2m(u) + k2Pk−1(u)

]

× exp(µ(t− u))du+ βλ

∫ t

0

[ ∞∑
n=k

Pn(u) + 2r(u)

]

× exp(µ(t− u))du+ µ

∞∑
n=1

n2

∫ t

0

Pn+1(u) exp(µ(t− u))du

+ ξp

∞∑
n=k+1

n2(n− k)
∫ t

0

(Pn+1(u)− Pn(u)) exp(µ(t− u))du

+ ξp

∞∑
n=k

n2

∫ t

0

Pn+1(u) exp(µ(t− u))du− [M(t)]2 (3.37)

where Pn(t) for n = 0, 1, . . . , k − 2; Pk−1(t), Pn+k−1(t) for n = 1, 2, . . . and M(t) are given in equations (3.12),
(3.28), (3.29) and (3.33) respectively.

3.2. Numerical Illustration

In this sub-section, we perform the transient numerical analysis of the system. We study the following
measures of performances in transient state.
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Figure 1. Variation of expected system size with respect to time t (λ = 3, µ = 4, p = 0.4, ξ =
0.1, β = 0.4, k = 2).

(1) Average Reneging Rate (Rr(t))

Rr =
N∑
n=k

(n− k)ξpPn(t).

(2) Average Retention Rate (RR(t))

RR =
N∑
n=k

(n− k)ξqPn(t).

The time-dependent variations in various performance measures with respect to the initial system parameters
are studied as shown in Figures 1–9. Figure 1 shows that as time varies the average number of customers in
the system increases. But after sometime it seems to be constant. In Figures 2–4, the variations in performance
measures with respect to the threshold value (k) are presented. As k increases the expected system size increases.
But the average reneging rate and the average retention rate shows a decreasing trend with the increase in k.
In Figures 5–7, the variations in different measures of performance with the variation in balking probability
(1−β) are presented. We can see that as 1−β increases all the given performance measures (expected system
size, average reneging rate and the average retention rate) decreases. Variations in performance measures with
respect to the reneging rate (ξ) is presented in Figures 8 and 9. As ξ increases the average reneging rate as well
as the average retention rate increases.

4. Steady-state solution

In steady-state lim
t→∞

Pn(t) = Pn, and lim
t→∞

dPn(t)
dt

= 0. Therefore, the equations (2.1)–(2.4) in steady-state
becomes:

0 = −λP0 + µP1 (4.1)
0 = − (λ+ µ)Pn + λPn−1 + µPn+1, 1 ≤ n ≤ k − 1 (4.2)
0 = − (βλ+ µ)Pk + λPk−1 + (µ+ ξp)Pk+1, n = k (4.3)
0 = − (βλ+ µ+ (n− k)ξp)Pn + βλPn−1 + (µ+ (n− k + 1)ξp)Pn+1, n ≥ k + 1. (4.4)
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Figure 2. Effect of threshold value on expected system size with respect to time for the case
λ = 3, µ = 4, p = 0.4, ξ = 0.1, β = 0.4.

Figure 3. Effect of threshold value on average reneging rate with respect to time for the case
λ = 3, µ = 4, p = 0.4, ξ = 0.1, β = 0.4.

On solving equations (4.1)–(4.4) iteratively, we get

Pn =
(
λ

µ

)n
P0, 1 ≤ n ≤ k

Pn =
(βλ)n−k

n∏
m=k+1

(µ+ (m− k)ξp)

(
λ

µ

)k
P0, n ≥ k + 1.
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Figure 4. Effect of threshold value on average retention rate with respect to time for the case
λ = 3, µ = 4, p = 0.4, ξ = 0.1, β = 0.4.

Figure 5. Variation of expected system size with the variation in balking probability for the
case λ = 3, µ = 4, p = 0.4, ξ = 0.1, k = 2.

Using normalization condition, we get

P0 =

1 +
k∑

n=1

(
λ

µ

)n
+

∞∑
n=k+1

(βλ)n−k
n∏

m=k+1

(µ+ (m− k)ξp)

(
λ

µ

)k

−1

.

