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A COMMON-WEIGHT DEA MODEL FOR MULTI-CRITERIA ABC
INVENTORY CLASSIFICATION WITH QUANTITATIVE AND QUALITATIVE
CRITERIA

QINGXIAN AN!, YA0O WEN'*, JUNHUA HU! AND XIYANG LEI**

Abstract. ABC analysis is a famous technique for inventory classification. However, this technique
on the inventory classification only considering one indicator even though other important factors may
affect the classification. To address this issue, researchers have proposed multiple criteria inventory clas-
sification (MCIC) solutions based on data envelopment analysis (DEA)-like methods. However, previous
models almost evaluate items by different weight sets, and the index system only contains quantitative
criteria and output indicators. To avoid these shortcomings, we propose an improved common-weight
DEA model for MCIC issue. This model simultaneously considers quantitative and qualitative criteria
as well as establishes a comprehensive index system that includes inputs and outputs. Apart from its
improved discriminating power and lack of subjectivity, this non-parametric and linear programming
model provides the performance scores of all items through a single computation. A case study is
performed to validate and compare the performance of this new model with that of traditional ABC
analysis, DEA-CCR and DEA—-CI. The results show that apart from the highly improved discriminat-
ing power and significant reduction in computational burden, the proposed model has achieved a more
comprehensive ABC inventory classification than the traditional models.
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1. INTRODUCTION

ABC analysis is a well-known inventory classification technique based on the Pareto principle that is often
used in controlling a large number of inventory items [13,15,39]. This technique divides the inventory items
or stock-keeping units into three categories, namely, Category A, Category B and Category C. The items in
“Category A” create great value for a company and are few in number, those in “Category C” create minimal
value to the company and are large in number, and “Category B” is with characteristics that are between
Categories A and C.

The traditional ABC analysis technique classifies items into the three categories on the basis of their annual
dollar usage (ADU). This technique is easy to understand and use. But it is unreasonable to identify inventory
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items on the basis of a single criterion [15,16,27,39]. Many researchers suggest that in addition to ADU, other
important indicators affect the classification, such as critical factor (CF), substitutability, specificity, number
of suppliers, consumption amount, inventory cost, out-of-stock loss value, and lead time (LT) [12,17,39]. In
this sense, inventory classification inherently is a multiple criteria decision making (MCDM) problem, hereafter
called multiple criteria inventory classification (MCIC) problem for simplification [33,39]. Many researchers
have proposed solutions in solving MCIC problem that can be classified into three categories, namely, artificial
intelligence (AI), MCDM, and mathematical programming (MP). Moreover, some academics employ data envel-
opment analysis (DEA) into MCIC field. DEA, which was first proposed by Charnes et al. [9], is an efficient
tool for evaluating the system with multiple inputs and multiple outputs. Since then, DEA has received great
attention from researchers [3,4,6,7,54].

To deal with MCIC problem, this study proposed a common-weight DEA model. The new model distinguishes
from previous studies in the evaluation weight set and the evaluation index. Compared with existing approaches,
our proposed method possesses several advantages. First, the inventory items are assessed with a common
set of weights, which makes the evaluation more fair and provides high discriminating power. Second, the
new common-weight DEA model is linear and requires fewer computational efforts, and the assessment result
can be obtained just through a single computation. Third, a comprehensive index system is established that
simultaneously considers quantitative and qualitative criteria as well as input and output indicators. Fourth,
our proposed model can objectively evaluate inventory items. Based on the above advantages, more realistic
inventory classification result can be obtained through our new method.

The rest of the paper is organized as follows. Section 2 provides the relevant literatures review. Section 3
introduces the related common-weight MCDM-DEA models introduced in previous studies. Section 4 presents
our improved model. Section 5 applies our improved model to a case study of Cui and Lu [12], and results of
our model are compared with those of traditional ABC analysis, DEA—CCR and DEA—CI. Section 6 concludes
the paper and cites directions for future research.

2. LITERATURE REVIEW

In this section, we review the relevant literatures and analyze several deficiencies that need to improve,
for example, complex calculation; imperfect index system; subjectivity and not completely fair evaluation. We
summarize and compare some existing methods with our proposed model from these aspects at the end of this
section.

AT includes many Al-based classification approaches, such as artificial neural networks [36], particle swarm
optimization [52], and other techniques cited in [54]. However, these methods have been rarely applied in practice
due to their difficulty for inventory managers to understand and use [22,42].

Multiple attribute decision making (MADM) method is a type of MCDM technique. MADM methods such as
the simple additive weighting (SAW) [31], technique for order preference by similarity to ideal solution (TOPSIS)
[1,27], and analysis hierarchy process (AHP) [1,9,18,21,36] are widely used for MCIC, among which AHP is
the most popular method. However, these approaches need more computational effort because they require two
steps to classify items into one of the three ABC categories [27]. AHP can consider qualitative criteria, but it
has two main deficiencies. The first one is that AHP is a completely subjective approach. It requires a decision
maker to make a subjective judgment when comparing pairs of criteria. It is difficult for decision makers to
assign accurate values. Accordingly, the classifications may be unrealistic. Second, AHP can only compare a
limited number of decision alternatives [20]. When the size of problem (i.e., the number of criteria and inventory
items) grows, the computational difficulty will increase.

MP models generate a weight vector or matrix, and its objective function is to maximize or minimize the
weighted score of each item [27]. Derived from DEA that is firstly introduced by Charnes et al. [9], Ramanathan
[39] proposed the R-model, a weighted linear optimization model that can be easily understood and used by
inventory managers. However, this model evaluates items with a flexible choice. That is, each item can choose
its favorable weights of criteria to maximize its performance score during the evaluation. This unfair feature
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may lead to inaccurate classification where an item that demonstrates an excellent performance in an irrelevant
criterion and does not perform well in other criteria may be classified into Category A. Moreover, the R-model
has a poor discriminating power according to Igbal and Malzahn [25]. To address this shortcoming, Zhou and
Fan [56] extended the R-model into the ZF-model that integrates the best and worst performance scores of
each item and obtains the final performance score using the control parameter A, which requires a decision
maker to assign the parameter value subjectively. Ng [34] also proposed the NG-model, which converts all
criteria measures of an inventory item into a scalar score and flexibly integrates additional information from
the decision makers [19]. With a proper transformation, the NG-model can obtain the scores of items without
using a linear optimizer. However, in this model, the optimal scores of items are independent of the criteria
weights, thereby leading to inappropriate classification. To address this problem, Hadi-Vencheh [19] proposed
an improved version of the NG-model that called the H-model. The H-model maintains effects of weights on
computing the global score of each item. However, n (we assume that n inventory items must be evaluated)
non-linear programs must be calculated and formulated to obtain the performance scores of all items. Decision
makers must also rank all criteria for each item before using the NG- and H-models [18,23]. Accordingly, Kaabi
and Jabeur [27] proposed a new hybrid weighted optimization model called the ZF-H-model, which integrates
the advantages of both the ZF- and H-models. Despite generating reasonable and promising results, the ZF-
H-model requires n non-linear programmings, which is difficult to solve. Moreover, the ZF-H-model and the
previously mentioned methods only consider quantitative criteria, except Ramanathan [39] took the critical
factor (CF) that is a qualitative indicator as: 1 for a very critical item, 0.01 for a non-critical item and 0.5 for
a moderately critical item. However, Cui and Lu [12] argued that qualitative indicators, including CF (other
literatures also introduced this indicator, e.g., Torabi et al. [42] and Hatefi et al. [22]), substitutability, and
specificity, also influence inventory classification. Besides, these methods assume all criteria are benefit-type
criteria that are positively related to the importance level of an item [56] and use the reciprocals to make
cost-type indicators as positive indicators. Yet, in reality, the significance order of an item may be negatively
affected by several criteria, such as substitutability, specificity, and number of suppliers [12, 38].

Several researchers have recently applied DEA methods to ABC inventory classification, such as CCR [12],
DEA-CI [19, 38], and cross-evaluation [37]. To obtain the performance scores of all decision-making units
(DMUs), the objective function in the classical DEA model should be specified to a particular DMU [21,28,29].
Therefore, DEA requires the calculation of n linear programming models, where n denotes the number of DMUs
to be evaluated. In this case, DMUs are not evaluated by a common set of weights and can choose their own
weights to maximize their performance scores. However, this practice is not suitable for actual management
practices because managers usually expect all DMUs to be evaluated by a common set of weights. The tradi-
tional DEA model may erroneously determine the effective DMUs because of such flexibility in selecting weights.
That is, the well-performing indicators receive extremely high weight values and the poorly performing indica-
tors receive extremely low weight values. These two extremes may ignore the effect of those criteria with small
weight values. Furthermore, traditional DEA models also have poor discriminating power because they prevent
further discrimination among efficient DMUs with similar performance scores (i.e., 1).