5. Special cases

Case 5.1. When β = 0, i.e. when there is no balking. The model reduces to a Markovian single server queuing
model with reneging and retention.
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Figure 6. Variation of average reneging rate with the variation in balking probability for the
case λ = 3, µ = 4, p = 0.4, ξ = 0.1, k = 2.

Figure 7. Variation of average retention rate with the variation in balking probability for the
case λ = 3, µ = 4, p = 0.4, ξ = 0.1, k = 2.

For n = 1, 2, . . .

Pn+k−1(t) = nγn1

∫ t

0

exp{−(λ+ µ− ξp)(t− u)}In(α1(t− u))
(t− u)

Pk−1(u)du

Pk−1(t) =
∞∑
n=0

n∑
m=0

(−1)m

Ψ

(
2Ψ
α1

)n+1 ( µ
Ψ

)m
(n+ 1)

(
n

m

)[∫ t

0

M(t− u)∫ u

0

NC(m)(u− v) exp{−(λ+ µ− ξp)v}In+1(α1v)
v

dudv
]

Pi(t) = bi,0(t) + µ

∫ t

0

bi,k−2(u)Pk−1(t− u)du, i = 0, 1, . . . , k − 2
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Figure 8. Effect of reneging rate on average reneging rate with respect to time for the case
λ = 3, µ = 4, p = 0.4, ξ = 0.1, β = 0.4, k = 2.

Figure 9. Effect of reneging rate on average retention rate with respect to time for the case
λ = 3, µ = 4, p = 0.4, ξ = 0.1, β = 0.4, k = 2.

where α1 = 2
√
λ(µ− ξp) ,γ1 =

√
λ

µ−ξp , and Ψ = (µ− ξp).
Case 5.2. When q = 0, i.e. when the retention mechanism is absent. The model reduces to a Markovian single
server queuing model with reneging and balking.

For n = 1, 2, . . .

Pn+k−1(t) = nγn1

∫ t

0

exp{−((βλ+ µ− ξ))(t− u)}In(α1(t− u))
(t− u)

Pk−1(u)du

Pk−1(t) =
∞∑
n=0

n∑
m=0

(−1)m

Ψ

(
2Ψ
α1

)n+1 ( µ
Ψ

)m
(n+ 1)

(
n

m

)[∫ t

0

M(t− u)∫ u

0

NC(m)(u− v) exp{−(βλ+ µ− ξ)v}In+1(α1v)
v

dudv
]
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Pi(t) = bi,0(t) + µ

∫ t

0

bi,k−2(u)Pk−1(t− u)du, i = 0, 1, . . . , k − 2

where α1 = 2
√
βλ(µ− ξ), γ1 =

√
βλ
µ−ξ , and Ψ = (µ− ξ).

Case 5.3. When there is no reneging, the queuing system reduces to a single server queuing model with balking
with

Pn+k−1(t) = nγn2

∫ t

0

exp{−(βλ+ µ)(t− u)}In(α2(t− u))
(t− u)

Pk−1(u)du

Pk−1(t) =
∞∑
n=0

n∑
m=0

(−1)m

µ

(
2µ
α2

)n+1

(n+ 1)
(
n

m

)[∫ t

0

M(t− u)∫ u

0

NC(m)(u− v) exp{−(βλ+ µ)v}In+1(α2v)
v

dudv
]

Pi(t) = bi,0(t) + µ

∫ t

0

bi,k−2(u)Pk−1(t− u)du, i = 0, 1, . . . , k − 2;n = 1, 2 . . . .

where α2 = 2
√
βλµ and γ2 =

√
βλ
µ .

6. Conclusions

In this paper the transient as well as steady-state behavior of a single server queuing model with balking,
reneging and retention of reneging customers is studied. The mean and variance of the queuing model are
obtained. The time-dependent variations in various performance measures with respect to the system parameters
are studied. Some important special cases of the queuing model are also derived.
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