In order to get more fair evaluation to avoid generating unrealistic results and improve the discriminating
power of DEA, researchers have developed common-weight MCDM-DEA models where DMUs are evaluated
by a common set of weights [2, 3, 28-30,40]. In previous studies of common-weight DEA method, numerous
scholars discussed common-weight DEA method in the presence of imprecise data. For example, Amin and
Emrouznejad [5] proposed a new minimax DEA model to deal with the ordinal data and applied it to the
advanced manufacturing technology selection problem. Their model used a non-Archimedean epsilon as the
lower bound for the inputs and outputs weights, but they did not discussed how to select a suitable epsilon
value. Toloo [44] also introduced a mixed integer programming-DEA model to select the most efficient supplier
in which case the imprecise data exist. Furthermore, Toloo [47] proposed a new minimax mixed integer linear
programming (MILP) model to seek the most efficient DMU with a common set of weights. More recent studies
about dealing with the imprecise data in the common-weight DEA field can be referred to Hatami-Marbini and
Toloo [24], Toloo and Tavana [49], and so forth. Moreover, to solve the MCIC problem, Hatefi and Torabi [21],



1778 Q. AN ET AL.

Torabi et al. [42], Hatefi et al. [22], Hatefi and Torabi [23] also applied a common-weight MCDM-DEA model
for ABC inventory classification.

Hatefi and Torabi [21] developed a common-weight MCDM-DEA model, that have several advantages com-
pared with Zhou et al. [57], for example, high discriminating power and fewer computational efforts. However,
they only considered quantitative criteria, while qualitative criteria are very essential for a comprehensive inven-
tory evaluation and classification. Torabi et al. [42] proposed a modified model that coped with the quantitative
and qualitative criteria derived from the model of Hatefi and Torabi [21] and the imprecise DEA model of
Zhu [55]. The modified model demonstrated a higher discriminating power and achieved a more reasonable
inventory classification than traditional methods. However, it employed a mixed objective—subjective approach,
and is the same with the model developed by Hatefi and Torabi [21], where the value of its control parameter
k was obtained via a time-consuming trial-and-error approach. Also, in order to deal with qualitative criteria,
this modified model set strongly ordinal relations (SOR) constraints, in which a number of parameters need
to be determined exogenously through trial-and-error and sensitivity analysis methods. Hatefi et al. [22] also
introduced a DEA-like model that considered both qualitative and quantitative indicators. However, the method
was not based on a common-weight framework, only used the maximum feasible epsilon parameter to increase
its discriminating power, and required the solution of n linear optimization models. Therefore, n different weight
sets will be calculated, resulting in unfair results. Hatefi and Torabi [23] proposed a common-weight DEA-like
model based on the R-model [39] to eliminate subjectivity and generate a set of common-weights to evaluate
all inventory items. This model can facilitate a fair evaluation and provide a more realistic and reasonable
ABC inventory classification result than the R-model [39] and H-model [19]. But, this model does not consider
qualitative criteria, such as CF, and may obtain more than one efficient item according to Karsak and Ahiska
[28-30] and Hatefi and Torabi [21].

In summary, among existing solutions to MCIC, there are several deficiencies need to improve. Firstly, some
methods are completely subjective or fixed objective-subjective, such as AHP and ZF-model and so on. Secondly,
a few methods take qualitative criteria as well as cost-type criteria into consideration. A complete index system
including quantitative and qualitative as well as benefit- and cost-type criteria is essential for comprehensively
evaluate and classify inventory items. It is noted that benefit-type indicators means that their value have
positive effects on the importance level of an item, so we define that benefit-type indicators are consistent with
the outputs in DEA model. Analogously, cost-type indicators are equivalent to inputs. Thirdly, some DEA-
like model have poor discriminating power and unfair assessment resulting from no common weights. Finally,
some approaches need to compute too many linear or non-linear programming, and the trail-and-error process
naturally increase the difficulty of calculation. Table 1 summarizes these shortcomings of different methods and
the asterisk indicates the major deficiency.

To alleviate these defects concurrently, we propose an improved DEA model for MCIC problems. This new
approach is inspired by three studies, namely, the model of Amin [4] that obtains the most effective DMU,
the MCDM-framework of Karsak and Ahiska [29], and the method of converting the non-linear constraints
to linear ones in Toloo et al. [48]. Similar to Cui and Lu [12] and Hatefi et al. [22], we establish a highly
comprehensive index system that includes quantitative and qualitative indicators as well as multiple inputs
and outputs (i.e., cost-type and benefit-type indicators, respectively). Via the new model, we can estimate
the items using a common set of weights to improve the discriminating power and evaluate these items fairly.
Furthermore, the proposed model is linear, and can provide efficiencies of all items through a single calcu-
lation and requires no additional calculation processes, such as the iterative method and bisection search
algorithm used in Hatefi and Torabi [21] and Torabi et al. [42]. This model also does not require the sub-
jective judgment and ranking of decision makers. We also list these characteristics of our proposed model in
Table 1.

From Table 1, we can see that there are different flaws in different methods, and our approach can alleviate
these deficiencies simultaneously. We will validate the performance of our proposed model in Section 4.
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3. RELATED COMMON-WEIGHT MCDM-DEA MODELS

Our model is developed based on the common-weight MCDM framework of Karsak and Ahiska [29], and the
suggestions of the improved integrated model of Amin [4]. Additionally, the non-linear constraints are eliminated
by using the method in Toloo et al. [48].

The common-weight MCDM framework of Karsak and Ashika [29] focuses on those decision problems with
multiple inputs and outputs. As its objective function, this framework minimizes the deviation of efficiency from
an ideal efficiency score of 1. This model can improve the discriminating power and obtain the best DMU in
consideration. We assume that n DMUs are evaluated under this framework and that each DMU contains s
outputs and m inputs. The model is called minimax efficiency model and is presented as follows:

min dpax

ot (3.1a)
dmax_dj >0, ]:172’”7 (31b)

s m

Zu,.yrj - Zvixij +d; =0, 7=1,2...n, (3.1¢)
r=1 =1
ZUT+ZUi =1, (3.1d)
r=1 i=1
Ur, Vi, dj Z 07 V?",’i,j, (316)

where d; is the deviation of the efficiency of DMUj, namely, E;, from the ideal efficiency score of 1 (i.e.,
d; =1 — Ej;). Constraint (3.1b) is added to ensure that dmax = max d;, j = 1,2...n which means that dmax is
the maximum deviation from the ideal efficiency score, u, and v; are the weights that are assigned to rth output
and ith input, respectively, z;; represents the input iused by DMU}, and y,; denotes the output » produced by
DMUj. The weight restriction constraint (3.1d) is added to limit the sum of the importance weights equals to
1.

Through a single computation of model (3.1), all deviations can be calculated to obtain the efficiencies of all
DMUs. This step allows us to assess the relative efficiency of all DMUs based on a common indicator weight
set. The minimax efficiency model may sometimes produce more than one efficient DMU, that is, more than
one d; is equivalent to zero. Therefore the model is revised as follows:

min dmax —k > d;

JEEF (3.2a)
s.t.
dmax_djzov Jj=12...n, (32b)
dmax — »_ d; >0, j=1,2...n, (3.2¢)
JEEF
s m
Zu,-y”‘ — Zvixij +d;=0,7=1,2...n, (3.2d)
r=1 i=1
ZUT+ZUi =1, (3.2¢)
r=1 i=1
Uy, Vi, dj Z 07 vraivja (32f)

where EF is the set of efficient DMUs determined by the minimax efficiency model. The £ is a discriminating
parameter, the value of which ranges from 0 to 1. It is assigned by a decision maker with a predetermined step
size, from zero until the model produces a single efficient DMU.
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The framework of Karsak and Ashika [29] evaluates all DMUs based on a common set of weights and considers
both inputs and outputs. However, the initial value of the discriminating parameter k and the iterative step
size are determined subjectively, and a time-consuming trial-and-error process is required. Accordingly, Amin
[3] proposed an improved MCDM-DEA model that uses a nonlinear constraint to obtain a single efficient DMU
(dj = 0) by adding binary d; and continuous variables 3;. This improved approach of Amin [3], which is derived
from the common-weight MCDM-DEA model mixed with the single input and multiple outputs proposed by
Karsak and Ashika [29], requires only once computation and is non-iterative. In the similar way, Amin [4]
introduced an improved integrated model for the case where multiple inputs and multiple outputs exist. The
model in Amin [4] is as follows:

min dpax

ot (3.3a)
Amax —d; >0, j=1,2...n (3.3b)
Y v <1, j=1,2...n (3.3c)
r=1
Zuryrj_zvixij"‘dj:oa j=1L2...n (3.3d)
r=1 r=1

n

Z 5j =n-—1 (336)
j=1

5 —d;8; =0, j=1,2...n, (3.3f)
5 €{01}, d; >0, 8;>1,j=1,2...n (3.3g)
ur>e, r=1,2...5 (3.3h)
vi>e i=1,2...m (3.3)

where constraint (3.3c) is non-geometrically redundant according to the Theorem 2 in Toloo [44]. € is a very
small positive number called the non-Archimedes infinite decimal, which ensures that the weight coefficient of
each indicator does not equal to 0 to guarantee the full utilization of all evaluation indicators. In other words,
in model (3.3), all weights are strictly positive, which is contrast with models (3.1) and (3.2). This property
provides a more fair evaluation and highly improves the discriminating power in DEA approach. Besides, plenty
researchers emphasized the crucial role of epsilon value in finding the most efficient DMU. For example, Cook
et al. [11] pointed that the non-Archimedean value can affect the discriminating power of DEA models and a
large value is commonly preferred over a small one. Toloo [43] pointed the most efficient unit may not be found
if we ignore the non-Archimedean epsilon. Toloo and Salahi [50] illustrated that Lam [32]’s model may fail to
find the most efficient DMU because the value of epsilon is selected unsuitably. Toloo and Salahi [50] introduced
a new model to calculate the correct maximum epsilon. Other studies also emphasized the importance of epsilon
value, such as Toloo [43], Toloo [46], Salahi and Toloo [41], Toloo and Tavana [49], Toloo and Salahi [50] and
Hatami-Marbini and Toloo [24]. In the next section, we will introduce the method of calculating the proper
non-Archimedean epsilon value.

Moreover, model (3.3) is non-linear since the multiplier of two variables in formula (3.3f). Recently, Toloo
et al. [48] proposed a mixed integer linear programming (MILP) that eliminates the non-linear constraint in
model (3.3), which significantly reduces the computational burden. Concretely, they replaced the constraints
0; —d;jB; =0 and B; > 1 where j = 1,2...n with a linear formula d; < 0; < Nd; where N indicates an enough
large number and j = 1,2...n. At the same time, other restraints are unchanged. Toloo et al. [48] proved that
their proposed MILP is equivalent to model (3.3). Accordingly, we will eliminate the non-linear constraints by
using the similar method in Toloo et al. [48].
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4. NEW COMMON-WEIGHT DEA MODEL FOR MCIC

This section proposes an improved common-weight DEA model for MCIC. Furthermore, we establish a highly
comprehensive index system that includes quantitative and qualitative indicators as well as multiple input and
output indicators. The new model is described as follows:

min dyax (4.1a)

S.t.

dmax —d; > 0; j=1,2,...n (4.1b)
Soowy+ Y, wen() = | D v+ > mv(i)| +dj=0; j=1,2,...n (4.1¢c)

reEXO r€ORDO i€EXI i€ORDI

Y s=n-1 (4.1d)

j=1

d; <6; <Ndj; j=1,2,...n (4.1e)

9; €{0,1},d; >0; j=1,2,...n (4.11)

ur > ¢; € EXO (4.1g)

v; > ¢; 1€ EXI (4.1h)

W, pi € 1

b = {;U:l I;UHH % 5,11'11@ > E; il ~ Hatl > E, [l 2 € } (4.1i)

=1,2,...,L—1; ie ORDI;» € ORDO

where EXO and ORDO are sets of exact and ordinal outputs, respectively, and EXI and ORDI are sets of
exact and ordinal inputs, respectively. Formula (4.1b) ensures that dy.x denotes the maximum value of the
deviations. We assume that n items are under classification. The variable of x;; represents the ith exact input of
the jth item, and y,; denotes the rth exact output of the jth item. The € is the non-Archimedean infinitesimal
value that defines the lower bound for the weights of all criteria and the minimum required difference among
the successive levels of ordinal criteria. This value also ensures that each importance weight has a certain effect
on the assessment. N represents an enough large number. The variable of 1 denotes the set of ordinal relation
constraints, which ensures those items rated in the lth place have a higher value than those rated in the (+1st
place with respect to ordinal outputs and inputs. The ordinal outputs and inputs are classified based on a
common Likert scale (i.e., L). We propose the following theorem for constraints (4.1d)—(4.1f).

Theorem 4.1. Constraints (4.1d)—-(4.1f) ensure that only one d; is equivalent to 0, that is, a single efficient
item.

Proof. Given constraints Z?Zl d0j=n—1and d; € {0,1}; j =1,2,...n, only one J is equal to zero. Assuming
that 6, = 0and §; = 1 when j # p, j =1,2...n. With constraints 5; > 1 and ; —d;8; =0forall j =1,2...n,
only one d, = 0 and the other d; < 1. O

Theorem 4.1 indicates that our proposed model can get a single efficient item through one computation. In
this case, the discriminating power of items can be significantly improved, especially of the efficient ones. Hence,
constraints (4.1d)—(4.1f) are critical to get fair classification results.

According to the notation in Cook et al. [11], we define L-dimensional unit vectors ~,(j) =

(V1 (5)s ¥r2(5) -+ er ()] and vi(5) = [vi1(4), vi2(4) - - - vz ()], where

(4.2)

| 1 ifitem j is rated in [th place on the rth ordinal output
Tl =1 0 otherwise
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and

1 if item j is rated in [th place on the ith ordinal mput
Vit = (4.3)

0 otherwise

If L =5 and Item 6 is rated in the second place on the first output criterion, then ~;(6) = [0,1,0,0, 0].

In addition, u, v; Vr € EXO, ¢ € EXI are the importance weights for the exact outputs and inputs,
wy w;, Vr € ORDO, i € ORDI are L—dimensional worth vectors, such as w, = [wy1, w2 ... wyr], and wyy
denotes the value of being rated in the Ith place with respect to the rth output. Therefore, w,v,.(j) =
Zz LWy (J) and pivi(j) = Zz 1 Hiryi(J) denote the worth assigned to the jth item with respect to the
rth ordinal output and the ith ordinal input, respectively.

This new model is developed based on these common-weight MCDM-DEA models introduced in Section 3,
while is different from previous common-weight DEA models used in the MCIC context. First, the new model
is linear and only needs to be computed in one time without additional trail-and-error process. Second, by
including multiple inputs and outputs and simultaneously considering exact and ordinal criteria, this new
model is a comprehensive model that can effectively solve practical MCIC problems. And it is also flexible.
When only quantitative or qualitative indicators are needed, we just need to set 7;(j) = 0,7 € ORDI and
vr(j) = 0,7 € ORDO or z;; = 0,7 € EXI and y,; = 0,7 € EXO. When only input or output indicators are
presented, we just need to set ’yT( j) = 0,7 € ORDO and y,; = 0,r € EXO or v;(j) = 0,7 € ORDI and z;; =
0,7 € EXI. Excepting the differences from existing models, the new model also keeps the original advantages of
common-weight model.

The non-Archimedean value can affect the efficiency scores and the discriminating power of DEA models. As
mentioned in Section 3, many studies emphasized the important role of epsilon value especially when priority the
best efficient DMU. They pointed out that a larger epsilon value is preferred over a smaller one. Simultaneously
the epsilon value cannot be too large as it will result in infeasible solutions. Toloo [43] proposed an efficient
approach to calculate maximal epsilon value for the model in Amin [4]. Referring the methods in Cook et al.
[11], Toloo [46] and Toloo et al. [48], we establish the following model to calculate the maximum feasible epsilon
value, namely, &y ax-

max & (4.4a)
S.t.

Z UrYrj + Z Wy (4 Z VT + Z wivi(G)| +dj=0; j=1,2,... (4.4b)
reEXO0 reORDO i€EXI i€ORDI
Zéj =n-—1 (4.4c)
j=1
dj <6; < Ndj; j=1,2,...n (4.4d)
5;€{0,1},d; >0; j=1,2,...n (4.4e)
e —u, <0; re EXO (4.4f)
e—wv; <0; i € EXI (4.4g)
Wy, i € P
b= {;Url wrl+1_5>0 wrp — € 2 05 pyg — piy1 — € 20, uil—ﬁzo;}. (4.4h)

=1,2,...,L—1; i € ORDI; r € ORDO

Different with model (4.1), in model (4.4), the non-Archimedes infinite decimal (i.e., €) is a decision variable.
Furthermore, the objective function of model (4.4) is the maximum value of the epsilon rather than the minimum
D as presented in model (4.1). Therefore, the constraint (4.1b) is removed in model (4.4). To obtain a single
efficient DMU, constraints (4.4b)—(4.4h) are applied similarly as in model (4.1). In model (4.4), the optimal
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objective function value £y, belongs to (0,00). If we want to limit epsilon within a small region and obtain
a smaller feasible epsilon than e,,,x, we may add a weight normalization constraint into the model. After the
maximum feasible epsilon value is calculated, taking emayx into model (4.1) can obtain reasonable performance
scores without subjectivity. Besides, the discriminating power can be highly improved.

5. ILLUSTRATIVE EXAMPLE

As mentioned above, a few articles take qualitative criteria and cost-type indicators into account. To validate
the performance of our model, we utilize the modified data derived from initial data from Cui and Lu [12], which
includes quantitative and qualitative as well as benefit- and cost-type indicators. We compare its inventory
classification results with those of traditional ABC analysis, DEA-CCR and DEA—CI.

5.1. Inventory classification evaluation criteria and initial data

As mentioned above, ABC inventory classification is essentially a MCIC problem, and the classification
is affected by quantitative and qualitative criteria, such as CF and LT. Moreover, not all indicators positively
affect the importance level of inventory items because several criteria are negatively related to their performance
scores, including substitutability, specificity, and number of suppliers. The new modified common-weight model
for the MCIC problem includes quantitative and qualitative criteria as well as inputs and outputs in the DEA
model. The index system introduced by Cui and Lu [12] is discussed as follows.

CF is a categorical and discontinuous criterion. Therefore, many researchers exclude CF when calculating
performance scores of inventory items. However, the ordinal values of this qualitative criterion reflect the degree
of importance of inventory items and it is defined as input in Cui and Lu [12]. In other words, an item with a
smaller ordinal value warrants more attention.

As another qualitative indicator, substitutability (SUB) refers to the degree to which an inventory item can
be replaced by other similar items. A SUB value of 1 indicates that the item cannot be replaced, 3 indicates that
the item can be replaced but influences the effect, and 5 indicates that the item can be completely replaced.
Therefore, an item with a lower SUB has a higher importance.

Specificity (SPE) evaluates the degree of specialization of the items. An item with a smaller SPE has a higher
importance. An SPE of 1 indicates highest specificity, 3 indicates moderate specificity, and 5 indicates weak
specificity.

Number of suppliers (NOS) is a quantitative index. An item with the fewest suppliers has the highest impor-
tance.

These four criteria negatively affect the importance level of the items. That is, an item with a smaller
value of any of these criteria warrants more attention. Conversely, four other indicators positively influence the
significance ranking of items.

First, the value of consumption amount (CA) is equal to unit price multiplied by annual consumption quantity.
Second, inventory cost (IC) represents the inventory maintenance cost of the item for one year. Third, out-of-
stock loss value (SL) refers to the loss resulting from the shortage of inventory items. Fourth, lead time (LT)
refers to the required time from order to storage, with a longer LT indicating a higher chance for stock depletion
or a higher tendency for losses to occur.

Cui and Lu [12] and Ping and Du [38] identified several criteria which smaller values increase the importance
of an item as inputs (i.e., CF, SUB, SPE and NOS), on the contrary, others as outputs (i.e., CA, IC, SL and
LT). To test our model, we modify the raw data as follows. First, we take the opposite ranking values of CF
in Cui and Lu [12], and then treat the result as an output that can make both the inputs and outputs contain
qualitative and quantitative criteria simultaneously. In other words, we take 1 when the ordinal value of CF in
Cui and Lu [12] is 9, 2 when the initial CF is 8, and all the way up to 9. Second, we use the same Likert scale
(i.e., L =9) to sort the qualitative inputs and outputs. Table 2 presents the modified data.
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TABLE 2. Sample of spare parts of a beer enterprise.

Item Inputs Outputs

SUB SPE NOS CF CA 1C SL LT
1 1 3 4 3 406 272 13 995.45 870 7
2 3 5 13 7 199 017.3 37 985.12 2 500 5
3 5 3 6 4 170 765 3 300 1 200 10
4 3 3 28 7 101 444.4 28 654 5 600 15
5 5 5 18 3 97 692 11 523.69 820 3
6 3 5 50 6 71 400 21 420 1 000 2
7 3 1 2 9 67 035 18 523 25 300 30
8 3 5 8 8 60 546 18 163.8 3 600 10
9 5 5 22 4 56 760 10 590.33 180 4
10 3 1 1 6 40 000 11 456.98 550 30
11 3 3 5 7 35 100 7 856 3200 5
12 5 3 4 4 18 400 5 520 560 8
13 5 5 28 2 15 750 4725 130 1
14 3 3 8 4 12 993 3 126.48 300 3
15 3 5 12 5 11 897.52 3 569.256 420 7
16 3 5 18 8 11 120 3 336 4800 2
17 5 5 12 3 10 943.46 4 423.56 1300 4
18 3 3 8 4 9 752.7 3123 300 7
19 5 5 43 1 8 047.7 2 414.31 50 1
20 3 3 16 5 4012.1 1 098.63 260 2
21 5 5 50 3 3 631.2 799.25 66 2
22 5 5 55 3 2 573.2 689.13 40 2
23 3 5 30 3 1 661.52 486.37 80 2
24 1 3 4 2 1 169.28 324 100 5
25 5 5 60 1 1 140.98 342.25 12 2
26 3 3 22 7 676.5 181.2 120 2
27 5 3 120 1 400 114.3 2.5 1
28 5 5 100 1 316.2 105.36 1.2 1
29 5 5 50 1 262.5 78.75 30 1
30 1 1 3 5 231 189.24 280 7

5.2. Results and analysis

We experiment with the data in Table 2 by running Lingo 11 on a laptop computer with Intel(R) Core(TM)
i5-3210M CPU @2.50 GHz and 4.00 GB RAM. The runtime of model (4.1) is 1.0, and the total solver iterations
are 191.

Set N = 10000, we calculated the appropriate maximum value of the epsilon using model (4.4). Afterward,
We USe Emax as the non-Archimedean value in model (4.1) and obtain all DMUs’ deviations by calculating
model (4.1). Then, efficiencies of all DMUs can be obtained according to the formula d; = 1 — E;. For ease
of comparison with other methods, we use the same classification distribution as those employed in previous
studies, that is, 6 for class A, 9 for class B, and 15 for class C. All results are presented in Table 3. The second
column shows the classification of these items from our proposed method. The third, fourth, and fifth columns
present the classification results of traditional ABC analysis, DEA-CCR and DEA—CI, respectively.

Table 3 shows that 11 of 30 items classifications are exactly same as generated by the three previous methods,
and only 4 items (items 8, 4, 6, 17) out of other 19 items are reclassified by our model because of comprehensive
evaluation. That is, the only 4 items’ classification are completely different from all previous methods. For
example, the CA of Item 8 is lower than those of Item 5, while other outputs (i.e., IC, SL and LT) of Item 8 are
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TABLE 3. Inventory classification results of different methods.

Item  Our proposed method Traditional ABC DEA-CCR DEA-CI

3

1

2

7

10
8

12
11
5

14
18
17
4

15
9

20
16
26
13
23
6

30
24
19
21
29
22
25
28
27

olololololololololoRoRoNoRoNoRusRvsRvsRvsivsRosivs o v e e e e
oo rQ@EOQOQAEIFQOQFEFPIIIII = = >
oo Q@ErFIOOOQEIFQE QAT QAT =W
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higher than Item 5 and all inputs of Item 8 are smaller than Item 5. In other words, only 1 out of the 8 criteria
of Item 8 are dominated by Item 5. Therefore, Item 8 is classified to Category A, while Item 5 is classified to
Category B. However, this classification result is different from that of the other three methods. Moreover, Item
30 has small inputs, and both DEA-CCR and DEA-CI classify this item to Categories A and B. If we consider
the inputs and outputs simultaneously, we find that CA, IC, LV and LT (particularly CA and IC) of Item 30
only have small and negligible values in all assessment items. Furthermore, the CO, IC, SL and LT of Item 17
are larger than those of Item 20. Therefore, we must place Items 17 and 20 in Categories B and C, respectively,
to achieve a comprehensive consideration of all indicators. Moreover, compared with the previous approaches, a
few items in our proposed model are ranked in the back, such as Items 4 and 6, but these classifications can be
explained reasonably. For example, Item 4 has a high value for certain output indicators yet has 28 suppliers,
which is considered too large in all evaluated items. Meanwhile, Items 8, 11, 12 and 5 only have 8, 5, 4 and
18 suppliers, respectively. Therefore, it is reasonable that Item 4 is less important than Items 8, 11, 12 and 5.
Similarly, given its large number of suppliers and small LT, we place Item 6 in Category C.

Generally, our model generates different classifications for 14 of the 30 items compared with DEA-CI, and
reclassifies only 9 of the 30 items compared with the traditional ABC classification and DEA-CCR, thereby
fully validating the effectiveness of our proposed method. These comparisons and analyses also show that our
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proposed model can evaluate items by considering all the eight criteria simultaneously. Given that the criteria
contain quantitative and positive indicators as well as qualitative and negative indicators, the proposed model
achieves a comprehensive and reasonable ABC inventory classification. Moreover, given that the new model
uses a common set of weights to assess the 30 inventory items, all these items are not allowed to select favorable
weight sets. This feature allows us to compute fair performance scores and achieve a high discriminating power.
Furthermore, the performance scores of all items can be computed through a single linear programming after
obtaining the maximum epsilon, thereby significantly saving the computational efforts. Therefore, the proposed
model can obtain the most efficient item and improve the discriminating power of all items through a single
computation. The calculation does not involve any subjectivity, which indicates that the results are highly
objective and reasonable. In sum, compared with the traditional ABC analysis, DEA-CCR and DEA-CI, the
new model has many advantages.

6. CONCLUSIONS

To address the MCIC problem that is a MCDM issue, many researchers have proposed DEA-like models.
However, previous methods almost evaluated items with different weight sets, and just considered quantita-
tive and output indicator, which lead to the incomplete and unfair evaluation of items. This study proposed
an improved common-weight DEA model that evaluates inventory items using a common set of weights and
combines quantitative and qualitative criteria as well as inputs and outputs simultaneously. Compared with
previous research, our proposed model has following advantages:

(i) Complete index system. Our model considers multiple inputs and outputs and contains quantitative and
qualitative indicators. These factors are necessary for a comprehensive and realistic inventory classification.

(ii) Lower computational burden. Our proposed model is linear, it requires only a single calculation, and does
not require the trial and error or bisection approaches.

(iii) No subjectivity. The proposed model is a nonparametric programming and can avoid subjective selection of
epsilon value, which involves no subjectivity and ensures a fair evaluation.

(iv) Fairer assessment. We evaluate inventory items using a common set of weights. In this way, we prevent any
item from being evaluated by its own favorable weights. Thus, the proposed approach can generate fair,
essential results that coincide with actual management practices.

(v) Higher discriminating power. Our model is derived from the common-weight DEA approaches and uses the
maximum feasible epsilon value. In this sense, the discriminating power of the proposed model is increased.

Future studies may pursue other interesting research directions. First, the evaluation indicators can be further
improved to make the evaluation and classification results closer to reality. Second, we can also incorporate the
preferences of inventory managers into a new model. When assessing and classifying inventory items, considering
subjective opinions and intuitive senses of decision makers is an interesting further research direction [51].
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